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In this research, we apply a new calibration approach to generate stochastic traffic flow 10 

fundamental diagrams. We first prove that the percentile based fundamental diagrams are 11 

obtainable based on the proposed model. We further prove the proposed model has continuity, 12 

differentiability and convexity properties so that it can be easily solved by Gauss-Newton 13 

method. By selecting different percentile values from 0 to 1, the speed distributions at a given 14 

density can be derived. The model has been validated based on the GA400 data and the 15 

calibrated speed distributions perfectly fit the speed-density data. This proposed methodology 16 

has wide applications. First, new approaches can be proposed to evaluate the performance of 17 

calibrated fundamental diagrams by taking into account not only the residual but also ability to 18 

reflect the stochasticity of samples. Secondly, stochastic fundamental diagrams can be used to 19 

develop and evaluate traffic control strategies. In particular, the proposed stochastic 20 

fundamental diagram is applicable to model and optimize the connected and automated 21 

vehicles at the macroscopic level with an objective to reduce the stochasticity of traffic flow. 22 

Last but not the least, this proposed methodology can be applied to generate the stochastic 23 

models for most regression models with scattered samples.  24 

Keywords: Stochastic Fundamental Diagram; Speed Distributions; Traffic Control. 25 

26 

27 

28 

29 

This is the Pre-Published Version.https://doi.org/10.1016/j.trb.2017.07.003

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:drxiaoboqu@gmail.com
mailto:wangshuaian@gmail.com


1. INTRODUCTION 30 

The traffic flow fundamental diagram has been considered as the foundation of traffic flow 31 

theory. It addresses the relationship among three fundamental parameters of traffic flow: traffic 32 

flow (vehs/hour), speed (km/hour), and traffic density (vehs/km). As flow is the product of 33 

speed and density, this relationship usually refers to flow – density or speed –density 34 

relationship. Since the seminal Greenshields model (Greenshields et al., 1935) was proposed, 35 

numerous studies have been done to improve this over-simplified relationship empirically 36 

and/or analytically (Greenberg, 1959; Newell, 1961; Underwood, 1961; Edie, 1961; Kerner 37 

and Konhäuser, 1994; Del Castillo and Benítez, 1995a&b; Li and Zhang, 2001; Wu, 2002; 38 

MacNicolas, 2008, Ji et al., 2010; Wang et al., 2011; Wu et al., 2011; Dervisoglu, 2012; 39 

Keyvan-Ekbatani et al., 2012&2013). The main focus of these studies is to develop accurate 40 

deterministic speed-density models with two or three practically meaningful parameters1.   41 

 42 

1.1 Six prominent speed – density models  43 

In this section, we introduce a few prominent speed – density models. Greenberg (1959) 44 

propose a logarithmic function to represent this relationship. The main drawback of this model 45 

is that speed tends to infinity when density tends to zero. In order to overcome this limitation, 46 

Underwood (1961) put forward an exponential model. However, this model is not able to 47 

predict speeds at high densities. Newell (1961), Drake et al. (1967), and Wang et al. (2011) 48 

also propose their speed – density models in order to better represent this fundamental 49 

relationship. Table 1 lists six prominent speed – density models. These models can be used to 50 

determine the road capacities (Wu and Rakha, 2009), developing macroscopic traffic flow 51 

models (Phegley, 2013), and anticipate the traffic downstream (Kühne, 1984), and model 52 

traffic control strategies (Wang et al., 2014).  53 

 54 

Table 1: Six well known speed-density models 55 

Models Function  

                                                 
1 Note that the fundamental diagram has recently been extended to network level (i.e. macroscopic fundamental 

diagram), which deals with interrupted flow (e.g. Daganzo and Geroliminis, 2008; Geroliminis and Daganzo, 

2008; Chiu et al., 2010; Leclercq, 2014; Keyvan-Ekbatani et al., 2015).  
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 56 

1.2 Stochasticity of speed – density samples  57 

Although frequently being called a traffic “flow”, freeway traffic is in fact far more complex 58 

than deterministic, predictable, and homogeneous fluids governed by physical laws. Indeed, 59 

freeway traffic flow possesses inherent random characteristics as it is composed by a variety 60 

of heterogeneous vehicles with distinct mechanical and electronic features, which are driven 61 

by a group of diversified drivers with different perceptions, responses, and driving habits on 62 

freeways with varied geometric features. In fact, there is a consensus in the literature that 63 

microscopic variables of traffic flow should be modeled as random variables (e.g. Breiman, 64 

1963; Haight, 1963; Cowan, 1971&1975; Branston, 1976; Hoogendoorn and Bovy, 1998; 65 

Mahnke and Kaupužs, 1999; Jabari and Liu, 2012; Jabari and Liu, 2014). However, the traffic 66 

flow fundamental diagram, which refers to the relationship between speed, density, and flow, 67 

is predominantly treated as deterministic (e.g. Lighthill and Whitham, 1955; Zhang, 1998; Aw 68 

and Rascle, 2000; Wang et al., 2011; Coifman, 2014). Figure 1 shows the speed – density 69 

sample collected by loop detectors from 76 stations on the Georgia State Route 400 (referred 70 

to as GA400 dataset hereafter). This dataset has been widely used in calibrating and validating 71 

traffic flow fundamental diagrams (e.g. Wang et al., 2011; Qu et al., 2015). The raw GA400 72 

data at each station are aggregated to average speed, flow and occupancy over a 20s sampling 73 



period. The raw data is further aggregated every 5 minutes. It is believed that the time interval 74 

is long enough (i.e. 15 times of the sampling period) for describing equilibrium fundamental 75 

diagrams (Wang et al., 2011; Coifman, 2014&2015; Ponnu and Coifman, 2015; Coifman et 76 

al., 2016). As can be seen in the figure, these samples are rather scattered throughout the entire 77 

range of traffic flow. In this regard, without taking into account the heterogeneity in vehicles, 78 

road geometry, and drivers, deterministic speed-density relationships limit their capacity to 79 

practically represent traffic flow and may result in inaccurate or misleading results in modelling 80 

traffic control strategies.  81 

 82 

Figure 1: GA400 speed - density sample  83 

 84 

A few pioneering attempts have been made to model the traffic flow fundamental diagram 85 

in a stochastic manner. Soyster and Wilson (1973) propose a simple stochastic flow–86 

concentration model for traffic on hills using a Poisson process. Kerner (1998) gives the range 87 

of speed at a density based on three phase traffic flow models. Muralidharan et al. (2011) 88 

propose a probabilistic graphical traffic fundamental diagram based on the triangular 89 

deterministic model. Wang et al. (2013) propose a macroscopic stochastic approach to model 90 

the equilibrium speed-flow relationship. Jabari and Liu (2014) develop a probabilistic 91 

stationary speed-density relation based on Newell’s simplified microscopic car-following 92 

model. Fan and Seibold (2013) introduce a new varying parameter, the empty-road velocity, to 93 

reflect the randomness in the Aw-Rascle-Zhang (ARZ) model. These pioneering studies have 94 

laid a solid foundation for stochastic traffic flow modelling. However, a few important points 95 

are yet to be resolved. The underlying assumptions for Soyster and Wilson (1973) are very 96 



specific and ideal and thus limit its applicability. In contrast to a speed distribution, only a 97 

range of speeds are given in Kerner (1998). The latter four studies are essentially on the basis 98 

of macroscopic or microscopic traffic models with a few analytical properties. Wang et al. 99 

(2013) approximate the variance and mean by using Karhunen-Loève expansion and explicit 100 

stochastic speed-density relationships are not obtainable in this research. To the best of our 101 

knowledge, Muralidharan et al. (2011), Jabari and Liu (2014) and Fan and Seibold (2013) are 102 

the only three published research works that are able to generate the distributions of speed or 103 

flow as a function of density and percentile based flow/speed-density relations are obtainable. 104 

However, they are all on the basis of a specific traffic flow model and thus are not generalizable 105 

to deal with the stochasticity of traffic flow using other traffic flow models such as the ones in 106 

Table 1.  107 

 108 

1.3 Contributions and organization  109 

In this paper, we develop a generic approach to generate a stochastic fundamental diagram. An 110 

optimization model based on the theorem of total probability is employed to calibrate the speed 111 

distributions as a function of density throughout the entire range of traffic states. We further 112 

prove 1) the optimal solution with respect a new parameter  is an unbiased estimator for the 113 

th100 percentile based speed-density curve; 2) the proposed optimization model is convex for 114 

the four two-parameter models listed in Table 1 so the Gauss-Newton method can be applied 115 

to solve it; and 3) we design an approach that is able to efficiently calibrated the stochastic 116 

fundamental diagrams for the two three-parameter models in Table 1. We further apply the 117 

proposed methodology to calibrate the stochastic fundamental diagrams based on GA400 data 118 

and the resulting speed distributions perfectly match the observed data. It is believed that the 119 

proposed methodology has wide applicability to all speed-density models.  120 

The rest paper is organized as follows. In Section 2, we present the optimization model and 121 

prove its convexity for Greenshields model. Its extensions to other models are illustrated in 122 

Section 3. This is followed by a case study in Section 4 to demonstrate the applicability and 123 

validity of the proposed methodology. Section 5 concludes.   124 

 125 



2. METHODOLOGY 126 

In this section, we first briefly introduce the deterministic speed – density models proposed in 127 

Qu et al. (2015). This is followed by a concept of percentile based speed – density curve and 128 

its mathematical representation. We further transform the mathematical representation to an 129 

optimization model in Section 2.2. The analytical properties of the proposed model’s objective 130 

function based on a linear speed – density relationship, including continuity, differentiability, 131 

and convexity, have been rigorously proved in Section 2.3. Due to these analytical properties, 132 

the optimization model can be easily solved by Gauss-Newton method.  133 

  134 

2.1 Deterministic Speed-Density Models  135 

In order to establish a generalized stochastic speed-density diagram, we firstly need to select a 136 

deterministic speed-density model. A stochastic model can be developed on the basis of the 137 

selected deterministic model. Suppose the observed data is 138 

  ( , ) , , 1,2,...,data data

i ik v k v i m  and  datav k  is the calibrated speed value by using the 139 

selected model when density equals datak  . Let us use the Greenshield’s model as an example. 140 

The weighted least square method (WLSM) proposed by Qu et al. (2015) is used to calibrate 141 

the two parameters, which are free flow speed 
fv  and the jam density 

jamk  (we use 
jamk  142 

instead of 
jk  to avoid confusion): 143 
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where i  is the weight for observation  ,i ik v  which accounts for the sample selection bias. 150 

The general weight determination method in Qu et al. (2015) is applied for this research, which 151 

is illustrated as below. In reality, the weight for an observation is essentially the distance 152 



between this observation with its next one. In doing so, if a particular traffic state is 153 

overrepresented, lower weights (i.e smaller distance among two adjacent samples) will be 154 

given to the corresponding observations to guarantee that this state would not dominate the 155 

calibration process; in contrast, if a particular traffic state is underrepresented, higher weights 156 

will be given. In this way, the sample selection bias can be largely eliminated.   157 

Step 1: Rank the observations in terms of their densities. We thus have  158 
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, , , , , , , , ,
i i m m

v k v k v k v k   (5) 159 

where        1 2 i m
k k k k      and  i

v  is the corresponding speed in observation 160 

( )i .  161 

Step 2:  Define ˆ( )u  as the largest index ( )i  that corresponds to the same density as 
(1)k , that is,162 

  163 
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Step 3:  Define  ˆ 1u u  . Redefine ˆ( )u  as the largest index ( )i  that corresponds to the same 167 

density as 
( )uk , that is,  168 

 ( ) ( )
ˆ : argmax{ , 1, 2, , | }i uu i u u u m k k       (8) 169 
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and repeat Step 3. Else,   172 
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and stop. □ 174 

Note that the only difference in calibrating different non-linear speed-density models is 175 

equation (2). If we select other models in Table 1, the calibration results will reflect the 176 



respective deterministic speed-density models. In other words, if we replace eq. (2) by other 177 

functions in Table 1, the corresponding deterministic speed-density functions can be calibrated 178 

by following the same procedure.  179 

 180 

2.2 Stochastic Speed-Density Models  181 

Having obtained the calibrated deterministic speed-density models, we apply an optimization 182 

model to calibrate a family of percentile-based speed-density curves by introducing another 183 

parameter  in the model [M’] to be presented later. We again use Greenshield’s linear model 184 

as an example to explain the new model. The objective of the new model [M’] is to calibrate a 185 

th100 percentile based speed-density curve such that the ratio between weighted residual of 186 

observations below the calibrated curve and the total residual is  . In other words,   is 187 

defined as the ratio between weighted residual of observations below the calibrated percentile 188 

based curve and the total residual. The calibrated curve, denoted as  iv k , is actually the 189 

th100 percentile based speed-density curve. The mathematical representation of   is,  190 
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As ( , )i ig k v  is non-negative, eq. (11) is simplified as  194 
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We further construct an example to better explain eqs. (11)-(13). Please refer to Appendix 196 

I.  197 

Our key finding for the stochastic speed-density model is: 198 



Theorem 1: Eq. (13) is satisfied at the optimal solution to the following optimization model 199 

[M’] and therefore we can solve [M’] to calibrate the th100  percentile based speed-density 200 

line: 201 
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 209 

Theorem 1 is implied by Lemma 1 and Corollary 2 that will be shown in the next sub-section. 210 

Theorem 1 means that, the fundamental diagram calibrated by Model [M’] is the th100  211 

percentile based speed-density curve based on Greenshield’s model. By changing   between 212 

0 and 1, the stochastic fundamental diagram is obtainable. Again, here if we replace eq. (16) 213 

by other functions in Table 1, the corresponding optimization models can be established to 214 

generate the th100  percentile based speed-density curve with respect to other speed-density 215 

models.  216 

 217 

2.3 Analytical properties: continuity, differentiability, and convexity 218 

This section aims to examine the relations between Eq. (13) and model [M’] in order to gain 219 

insights into the stochasticity and deepen our understanding of the problem. 220 

It should be noted that when 0   or when 1  , the optimal objective value of model 221 

[M’] is 0 and there are an infinite number of optimal solutions of 
fv  and 

jamk . As the two 222 



extreme cases with 0   and 1   are not of much help in practice, we assume in the sequel 223 

that 0 1  . 224 

2.3.1 A transformed model 225 

We first develop an equivalent model to [M’]: 226 

Lemma 1: Define new decision variables  227 

, /f f jamv vx ky  (19) 228 

Then model [M’] is equivalent to the following model:  229 
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The objective function of [M’’] will be simplified as 235 
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2.3.2 Continuity, differentiability, and convexity of ( , )C x y237 

In model [M’’],  ,i if k v  and ( , )i ig k v  are actually functions of x  and y . Therefore, 238 

model [M’’] actually minimizes the bi-variate function ( , )C x y  over 0x   and 0y  . It is easy 239 

to see that ( , )C x y  is a continuous function of x  and y .  240 

Lemma 2: ( , )C x y  is differentiable over 0x   and 0y  . 241 

Proof: Given a particular 0x   and a particular 0y  , we classify the observations into three 242 

sets 1I , 2I , and 3I in this way: all observations in sets 1I are above the calibrated line, all243 

observations in sets 2I are on the calibrated line, and all observations in sets 3I are below the 244 

calibrated line.   245 



Then, the right partial derivative of ( , )C x y  over x  at ( , )x y  is 246 
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The left partial derivative of ( , )C x y  over x  at ( , )x y  is 248 
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The definition of set 2I  implies 250 

 2,i ix yk v i I     (27) 251 

The above three equations mean that 252 
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Therefore, ( , )C x y is differentiable over x . Similarly, we can prove that ( , )C x y is 254 

differentiable over y .  □ 255 

Lemma 3: ( , )C x y  is not necessarily twice differentiable. However, it is twice differentiable 256 

when 0.5  . 257 

Proof: Given a particular 0x  and a particular 0y  , similar to the above proof, the right 258 

twice partial derivative of ( , )C x y  over x at ( , )x y  is 259 
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The left twice partial derivative of ( , )C x y  over x  at ( , )x y  is 261 
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Evidently, the above two equations are the same if 0.5   or if set 2I  is empty. Otherwise 263 

the above two equations are different. □ 264 

 265 

Lemma 4: ( , )C x y is strictly convex. 266 

Proof: Rearranging terms, we have 267 
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It is easy to see that    
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max( ( ),0) (1 ) max( ( ) ,0)i i i i i iv v k v k v        is a strictly 269 

convex function of ( )iv k . As ( )i iyv k kx    is a linear function of x and y , ( , )C x y is 270 

strictly convex over x and y .  □ 271 

 272 

Lemma 4 implies that  273 

Corollary 1: The optimal solution to model [M’’] is unique and any local minimum to ( , )C x y  274 

is global minimum.  □ 275 

 276 

As a result, model [M’’] can be easily solved by Gauss-Newton algorithm.  277 

 278 

2.3.3 Relation between the definition of percentile based speed-density line and optimization 279 

model [M’’]  280 

 281 

The optimal solution to model [M’’], denoted by ( , )x y  , must satisfy the first-order 282 

optimality condition that / 0C x   , / 0C y    at ( , )x y  . That is, 283 

Theorem 2: The optimal solution to model [M’’] ( , )x y  satisfies 284 
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 293 

Eq. (33) in Theorem 2 implies that  294 

Corollary 2: Eq. (13) is satisfied at the optimal solution to model [M’’]. That is, the portion of 295 

lower weighted error out of the total weighted error is equal to  .  □ 296 

 297 

Theorem 1, which is the most important finding, is now implied by Lemma 1 and Corollary 2. 298 

 299 

Note that eq. (35) in Theorem 2 further implies that the portion of lower weighted error 300 

that is further weighted by the density out of the total weighted error that is further weighted 301 



by the density is still equal to  .  This means that the percentile 100  is balanced between 302 

low density areas and high density areas. 303 
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We define the weighted average of estimated speeds: 305 
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Proposition 1:  0.5v v    when 0.5  , and 0.5v v   when 0.5  . 307 

Proof: Eq. (32) in Theorem 2 implies 308 
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 317 

3. EXTENSIONS TO NON-LINEAR SPEED-DENSITY MODELS  318 

According to Qu et al. (2015), the linear fundamental diagram does not perform very well 319 

compared to other models. As a result, we also need to develop probabilistic non-linear 320 

fundamental diagrams. Fortunately, the three two-parameter nonlinear models can all be easily 321 

linearized in the form of eq. (21).  We use Greenberg model as an example, which can be 322 

transformed as 323 

         0 ln , where ln
g g

jv v k k k k     (42) 324 



By defining new decision variables  325 

  0 0ln ,jx kv y v    (43) 326 

We have  327 

      ,where ln
g g

v x yk k k     (44) 328 

Similarly, we can linearize the other two two-parameter nonlinear models. Table 2 summarizes 329 

the linearization of the three two-parameter nonlinear models.  330 

 331 

Table 2: Linearization of the three two-parameter non-linear models 332 
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 333 

As can be seen in Table 2, all of the three models can be linearized to the form of eq. (21). 334 

We can easily prove that all the properties and algorithms of Model [M’] are also applicable to 335 

the corresponding optimization models based on the linearized Greenberg, Underwood and 336 

Northwestern models. The differentiability and strict convexity properties are both guaranteed 337 

so that Gauss-Newton method can be used accordingly. It should be pointed out that the 338 

methodology is only applicable when using speed-density relations that can be linearized.  339 

For three-parameter models, we propose a numerical approach to obtain satisfactory 340 

calibration results. We first assume that one parameter is known and examine whether we can 341 

linearize the models in the form of eq. (21). For Newell model, we have  342 
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Eq. (50) is equivalent to  344 
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If we assume 
fv  is known, we can calibrate 1/   and 1/ k  using the known 

fv  and the speed-346 

density data. Note that the relationship between 1/   and 1/ k  is linear. In other words, eq. 347 

(46) can be linearized as 348 
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Similarly, we can linearize the 3PL model (Wang et al., 2011). Table 3 summarizes the 355 

linearization of these two three-parameter non-linear models. 356 

 357 

Table 3: Linearization of the three-parameter non-linear models 358 

Models Original form Linearized form 
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 359 

As both models can be linearized in the form of eq. (21), the continuity, differentiability, 360 

and convexity all hold for their corresponding optimization models if 
fv  is known. 361 



Accordingly, if 
fv is known, the Gauss-Newton method is applicable to generate the stochastic 362 

speed-density diagrams based on the two three-parameter models. As 
fv  represents the free 363 

flow speed, it has a very compact domain, say from 90 km/hour to 120 km/hour. In this regard, 364 

we can simply enumerate all possible values of 
fv  (with the precision of e.g. 1 km/hour) to 365 

obtain the global minimum for Model [M’’] with respect to the two three-parameter models.  366 

In sum, as the above transformation simply assumes that one of the three parameters is 367 

known, the exact solution is not obtainable. However, due to the compact domain of the 368 

calibration parameters, a satisfactory solution can be numerically estimated based on 369 

enumeration. As such, the three-parameter cases are not analytically handled in this research 370 

and only a numerical approach is provided for obtaining satisfactory solutions.  371 

 372 

4. CASE STUDY  373 

4.1 Data description  374 

In this case study, we use the data collected by loop detectors from 76 stations on the Georgia 375 

State Route 400 for continuous observation of one year. The raw data at each station was 376 

originally aggregated to average speed, flow and occupancy over a 20s sampling period. It is 377 

further aggregated to 5 minutes to establish equilibrium traffic flow fundamental diagram. This 378 

aggregated data has been widely used in research community for fundamental diagram research 379 

(e.g. Wang et al., 2011&2014; Qu et al., 2015). As a follow up research, we use exactly the 380 

same aggregated data with the above three studies.  381 

 382 

4.2 Results 383 

As per discussed in the previous sections, the optimization models all have sound analytical 384 

properties such as continuity, differentiability and convexity. By selecting different    values, 385 

a family of percentile based speed-density curves are obtainable. Figure 2 presents the curves 386 

with respect to the Greenshield’s model (1935), Greenberg model (1959), Underwood model 387 

(1961), Northwestern model (1967), Newell model (1961), and 3PL model (2011). The red 388 

dots are the GA400 data. The thick solid line represents the models calibrated by WLSM (i.e. 389 

0.5  ). The other solid lines represent the flow-density curves generated from the 390 

optimization models with respect to 0.98,  0.95,0.85,0.65,0.35,0.15, 0.05,  and 0.02 . As 391 

the percentile-based curves are generated, the stochastic fundamental diagram can be 392 

established accordingly for the entire range of traffic conditions. In other words, given a density 393 



value, the speed distributions can be obtained accordingly. We compare the generated speed 394 

distributions and the empirical speed distributions in Section 4.3.  395 

(a) Greenshields Model (b) Greenberg Model396 

 (d) Northwestern Model(c) Underwood Model397 



(e) Newell Model (f) 3PL Model398 

Figure 2: Family of flow-density curves 399 

4.3 Validation  400 

According to the Figure 2, for any given density, we can have all the corresponding percentile 401 

based speeds. In other words, the cumulative distribution function (CDF) and probability 402 

density function (PDF) of speeds at any given density are obtainable. Let us use the Underwood 403 

model as an example. When the density equals 10 veh/km and 20 veh/km, the generated 404 

cumulative distribution and probability density graphs are shown in Figure 3.  405 

 

CDF when k = 10 

 

PDF when k = 10 



  

                                CDF when k = 20                                                               PDF when k = 20 406 

Figure 3: CDF and PDF of speeds 407 

 408 

In order to validate the performance of the generated CDFs and PDFs, we further use the 409 

GA400 data to generate the empirical CDFs and PDFs with respect to the two densities. As can 410 

be seen in Figure 4, the generated CDFs and PDFs perfectly re-establish the empirical CDFs 411 

and PDFs. Hypothesis tests also suggest that the generated distributions fit the data very well.  412 

It should be noted that the empirical speed PDF when density equals 20 veh/km has a zigzag 413 

section from 60 km/hour to 85 km/hour. Surprisingly, the proposed model based approach can 414 

still capture this zigzag pattern and practically re-establish the pattern of our speed-density 415 

samples. We further compare the empirical results with generated results for other intervals 416 

when density is less than 40 veh/km and observe similar patterns. Therefore, this model can 417 

indeed generate the speed distributions at any given densities and the stochastic fundamental 418 

diagram is thus established.  419 

Note that the data points at higher densities are not enough to generate complete histograms 420 

for validation. The comparison results when density equals to 40 vehs/km, 60 vehs/km, and 80 421 

vehs/km are presented in Appendix II. Although the histograms are incomplete, the generated 422 

PDFs and CDFs still reasonably re-establish the empirical ones. This further demonstrates the 423 

effectiveness and robustness of the proposed methodology.   424 
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 426 

5. CONCLUSIONS   427 

In this paper, we apply an optimization model based on the theorem of total probability to 428 

generate stochastic fundamental diagrams. In the proposed model, we introduce a new 429 

parameter  . We first prove that the solution of the proposed model with respect to any given 430 

  from 0 to 1 is actually the th percentile based fundamental diagram. Then we prove the 431 

proposed optimization model has continuity, differentiability and convexity properties so that 432 

it can be easily solved by Gauss-Newton method. By selecting different     values from 0 to 433 

1, the speed distribution at a given density is obtainable. We further validate that the calibrated 434 

speed distributions perfectly fit our collected data. 435 
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In the past, as the fundamental diagram is a deterministic curve, researchers use the residual 436 

to assess the performance of a calibrated fundamental diagram. In doing so the stochastic nature 437 

of traffic flow is totally ignored. With this proposed stochastic fundamental diagram, new 438 

approaches can be proposed to evaluate the performance of calibrated fundamental diagrams 439 

by taking into account not only the residual but also stochasticity. This can be a follow-up study 440 

for this research.  441 

Stochastic fundamental diagrams are also very useful in developing and evaluating traffic 442 

control strategies (Jabari and Liu 2013; Siqueira et al., 2016). First, as a deterministic model 443 

represents 50th percentile speed-density curve, it is incapable of handling 50% scenarios of 444 

traffic (underestimate 50% scenarios of flow or overestimate 50% scenarios of speed), which 445 

is not robust enough. In fact, 15th percentile is usually used for traffic engineering (e.g. to 446 

determine the operating speed). With this stochastic fundamental diagram, we can also use 15th 447 

percentile based speed-density curve to model and assess traffic control strategies with an 448 

attempt to deal with 85% scenarios. More importantly, it has been well recognized that the 449 

performance of our freeway systems can be substantially improved if the heterogeneity of 450 

traffic flow dynamics and stochasticity of fundamental diagrams can be controlled (Keyvan-451 

Ekbatani et al., 2012; Punzo and Montanino, 2016). Unfortunately, existing traffic control 452 

strategies, which are based on deterministic models, are incapable of controlling the 453 

stochasticity of fundamental diagrams. With the proposed stochastic fundamental diagrams, 454 

new traffic control strategies can be developed with an objective to minimize the gap between 455 

upper and lower limit of our fundamental diagrams (e.g. 15th percentile based and 85th 456 

percentile based speed-density curves) 457 

As discussed in the introductory section, the heterogeneities in drivers, vehicles, and road 458 

geometries result in stochasticity of fundamental diagrams. The recent research and 459 

development of the connected and automated vehicles provide a possible solution to reduce or 460 

even eliminate the heterogeneities (Du et al., 2015; Zhou et al., 2016a). A few pioneering 461 

studies have been done in optimising the trajectories of connected and automated vehicles to 462 

improve the safety, efficiency, and sustainability at the microscopic level (Ma et al., 2016; 463 

Zhou et al., 2016b). With this proposed stochastic fundamental diagram, it can also be modelled 464 

at the macroscopic level with an objective to reduce the stochasticity of fundamental diagrams. 465 

This proposed methodology can be applied to generate the stochastic models for any linear 466 

or non-linear regression models with scattered sample. For example, it has been well 467 



recognized that vehicle fuel consumption is highly correlated to the vehicle speed. By using 468 

the proposed methodology, the stochastic speed-fuel functions can be developed.  469 

It should be pointed out that appropriate data aggregation plays a key role in modelling 470 

traffic flow fundamental diagram. In this research, the speed and density data is aggregated to 471 

5 minutes for equilibrium model development. As a future work, we will examine the 472 

stochasticity of samples and states by applying the proposed methodology to the aggregation 473 

level of 30 seconds.  474 
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 609 

Appendix I 610 

Example A1: We construct an example to show eqs. (11)-(13). In this example, we assume the 611 

weight for each data point is 0.125. The solid line is the calibrated th100 percentile based 612 

speed-density curve based on a linear function form (i.e.  v k ). As can be seen in Figure A1, 613 

there are four data points above the solid line and the rest four are below it. Evidently, eq. (11) 614 

represents the ratio between absolute residual of samples below the solid line and the total 615 



residual and this curve is actually the 77th percentile speed-density curve according to eq. (13). 616 

In other words,   here is 0.77. 617 

 618 

Figure A1: An illustrative example  619 

Appendix II 620 

This appendix lists the empirical probability density function (PDF) and cumulative 621 

distribution function (CDF) against generated ones when density equals 40 vehs/km, 60 622 

vehs/km, and 80 vehs/km. Note that the number of points at higher densities is significantly 623 

less than that at low densities. Consequently, the data points at these densities are not enough 624 

to obtain a complete histogram for comparison. For example, when density equals 40 vehs/km, 625 

we have no data when speed is less than 40 km/hour; when densities equal 60 vehs/km and 80 626 

vehs/km, some parts of the histograms are apparently missing and lack of statistical power. 627 

Nevertheless, similar to Figure 4, the generated PDFs/CDFs still reasonably re-establish the 628 

empirical distributions. This further demonstrates the effectiveness and robustness of the 629 

proposed methodology.  630 
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Figure A2: Empirical vs generated PDFs/CDFs (when k = 40, 60, and 80 vehs/km) 631 
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