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Abstract 7 

This paper investigates the nonlinear distance-based congestion pricing in a network 8 

considering stochastic day-to-day dynamics. After an implementation/adjustment of a 9 

congestion pricing scheme, the network flows in a certain period of days are not on an 10 

equilibrium state, thus it is problematic to take the equilibrium-based indexes as the 11 

pricing objective. Therefore, the concept of robust optimization is taken for the 12 

congestion toll determination problem, which takes into account the network 13 

performance of each day. First, a minimax model which minimizes the maximum regret 14 

on each day is proposed. Taking as a constraint of the minimax model, a path-based day 15 

to day dynamics model under stochastic user equilibrium (SUE) constraints is discussed 16 

in this paper. It is difficult to solve this minimax model by exact algorithms because of 17 

the implicity of the flow map function. Hence, a two-phase artificial bee colony 18 

algorithm is developed to solve the proposed minimax regret model, of which the first 19 

phase solves the minimal expected total travel cost for each day and the second phase 20 

handles the minimax robust optimization problem. Finally, a numerical example is 21 

conducted to validate the proposed models and methods. 22 

Keywords: congestion pricing, distance-based pricing, minimax regret model, robust 23 

optimization, day-to-day dynamics 24 

25 

1. Introduction26 

Congestion pricing, as an important instrument on transportation demand management, 27 

is of great significance in ameliorating urban traffic congestions in that it encourages 28 

commuters to adjust their travel behaviors: number of trips, route, time of day, 29 

destination, mode of transport, and so on, as well as the long-term decisions on where 30 

to live, work and set up business (de Palma and Lindsey, 2011). Among all types of 31 

congestion pricing schemes (zonal-based, cordon-based, distance-based, time-based as 32 

well as congestion-based schemes), the distance-based schemes have received 33 

increasing attention both academically and practically (e.g., Lawphongpanich and Yin, 34 

2012; Daganzo and Lehe, 2015). Due to the better equity and efficiency of distance-35 

based pricing, the current cordon-based congestion pricing scheme in Singapore will 36 

be upgraded to the distance-based pricing scheme, which is regarded as the next 37 

generation of Electronic Road Pricing (ERP) system from 2020 onwards (Singapore 38 

LTA, 2013). The optimal toll design problem is of considerable significance for 39 
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improving the efficiency of the network. Generally, system wide indexes such as the 40 

total travel cost (TTC) are taken as the objective of the optimal toll design problem. 41 

 42 

Nearly all the existing studies use the equilibrium flow to calculate the TTC, and then 43 

evaluate each toll pattern based on the calculated TTC. However, any new toll pattern 44 

will affect travelers’ route choice decisions, and the network flows cannot achieve an 45 

equilibrium state overnight. Cho and Hwang (2005) tested a small numerical network 46 

and revealed that it nearly takes 200 days to reach equilibrium state, thus it would take 47 

much longer time in a big urban area to achieve equilibrium. In addition, after such a 48 

long period, the network demand and infrastructure are largely changed, thus a new 49 

design of the optimal toll is needed again. Hence, in the whole study period of an 50 

optimal toll design problem (denoted by D ), the day-to-day models can better capture 51 

the network flow conditions, rather than the final equilibrium state (He et al., 2010). 52 

Note in passing that in practice, to avoid the confusions from travelers on the toll, it is 53 

necessary to implement an unchanged toll in the whole period D ; for instance, 54 

Singapore’s ERP toll is adjusted every three months (Olszewski and Xie, 2005; Liu et 55 

al., 2013), and kept unchanged in-between, thus D  equals three months in this case.  56 

 57 

During the planning horizon D , the TTC is changing each day due to the change of 58 

traffic flows. Therefore, no toll pattern can give rise to a minimal TTC in each day of 59 

D . It is not reasonable to implement the toll pattern that gives rise to the minimal TTC 60 

on a certain day while neglecting the other days. From the viewpoints of policy-makers, 61 

the deterioration of some worst cases is more harmful than the loss of efficiency on the 62 

good cases, both temporally and spatially. The most desired toll pattern is the one that 63 

considers the traffic conditions of every day in the planning horizon D . This paper 64 

aims to cope with this problem of optimal toll design caused by the fluctuation of traffic 65 

flows, where the concept of robust optimization is taken for the modelling. On a 66 

particular day, each toll pattern τ  can give rise to a corresponding TTC( τ ). We first 67 

define the concept of regret for such a toll pattern on each day, which is the gap between 68 

the minimal TTC and TTC( τ ). Then, a minimax model which minimizes the maximum 69 

regret on each day, is proposed for the robust optimal toll design. Note that, the minimal 70 

average TTC can also be taken as an alternative objective. 71 

 72 

Since in the planning period D  the network flow is fluctuating each day, it is difficult 73 

for the travelers to have an accurate prediction on the travel time. Thus, stochastic user 74 

equilibrium (SUE) is more suitable to capture their travel behaviors, compared with 75 

user equilibrium (Meng et al., 2014). In addition, for the optimal toll design considering 76 

SUE flows, it is more rational to take the stochastic system optimum (SSO) as the 77 

objective (Liu et al., 2014a), compared with the deterministic system optimum. Hence, 78 
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in this paper we assume that the flow evolution process follows day-to-day dynamics 79 

under SUE constraints, and take travelers’ expected total travel cost (ETTC) as the 80 

system wide index. However, formulating and solving day-to-day models or SUE/SSO 81 

models individually are known to be very challenging. The optimal design of distance-82 

based tolls in a network considering stochastic day to day dynamics is thus difficult to 83 

address, which is still an open question in the literature and tackled in this paper. 84 

 85 

1.1 Literature review 86 

Due to the inequity of flat pricing patterns which undercharge long journeys and over-87 

restrain short journeys (Meng et al., 2012), a distance-based pricing pattern was 88 

recommended by May and Milne (2000) as an alternative for flat toll patterns. In a 89 

distance-based congestion pricing scheme, the toll is levied in terms of the travel 90 

distance, either linearly (e.g., Mitchell et al., 2005; Namdeo and Mitchell, 2008) or 91 

nonlinearly (e.g., Wang et al., 2011; Lawphongpanich and Yin, 2012). Linear models 92 

assume that the toll is linearly proportional to the travel distance, making it easier for 93 

analysis due to the additivity of the toll charge. However, according to 94 

Lawphongpanich and Yin (2012), the actual congestion toll, in most cases, is nonlinear, 95 

i.e., the total charge for a trip cannot be proportionally divided to be the charges on its 96 

component links (Meng et al., 2012). For the distance-based toll charge function, no 97 

practical data could be collected for the analysis of a proper functional form or the 98 

calibration of such a function. Hence, it is proper to assume that it is generic to any 99 

positive and nonlinear function, which includes the fixed toll rate. Thus, this paper also 100 

adopts the nonlinear function form for the distance-based tolls. 101 

 102 

A nonlinear pricing pattern known as the two-part tariff, which can be regarded as a 103 

special case of the piecewise linear toll scheme, was adopted by Lawphongpanich and 104 

Yin (2012) to study the nonlinear pricing on transportation networks. Meng et al. (2012) 105 

and Liu et al. (2014a) extended the piecewise linear toll scheme from only two linear 106 

intervals to multiple intervals. Sun et al. (2016) investigated the equity issues of 107 

distance-based tolls. However, all these formulations are based on static traffic 108 

assignment theory, either deterministic or stochastic. Recently, Daganzo and Lehe 109 

(2015) studied the distance-dependent, time-varying congestion pricing scheme based 110 

on the macroscopic fundamental diagram theory of traffic dynamics. However, this 111 

model is a within-day dynamic model, which cannot reflect the day-to-day flow 112 

evolution process after implementing a new toll pattern.  113 

 114 

For the congestion toll design problem with day-to-day dynamics, Wie and Tobin (1998) 115 

solved it by formulating a convex control model of the dynamic system optimal traffic 116 

assignment on general traffic networks. Sandholm (2002) proposed a dynamic 117 
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congestion pricing considering road users’ learning behavior and day-to-day route 118 

choice adjustment process to guarantee an efficient utilization of the entire network. 119 

Thereafter, Friesz et al. (2004) studied the day-to-day dynamic toll with the objective 120 

of maximizing the net present value of social welfare and the constraint of a minimum 121 

revenue target. Yang et al. (2007) and Wang et al. (2015) considered the convergence 122 

speed and rapidity of restoring the normal state after disruption, respectively. More 123 

recently, Guo et al. (2015) proposed a concise and practical day-to-day dynamic pricing 124 

pattern based on Friesz et al. (2004) and Yang et al. (2007), and the tolls on each day 125 

were merely determined by the flows and tolls on the previous day. However, as 126 

claimed in Ye et al. (2015), all of these day-to-day dynamic toll patterns required either 127 

an explicit mechanism for road users’ route choice adjustment process or adjustable 128 

tolls. Ye et al. (2015) studied the marginal-cost pricing scheme with day-to-day 129 

dynamics, and proposed a trial-and-error method for the optimal tolls, where the 130 

information of network attributes is not required. Xu et al. (2016) also adopted a trial-131 

and-error method to study the global convergence of traffic-restraint congestion-pricing 132 

scheme with day-to-day flow dynamics. Tan et al. (2015) investigated the day-to-day 133 

congestion pricing with the objective of minimizing the total system cost and time 134 

considering the day-to-day route flow evolution and user heterogeneity which can be 135 

captured by road users’ value-of-times. However, all of the aforementioned studies 136 

focus on deterministic day-to-day dynamic pricing. Rambha and Boyles (2016) 137 

investigated the dynamic congestion pricing considering users’ stochastic day-to-day 138 

route flow evolution process. Cheng et al. (2016) made a comprehensive review of 139 

urban dynamic congestion pricing and emphasized that it was an emerging research 140 

needs to investigate the dynamic congestion pricing problem. 141 

 142 

Generally, day-to-day dynamic traffic models can be classified into two major 143 

categories: deterministic dynamics and stochastic dynamics. Since stochastic dynamics 144 

can capture the variability associated with the random nature of the day-to-day dynamic 145 

flow evolution process, they can better reflect the practical circumstances than the 146 

deterministic day-to-day dynamics (Watling and Hazelton, 2003). Many of the existing 147 

stochastic day-to-day dynamics follow Markov processes (e.g., Cascetta, 1989; 148 

Cascetta and Cantarella, 1991; Cantarella and Cascetta, 1995; Watling, 1999; Hazelton, 149 

2002; Hazelton and Watling, 2004; Watling and Cantarella, 2013; Smith et al., 2014), 150 

and Davis and Nihan (1993) and Hazelton et al. (1996) provided a Gaussian multi-151 

variant autoregressive process as well as a Markov Chain Monte Carlo method to solve 152 

these day-to-day dynamic models, respectively. Interested readers can refer to Watling 153 

and Cantarella (2013, 2015) for comprehensive reviews of day-to-day dynamics with 154 

Markov process. Due to the non-additive property of the nonlinear distance-based toll, 155 



5 

path-based (instead of link-based) models are more suitable for the day to day dynamics 156 

problem in the context of distance-based toll.  157 

 158 

As claimed before, considering the fluctuation of traffic flows, the concept of robust 159 

optimization should be taken for the congestion toll determination problem. However, 160 

most of the existing robust congestion pricing schemes (to name a few, Gardner et al., 161 

2008; Gardner et al., 2010; Lou et al., 2010) focus on static traffic conditions, while 162 

only a few researches focus on dynamic toll problems. Recently, Chung et al. (2012) 163 

investigated the dynamic congestion pricing with demand uncertainty using a robust 164 

optimization approach, and the proposed robust dynamic solutions outperformed either 165 

the nominal dynamic or the robust static solutions according to their numerical results. 166 

Zheng et al. (2012) studied the dynamic congestion pricing with macroscopic 167 

fundamental diagram and an agent-based traffic model. The tolls are determined in 168 

terms of actual traffic dynamics, rather than the conventional models based on marginal 169 

cost and demand-supply curves. The gaps of the existing robust dynamic pricing models 170 

include: (i) the existing studies focus on a within-day time scale, rather than a day-to-171 

day time scale; (ii) only a flat pattern is accounted for, while the more equitable and 172 

efficient distance-based tolls are not addressed and (iii) optimal pricing considering the 173 

path-based day-to-day dynamics model under SUE constraints is still an open question. 174 

Consequently, it is a timely topic to address the robust optimization of distance-based 175 

congestion pricing considering the day-to-day flow dynamics under SUE constraints. 176 

 177 

1.2 Objectives and contributions 178 

This paper aims to solve the optimal toll design problem in a dynamic network 179 

considering the day-to-day flow evolution process under SUE constraints. After an 180 

implementation/adjustment of a congestion pricing scheme, the network flows in a 181 

certain period of days are not on an equilibrium state, thus it is problematic to take the 182 

equilibrium-based indexes as the pricing objective. Therefore, the concept of robust 183 

optimization is taken for the congestion toll determination problem, which takes into 184 

account the network performance of each day. First, a minimax model which minimizes 185 

the maximum regret on each day is proposed (Wang et al., 2016). Taking as a constraint 186 

of the minimax model, a path-based stochastic day to day dynamics model is then 187 

proposed. It is worth noting that the proposed minimax model is also a bi-level 188 

programming model since the calculated route flows in terms of the day-to-day 189 

dynamics are deemed as the lower level of the robust optimization to minimize the 190 

maximum regret on each day. 191 

 192 

It is difficult to handle the nonlinear distance-based toll problem because there is no 193 

specific function form to describe the toll function, thus a piecewise linear function is 194 
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used as an approximation to solve the nonlinear distance-based toll problem. It is very 195 

challenging to solve the robust optimization model: not only because the bi-level 196 

programming model is an NP-hard problem, but also due to the fact that the day-to-day 197 

flow evolution mapping has no closed form. Let 1,2, ,d D  refer to the thd  day 198 

of the study period, and ( , )f dy  denote the path flow on day d  in terms of a toll 199 

pattern y . With a given initial flow pattern  ,1f y  , the day-to-day flow model 200 

 ,f dy  has no closed form when 2d  , which is common for all the existing day-201 

to-day dynamics models. Due to the implicity of the flow map function, it is difficult to 202 

solve this problem using a gradient-based method. Therefore, a two-phase artificial bee 203 

colony (ABC) algorithm is developed in this paper, of which the first phase solves the 204 

minimal ETTC of each day and the second phase handles the minimax robust 205 

optimization problem. 206 

 207 

To sum up, contributions of this paper are twofold: (i) a robust optimization model is 208 

built for the optimal distance-based toll in an urban network with day-to-day dynamics 209 

under SUE constraints; (ii) a two-phase ABC algorithm is developed for the highly 210 

complex problem considering the implicit day-to-day flow map function with a distance 211 

toll. This paper is organized as follows. Section 2 first introduces the nonlinear distance 212 

toll which can be approximated by a piecewise linear toll function. In Section 3, a path-213 

based day-to-day dynamics model under SUE constraints is proposed. A minimax 214 

model for the optimal toll pattern that minimize the maximum regret on each day is 215 

introduced in Section 4, and a two-phase ABC algorithm is proposed as a solution 216 

method for solving the bi-level minimax model in Section 5. A numerical experiment 217 

is provided in Section 6 to demonstrate the application of the proposed approach, and 218 

finally conclusions are drawn in Section 7. 219 

 220 

2. Problem Statement  221 

Consider a strongly connected network, denoted by ( , )G N A , where N  denotes 222 

set of nodes and A   is the set of directed links. The notation in this paper mostly 223 

follows that in Liu et al. (2014a), which is summarized as follows: 224 

 225 

Notation Explanations 

D  The total planning period for one toll pattern. 

d  The number of days after the toll implementation, 1,2, ,d D . 
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W  The set of origin-destination (OD) pairs. 

wR  The set of paths between an OD pair w W . 

f  

The column vector of all the path flows over the entire network, 

 
T

, ,w

wrf r R w W  f . 

wrf  The traffic flow on path wr R  between OD pair w W . 

q  The column vector for all the travel demands,  
T

,wq w W q . 

wq  The travel demand between w W . 

( )t v  

The column vector of the link travel time functions, 

    
T

,a at v a A t v . 

( )a at v  
The travel time function of link a A  , assumed to be increasing, 

convex and continuously differentiable. 

v  The column vector of all these link flows,  
T

,av a A v . 

av  The traffic flow on link a A . 

w

a r  1w

ar   if path wr R  contains link a , and 0w

ar   otherwise. 

y  
The vertex values,  

T

0 1 2, , , ,k Ky y y y yy  of the stepwise linear 

toll function. 

( ) η  The toll charge function. 

K  The total number of the intervals in the toll function ( ) η . 

η 
Column vector for the travel distance of all the paths in the cordon, 

 
T

, ,w

wr r R w W   η . 

τ  Column vector of the distance-based toll  
T

, ,w

wr r R w W  τ  . 

 226 

For the ease of presentation, it is assumed that there is only one cordon in the network. 227 

Yet, the proposed methodology can be easily extended to the cases with multiple 228 

cordons. Let wr  denote the length portion of path 
wr R  in the cordon, and that of 229 

all the paths are grouped into the column vector η. The distance-based toll function230 

( ) η  is assumed to be piecewise linear with respect to the travel distance η, which is 231 
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an approximation of any form of nonlinear functions. The function ( ) η  is defined on 232 

the range  0 , K   with K  equal intervals as shown in Figure 1. The maximal and 233 

minimal travel distance length of paths in all the L cordons are K   and 0  , 234 

respectively.  235 

 236 

We can see that the distance-based toll function is composed by K  intervals. This 237 

piecewise linear toll function can be uniquely defined by the two vertexes of each 238 

interval. It should be noted that the piecewise linear approximation method of the 239 

nonlinear distance-based toll function can be easily adjusted for the case of unequal 240 

intervals from the minimal path length to the maximal path length in the pricing cordons. 241 

The distance-based toll should be a non-decreasing function of the travel distance: 242 

               
min max

0 1 2 k Ky y y y y y y                      (1) 243 

Travel distance (km)

T
o

ll
 (

$
)

 244 

Figure 1: Piecewise linear distance-toll function 245 

Suppose that for a particular path 
wr R , its travel length in the cordon wr  locates 246 

in the thk  distance interval of the distance-based toll function shown in Figure 1, then 247 

the distance toll of path 
wr R  can be computed by: 248 

                       1
1 1

1

wr k
wr wr k k k

k k

y y y
 



 
      

 
             (2) 249 

The total/generalized travel cost on path 
wr R  between OD pair w W : 250 

                          = /w

wr a ar wr

a

c t                           (3) 251 

where κ  is the travelers’ value-of-time. 252 
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 253 

From Eq. (2) we can see that each toll pattern   is uniquely determined by the vertex 254 

values  
T

0 1 2, , , ,k Ky y y y yy . Let 
y  be the set of all the feasible y . Then, the 255 

toll design problem is to determine the optimal 
*

yy . Before introducing the model 256 

for the optimal 
*

y  , a path-based stochastic day-to-day dynamics model is first 257 

discussed in the next section. 258 

 259 

3. A path-based day-to-day dynamics model 260 

When a particular toll pattern 
yy   is implemented at day 1d   , it will cause 261 

changes on the commuters’ route choice decisions, thus giving rise to a new day to day 262 

flow evolution trajectory. In order to evaluate the toll pattern y , a mechanism is needed 263 

to predict the flow evolution trajectory caused by y . Due to the existence of nonlinear 264 

distance-based toll, the path travel cost (3) is not additive to the link costs. Therefore, 265 

path-based (instead of link-based) models are more suitable for the flow prediction 266 

problem in the context of distance-based toll.  267 

 268 

In a day-to-day dynamics model, on any day d  each traveler’s route choice decisions 269 

are affected by the forecasted path travel time, denoted by 270 

 ( , ) , ,
T

w

wrd h r R w W  h y  . ( , )dh y   is obtained based on his/her historical 271 

information in the long-term memory as well as limited observation to the on-going 272 

traffic conditions (Xie and Liu, 2014). Therefore, the forecasted path travel cost for the 273 

next day ( , 1)d+h y  is usually considered as a weighted combination of the current 274 

day’s actual and forecasted travel cost (Cantarella, 2013; Cantarella and Watling, 2016). 275 

Then the following expression is given for ( , 1)d+h y : 276 

 ( , 1) ( , , ) (1 ) ( , ) ( 1,2,3, )d+ β d β d d     h y c y f h y   (4) 277 

where  , ,
T

w

wrc r R w W  c  is the actual path travel costs on day d , as defined 278 

by Eq. (3). β  is a weighting parameter and it satisfies 0 1β  .  279 

 280 

To get a general form for ( , 1)d+h y , we expand Eq. (4) recursively: 281 
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 

 

2

2

( , 1) ( , , ) (1 ) ( , )

( , , ) (1 ) ( , , 1) (1 ) ( , 1)

( , , ) (1 ) ( , , 1) (1 ) ( , 1)

( , , ) (1 ) ( , , 1) (1 )

( , , 2) (1 ) ( , 2)

( , ,

d+ β d β d

β d β β d β d

β d β β d β d

β d β β d β

β d β d

β

    

          

          

         

     



 

h y c y f h y

c y f c y f h y

c y f c y f h y

c y f c y f

c y f h y

c y f
1

1 1

2

) (1 ) ( , , 1) (1 ) ( , 2)
d

k d

k

d β β d k β


 



           c y f h y

  (5) 282 

and for day 2d  : 283 

 ( ,3) ( , , 2) (1 ) ( ,2)β β    h y c y f h y   (6) 284 

As for day 1d  , we assume that 285 

 ( , 2) ( , ,1) h y c y f ξ   (7) 286 

where  , ,
T

w

wr r R w W   ξ  is a vector of random variables reflecting commuters’ 287 

perception errors on the path travel times (Liu et al., 2014b). Thus, Eq. (5) becomes 288 

1
1 1

2

( , 1) ( , , ) (1 ) ( , , 1) (1 ) ( , ,1)
d

k d

k

d+ β d β β d k β


 



             h y c y f c y f c y f ξ  289 

 (8) 290 

Hence, ( , 1)d+h y  is also a vector of random variables with the same distribution type 291 

of ξ . 292 

 293 

For the day-to-day dynamics model, a reasonable assumption is further made as follows: 294 

Assumption 1: After any day d  , only a proportion (0,1]α   of travelers will 295 

reconsider their previous day’s route choices, based on ( , 1)d+h y ; and the proportion 296 

1 α  of travelers will insist on choosing the same routes on the previous day. 297 

 298 

Based on Assumption 1, then we have the following dynamic route choice process (e.g., 299 

Cantarella and Watling, 2016): 300 

  ( , 1) ( , 1) (1 ) ( ) ( 1,2,3, )d α d+ α ,d d       f y q p h y f y   (9) 301 

where ( , 1)d f y  is the path flows of day 1d  ,  ,df y  denote the path flows of 302 
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day d  .    ( , 1) , ,
T

w

wrd+ p r R w W  p h y   is the route choice probabilities in 303 

terms of the forecasted route travel costs ( , 1)d h y . In this paper, ξ  is assumed to 304 

follow the Gumbel distribution, thus the route choice probabilities can be obtained by: 305 

  
exp( ( , 1))

( , 1) , ,
exp( ( , 1))

w

wwr
wr

wl

l R

h d
p d+ r R w W

h d


 
  

 
y

h y
y

  (10) 306 

where   is a dispersion parameter. 307 

 308 

From Eq. (8), it is clear that given an initial toll pattern and route flow on day 1d  , 309 

we can obtain the corresponding forecasted travel costs on any day. We can see that the 310 

route choice decisions of day 1d+  depend on all of the previous days’ route choices, 311 

which implies that travelers never forget any experiences in the past. Such a model is 312 

regarded as an infinite learning process (Cantarella and Watling, 2016). The infinite 313 

learning process is apparently not realistic, especially when d  becomes large. In fact, 314 

the commuters’ route choice decisions are highly affected by the unexpected incidents 315 

occurs more recently; for instance, unexpected network disruptions and adverse weather 316 

conditions. Thus, a finite learning process is more suitable, as shown in Assumption 2: 317 

Assumption 2: Travelers’ route choice decisions are largely influenced by what 318 

happened in the most recent days, which is called a finite memory length m, and m is a 319 

pre-determined constant. Hence, only the most recent m days’ route choice decisions 320 

are considered in the current day’s route choice decision. 321 

 322 

Based on the Assumption 2, then Eq. (8) is further transformed to: 323 

        
1

2

( , 1) ( , , ) (1 ) ( , , 1)
m

k

k

d+ β d β β d k



          h y c y f c y f ξ   (11) 324 

It is worth noting that the coefficients of ( )c  on the right hand side of Eq. (8) sum to 325 

1, while in Eq. (11), the summation of coefficients on the right hand side does not equal 326 

to 1 due to the finite memory length m. In order to ensure the convergence of the 327 

proposed model, a scaling factor is imposed on the right-hand side of Eq. (11) to make 328 

the coefficients sum to 1. Hence, Eq. (11) becomes: 329 

 
1

2

( , 1) ( , , )
1 (1 )

(1 ) ( , , 1)
1 (1 )

m

m
k

m
k

β
d+ d

β

β
β d k

β





 
 

         


h y c y f

c y f ξ

  (12) 330 
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Note that it is easy to find that 
1

2

(1 ) 1
1 (1 ) 1 (1 )

m
k

m m
k

β β
β

β β





   
   

 . 331 

 332 

From the route choice process (9), we can see that the route flow on day 1d    is 333 

determined by two components: the first term in the right hand side of Eq. (9) is the 334 

portion of travelers who will reconsider their previous day’s route choices (i.e., α q ) 335 

and choose routes different from the previous day’s routes in terms of the route choice 336 

probabilities p , reflecting the regret of their decision making behavior; and the second 337 

term is the portion of travelers who do not change their previous day’s route choices, 338 

interpreted as the inertia of their decision making behavior. It is worth noting that in 339 

the reconsideration part of travelers, one may change to another other route, but he/she 340 

may also repeat the previous day’s route choice.  341 

 342 

From an aggregate point of view, we define the actual route choice probabilities p  as 343 

follows, which is a composite of the two types of route choice probabilities p  and p  344 

on the right-hand-side of Eq. (13): 345 

    ( , 1) ( , 1) (1 ) ( )d α d+ α ,d     p h y p h y p y   (13) 346 

where 
( )

( )
,d

,d 
f y

p y
q

. Eq. (13) is in fact a transformation of Eq. (9) by dividing 347 

the demand q  on both sides of Eq. (9). The two terms in the right hand side of Eq. 348 

(13) reflect the regret and inertia, respectively. From Eqs. (9)-(13), we can see that with 349 

a given toll pattern and route flow on day d , the next day’s route flow can be obtained 350 

recursively. 351 

 352 

The model introduced above in this section is termed as a path-based day to day 353 

dynamics model under SUE constraints. In the context of SUE, it is defined that f qp , 354 

namely, f  is a deterministic value. This definition is made on the basis of the weak 355 

law of the large numbers (Daganzo and Sheffi, 1977), in view that the number of 356 

commuters is large enough and also they act independently. However, if we don’t 357 

consider the weak law of the large numbers here, the path flows are in fact random 358 

variables following a multinomial distribution. We use f  to denote the path flows in 359 

this case, it gives: 360 
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 ( , ) ~ Multinomial ( , )df y q p   (14) 361 

where p  is similarly defined as Eq. (13). We can see that  Ef f . 362 

 363 

Model (14) is consistent with many other stochastic process models for day to day 364 

dynamic traffic assignment in the literature, including Watling and Hazelton (2003), 365 

Hazelton and Watling (2004), and Cantarella and Watling (2016). The recursive traffic 366 

assignment model (12) is an m-dependent Markov chain (Hazelton and Watling, 2004).  367 

 368 

4. A minimax regret model for the optimal toll pattern 369 

As discussed in the Introduction, after a certain period D   (say 90d D   ) the 370 

network environment (both supply and demand) is evidently changed. Then, a new 371 

assessment of the optimal toll should be performed, thus giving rise to a new toll pattern 372 

y  , in which a new day-to-day flow evolution occurs and d   should be reset to 1. 373 

Hence, in this paper, the study period is from 1d   to d D . 374 

 375 

As an important ingredient in the travelers’ route choice decisions, any toll pattern y  376 

would give rise to different day-to-day path flows. Let ( , )df y   denote the column 377 

vector of path flows on day d  in terms of a toll pattern y , which is determined by 378 

Eq. (9). The objective of the authorities is to improve the network performance of each 379 

day rather than merely that of the equilibrium condition. Since the commuters’ route 380 

choice behavior follows logit-based SUE, the optimal network performance is reflected 381 

by the one with minimal expected total travel cost (Liu et al., 2014a). On day d , the 382 

optimal toll pattern is thus given by: 383 

            
 T T ,1

( , ) min , ( , , ) , ln
wy

d
ETTC d d d d

q
   



f y
y f y c y f f y         (15) 384 

where the objective is to minimize the expected total travel cost.  385 

 386 

Let  dy  be the optimal toll pattern of day d , namely, 387 

                     arg min ( , )
y

d ETTC d



y

y y                   (16) 388 

It is unlikely that a particular toll pattern can be the optimal toll pattern of all the 389 

days/scenarios (from day 1 to day D  ). Thus, if an arbitrary toll pattern y   is 390 
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implemented, there would be a gap between the corresponding total travel cost and the 391 

optimal ( , )ETTC dy  . This gap is defined as the regret from the viewpoint of the 392 

network authorities. 393 

 394 

For any toll pattern 
yy  , its regret on day d   equals 395 

 
T

, ( , , ) ( , )d d ETTC d f y c y f y  , and its maximum regret value among the whole 396 

planning period D  is given as  
T

max , ( , , ) ( , )
d

d d ETTC d  
 
f y c y f y . Therefore, to 397 

minimize the maximum regret, we propose the following robust programming model: 398 

              
T

min max , ( , , ) ( , )
d

d d ETTC d  
 y
f y c y f y              (17) 399 

subject to the day-to-day route flows introduced in Section 3. 400 

 401 

The above model can be deemed as a bi-level model, where the lower level reflects the 402 

predicted network flows, which is discussed in Section 3. The optimal solution to model 403 

(17) is a robust pattern that takes into consideration the network performance on each 404 

day of the study period. 405 

 406 

5. A two-phase ABC algorithm 407 

The bi-level models are commonly used to formulate network design and toll design 408 

problems, which are well recognized to be an NP-hard problem and hard to solve. In 409 

the literature, some existing solution methods usually have the same techniques which 410 

is to convert the bi-level problem to a single-level one, by replacing the lower level 411 

using the first-order Taylor approximation (sensitivity analysis method, see Yang and 412 

Bell, 1998) or relaxing the lower-level and gradually adding back (system optimal 413 

relaxation method, see Wang et al., 2013) or replacing the lower level by a gap function 414 

(see, Li et al., 2012), etc. 415 

 416 

However, none of the existing solution methods discussed above is valid to use for the 417 

proposed robust programming model (17). This is mainly caused by the complexity of 418 

the term  ,df y . With a given initial flow pattern  ,1f y , the day to day flow model 419 

 ,df y  has no closed form when 2d  , which is true for all the existing day to day 420 

dynamics models. For instance, from model (9), we can see that the first-order 421 

derivative of  ,df y  also has no closed form because we do not have a closed form 422 
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of  , 1d f y ; thus the sensitivity analysis method is not applicable to the problem. To 423 

solve the optimal toll design problem under a network with day to day flow dynamics 424 

is still an open question in the literature. However, this problem is of considerable 425 

significance for the studies of congestion pricing problems, thus this paper aims to 426 

provide some initial investigations of this difficult yet important problem. With the 427 

main focus on the modelling framework, the optimization level of the final solution is 428 

to some extent compromised.  429 

 430 

The ABC algorithm was recently used to solve transportation problems, see e.g., Szeto 431 

et al. (2011), Szeto and Jiang (2012, 2014), Chen et al. (2015) and Huang et al. (2016). 432 

Compared with extant evolutionary algorithms like genetic algorithm (GA), the ABC 433 

algorithm has a better local search mechanism that enhances the solution quality (Chen 434 

et al., 2015), because GA conducts the crossover operations to produce new or 435 

candidate solutions from the present ones, while the ABC algorithm produces the 436 

candidate solution from its parent by a simple operation based on taking the difference 437 

of parts of the parent and a randomly chosen solution from the population. This process 438 

increases the convergence speed of searching into a local minimum. In this paper, a 439 

numerical algorithm, which is called a two-phase ABC algorithm, is proposed to solve 440 

the robust programming model for the optimal toll design. The first phase is used to 441 

calculate the minimum total travel time of each day d  as shown in model (15). Then, 442 

taking the ( , )ETTC dy   as an input, the second-phase is used to solve the robust 443 

programming model (17). The detailed procedures of the algorithm are summarized as 444 

follows.  445 

 446 

Procedures of the first-phase for solving the minimum expected total travel cost of each 447 

day: 448 

Initialization 449 

Step 1: (Initialization of the parameters). For simplicity, we set the colony size cN , 450 

the number of employed bees eN  , onlookers oN  ; the limit, which is the 451 

predetermined number of iterations; the initial value of iteration counter 1I  , 452 

and its maximum value maxI . Set the interval number of the distance toll and 453 

the planning period to K   and D  , respectively. Set the lower bound and 454 

upper bound of congestion toll to miny  and maxy , respectively. Set the initial 455 

day to 0d  . 456 
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Iteration Procedure 457 

Step 2: (Initial route flows). Obtain the initial route flow by averagely assigning the 458 

demand to each feasible route for each OD pair. 459 

Step 3: (Initialization of employed bees). Generate randomly distributed initial food 460 

sources (i.e., congestion toll patterns) for every employed bee.  461 

Step 4: (Evaluation). 462 

Step 4.1: (Calculate the toll values). Based on the piecewise linear toll function 463 

of Eq. (2), calculate the value of toll charge on each internal path of 464 

the cordon in term of the total length of each internal path. 465 

Step 4.2: (Calculate the route travel times). Obtain the link flows based on the 466 

route flows. Calculate the link travel times with the link travel time 467 

functions. Obtain the route travel times according to the calculated link 468 

travel times. 469 

Step 4.3: (Network loading procedure). Conduct the stochastic network loading 470 

procedure based on the toll charge and the measured route travel time 471 

in terms of the stochastic day-to-day dynamics model. 472 

Step 4.4: (Evaluation). Calculate the ETTC for all of the employed bees based 473 

on Eq. (15). Set the limit counter of each food source be zero. 474 

Step 5: (Employed bee phase). Conduct a neighborhood search based on the food 475 

sources generated by employed bees. Evaluate the fitness for each neighbor 476 

solution. If the fitness of the neighbor solution is better than the current food 477 

source, replace the current food source by the neighbor solution, and set the 478 

limit counter be 0; otherwise, keep the current food source generated by 479 

employed bee and increase the limit counter by 1. 480 

Step 6: (Onlooker phase). Each onlooker chooses a food source based on the quality of 481 

the solutions. A roulette wheel selection method is adopted for onlookers to 482 

determine which food source they should choose. In other words, generate a 483 

uniformly distributed random number [0,1)r , if ip r , then the onlooker 484 

will execute a neighborhood search. Evaluate the fitness of the neighbor food 485 

source. If the fitness of the neighbor food source is better, replace the current 486 

food source by the neighbor food source; otherwise, keep the current food 487 

source generated by employed bee and increase the limit counter by 1. 488 

Step 7: (Scout bee phase). Based on the current food sources, find the best one with the 489 

highest fitness (i.e., lowest ETTC). If one food source cannot improve its 490 

quality within the predetermined maximal trial number limit, and it is not the 491 

best food source at the same time, then the associated employed bee becomes 492 

a scout. It will execute a neighbor search again, generate a new randomly 493 

solution and set the corresponding limit counter be zero. 494 
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Step 8: (Convergence test). Set the iteration number 1I I  . If maxI I , then return 495 

to Step 4; otherwise, let the minimal value of ETTC  equal ( , )ETTC dy  on 496 

day d  and record the corresponding food source, and then go to Step 9. 497 

Step 9: (Stop test). If d D  , then stop and output the minimal ETTC   and its 498 

corresponding optimal toll function for each day; otherwise, set 1d d   and 499 

go to Step 2. 500 

 501 

Then, the second stage for solving the minimax regret model is described below: 502 

Initialization 503 

Step 1: (Initialization of the parameters). For simplicity, we set the colony size cN , 504 

the number of employed bees eN  , onlookers oN  ; the limit, which is the 505 

predetermined number of iterations; the initial value of iteration counter 1I  , 506 

and its maximum value maxI . Set the interval number of the distance toll and 507 

the planning period to K   and D  , respectively. Set the lower bound and 508 

upper bound of congestion toll to miny  and maxy , respectively. Set the initial 509 

day to 0d  . 510 

Step 2: (Initialization of employed bees). Generate randomly distributed initial food 511 

sources (i.e., congestion toll patterns) for every employed bee. Calculate the 512 

corresponding fitness based on the day-to-day dynamic mechanism introduced 513 

in this paper. Set the limit counter of each food source be zero. 514 

Iteration Procedure 515 

Step 3: (Employed bee phase). Conduct a neighborhood search based on the food 516 

sources generated by employed bees. Evaluate the fitness for each neighbor 517 

solution. If the fitness of the neighbor solution is better than the current food 518 

source, replace the current food source by the neighbor solution, and set the 519 

limit counter be 0; otherwise, keep the current food source generated by 520 

employed bee and increase the limit counter by 1. 521 

Step 4: (Onlooker phase). Each onlooker chooses a food source based on the quality of 522 

the solutions. A roulette wheel selection method is adopted for onlookers to 523 

determine which food source they should choose. In other words, generate a 524 

uniformly distributed random number [0,1)r , if ip r , then the onlooker 525 

will execute a neighborhood search. Evaluate the fitness of the neighbor food 526 

source. If the fitness of the neighbor food source is better, replace the current 527 
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food source by the neighbor food source; otherwise, keep the current food 528 

source generated by employed bee and increase the limit counter by 1. 529 

Step 5: (Scout bee phase). Based on the current food sources, find the best one with the 530 

highest fitness. If one food source cannot improve its quality within the 531 

predetermined maximal trial number limit, and it is not the best food source at 532 

the same time, then the associated employed bee becomes a scout. It will 533 

execute a neighbor search again, generate a new randomly solution and set the 534 

corresponding limit counter be zero. 535 

Step 6: (Convergence test). Set the iteration number 1I I  . If maxI I , then return 536 

to Step 3; otherwise, terminate the algorithm and output the best solution. 537 

 538 

6. Numerical Experiments 539 

As shown in Figure 2, a network example proposed in Liu et al. (2014a) is used to 540 

validate the proposed model and method in this section. This network contains 13 links 541 

and 9 nodes, with a congestion toll cordon indicated by the dashed line. There are two 542 

OD pairs: 1 8   and 1 9  , each of which has an OD demand of 16,000. The 543 

incidence of links and paths for the network is provided in Table 1. 544 

 545 
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Figure 2: Network structure of the numerical example 547 

 548 

Table 1: Link-path incidence relationship 549 

OD pair Path No. Link sequence 

(1,8) 1 1,2,5,9,13 

2 1,3,9,13 

3 1,10,13 

4 11 
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(1,9) 5 1,2,4,6,8 

6 1,2,5,7,8 

7 1,2,5,9,13,12 

8 1,3,7,8 

9 1,3,9,13,12 

10 1,10,13,12 

11 11,12 

 550 

The link travel time is defined by the Bureau of Public Roads (BPR) function as follows: 551 

                     0( ) 1 0.15 ,a
a a a

a

v
t v t a A

H

  
     
   



              (18) 552 

where 
0

at  is the free flow travel time on link a , aH  is the capacity of link a , and 553 

ρ  is the exponent. The relevant link attributes are summarized in Table 2. 554 

Table 2: Link data for the numerical example 555 

Link ID Tail Head Distance 

(km) 

Free Flow 

Travel Time 

Capacity Exponent 

  

1 1 2 2 2 6000 4 

2 2 3 7 2 4000 4 

3 2 5 8 8 6000 4 

4 3 4 2 2 2000 4 

5 3 5 4 4 2000 4 

6 4 6 6 6 1000 6 

7 5 6 2 2 4000 4 

8 6 9 6 6 6000 4 

9 5 7 3 3 4000 4 

10 2 7 9 9 2000 4 

11 1 8 26 26 3000 4 

12 8 9 4 4 3000 4 

13 7 8 5 5 3000 4 

 556 

Table 3: List of internal paths 557 

Internal path ID Component links Total length 

1 10 9 

2 3,9 11 

3 2,5,9 14 

4 3,7 10 
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5 2,5,7 13 

6 2,4,6 15 

 558 

As shown in Figure 2, there are 8 links in the cordon area, including links 2, 3, 4, 5, 6, 559 

7, 9, and 10. The 8 links compose 6 different internal paths connecting three entry nodes, 560 

which are nodes 2, 6 and 7. Table 3 provides the details of these internal paths.  561 

 562 

The travelers’ value-of-time is assumed to be 1.0  in this example. According to 563 

the data of internal paths in Table 3, we can find that the minimum and maximum path 564 

distance in the cordon are 9 and 15km, and the range of travel distance difference is 565 

6km. Hence, the piecewise linear toll function is assumed to have 6 intervals with 7 566 

boundary distance values, and the length of each interval is 1km. It is worth noting that 567 

all the internal path distances are integers with a difference range of 6km in this example, 568 

thus 6 intervals are enough. When the number of internal paths and the difference range 569 

of internal path distances become larger, the number of intervals can also be larger to 570 

ensure a better characteristic of the nonlinear distance-based toll scheme. The upper 571 

and lower bounds of the distance toll are min

0 1.0y y    and max

6 5.0y y   , 572 

respectively. The value of relevant parameters used in the two-phase ABC algorithm 573 

are summarized in Table 4. The numerical experiment is coded in Matlab R2016a 574 

running on a laptop with Inter(R) Core(TM) i7-5500U CPU @ 2.40GHz, 2.39GHz and 575 

8.00G RAM. 576 

 577 

Table 4: Parameters used in the two-phase ABC algorithm 578 

Parameters Value Parameters Value 

Planning period 90D   Colony size in ABC 40cN    

Interval number of distance 

toll 
6K   

Number of employed 

bees in ABC 
20eN    

Lower bound of congestion 

toll 

min 1.0y   
Number of onlookers 

in ABC 
20oN    

Upper bound of congestion 

toll 

max 5.0y   Limit in ABC limit 2   

Memory length 3m   
Maximum iteration 

value in ABC 
max 500I    

Reconsideration rate 0.6α    Weighting parameter 0.4β   

 579 

As introduced in Section 5, we need to calculate the minimal ETTC for each day, which 580 
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is an input in the second phase of the algorithm. Figure 3 depicts the minimal ETTC 581 

with the proposed stochastic day to day dynamics model, based on the first phase of the 582 

ABC algorithm from 1d   to 90d  . We can find that the minimal ETTC has an 583 

evident fluctuation with the minimum (maximum) equal to 6 66.647 10 (6.655 10 )  . 584 

Note that the corresponding optimal toll pattern of each day (see  dy  in Eq. (16)) 585 

is also varying. 586 

 587 

Figure 3: Minimal expected total travel cost for each day based on the first phase of 588 

the solution method 589 

 590 

To further show the varying impacts of a particular toll pattern on the network, we use 591 

the optimal toll pattern of day 1 as an example; here 592 

(1) (1.08,1.24,1.69,2.35,3.01,3.55,4.32)y  . Figure 4 then gives the value of regret 593 

from day 2 to day 90 for (1)y   and the regret value of day 1 is zero. After the 594 

implementation of the optimal toll pattern of day 1, the regret is not a stable value 595 

because the optimal toll for day 1 is no longer optimal for other days. 596 
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 597 

Figure 4: Value of the regret from day 2 to day 90 for (1)y  598 

The optimal toll can be obtained by minimizing the maximum regret in Eq. (17) and 599 

this proposed minimax regret model can be solved by the second phase of the ABC 600 

algorithm with the minimal ETTC for each day as an input. Figure 5 shows the 601 

convergence process, which converges after 114 iterations. The optimal toll is a robust 602 

pattern which takes into consideration the network performance on each day. Figure 6 603 

depicts the optimal distance toll patterns for the proposed stochastic day to day 604 

dynamics model, which is clearly a nonlinear toll form: 605 

* (1.45,2.22,3.51,3.83,4.20,4.29,4.44)y . 606 

 607 

Figure 5: Convergence process of the minimax regret 608 
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 609 

Figure 6: Optimal distance toll 610 

 611 

We further analyze the flow evolution process in the network. For simplicity, we choose 612 

4 typical paths which are path 1 and 4 for OD pair (1, 8) and path 5 and 11 for OD pair 613 

(1, 9). Among these four paths, path 1 and 5 are internal paths, while path 4 and 11 are 614 

external paths. Figure 7 and Figure 8 show the day-to-day flow and cost evolution 615 

trajectories over the whole planning period, and the top right corners are the partial 616 

enlarged details from day 40 to day 90. It is clear that both the day-to-day flows and 617 

costs converge to a stationary state, which follows the logit-based SUE principle, within 618 

70 days. This evolution process also indicates the essence of the day-to-day dynamics 619 

with flows and costs evolving from disequilibrium to equilibrium states. It should be 620 

noted that the convergence speed will slow down when the network becomes larger.  621 

 622 

(a) Flow evolution process of path 1 and path 4 623 
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 624 

(b) Flow evolution process of path 5 and path 11 625 

Figure 7: Path flow evolution trajectories over the planning period 626 

 627 

 628 

(a) Travel cost of path 1 and path 4 629 
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 630 

(b) Travel cost of path 5 and path 11 631 

Figure 8: Path travel cost evolution trajectories over the planning period 632 

 633 

The result of this numerical test verifies the validity of the proposed model and 634 

algorithm. After the implementation/adjustment of a congestion pricing scheme, the 635 

network flows cannot achieve an equilibrium state overnight, thus it is problematic to 636 

take the equilibrium-based indexes as the pricing objective. Therefore, the concept of 637 

robust optimization is taken for the congestion toll determination problem, which takes 638 

into account the network performance of each day. For each day, it has an optimal toll 639 

pattern which minimizes the ETTC of that day, and thus has a relevant regret of that day. 640 

The objective is to find one robust optimal toll pattern which minimizes the maximal 641 

regret in the whole planning period. We can see from Figure 7 and Figure 8 that the 642 

path travel cost will be stable and equal for each OD pair after a certain period of days 643 

(which is 70-days in this small test network), and the flows of internal paths is much 644 

lesser than the external paths because of the tolls in the cordon areas. This result is also 645 

consistent with travelers’ day-to-day route choice adjustment and learning behaviors. 646 

 647 

7. Conclusion 648 

This paper solves the robust optimization problem for nonlinear distance-based 649 

congestion tolls in a network considering stochastic day-to-day dynamics. After an 650 

implementation/adjustment of a congestion pricing scheme, the network flows in a 651 

certain period of days are not on an equilibrium state, thus it is problematic to take the 652 

equilibrium-based indexes as the pricing objective. Therefore, the concept of robust 653 

optimization is taken for the congestion toll determination problem, which takes into 654 

account the network performance of each day. Hence, a minimax model which 655 

minimizes the maximum regret on each day is proposed. Taking as a constraint of the 656 
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minimax model, a path-based stochastic day to day dynamics model is proposed. Note 657 

that this minimax model is a bi-level programming model, with the upper level of 658 

minimizing the maximum regret and lower level of day-to-day dynamics processes. 659 

Due to the implicity of the flow map function, it is difficult to solve this minimax model 660 

by exact algorithms. Therefore, a two-phase ABC algorithm is developed to solve the 661 

bi-level model in this paper, of which the first phase solves the minimal total travel cost 662 

for each day and the second phase handles the minimax robust optimization problem. 663 

 664 

For further researches on day-to-day dynamic pricing, several extensions need to be 665 

considered. On the one hand, the path flow adjustment ratio should be calibrated from 666 

real world data, one of which is social media data (Rashidi et al., 2017). On the other 667 

hand, efficiency, environment, as well as equity issues should be taken into 668 

consideration at the same time in the optimal toll design of congestion pricing problem. 669 

The distance-based tolls addressed in this paper are path-based, yet it is of considerable 670 

interest to further investigate the link-based distance tolls that is additive to the links. 671 

As a future work, the methodology and concepts provided in this paper are worthwhile 672 

to further study such sort of link-based distance tolls.  673 
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Appendix 832 

Table A: List of terminologies 833 

ABC Artificial bee colony 

ERP Electronic road pricing 

ETTC Expected total travel cost 

GA Genetic algorithm 

SSO Stochastic system optimum 

SUE Stochastic user equilibrium 

TTC Total travel cost 
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