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Abstract 

Container liner fleet deployment (CLFD) is the assignment of containerships to port 

rotations (ship routes) for efficient transport of containers. As liner shipping services have fixed 

schedules, the ship-related operating cost is determined at the CLFD stage. This paper provides 

a critical review of existing mathematical models developed for the CLFD problems. It first 

gives a systematic overview of the fundamental assumptions used by the existing CLFD models. 

The operating characteristics dealt with in existing studies are then examined, including 

container transshipment and routing, uncertain demand, empty container repositioning, ship 

sailing speed optimization and ship repositioning. Finally, this paper points out four important 

future research opportunities: fleet deployment considering ship surveys and inspections, 

service dependent demand, pollutant emissions, and CLFD for shipping alliances. 
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1 Introduction 

Container transportation is vital to the world trade and world economy. The total container 

trade volume amounted in 175 million twenty-foot equivalent units (TEUs) in 2015 (UNCTAD, 

2016). Containers are usually transported by liner shipping services with fixed sequences of 

ports of call at a regular service frequency, which are published by liner shipping companies 

in advance to attract more cargoes of shippers. Shippers or freight forwarders can pick up and 

deliver their cargoes at the desired ports. A single shipper usually has far less than a full 

shipload of cargo. Containerships keep to their published departure dates even when a full 

payload is not available (Christiansen et al., 2004, 2013). This study focuses on container liner 

shipping rather than other liner shipping modes such as roll-on-roll-off (RoRo) shipping for 

cars (Øvstebø et al., 2011). Fig. 1 depicts a liner shipping network consisting of three ship 

routes with fixed port rotations. When a containership is assigned to a liner ship route, it usually 

serves the ship route for a period of at least three to six months. Since liner shipping services 

have fixed port rotations and schedules, ship-related operating cost is determined after the ship-

to-route assignment. Moreover, containerships are large as liner shipping companies aim to 

take advantage of their economies of scale. For example, the average containership size was 

3,801 TEUs at the end of July 2016 (UNCTAD, 2016). Therefore, it is important for container 

liner shipping companies to assign ships to port rotations in an efficient manner to transport 

containers. This tactical decision problem is referred to as container liner fleet deployment 

(CLFD). 

 

<Insert Figure 1 here> 

 

A number of studies have been devoted to the CLFD problem due to its importance. In 

this paper, we give a comprehensive overview on model building of the problem and point out 

future research directions. As most of the mathematical formulations are mixed-integer linear 

programming models, or can be transformed to mixed-integer linear programming models, 

with a few exceptions using decomposition approaches, they are generally solved by 
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commercial mixed-integer linear programming solvers. Consequently, we do not discuss how 

to solve the models in this paper. 

CLFD is often explicitly or implicitly incorporated in liner shipping service network 

design, which determines the routes in a network and the deployment of ships to each route. 

We also mention the studies on liner shipping service network design if their models are highly 

relevant to CLFD. Some works, such as Andersson et al. (2015), Norstad et al. (2015), 

Bakkehaug et al. (2016) and Chandra et al. (2016), focus on fleet deployment for ships other 

than containerships; these works are not reviewed. 

The remainder of the paper is organized as follows. Section 2 examines the assumptions 

in container liner fleet deployment models so that practitioners understand the limitations of 

the models before putting them to use. Section 3 investigates early CLFD models in which 

container transshipment or routing are not incorporated. Section 4 focuses on CLFD models 

for modern global liner shipping companies with container transshipment and routing. 

Depending on how container routing is formulated, the models are classified as path-based, 

origin-to-destination-link-based, and origin-link-based. Section 5 reviews models for handling 

the uncertainty of the container shipment demand, including chance-constrained models and 

stochastic optimization models. Section 6 is focused on incorporating both laden and empty 

containers in CLFD. Section 7 analyzes how to relax the assumption of fixed sailing speed of 

ships. Section 8 discusses ship repositioning in CLFD. Section 9 points out future research 

directions. Throughout the paper, we present models with a unified notation system in Table 1. 

The models in the literature are classified according to practical features incorporated and the 

most relevant studies are summarized in Table 2. 

 

<Insert Table 1 here> 

<Insert Table 2 here> 
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2 Typical assumptions in existing container liner fleet deployment models 

Existing studies on CLFD generally aim to minimize the total cost for transporting a given 

volume of containers or maximize the total profit by developing optimization models. The 

inputs mainly include the port rotations, the fleet and mix, and the container shipment demand. 

The decision variable is which ship to serve which port rotation (fleet deployment). Moreover, 

how the containers are transported by the ships (container routing) is also an auxiliary decision 

variable. Before appreciating the mathematical models, we first discuss the following typical 

assumptions used in most of the models.  

Assumption (i): The port rotations in the container liner shipping network have been given. 

There are studies that investigate the design of port rotations, i.e., liner shipping network design 

(Agarwal and Ergun, 2008; Alvarez, 2009; Reinhardt and Pisinger, 2012). Liner shipping 

network design is a strategic-level decision problem (Meng et al., 2014) that needs to consider 

factors beyond the scope of fleet deployment, for example, the marketing strategy of the liner 

shipping company (e.g., whether it should target Asia-Europe trade or intra-Asia trade), the 

ownership of the company (e.g., APL is a Singapore-based company and hence it will use 

Singapore rather than Malaysian ports as its transshipment hub), the associated vertical 

businesses (e.g., APL operates container terminals at Kaohsiung and  hence it will transship 

containers at Kaohsiung rather than ports such as Xiamen), joint services with alliance 

members (e.g., Hapag-Lloyd, NYK and OOCL merged some of their Asia-Europe services and 

hence OOCL could not unilaterally decide which port to visit). Therefore, the liner shipping 

network design problem is significantly different from CLFD and it is reasonable to assume in 

the CLFD that the port rotations are given (Zacharioudakis et al., 2011). Of course, the liner 

shipping network design problem is also important for liner shipping companies (Brouer et al., 

2014). 

Assumption (ii): The fleet (size and mix) is given and ships are classified into different 

types: ships in each type are homogeneous in terms of capacity and cost structure. A liner 

shipping company has a fixed set of ships that can be deployed and hence the fleet is given. In 

some studies (e.g., Meng and Wang, 2010; Meng et al., 2012), the liner shipping company can 

charter in additional ships if needed or charter out unused ships for profit. In reality, ships in 
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each type cannot be identical because of their different capacities, structures, ages, and past 

operating conditions, unless each type has only one ship. Nevertheless, the classification of 

ships into types is a helpful for model building. Considering that the CLFD is a tactical decision 

problem, the classification of ships into types is acceptable. 

Assumption (iii): The container shipment demand is exogenous and independent of service 

factors such as the transit time and freight rate. There are two reasons behind this assumption: 

First, the relation between demand and transit time or freight rate is difficult to estimate. Second, 

it is much more challenging to model service dependent demand than exogenous demand. We 

will discuss this issue more in Section 9. 

Assumption (iv): Ports can provide services whenever a ship arrives. CLFD models 

usually assume that ships sail at a constant speed during a round-trip journey, and hence based 

on the speed the bunker consumption and thereby bunker cost can be calculated. In reality, 

ports may be busy or may not work during particular days. Therefore, the sailing speed obtained 

from CLFD models cannot directly be applied and must be adjusted to fit into port time 

windows. The additional cost incurred by the adjustment of speed is insignificant compared 

with the proportion of operating cost determined at the CLFD stage. Hence, the assumption 

that ports are always ready for service is acceptable. 

Assumption (v): All types of containers are converted into TEUs, and the number of TEUs 

to transport is formulated as a continuous variable rather than an integer. This assumption is 

reasonable in that the number of containers dealt with is usually several tens or several 

hundreds and the estimation error in container shipment demand is much larger than the error 

caused by rounding up the number of containers to integers. The numerical experiments of 

Wang (2013) substantiate the argument that treating the volume of containers as a continuous 

number of TEUs does not have a significant impact on the fleet deployment decisions. 

Assumption (vi): Ships can immediately serve any port rotation. In reality, ships owned 

by a liner shipping company are scattered all over the world. If a ship located in America needs 

to serve an Asia-Europe service, it has to be repositioned to the Asia-Europe trade lane, which 

requires cost and time. We will discuss this issue in Section 8. 

Assumption (vii): All relevant parameters are known, such as bunker price, port charges, 

freight rate, currency exchange rate, canal dues, and container shipment demand. In reality, 



 8

these parameters may change every day. However, for modeling purposes, estimated values, 

either fixed or stochastic with known probability distribution, are used. 

3 Fleet deployment without container transshipment or routing 

The majority of the pioneering studies on CLFD made by Perakis and his research 

collaborators (Perakis, 1985, 2002; Papadakis and Perakis, 1989; Jaramillo and Perakis, 1991; 

Perakis and Jaramillo, 1991; Cho and Perakis, 1996; Powell and Perakis, 1997) do not take into 

account container transshipment operations. They assume that each ship route has to fulfill its 

container shipment demand and provide at least a given number of voyages in a planning 

horizon. The basic model of these studies is presented below. 

Consider a set R  of port rotations (ship routes), regularly serving a group of ports 

denoted by the set P . Port rotation r R  can be expressed as:  

 1 2 1rr r rN rp p p p     (1) 

where 
rN  is the number of ports of call and 

rip  is the physical port corresponding to the i th 

port of call, 1, 2, ,  ri N . Define : {1, 2, , }r rNI  . The voyage from port i  to port 1i   is 

called leg i  and leg 
rN  is the voyage from port rN  to port 1. In Fig. 1 three port rotations are 

shown: port rotation 1 has three legs, port rotation 2 has five legs, and port rotation 3 has three 

legs. The fleet deployment plan covers a horizon of T  days. The container shipment demand 

from port i  to port j  on ship route r  in the planning horizon is denoted by ij
rq  (TEUs). The 

types of ships in the fleet is denoted by V . The number of ships in type vV  is 
vm  and the 

container capacity of a ship is 
vV  (TEUs). A ship in type v  can complete 

rvn  round trips if it is 

deployed on port rotation r  and the operating cost of one round trip is ˆrvc . At least 
rn  round 

trips must be completed on port rotation r  in the planning horizon. Once a ship is deployed on 

a port rotation, it cannot serve other port rotations in the planning horizon. The container liner 

shipping company needs to determine how many ships of each type to deploy on each port 

rotation, and how many voyages the ships in each type should complete on each port rotation, 

to transport all containers at minimum cost. 

Let 
rvx  be the decision variable of the number of ships in type v  deployed on port rotation 

r  and 
rvy  be the decision variable of the number of round trips completed by ships in type v   
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on port rotation r . Define   as the set of nonnegative integers. This basic CLFD model can 

be formulated as an integer linear programming problem: 

[P1] 
,

min ˆ
rv rv

rv rv
x y

r v

c y
 

R V

 (2) 

subject to: 

 , ,rv rv rvy n x r v    R V  (3) 

 ,rv r
v

y n r


  
V

R  (4) 

 ,rv v
r

x m v


  
R

V  (5) 

 
1 2 1

, ,jk jk jk
r r r v rv r

j i k i j i k j j i i k j v

q q q V y r i
          

          
V

R I  (6) 

 , , ,rv rvx y r v    R V  (7) 

The objective function (2) minimizes the total operating cost in the planning horizon. 

Constraint (3) limits number of voyages that a ship can complete. Constraint (4) enforces the 

minimum number of voyages required on each port rotation. Constraint (5) requires that the 

number of ships used cannot exceed the available number in the fleet. Constraint (6) imposes 

ship capacity constraint on each leg of each port rotation, where the left-hand side is the total 

volume of containers on leg i  of port rotation r . Constraint (7) defines 
rvx  and 

rvy  as 

nonnegative integer variables. Note that constraint (6) can be rewritten as: 

 ,r v rv
v

V V y r


  
V

R  (8) 

where rV  is the shipping capacity required on port rotation r : 

 
1 2 1

: max ,
r

jk jk jk
r r r r

i
j i k i j i k j j i i k j

V q q q r


         

 
     

 
   I

R  (9) 

In addition to the basic model (2)-(7), some studies also required a minimum number of 

ship layup days in the planning horizon, incorporated the possibility of ship chartering and 

examined  simple cases of speed optimization. In particular, Cho and Perakis (1996) allowed 

containers from their origin port to their destination port to be split among several ship routes. 

For example, In Fig. 1, some containers from Singapore to Hong Kong can be transported on 

ship route 1, and the others are transported on ship route 2. Ng (2017) took into account that, 

in a finite horizon, it is possible that e.g. 4.3 trips are completed but that 0.3 trip can still be 
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used to transport some containers.  In model [P1], it is assumed that the sailing speed of each 

ship is given a priori. Nowadays because of the high bunker fuel price, sailing speed has 

become an important planning decision (Bell and Bichou, 2008; Du et al., 2011, Norstad et al., 

2011). We will discuss how to incorporate sailing speed optimization in CLFD models in 

Section 7. 

4 Fleet deployment with container transshipment and routing 

In recent years, the sizes of containerships are increased and large ships have to connect 

with feeder services. Consequently, more and more containers are transshipped. Transshipment 

complicates the formulation and solution of models for delivery of containers because in a liner 

shipping network there are many paths (routes) to transport a container from its origin port to 

its destination port. For example, a container from Colombo to Hong Kong in Fig. 1 can be 

transported on ship route 2, or first transported to Singapore on ship route 2, and then 

transported from Singapore to Hong Kong on ship route 1. Hence, container transshipment and 

routing are incorporated in most of the recent studies. There are a few studies that consider 

transshipment but no routing because there is only one path for each port pair (e.g., Fagerholt, 

1999, 2004; Mourão et al., 2001; Fagerholt et al., 2009; Gelareh and Pisinger, 2011). From the 

fleet deployment point of view, these studies are similar to [P1]. Another issue that is included 

in recent studies is weekly service frequency because large liner shipping companies generally 

provide at least a weekly service frequency to ensure the level of service (Brouer et al., 2013).  

To formulate the complex container transshipment and routing operations and weekly 

frequency, we need more notation. Represent by W  the set of origin-to-destination (O-D) port 

pairs,  W P P . The demand for O-D pair ( , )o d W  is denoted by odq  (TEUs/week). 

The penalty cost for not shipping a container is odg  (USD/TEU). Containers can be 

transshipped at any port from origins to destinations. The load, transshipment and discharge 

costs (USD/TEU) at port pP  are denoted by ˆpc , pc  and pc , respectively. In practice 

ˆp p pc c c    because less paper work is needed in transshipment and shipping lines have more 

freedom to choose transshipment ports. A total of 
rvm  ships in type v  are needed to maintain 

a weekly frequency of port rotation r  and the weekly cost of operating such a string is 
rvc  
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(USD/week). If port rotation r  is operated, then at least a weekly service frequency must be 

maintained, i.e., a weekly frequency, a twice-weekly frequency, or a thrice-weekly frequency. 

The objective is to determine how to deploy containerships and how to transport containers to 

minimize the sum of ship operating cost, container handling cost, and penalty for not fulfilling 

the demand. 

Depending on how to formulate container routing, there are three types of CLFD models: 

path-based, O-D-link-based, and origin-link-based. We elaborate on these three types of 

models below. It should be mentioned that container routing is also an auxiliary decision in 

other planning problems such as network design and schedule construction. 

4.1 Path-based fleet deployment model  

The most straightforward approach to formulate container flow is to use container paths. 

For example, Liu et al. (2011) and Meng and Wang (2012) have used a path flow formulation 

in the CLFD. Song and Dong (2012) used a path flow formulation for container flow 

optimization. Here a container path is a route on which containers are transported by ships. For 

example, the followings are three container paths with respect to the ship routes shown in Fig. 

1:  

 Ship Route 1
1 1,3 1,1(SG) (HK)h p p   (10) 

 Ship Route 2
2 2,5 2,1(SG) (HK)h p p   (11) 

 Ship Route 2 Ship Route 3
3 2,2 2,4 3,1 3,2(XM) (CB) (CB) (CN)h p p p p    (12) 

Container path 1h  is used to directly deliver containers from Singapore to Hong Kong which 

are loaded at the 3rd port of call of the ship route 1 (Singapore) and discharged at the 1st port of 

call of the ship route 1 (Hong Kong). Containers along the container path 2h  are delivered by 

the ship route 2. Container path 3h  involves container transshipment operations: containers are 

first loaded at the 2nd port of call of the ship route 2 (Xiamen) and delivered to the 4th port of 

call of the ship route 2 (Colombo). At Colombo, these containers are discharged and reloaded 

(transshipped) to a ship deployed on ship route 3, and transported to their destination, Chennai.  

The set of container paths for O-D ( , )o d W  is denoted by odH . The container 

handling cost of odhH  is hc  (USD/TEU). For instance, in Eq. (12), 
3 XM CB CNˆhc c c c    . 



 12

Define 
( , ): od
o d  WH H  to be the set of all container paths for all the O-D port pairs. We 

further let binary coefficient ri
h  be 1 if containers on container path h  are transported on leg 

i  of ship route r , and 0 otherwise. For example, the container path 3h  consists of the 2nd and 

the 3rd legs of the ship route 2 and the 1st leg of the ship route 3. We hence have
3

2,2 1h  , 
3

2,3 1h  , 

and 
3

3,1 1h  .  

The decision variables are as follows. rvx  is a nonnegative integer variable representing 

the number of ships in type v  deployed on port rotation r ; hy  is the volume of containers 

transported on container path hH ; and odz  is the unfulfilled demand for ( , )o d W . The 

CLFD problem with container routing can be formulated as a mixed-integer linear 

programming model: 

[P2] 
, , ( , )

min
od

rv h

od odrv
rv h h

x y z r v h o drv

x
c c y g z

m   

   
R V H W

 (13) 

subject to: 

 , ,ri
h h v rv r

h v

y V x r i
 

      
H V

R I  (14) 

 , ( , )
od

od od
h

h

y z q o d


   
H

W  (15) 

 ,rv v
r

x m v


  
R

V  (16) 

 , ,rv

rv

x
r v

m
    R V  (17) 

 0,hy h  H  (18) 

 0, ( , )odz o d  W  (19) 

The objective function (13) minimizes the sum of ship operating cost, container handling cost, 

and penalty cost in a week. /rv rvx m  is the number of weekly services provided by ships of type 

v  on ship route r . Constraint (14) imposes ship capacity constraint on each leg of each port 

rotation. Constraint (15) defines the container shipment demand. Constraint (16) requires that 

the number of ships used cannot exceed the number of ships in the fleet. Constraints (17)-(19) 

define the domains for the decision variables.  

The path-based formulation [P2] is very elegant. Moreover, side constraints on container 

routing can also be easily accommodated, for example, maximum transit time of containers 
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(Meng and Wang, 2012) and maritime cabotage. However, [P2] needs the set of container paths 

H . In reality, H  can either be designed a priori by experienced planners, generated a priori 

using optimization algorithms (Meng and Wang, 2012), or generated dynamically by column 

generation (Brouer et al., 2011). Nevertheless, the cardinality of H  increases exponentially 

with network size and some potentially good container paths  may not be found for a large-

scale network. 

4.2 O-D-link-based fleet deployment model  

A compact model that does not need path enumeration or generation is O-D-link-based. 

Agarwal and Ergun (2008) applied such a formulation in network design. The decision 

variables are as follows. rvx  is a nonnegative integer variable representing the number of ships 

in type v  deployed on port rotation r ; ˆod
riz  and od

riz  are the volume of containers from 

( , )o d W  loaded and discharged at port of call i  on ship route r , respectively (note that 

when calculating ˆod
riz  and od

riz , a transshipped container is considered as being discharged once 

and being loaded once); od
rif  is the volume of containers from ( , )o d W  flowing on leg i  on 

ship route r  (we define 0 :
r

od od
r rNf f ). ody  and odz  are the fulfilled and unfulfilled demand for 

( , )o d W , respectively; ˆpz , pz , and pz  are the total volume of loaded, discharged, and 

transshipped containers at port pP , respectively. The O-D-link-based CLFD model is a 

mixed-integer linear programming problem: 

[P3]  
ˆ ˆ, , , , , , , , ( , )

m ˆin ˆ
od od od od od

rv ri ri ri p p p

od odrv
rv p p p p p p

x z z f y z z z z r v p o drv

x
c z c z c z c g z

m   

     
R V P W 

  (20) 

subject to: 

 , 1 ˆ , , , ( , )od od od od
r i ri ri ri rf z f z r i o d         R I W  (21) 

 
( , )

ˆ ,pd
p

p d

z y p


  
W

P  (22) 

 
( , )

,op
p

o p

z y p


  
W

P  (23) 

 
, ( , )

ˆ ˆ ,
r ri

od
p ri p

r i p p o d

z z z p
   

     
R I W

P  (24) 
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  
,

,

ˆ , , ( , ) ,

0,  otherwiser ri

od

od od od
ri ri

r i p p

y p o

z z y p d o d p
  

 
       



 
R I

W P  (25) 

 
( , )

, ,od rv
ri v r

o d v rv

x
f V r i

m 

     
W V

R I  (26) 

 , ( , )od od ody z q o d   W  (27) 

 ˆ 0, 0, 0, , , ( , )od od od
ri ri ri rz z f r i o d        R I W  (28) 

 0, 0, ( , )od ody z o d   W  (29) 

and constraints (16)-(17). 

The objective function (20) minimizes the sum of weekly ship operating cost, container 

handling cost, and penalty cost. Constraint (21) is container flow conservation equation. 

Constraints (22)-(24) define the total volume of loaded, discharged, and transshipped 

containers at port pP , respectively. Constraint (25) computes the fulfilled demand. 

Constraint (26) imposes ship capacity constraint on each leg of each port rotation. Constraint 

(27) defines the container shipment demand. Constraints (28)-(29) define the domains for the 

decision variables. 

The number of flow variables (e.g. od
rif ) in the O-D-link-based model [P3] has the 

magnitude of | | rr
N

 R
W , which, in theory, is much smaller than the path-based 

formulation [P2] in the worst case. In [P3] containers can be transshipped at any port, and 

therefore, the transshipment properties of butterfly ship routes in Reinhardt and Pisinger (2012) 

and the cycle-based long-haul ship routes in Song and Dong (2013) could be correctly captured. 

However, [P3] suffers from the deficiency that characteristics associated with paths cannot be 

represented. For example, it would be extremely hard to impose the maximum transit time of 

containers, maritime cabotage, or the requirement that a container can be transshipped at most 

twice based on model [P3].  
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4.3 Origin-link-based fleet deployment model  

A more compact model is origin-link-based, which is applied in network design by Alvarez 

(2009) and fleet deployment by Wang and Meng (2012). Brouer et al. (2014) and Bell et al. 

(2011, 2013) have used a similar destination-link-based formulation. The difference in the 

origin-link-based model compared with O-D-link-based model is that: (i) we use ˆo
riz  and o

riz  to 

represent the total volume of containers with origin port oP  and any destination loaded and 

discharged at port of call i  on ship route r , respectively (transshipped containers are also 

considered) and use o
rif  to denote the total volume of containers with origin port oP  and 

any destination flowing on leg i  of ship route r ; and (ii) we define : W P P  and 0odq   

if there is no demand from port o  to port d . The origin-link-based model for CLFD is a mixed-

integer linear programming problem: 

[P4]  
ˆ ˆ, , , , , , , ,

( , )

min ˆˆ
o o o od od

rv ri ri ri p p p

od odrv
rv p p p p p p

x z z f y z z z z r v p o drv

x
c z c z c z c g z

m   

     
 


R V P W

 (30) 

subject to: 

 , 1 ˆ , , ,o o o o
r i ri ri ri rf z f z r i o         R I P  (31) 
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 , ,o rv
ri v r

o v rv

x
f V r i

m 

     
P V

R I  (34) 

 ˆ 0, 0, 0, , ,o o o
ri ri ri rz z f r i o        R I P  (35) 

and constraints (16)-(17), (22)-(23), (27) and (29). 

In the origin-link-based model [P4], the number of flow variables (e.g. o
rif ) has the 

magnitude of | | rr
N

 R
P , which is one order smaller than the O-D-link-based model [P3]. 

Similar to [P3], [P4] also allows containers to be transshipped at any port any number of times 

and suffers from the deficiency that characteristics associated with paths cannot be represented. 

[P4] combines the origins of the containers and thereby requires fewer variables, however, the 
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side effect is that [P4] has less flexibility in formulating some constraints of container routing. 

For example, we may impose in [P3] that containers from Shanghai (SH) to Los Angeles (LA) 

should not visit Rotterdam (RD) by adding the constraint that SH, LA 0rif   if , 1 RDr ip    or 

RDrip  . Such a constraint cannot be incorporated in model [P4]. That is, we cannot add to 

[P4] the following constraint SH 0rif   if , 1 RDr ip    or RDrip  , because containers from 

Shanghai to Hamburg may visit Rotterdam. Similarly, [P3] can also incorporate the 

requirement that containers of a particular O-D cannot be transshipped at a particular port, 

whereas [P4] cannot. 

5 Fleet deployment with uncertain container shipment demand 

In reality, the container shipment demand cannot be predicted accurately. Therefore, some 

studies assume that the demand is a random variable following a known probability distribution. 

Chance-constrained models and stochastic optimization models have been developed. For 

simplicity, we use the path-based model [P2] to describe the developed models with uncertain 

demand. 

5.1 Chance-constrained models 

Meng and Wang (2010) assumed that the container shipment demand is a random variable. 

A certain minimum probability that the demand of each O-D port pair can be fulfilled must be 

maintained. Their objective is to minimize the total cost. The original model of Meng and Wang 

(2010) is formulated based on model [P1]. However, to be consistent with other models with 

uncertain demand, we reformulate the model of Meng and Wang (2010) based on model [P2]. 

Suppose that the demand for O-D pair ( , )o d W  is a random variable od  (TEUs/week) 

whose cumulative density function is given as ( )odF x . It is required that the fleet must be able 

to fulfill the demand for each O-D with a probability of at least  . Therefore, the individual 

chance-constrained model for CLFD is: 

[P5] 
,

min
rv h

rv
rv h h

x y
r v hrv

x
c c y

m  

 
R V H

 (36) 

subject to: 



 17

 Pr , ( , )
od

od
h

h

y o d


 
      

 

H

W  (37) 

and constraints (14) and (16)-(18). 

Eq. (37) is the chance constraint to ensure the probability of fulfilling all containers in each 

O-D. Since the chance constraint is imposed individually on each O-D, it can be transformed 

to a deterministic constraint: 

 1( ), ( , )
od

h od
h

y F o d



   
H

W  (38) 

where 1( )odF    is the inverse function of ( )odF x . 

It should be mentioned that since constraint (37) is imposed individually on each O-D port 

pair in Meng and Wang (2010), the probability that the container shipment demand of at least 

one O-D is not fulfilled may be large. For instance, if there are 100 O-D pairs and 0.99  , 

then the probability that all containers of all O-D pairs are transported is only 1000.99 0.37 . 

To overcome this problem, we propose a joint chance-constrained model: 

[P6] 
,

min
rv h

rv
rv h h

x y
r v hrv

x
c c y

m  

 
R V H

 (39) 

subject to: 

 Pr , ( , )
od

od
h

h

y o d


 
      

 

H

W  (40) 

and constraints (14) and (16)-(18). 

The only difference is Eq. (40): it guarantees that the probability that the demands from 

all O-D pairs can simultaneously be fulfilled is at least  . Eq. (40) may be of greater interest 

to shipping lines than Eq. (37). However, Eq. (40) poses considerable difficulties for 

computation as the set of decision variables satisfying Eq. (40) may not be convex. 

5.2 Stochastic optimization models  

Meng et al. (2012) proposed a stochastic optimization model to minimize the expected total 

cost for fulfilling the demand. It can be assumed that the container shipment demand has a 

limited number of scenarios represented by set  . The probability of scenario   is 

0p  , 1p


 . In scenario  , the demand for O-D pair ( , )o d W  is odq  
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(TEUs/week). Note that if there are a large number of scenarios, or if the demand is modeled 

as a continuous random variable, then the sample average approximation approach used by 

Meng et al. (2012) can be applied. Now there are two types of decision variables: the fleet 

deployment variables rvx  are here-and-now decisions and cannot be adjusted with the 

realization of the uncertain demand; the container flow variables represented by hy  and odz  

are wait-and-see decisions and can be determined after observing the uncertain demand. Hence, 

the CLFD model minimizing the expected total cost is: 

[P7] 
, , ( , )

min
rv h od

odrv
rv h h od

x y z r v h o drv

x
c p c y g z

m 

  

    

 
  

 
   
R V H W

 (41) 

subject to: 

 , , ,ri rv
h h v r

h v rv

x
y V r i

m


 

       
H V

R I  (42) 

 , ( , ) ,
od

h od od
h

y z q o d  



    
H

W  (43) 

 0, ,hy h    H  (44) 

 0, ( , ) ,odz o d    W  (45) 

and constraints (16) and (17). 

The objective function (41) minimizes the sum of weekly ship operating cost and the 

expected container handling cost and penalty cost. The stochastic optimization model [P7] 

minimizes the expected total cost and nests the deterministic counterpart [P2] as a special case. 

It can be proved that the optimal fleet deployment that minimizes the expected total cost may 

be different from the fleet deployment that minimizes the total cost under the average demand 

of all demand scenarios. This is the value of using the more complex model [P7] rather than 

[P2]. 

However, [P7] ignores the variability of the total cost in different scenarios. The fixed cost 

of 1 million dollars is different from the cost of 0.5 million dollars with a probability of 0.5 and 

1.5 million dollars with a probability of 0.5. If the company is risk averse, the fixed cost of 1 

million dollars is better; if it is risk seeking, the latter case is preferable; if it is risk neutral, 

both cases are the same. To reflect the risk attitude in the models, Wang et al. (2012) developed 
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a stochastic optimization model that minimizes the expected cost plus weighting   times the 

absolute deviation of the total cost: 

[P8] 
, , ( , )

( , ) ( , )

min
rv h od

odrv
rv h h od

x y z r v h o drv

od od
h h od h h od

h o d h o d

x
c p c y g z

m

p c y g z p c y g z

 

  



     

 



    

     

 
  

 

 
    

 

   

     

R V H W

H W H W

 (46) 

subject to the same constraints as [P7]. 

In Eq. (46), the second term excluding   is the average absolute deviation of the cost 

under all the scenarios relative to the expected cost, and   is a parameter: 0   means that 

the company is risk averse, 0   indicates a risk seeking company, and 0   leads to model 

[P7]. Hence, model [P8] successfully captures the risk attitude of the decision maker. Of course, 

incorporating risks in decision making will to some extent sacrifice the average total cost. 

Wang et al. (2012) proved that the average total cost of the fleet deployment in [P8] is at least 

as high as that of [P7].  

In addition to the modeling approach in [P8], one can also consider the worst-case scenario 

with limited information on the distribution function of the demand (Chen et al., 2007). For 

instance, Ng (2014, 2015) considered fleet deployment problems in which the distribution 

function of the demand is unknown but its mean and variance are known.  

6 Fleet deployment with empty container repositioning  

Because of the imbalance in world trade, a large number of empty containers are 

accumulated at import-oriented countries and must be repositioned to export-oriented countries. 

As pointed out by Shintani et al. (2007), Brouer et al. (2011), Wang (2013), and Huang et al. 

(2015), it is important to consider both laden and empty containers in planning models. We use 

the O-D-link-based model [P3] to demonstrate how to incorporate empty container 

repositioning in CLFD. We need the following parameters: The load, transshipment and 

discharge cost for an empty container (USD/TEU) at port pP  is denoted by ˆe
pc , e

pc  and e
pc , 

respectively, ˆe e e
p p pc c c   ; the penalty cost for not repositioning an empty container to deficit 

port pP  is e
pg   (USD/TEU); and the penalty cost for not repositioning an empty container 
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from surplus port pP  is e
pg   (USD/TEU). We also need the following additional variables: 

ˆe
riz  and e

riz  are the volume of empty containers loaded and discharged at port of call i  on ship 

route r , respectively (including transshipped empty containers); e
rif  is the volume of empty 

containers flowing on leg i  on ship route r  (we define 0 :
r

e e
r rNf f ); e

py  and e
py  are the 

volume of empty containers un-repositioned to deficit port pP  and volume of empty 

containers un-repositioned from surplus port pP , respectively; ˆe
pz , e

pz , and e
pz  are the total 

volume of loaded, discharged, and transshipped empty containers at port pP , respectively. 

The CLFD problem with empty container repositioning can be formulated as: 

 [P9]  
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subject to: 
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 ˆ 0, 0, 0, ,e e e
ri ri ri rz z f r i      R I  (54) 

 0, 0,e e
p py y p    P  (55) 

and constraints (16)-(17), (21)-(25), (27)-(29). 

The fourth term of the objective function (47) is empty container handling cost and the 

fifth term is penalty cost for not repositioning all empty containers. Eq. (48) is empty container 

flow conservation equation. Eqs. (49)-(51) define the volume of empty containers handled at 
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each port. In Eq. (52), the left-hand side is the sum of the volumes of laden and empty 

containers on leg i  on ship route r . Eq. (53) calculates the volume of empty containers that 

should be repositioned at each port. Comparing [P3] and [P9], it can be seen that incorporating 

empty containers only slightly increases the number of variables and constraints as the number 

of flow variables for empty containers (e.g. e
rif ) has the magnitude of only rr

N
 R

. 

7 Fleet deployment with ship sailing speed optimization 

In models [P1] – [P9], the ship sailing speed is considered as exogenous. In fact, the sailing 

speed can also be considered as a decision variable in the CLFD. For example, Perakis and 

Jaramillo (1991) and Meng and Wang (2010) incorporated some forms of speed optimization; 

Gelareh and Meng (2010) discretized and optimized the sailing speed in CLFD models. 

Alvarez (2009) considered ships of different speeds as different types in network design. Xia 

et al. (2015) optimized the speed for each leg for network design where the range of possible 

speeds is discretized. We use model [P2] to elaborate on the approach by Alvarez (2009).  

To maintain a weekly frequency, the higher the speed is, the smaller the number of ships 

is. Therefore, optimizing speed is equivalent to determining the number of ships m  in a port 

rotation. A larger m  implies a lower speed and vice versa. If m  ships of type v  are deployed 

to maintain a weekly frequency, the weekly operating cost of such a string can be calculated 

and is denoted by 
rvmc  (USD/week). Moreover, in reality, based on limits of ship speed and 

operating rules, one can easily estimate a lower and upper bound for m , represented by min
rvm  

and max
rvm , respectively. 

The decision variables are as follows. rvmx  is a nonnegative integer variable representing 

the number of ships in type v  whose speed satisfies that exactly m  ships are needed to 

maintain a weekly service frequency on port rotation r ; hy  is the volume of containers 

transported on container route hH ; and odz  is the unfulfilled demand for ( , )o d W . 

Based on [P2], the CLFDP with sailing speed optimization can be formulated as: 

[P10] 

max

min, , ( , )

min
rv

od
rvm h

rv

m
od odrvm

rvm h h
x y z r v h o dm m

x
c c y g z

m   

    
R V H W

 (56) 

subject to: 
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 min min max, , , , 1, ,rvm
rv rv rv

x
r v m m m m

m
       R V   (59) 

and constraint (15) and (18)-(19).  

The optimal sailing speed of ships is already implicitly included in the decision variable 

rvmx  in model [P10]. In addition to speed, Wang et al. (2015) and Xia et al. (2015) have 

considered the impact of vessel displacement on fuel costs. Interested readers can further refer 

to Wang et al. (2013) and Psaraftis and Kontovas (2014) for reviews on shipping speed 

optimization models. 

8 Fleet deployment with ship repositioning  

The ships operated by liner shipping companies are scattered all over the world to transport 

containers. If a ship that used to serve a particular ship route is re-scheduled to serve another 

ship route, then a repositioning cost is incurred. If these two ship routes have common ports of 

call, the ship can phase out from one ship route at a common port and phase into another ship 

route. In this situation, the repositioning cost mainly involves discharging the remaining 

containers on the ship. If these two ship routes have no common port of call, the ship has to 

sail from the itinerary of the first ship route to the itinerary of the second ship route, and the 

repositioning cost may be much higher.  

Wang (2013) formulated the ship repositioning problem in the context of CLFD. We use 

model [P2] to illustrate this formulation. Let vS  be the set of ship groups in ship type vV . 

Ships in ship group vs S  not only belong to the same type v , but also have the same 

repositioning cost to any ship route rR , denoted by rsc


 (USD/week). It should be 

mentioned because in model [P2] we minimize the weekly cost while ship repositioning is a 

one-off activity, rsc


 is actually the total repositioning cost divided by the number of weeks in 

the planning horizon. Define vvS S V  and let sm  represent the number of ships in group 

s S . We further need a new decision variable rsz  representing the number of ships from 
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group s S  deployed on ship route r . The CLFDP with ship repositioning can be formulated 

as follows 

[P11] 
, , , ( , )

min
od

rv h rs
v

od odrv
rv h h rs rs

x y z z r v h o d r v s Srv

x
c c y g z c z

m      

     
R V H W R V


 (60) 

subject to 
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r

z m s S
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 , ,
v

rs rv
s S

z x r v


     R V  (62) 

 , ,rsz r s S    R  (63) 

and constraints (14)-(19).  

The last term in the objective function (60) is the ship repositioning cost. Constraint (61) 

requires that the total used ships in each ship group cannot exceed the total number of ships 

available in the group. Constraint (62) enforces that the total used ships from all ship groups of 

type v  equals the number of ships deployed. Constraint (63) defines rsz  as nonnegative integer 

variables. It is clear that a number of integer variables rsz  are introduced for formulating ship 

repositioning. Nevertheless, Wang (2013) proved that the ship repositioning sub-problem has 

the totally unimodularity property. Hence, the decision variables rsz  can be modeled as 

continuous variables. That means that the additional computational burden caused by 

incorporating ship repositioning is trivial. 

9 Future research directions 

The advancement of CLFD models mainly focuses on modeling more factors that are 

relevant in practice. We expect that future CLFD models will also follow this trend. In this 

regard, we classify future research into two types: modeling CLFD while accounting for 

realistic factors that have existed for a long time yet not been modelled, and modeling new 

factors that arise recently. In the first direction, fleet deployment with ship surveys and 

inspections, and service dependent demand are worthwhile future research topics; in the second 

direction, CLFD considering emissions (green shipping) and CLFD for shipping alliances are 

new topics that should be explored. 
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9.1 Fleet deployment with ship surveys and inspections 

Ships need regular surveys and inspections to ensure satisfactory operating conditions. For 

example, according to IACS (2005), periodical hull survey is of prime importance as far as 

structural assessment of cargo holds and adjacent tanks is concerned. Periodical hull survey 

consists of annual, intermediate and special surveys and inspections. At annual surveys and 

inspections, overall survey is required. At intermediate surveys and inspections, in addition to 

the surveys required for annual surveys, examination of cargo holds and ballast tank may be 

required depending on the age of the ship. Special surveys and inspections of the hull structure 

are carried out at five-year intervals to confirm that the structural integrity is satisfactory and 

will remain fit for its intended purpose until the next special survey. 

When a ship in service is to be surveyed and inspected, it will phase out from a particular 

ship route. This will destroy the weekly frequency of the ship route, and hence another ship 

(for example, one that is in lay-up) will phase into this ship route. Consequently, in the fleet 

deployment stage, the survey and inspection requirement of each ship should be taken into 

account. Perakis and Jaramillo (1991) and Meng and Wang (2010) required that there are at 

least a certain number of days in the planning horizon during which a ship cannot be put to 

service. Other than this simplified consideration, the ship survey and inspection requirement is 

neither incorporated in CLFD models, nor in other liner ship planning problems in the literature. 

9.2 Fleet deployment with service dependent demand 

It is evident that the container shipment demand depends on the service in terms of transit 

time and freight rate. As the freight rate is to a large extent confidential, has a number of 

elements, and may change every day, it is difficult to evaluate the impact of the freight rate on 

the demand. At the same time, it is widely acknowledged in the liner shipping industry the 

negative correlation between transit time and demand. Increased transit time because of slow 

steaming may not be acceptable for customers, depending on the sensitivity of demand to 

transit time. To attract more demand, Daily Maersk (2013) has been advertising that its total 

transportation time from Asia to Europe is five days shorter than other Asia-Europe services.  
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Despite the negative correlation between transit time and demand, most CLFD studies 

assumed that the demand is independent of the services. A few works have adopted a simplified 

relation between transit time and demand. Mourão et al. (2001) incorporated the inventory cost 

of containers. Meng and Wang (2012) required that there is a maximum allowable transit time 

of containers in each O-D pair. Cheaitou and Cariou (2012) examined the effect of slow 

steaming under semi-elastic demand where containerized perishable product is sensitive to 

transit time and frozen and dry products are not. General CLFD models with service dependent 

demand need to be developed to capture the demand in a more reasonable manner. There are 

two challenges for such general models: first, how to obtain the relation between service factors 

and demand; second, to formulate the exact transit time, the schedule of each ship route (that 

is, the arrival and departure day at each port of call) must be designed. However, schedule 

design depends on the availability of ports and incorporating the availability of ports in liner 

planning models is extremely difficult due to the combinatorial nature of the problem. 

9.3 Fleet deployment considering pollutant emissions 

Shipping was estimated to have accounted for 2.2 per cent of the global greenhouse gas 

(GHG) emissions in 2012 (UNCTAD, 2016). Therefore, the greenhouse gas (GHG) emissions 

from shipping have been dominating substantive discussions at the International Maritime 

Organization (IMO). IMO has adopted a number of new regulations on energy efficiency for 

ships, for example, the Energy Efficiency Design Index (EEDI) is mandatory for new ships 

and the Ship Energy Efficiency Management Plan (SEEMP) is mandatory for all ships 

(UNCTAD, 2016). Market-based measures (MBMs) for the reduction of GHG emissions are 

under extensive debates in IMO (Psaraftis, 2012). The MBM proposals under review range 

from those envisaging a levy on all GHG emissions from all ships, or only those generated by 

ships not meeting the EEDI requirement, to emissions trading schemes. In addition to carbon 

emissions, more stringent regulations are also enforced to control sulfur and nitrogen emissions. 

For example, since 1 January 2015, ships trading in the emission control areas in Europe and 

North America have to switch to bunker fuel with sulfur content of at most 0.1%; moreover, to 

reduce ship emissions at ports, a number of ports require ships to use low-sulfur fuel while 

berthing and/or provide shore power so that ships can turn off auxiliary engines at berth. These 
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newly enforced regulations will affect all levels of decision making including CLFD. How to 

systematically model the CLFDP at the network level while considering regulations on 

emissions is a fruitful research arena. 

9.4 Fleet deployment for shipping alliances 

The overcapacity of container liner shipping and the resulting low freight rates have led to 

a number of major mergers and acquisitions to lower cost and increase competitiveness. For 

instance, China Ocean Shipping (Group) Company and China Shipping (Group) Company 

merged to form China COSCO Shipping Corporation (COSCO Shipping); CMA CGM 

acquired of Singapore’s Neptune Orient Lines (NOL), which owned American President Lines 

(APL). Moreover, shipping companies form shipping alliances to increase service frequency, 

take advantage of economies of scale in ship size, and expand service scope. Currently, there 

are three large shipping alliances, namely Ocean alliance, 2M alliance, and THE alliance, 

which control nearly 90% of Asia-North America trade. CLFD for shipping alliances not only 

involves many more ships than that for one shipping company, but should also account for how 

much capacity each shipping company in the alliance should contribute to each route, and how 

to allocate the container slot capacity of a ship to the shipping companies. This is a timely and 

relevant topic for the container shipping industry. 
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Table 1.  Symbols 

Sets 

  Set of container shipment demand scenarios  

odH  Set of container paths for O-D ( , )o d W  

odH  Set of all container paths, ( , ): od
o d  WH H  

rI  Set of ports of call on ship route r R , : {1,2, , }r rNI   

P  Set of ports 

R  Set of port rotations (ship routes) 

vS  Set of ship groups in ship type vV  

S  Set of all ship groups, vvS S V  

V  Set of types of ships in the fleet 

W  Set of origin-to-destination (O-D) port pairs 

W  Set of all port pairs, : W P P  

  Set of nonnegative integers 

Indices 

  A container shipment demand scenario 

hH  A container path  

( , )o d W  An O-D pair 

r R  A ship route 

s S  A ship group 

p P  A port 

vV  A ship type 

Parameters 

  The container shipment demand for each O-D must be fulfilled with a 
probability of at least   

ri
h  Binary coefficient that is 1 if containers on container path h   are 

transported on leg i  of ship route r , and 0 otherwise 

  Weight for the absolute deviation of the total cost 
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od  Random variable representing the container shipment demand for O-D 

pair ( , )o d W  (TEUs/week) 

ˆrvc  Operating cost of a round trip on port rotation r  completed by a ship in 
type v  (USD) 

rvc  Weekly cost of operating a string of ships in type v  to maintain a weekly 
frequency of port rotation r  (USD/week)  

rvmc  Weekly cost of operating m  ships in type v  to maintain a weekly 
frequency of port rotation r  (USD/week)  

hc  Total handling cost of a container delivered on path hH  (USD/TEU)

ˆpc  Load cost of a container at port pP  (USD/TEU) 

pc  Transshipment cost of a container at port pP  (USD/TEU) 

pc  Discharge cost of a container at port pP  (USD/TEU) 

ˆe
pc  Load cost of an empty container at port pP  (USD/TEU) 

e
pc  Transshipment cost of an empty container at port pP  (USD/TEU) 

e
pc  Discharge cost of an empty container at port pP  (USD/TEU) 

rsc


 Cost of repositioning a ship in group vs S  to ship route rR divided 

by the number of weeks in the planning horizon (USD/week)  

( )odF x  Cumulative density function of random variable od  

odg  Penalty cost for not shipping a container for O-D pair ( , )o d W  

(USD/TEU) 

e
pg   Penalty cost for not repositioning an empty container to deficit port 

pP  (USD/TEU) 

e
pg   Penalty cost for not repositioning an empty container from surplus port 

pP  (USD/TEU) 

vm  Number of ships in type vV  in the fleet 

rvm  Number of ships in type v  needed to maintain a weekly frequency of port 
rotation r  at given sailing speed 

min
rvm  Lower bound on the number of ships of type v  required to maintain a 

weekly frequency of port rotation r   

max
rvm  Upper bound on the number of ships of type v  required to maintain a 

weekly frequency of port rotation r   

sm  Number of ships in ship group s S  
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rN  Number of ports of call on ship route r R  

rvn  Number of round trips a ship in type v  can complete in the planning 
horizon if it is deployed on port rotation r   

rn  Lower bound on the number of trips that must be completed on port 
rotation r  in the planning horizon  

p  Probability of container shipment demand scenario   

rip  Port corresponding to the i th port of call on ship route r R  

ij
rq  Container shipment demand from port i  to port j  on ship route r  in the 

planning horizon (TEUs) 
odq  Container shipment demand for O-D pair ( , )o d W  modeled as a fixed 

value (TEUs/week) 

odq  Container shipment demand for O-D pair ( , )o d W  in scenario   

(TEUs/week) 

T  Length of the planning horizon (days) 

vV  Container capacity of a ship in type vV  (TEUs)  

rV  Shipping capacity required on port rotation r  (TEUs) 

Decision Variables 

od
rif  Number of containers from ( , )o d W  flowing on leg i  on ship route r

(TEUs/week) 

o
rif  Number of containers with origin port oP  and any destination flowing 

on leg i  on ship route r (TEUs/week) 

e
rif  Number of empty containers flowing on leg i  on ship route r

(TEUs/week) 

rvx  Number of ships in type v  deployed on port rotation r  

rvmx  Number of ships in type v  whose speed satisfies that exactly m  ships are 
needed to maintain a weekly service frequency on port rotation r  

rvy  Number of round trips completed by ships in type v   on port rotation r  
in the planning horizon 

hy  Number of containers transported on container path hH  
(TEUs/week) 

hy  Number of containers transported on container path hH  in scenario 
  (TEUs/week) 
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e
py  Number of empty containers un-repositioned to deficit port pP  

(TEUs/week) 

e
py  Number of empty containers un-repositioned from surplus port pP  

(TEUs/week) 

ody  Fulfilled demand for ( , )o d W  (TEUs/week) 

odz  Unfulfilled demand for ( , )o d W  (TEUs/week) 

odz  Unfulfilled demand for ( , )o d W  in scenario   (TEUs/week) 

ˆod
riz  Number of containers from ( , )o d W  loaded at port of call i  on ship 

route, including transshipment containers (TEUs/week) 

od
riz  Number of containers from ( , )o d W  discharged at port of call i  on 

ship route, including transshipment containers (TEUs/week) 

ˆo
riz  Number of containers with origin port oP  and any destination loaded 

at port of call i  on ship route, including transshipment containers 
(TEUs/week) 

o
riz  Number of containers with origin port oP  and any destination 

discharged at port of call i  on ship route, including transshipment 
containers (TEUs/week) 

ˆe
riz  Number of empty containers loaded at port of call i  on ship route, 

including transshipment containers (TEUs/week) 

e
riz  Number of empty containers discharged at port of call i  on ship route, 

including transshipment containers (TEUs/week) 

ˆpz  Number of loaded containers at port pP  (TEUs/week) 

pz  Number of transshipped containers at port pP  (TEUs/week) 

pz  Number of discharged containers at port pP  (TEUs/week) 

ˆe
pz  Number of loaded empty containers at port pP  (TEUs/week) 

e
pz  Number of transshipped empty containers at port pP  (TEUs/week) 

e
pz  Number of discharged empty containers at port pP  (TEUs/week) 

rsz  Number of ships from group s S  deployed on ship route r  
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Table 2.  Summary of the studies on CLFD 

 Transshipment Container 
routing 

Uncertain 
demand 

Empty 
containers 

Speed 
optimization 

Other 
features 

Perakis (1985)     Y  
Papadakis and Perakis 
(1989) 

    Y  

Jaramillo and Perakis 
(1991) 

    Y  

Perakis and Jaramillo 
(1991) 

    Y  

Cho and Perakis (1996)  Y     
Powell and Perakis 
(1997) 

      

Fagerholt (1999) Y      
Fagerholt (2004) Y      
Fagerholt et al. (2009) Y      
Gelareh and Meng (2010)     Y  
Meng and Wang (2010)   Y    
Liu et al. (2011) Y Y  Y  Nonlinear 

revenue 
function 

Meng and Wang (2012) Y Y    Transit time, 
dynamic 
demand 

Meng et al. (2012) Y Y Y    
Wang and Meng (2012) Y Y     
Wang et al. (2012) Y Y Y    
Wang (2013) Y Y  Y  Ship 

repositioning 
Ng (2014)   Y    
Branchini et al. (2015)      Spot 

voyages 
Ng (2015)   Y    
Ng (2017)      Partial trips 

 




