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ABSTRACT 21 

Container liner shipping network alteration is a practical manner of shipping network design, 22 

which aims to make minor modifications to ameliorate the existing network. In a generic liner 23 

shipping network with butterfly ports, each ship route is separated into a set of subloops on the 24 

basis of its structure and internal butterfly ports. Reversing the subloop directions has an impact 25 

on the network-wide cost including inventory cost, transshipment cost, and slot-purchasing cost. 26 

This paper proposes a new destination-based nonlinear model for the subloop-based reversal of 27 

port rotation directions with the objective of minimizing the overall network-wide cost. We prove 28 

that the addressed problem is NP-hard. Next, the model is transformed to an equivalent mixed-29 

integer linear programming model. Based on the structure of the reformulated model, we develop 30 

a Benders decomposition (BD) algorithm and a metaheuristic method to solve practical-size 31 
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instances. Three acceleration strategies are incorporated into the BD algorithm, which are adding 1 

Pareto-optimal cuts, updating big-M coefficients and generating combinatorial Benders cuts. Case 2 

studies based on three small examples and an Asia-Europe-Oceania liner shipping network with a 3 

total of 46 ports are conducted. Results show that the problem could be efficiently solved by the 4 

accelerated BD algorithm and the optimization of subloop directions is conducive to decreasing 5 

the network-wide cost especially the inventory cost.  6 

 7 

Keywords: container shipping; liner shipping network alteration; port rotation direction; mixed-8 

integer linear programming; Benders decomposition 9 
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1. Introduction 1 

As one of the most important modes of international transportation, container transportation 2 

plays a pivotal role in the sustainable development of the world trade and world economy (Brouer 3 

et al., 2014a; Mulder and Dekker, 2014; Tran and Haasis, 2015; Angeloudis et al., 2016; Lee and 4 

Song, 2017). The total container trade volume was estimated at 1.69 billion tons, equivalent to 175 5 

million twenty-foot equivalent units (TEUs) in 2015 (UNCTAD, 2016). Containers are transported 6 

by container shipping companies over their shipping networks. A container liner shipping network 7 

operated by a particular shipping company subsumes a set of route services. Each route service is 8 

a sequence of port visits (port rotation) sailed by a string of homogenous ships at a regular service 9 

frequency. Meantime, the port rotation of each route usually forms a loop in ways that ships visit 10 

the first port again after visiting the last one. 11 

In practice, the container shipping network is characterized by the excessively high operating 12 

cost, such as Maersk Line spends a two-digit billion USD amount yearly on its operation (Plum et 13 

al., 2014a). Therefore, even a small enhancement of the network’s utilization efficiency can bring 14 

about a significant influence on the overall cost reduction (Song and Dong, 2011, 2012; Jiang et 15 

al., 2015). It is known that a cost-effective liner shipping planning process comprises several 16 

efficient decisions that span three different levels (Christiansen et al., 2004; Agarwal and Ergun, 17 

2008; Meng et al., 2014): (1) containership fleet size and mix, alliance strategy and network design 18 

at the strategic level; (2) frequency setting, speed optimization, fleet deployment and schedule 19 

design at the tactical level; and (3) container booking and routing at the operational level. Among 20 

these decisions, the liner shipping network design is implemented every three to six months in 21 

coping with the variation of demand, which is addressed in this paper. 22 

The liner-shipping network design problem (LSNDP) is to determine which ports each route 23 

service with a designated capacity should visit and in what order. Due to its practical importance, 24 

LSNDP has gained steadily increasing attention from the research community (Christiansen et al., 25 

2013; Liu et al., 2014; Demir et al., 2016; Karsten et al., 2016; Monemi and Gelareh, 2017; Wang, 26 

2017; Krogsgaard et al., 2018; among many others). We refer the readers to Brouer et al. (2014a) 27 

and Meng et al. (2014) for comprehensive reviews of LSNDP. Research on this topic can be 28 

classified into two categories. The first category of relevant literature is to design a liner shipping 29 

network from scratch. The second category is liner shipping network alteration, which aims at 30 

making minor alterations to ameliorate the existing network. 31 
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In the first category, Rana and Vickson (1988) contributed a pioneering work by building a 1 

mixed-integer linear programming model for a single ship route design problem. Shintani et al. 2 

(2007), Song and Dong (2013) and Plum et al. (2014b) extended the model to incorporate more 3 

practical circumstances in the design of port rotation at the route level. Reinhardt and Pisinger 4 

(2012) proposed an integer programming model and a branch-and-cut method for designing 5 

butterfly ship routes to optimality. A butterfly ship route is a route with at least one port visited 6 

twice in a round trip (termed as butterfly port). For example, Fig. 1 presents one butterfly ship 7 

route where ports Singapore and Colombo are two butterfly ports. 8 

 9 

 10 
Fig. 1. An illustrative ship route with two butterfly ports. 11 

 12 

At the network level, Fagerholt (2004), Sambracos et al. (2004) and Karlaftis et al. (2009) 13 

worked on the feeder network design problem with one hub port and many feeder ports. Imai et al. 14 

(2009), Gelareh et al. (2010, 2011), Sun and Zheng (2016) and Holm et al. (2018) examined the 15 

hub and spoke liner shipping network design problem with many hubs and feeder ports. In addition, 16 

the transshipment of containers provides the company with more operational flexibilities, which 17 

are beneficial to expand the scope of shipping services. In the aspect of considering transshipment 18 

operations, there have been a few works in the literature. For example, Agarwal and Ergun (2008) 19 

developed a multi-commodity-flow-based space-time network model for LSNDP with cargo 20 

routing. Transshipment costs were not considered in the network design stage. Three methods (a 21 

two-phase Benders’ decomposition-based algorithm, a column generation-based approach and a 22 

greedy heuristic) were designed and tested on a network with up to 20 ports and 100 ships. Alvarez 23 
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(2009) extended this work by explicitly considering transshipment costs. A combined Tabu search 1 

and column generation-based heuristic was proposed and applied to a network with 120 ports and 2 

5 ship types. Brouer et al. (2014b) contributed a seminal benchmark suite for the global container 3 

transport network design. This benchmark suite was developed based upon the operating data from 4 

the largest global liner shipping company, Maersk Line. The largest instance solved includes 111 5 

ports and 4000 O-D pairs. 6 

In recent literature, some other elements apart from the operating cost and revenue have been 7 

taken into account by researchers in LSNDP. Akyüz and Lee (2016) and Karsten et al. (2016, 2017) 8 

incorporated the level of service either in the objective function or one constraint of their models, 9 

which are represented by the transit time and associated inventory cost. Providing shorter transit 10 

time and thereby reducing the inventory cost would gain more market share. Extending the 11 

situation where a butterfly port is visited twice in a round trip such as the ones in in Fig. 1, Thun 12 

et al. (2017) developed a model for LSNDP which is available to handle the more complex network 13 

structure where each port can be visited several times in a route service. The model is solved by a 14 

branch-and-price method. Results reveal that butterfly ports are helpful to a decline in the operating 15 

cost. Accounting for carbon dioxide (CO2) and sulphur oxides (SOx) emissions, Cariou et al. (2018) 16 

explored the network design within emission control areas. 17 

All the above studies mainly focused on designing liner services from scratch. In fact, liner 18 

shipping company cannot reshuffle its network overnight due to the continuity of the supply chain 19 

relationships with various stakeholders (e.g. shippers and port/terminal operators). The second 20 

category of LSNDP provides the other perspective of network design. It aims to design an efficient 21 

network via the modifications of the existing network. Currently, the extant literature on the second 22 

category is limited, which exhibits two patterns of liner shipping network alteration: (1) the 23 

disassembly and reassembly of route services with the same type of ship (Wang et al., 2015); and 24 

(2) the alteration of port rotation directions (Wang and Meng, 2013). 25 

For a ship route without butterfly ports, it is a directed loop whose direction is either clockwise 26 

or counter-clockwise. Based on this character, Wang and Meng (2013) investigated a special liner 27 

shipping network without considering butterfly ports, which means there are only two direction 28 

options for each route in the network. They proposed a multi-commodity network flow model to 29 

procure the optimal port rotation directions of ship routes. In practice, the butterfly ports are 30 

common in a liner shipping network. In a survey of 154 service routes in 2008 (CI, 2009; Song 31 
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and Dong, 2013), around 55% of ship routes have at least one butterfly port in a single round-trip 1 

(these ship routes are called butterfly routes). The existence of butterfly routes makes the port 2 

rotation direction optimization problem more complex. For example, the butterfly route in Fig. 1 3 

is a single directed loop, while it can be further decomposed into three subloops due to two 4 

butterfly ports Singapore and Colombo, and each subloop per se owns its direction option. 5 

Therefore, the generic network containing butterfly routes poses more choices of direction 6 

modifications, and meantime some practical issues such as transshipment operations and level of 7 

service need to be simultaneously considered. However, the port rotation direction optimization of 8 

such generic network has not been studied particularly. 9 

In terms of theoretical development, some researchers have derived the computational 10 

complexity of the first category of LSNDP. The general liner shipping network from scratch was 11 

proved to be NP-hard as it can be reduced to a knapsack problem (Agarwal and Ergun, 2008) and 12 

a set covering problem (Brouer et al., 2014). Though the second category of LSNDP is one type 13 

of highly constrained network design problem, which makes it easier from the methodological 14 

point of view, until recently none of previous studies have explicitly investigated the associated 15 

computational complexity. In addition, the proposed models in the second category of LSNDP 16 

were primarily solved by off-the-shelf optimization solvers. These solvers are not always efficient 17 

and in this case the design of efficient algorithms based on the problem’s particular properties is 18 

necessitated. 19 

The contribution of this paper is twofold: (i) a destination-based nonlinear model is proposed 20 

for the subloop-based reversal of port rotation directions in a generic network containing butterfly 21 

ship routes. This model captures container transshipment operations and level of service in the 22 

network. We prove the NP-hardness of our problem and similar problems presented in literature; 23 

and (ii) the proposed model is transformed into an equivalent mixed-integer linear programming 24 

model where an accelerated Benders decomposition algorithm incorporating three acceleration 25 

strategies efficiently solves the reformulated model. 26 

The remainder of this study is organized as follows. Section 2 elaborates the problem of 27 

subloop-based reversal of port rotation directions. Section 3 builds a mathematical model and 28 

discusses its computational complexity. In Section 4, we develop an equivalent linear model, a 29 

Benders decomposition method and a metaheuristic method for the problem. Numerical examples 30 

are presented in Section 5. Finally, conclusions are provided in the last section. 31 
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2. Subloop-based reversal of port rotation directions 1 

The parameters used in the model and their notation are summarized in Table 1. Consider a 2 

container liner shipping company operating a number of ship routes, which are denoted by the set 3 

R. The company regularly serves a group of physical ports denoted by the set P. Each ship route 4 

r R  has a weekly service frequency maintained by a group of homogeneous ships. 5 

 6 

Table 1 List of Notation 7 

Indices  

i the index of ports of call 

r the index of ship routes 

s the index of subloops 

c the index of sections 

Sets  

P a set of physical ports 

bP  a set of butterfly ports 

rI  a set of ports of call on ship route r 

rpI  a set of port indices on route r that refer to a butterfly port ,b rp rp P I I   

R a set of ship routes 

R̂  a set of butterfly ship routes which contain at least one butterfly port 

rS  a set of subloops corresponding to ship route r 

rS  a set of subloops with only two ports ( r rS S ) 

sC  a set of sections corresponding to subloop rs S  

W  a set of O-D pairs, W P P=   

Parameters 

rN  the number of ports of call on ship route r 

rip  the port corresponding to the ith port of call on ship route r 

cip  the port corresponding to the ith port of call on section c  

( )h c  the head port of call on section c  

( )t c  the tail port of call on section c  
odq  the demand for O-D pair ( , )o d W  

odg  the cost for purchasing one slot for O-D pair ( , )o d W  

α the inventory cost rate pertaining to the transit time of containers 

pc  the transshipment cost at port p  

odT  the transit time of containers of O-D pair ( , )o d W  

pt  the connection time at port p  

cit  the transit time of containers on leg i  of section c  

rE  the container capacity of ships deployed on ship route r  
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 1 

Let 
rN  denote the number of ports of call on ship route r and 

rip  denote the port corresponding 2 

to the ith port of call. The port rotation (or itinerary) of ship route r forms a directed loop, which 3 

is expressed as below: 4 

 1 2 1rr r rN rp p p p→ →→ →  . (1) 5 

Define the set of ports of call on ship route r as {1,2,..., }r rI N= . Defining , 1 1:
rr N rp p+ = , the 6 

voyage between two contiguous ports of call 
rip  and , 1r ip +  is called leg i  of ship route r , which 7 

can be denoted by the pair of ordered ports 
, 1, ,ri r i rp p i I+   . For instance, the ship route shown 8 

in Fig. 1 has ten legs - leg 1: 1 2(SG), (HK)r rp p  , leg 2: 2 3(HK), (XM)r rp p  , leg 3: 9 

3 4(XM), (JK)r rp p  , leg 4: 4 5(JK), (SG)r rp p  , leg 5: 5 6(SG), (CB)r rp p  , leg 6: 10 

6 7(CB), (CN)r rp p  , leg 7: 7 8(CN), (CC)r rp p  , leg 8: 8 9(CC), (CB)r rp p  , leg 9: 11 

9 10(CB), (PK)r rp p  , leg 10: 10 1(PK), (SG)r rp p  . 12 

The survey of 154 service routes reveals that ship routes with ports being called more than 13 

twice (i.e., ≥3 times) are very rare in practice (CI, 2009; Song and Dong, 2013). In this study, we 14 

focus on the case that ports in a service route are called either once or twice. Let bP  denote the set 15 

of butterfly ports such as in Fig. 1 {SG,CB}=bP . Let rpI  denote the set of port indices on route r 16 

that refer to a particular butterfly port ,b rp rp P I I  . In Fig. 1, we have ,SG {1,5}rI =  and 17 

,CB {6,9}rI = . 18 

2.1 Subloop and section 19 

To better present the concept of subloop and subloop-based reversal of port rotation directions, 20 

we consider a butterfly ship route which may consist of several subloops. 21 

 22 

Definition 1. In a butterfly ship route, a subloop is a directed closed loop constituted by a set of 23 

legs where there are only two legs connecting each butterfly port in one subloop. 24 

 25 

For instance, the ship route in Fig. 1 has three subloops. Subloop 1 subsumes four legs (i.e. leg 26 

1, 2, 3 and 4). Leg 5, leg 9 and leg 10 form subloop 2. Subloop 3 consists of leg 6, leg 7 and leg 8. 27 
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The direction of subloop 1 and subloop 2 is clockwise and the direction of subloop 3 is counter-1 

clockwise (legs 1, 2, 3, 4, 5, 9 and 10 do not form a subloop because butterfly port SG connects 2 

with four legs). By definition, each butterfly port p  in set 
bP  should appear in two different 3 

subloops. Subloop including a single butterfly port is called outer subloop, while subloop with 4 

multiple butterfly ports is called inner subloop. In Fig. 1, subloop 1 and subloop 3 are two outer 5 

subloops, and subloop 2 is one inner subloop. 6 

 7 

Definition 2. In a subloop, a section is a sequence of directed legs that start from a butterfly port 8 

(tail) to the next butterfly port (head). Other than the tail and head ports of call, none of the 9 

remaining ports of call in the section are butterfly ports. 10 

 11 

For example, each outer subloop in Fig. 1 (i.e. subloop 1 and 3) only has one section since the 12 

tail and head ports of call are the same butterfly port. Inner subloop 2 has two sections: the first 13 

section is the voyage from butterfly port SG directly to butterfly port CB, and the second section 14 

is the voyage from butterfly port CB to port PK, and then to butterfly port SG. It is reasonable to 15 

assume that the number of sections between any two butterfly ports does not exceed two. This can 16 

be interpreted by the fact that if a butterfly-port pair is served twice in the identical direction in a 17 

round trip, it will apparently impair ship utilization and unnecessarily raise voyage time. Then, it 18 

is straightforward to observe that any two contiguous subloops can be joined at only one butterfly 19 

port. 20 

Fig. 2 illustrates some more complex scenarios of a specific butterfly ship route with nine ports 21 

of call. Though the number of ports of call is fixed, a wide range of variation of route topological 22 

structures arises in terms of the count of physical ports and the number of subloops and sections 23 

(either inner or outer). For example, ship route in Fig. 2a has 6 physical ports and its itinerary is 24 

composed of 4 subloops (two outer subloops and two inner subloops). Each inner subloop consists 25 

of two sections. It differs from the scenario in Fig. 2b in which the sole inner subloop contains 26 

three sections and each section subsumes only one leg originating from one butterfly port to the 27 

other butterfly port. In Fig. 2c, the scenario contains a ship route with one inner subloop and two 28 

outer subloops. Although the number of subloops in Fig. 2d is identical to that of Fig. 2c, the 29 

number of direction options is different (four in Fig. 2c and eight in Fig. 2d). The ship route in Fig. 30 

2e is a bit different from the other scenarios since its subloop splitting result is not unique. As 31 
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depicted in Fig. 3, it can be divided into either three subloops or two subloops. In the latter case, 1 

two subloops nest with each other and this pattern is termed as the inserted subloop. 2 

 3 

 4 
Fig. 2. A more complex example of one ship route with nine ports of call. 5 

 6 

  7 



                                                                                                                                        11 

 1 

Fig. 3. A special case of one ship route with various subloop splitting results. 2 

2.2 Reversal of subloop direction 3 

Subloop-based reversal of port rotation directions (SRPRD) is a practical alteration of route 4 

structures. For instance, the direction of the right-hand outer subloop (subloop 1) shown in Fig. 1 5 

is clockwise, and ships visit Singapore, Hong Kong, Xiamen, Jakarta sequentially and return to 6 

Singapore. If the direction of subloop 1 is reversed to be counter-clockwise, the transit time of 7 

containers from Singapore to Hong Kong will be longer while the transit time from Singapore to 8 

Jakarta will be shortened. Direction reversal of the other two subloops in Fig. 1 can be performed 9 

in an analogous way. 10 

In five scenarios of Fig. 2, each ship route has nine ports of call whereas their possible route 11 

alterations are different. For the first two scenarios, though each route contains four subloops, only 12 

two direction alteration options are available for each scenario. It is because if there are only two 13 

legs in a subloop, there is no difference between clockwise direction and counter-clockwise 14 

direction. Then, only direction reversal of the right-hand outer subloop in scenario Fig. 2a and the 15 

sole inner subloop in scenario Fig. 2b will take effect on route alteration. It is worth noticing that 16 

two subloop splitting results in Fig. 3 correspond to eight and four possible route alterations 17 

respectively (including two identical alterations). Such service routes are quite rare in reality, 18 

which does not occur in 154 routes in 2008 (CI, 2009; Song and Dong, 2013). In this study, we do 19 

not consider the special pattern of butterfly ship routes containing inserted subloops (see Fig. 3). 20 

The observation here indicates that for a certain ship route, only those subloops with more than 21 

two legs have an impact on the total number of direction options, which presents a power of two 22 

functional relationship. 23 
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 1 

Remark 1. Reversal of subloop direction is restructuring each service route while all the ports are 2 

visited the same number of times each week before and after alteration. 3 

 4 

It is worth noting that the segment-based network alteration in Wang et al. (2015) is different 5 

from this study. In Wang et al. (2015), each ship route is disassembled into a set of segments which 6 

parallel the definition of sections in this study. Later, segments with the same type of ship are 7 

reassembled into several new sub-networks. These sub-networks comprise a more efficient 8 

network. Differently, this study focuses on the direction optimization of all the subloops and 9 

associated sections. In subloop-based reversal of port rotation directions, each port that was visited 10 

by a certain ship route before network alteration is still visited by the same route. Furthermore, all 11 

the ships that served the ship route before still serve the identical route. After route alteration, the 12 

visiting sequence of ports to be called on the itinerary may be reversed. It will influence the 13 

generalized network-wide cost including inventory cost, transshipment cost, and slot-purchasing 14 

cost. In the next section, we build a mathematical model to obtain the optimal subloop-based 15 

reconstruction of each service route, in an effort to minimize the generalized network-wide cost. 16 

3. Mathematical model 17 

Let R̂  denote the set of butterfly ship routes which contain at least one butterfly port. For the 18 

ease of modeling, we select one butterfly port as the first port of call (i.e. 1r bp P ) for each ship 19 

route ˆr R . Then, the remaining ports of call are sequentially numbered since the port rotation is 20 

exogenously given. Ship route ˆr R  contains a group of subloops, denoted by set rS . Meantime, 21 

we let rS  denote the set of subloops with only two ports ( r rS S ). Each subloop rs S  consists 22 

of a set of sections, denoted by sC . We use lowercase letter c  to refer to a particular section. 23 

Define the set of ports of call on subloop s  as rs rI I  and on section c  as ,rc rs sI I c C  . With 24 

a little abuse of the notation, we use cip  to denote the port corresponding to the ith port of call on 25 

section c ( ,s rc C s S  ). Here, the sequence number i  is in accordance with the original number 26 

of port of call in route r , i.e., for ,s rc C s S  , we have ci rip p= . Each section c  originates from 27 

the tail port of call (denoted by ( )t c ) and ends at the head port of call (denoted by ( )h c ). For ship 28 



                                                                                                                                        13 

route ˆr R , there always exists one section c  ( ,s rc C s S  ) whose ( )h c  corresponds to the first 1 

port of call 
1rp  (i.e. ( ) 1h c = ). Here, ( )h c  is reset to equal 1rN +  for the need of modeling. Fig. 2 

4 illustrates the subloops and sections of the ship route in Fig. 1.  3 

 4 

 5 

Fig. 4. Subloops and ports of call of sections.  6 

 7 

For ship route ˆ\r R R , an arbitrary port is chosen as the first port of call. As ship route 8 

ˆ\r R R  per se contains two direction options (clockwise or counter-clockwise direction), it can 9 

be treated as one outer subloop s  with a sole section c . The tail port of call and head port of call 10 

of section c  are both assumed to be ,1rp . In this case, ( )t c  equals 1 while for the ease of modeling, 11 

( )h c  is set to equal 1rN + . Namely, { 1}rc rs r rI I I N= = + . 12 

We let W  denote the set of O-D pairs, W P P=  . The demand for O-D pair ( , )o d W  is 13 

represented by odq  (TEUs). If there is no direct service between origins to destinations, containers 14 

may be transshipped at port p P , and the transshipment cost is denoted by pc  (USD/TEU). The 15 

loading cost at origin ports or discharge cost at destination ports is not explicitly taken into account 16 

because they are constant. It takes an additional time when containers are transshipped at port p , 17 

which is termed as the connection time, denoted by pt  (h). In this study, we make the simplifying 18 

assumption that the connection time pt  at each butterfly port bp P  is a fixed number. The transit 19 
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time of containers on leg i  of section c  ( ,s rc C s S  ) is represented by 
cit  (h). The inventory 1 

cost rate pertaining to the transit time of containers is denoted by α (USD/TEU/h). 2 

In addition, if the liner shipping company is unable to transport all the containers by its own 3 

ships, it may purchase ship slots from other shipping companies. We use odg  (USD/TEU) to 4 

denote the cost for purchasing one slot for O-D pair ( , )o d W . For simplicity, we do not consider 5 

empty containers (Song and Dong, 2012, 2013; Akyüz and Lee, 2016). At the same time, we let 6 

odT  denote the transit time of containers of O-D pair ( , )o d  transported by the purchased slots for 7 

formulating the inventory cost. The container capacity of ships deployed on ship route r R  is 8 

denoted by rE  (TEUs). 9 

3.1 Subloop reversal variables 10 

To reflect the decisions on port rotation directions, we define 
sx  ( ,rs S r R  ) as a binary 11 

decision variable which equals 1 if the direction of subloop s  is reversed and 0 otherwise. Let X12 

denote the set of all the subloop reversal decision variables 
sx  ( ,rs S r R  ). Meanwhile, to 13 

acquire the generalized network-wide cost, we need to determine the optimal container flow in the 14 

network. In the next section, we construct a destination-based model for the subloop-based liner 15 

shipping network alteration. Some continuous decision variables for container routing on the 16 

sections are further defined as below: 17 

 18 

,
ˆd

c iz : Number of containers (TEUs/week) originating from any port and destined for port d P  19 

that are loaded to a ship when it visits the i th port of call on section , ,s r rcc C s S i I   ; 20 

,

d

c iz : Number of containers (TEUs/week) originating from any port and destined for port d P  21 

that are discharged from a ship when it visits the i th port of call on section , ,s r rcc C s S i I   ; 22 

,

d

c if : Number of containers (TEUs/week) originating from any port and destined for port d P  23 

that are stowed on board ships which prepare to depart from the i th port of call on section 24 

, ,s r rcc C s S i I   . 25 

 26 
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We first consider the above decision variables of an arbitrary butterfly port p  (
bp P  ). Port 1 

p  connects two contiguous subloops 
1s  and 

2s  of route r  (
1 2, rs s S ), and it corresponds to two 2 

ports of call 1 2{ , }rpI i i= . Ports of call 
1i  and 

2i  are the head port of call and the tail port of call of 3 

two sections 
1c  and 

1c  ( 2c  and 
2c ) in subloop 

1s  (
2s ) respectively. Note that sections 

1c  and 
1c  4 

(
2c  and 

2c ) may represent the identical section, if subloop 
1s  (

2s ) is an outer subloop. Fig. 5 5 

depicts four scenarios of butterfly port p  under the variation of two decision variables 
1s

x  and 6 

2sx . 7 

 8 

 9 
Fig. 5. Four scenarios of one butterfly port. 10 

 11 

If 
1 2

0s sx x= = , the head port of call of section 1c  and the tail port of call of section 2c  are the 12 

same port of call. Hence, it is not essential to simultaneously define both loading and discharging 13 
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for the head of section 
1c  as well as the tail of section 

2c . In this case, we require that container 1 

loading operations occur at the tail port of call while container discharging operations always occur 2 

at the head port of call. This requirement also applies to the other three scenarios in Fig. 5. 3 

Mathematically, we have: 4 

 
1 1 1

1

1 1 1

,

1 1

,

ˆ (1 ) 0
, ,

0

d

c i s

s rd

c i s

z x
c C s S r R

z x

− =
  

=
  (2) 5 

 
2 1 2

2

2 1 2

,

2 2

,

(1 ) 0
, ,

ˆ 0

d

c i s

s rd

c i s

z x
c C s S r R

z x

− =
  

=
  (3) 6 

 
1 2 1

1

1 2 1

,

1 1

,

ˆ 0
, ,

(1 ) 0

d

c i s

s rd

c i s

z x
c C s S r R

z x





=
  

− =
  (4) 7 

 
2 2 2

2

2 2 2

,

2 2

,

0
, ,

ˆ (1 ) 0

d

c i s

s rd

c i s

z x
c C s S r R

z x





=
   

− =
 . (5) 8 

Furthermore, in each scenario of Fig. 5, we use two dummy legs to link subloops 1s  and 
2s . 9 

Take the scenario in Fig. 5a as an instance. When sections 
1c  and 

2c  are connected, we let 
1 1,

d

c if  10 

denote the number of containers (originating from any port and destined for port d P ) “flowing” 11 

from the head port of call 1( )h c  of section 1c  to the tail port of call 2( )t c  of section 2c  via one 12 

dummy leg. Then, the sum of the number of containers that are stowed on the dummy leg from 13 

1( )h c  to 2( )t c  (denoted by 
1 1,

d

c if ) plus the number of containers that are loaded at the port of call 14 

2( )t c  (denoted by 
2 1,

ˆd

c iz ), should be the same as the number of containers that are stowed at the port 15 

of call 2( )t c  plus the number of containers that are discharged (denoted by 
2 1,

d

c iz ). 16 

This relationship can be formulated in an analogous way for the remaining dummy legs of four 17 

scenarios. Hence, the container flow conservation equations of butterfly port p  are expressed as: 18 

 
1 1 1 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2

1 2

, , , , , , , ,

1 1 2 2 1 2

ˆ ˆ(1 ) ( )(1 ) ( ) ,

, , , , , ,

d d d d d d d d

c i s c i s c i c i c i s c i c i c i s

s s r

f x f x f z z x f z z x

c c C c c C s s S r R

   − + = + − − + + −

    
  (6) 19 

 
1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 2 2 2

1 2

, , , , , , , ,

1 1 2 2 1 2

ˆ ˆ( ) ( )(1 ) (1 ),

, , , , , , .

d d d d d d d d

c i c i c i s c i c i c i s c i s c i s

s s r

f z z x f z z x f x f x

c c C c c C s s S r R

   + − + + − − = + −

    
  (7) 20 
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For ship route r with no butterfly port ( ˆ\r R R ), we also assume that container loading 1 

operations occur at the tail port of call and container discharging operations only occur at the head 2 

port of call: 3 

 

,1

, 1

,1

, 1

(1 ) 0

ˆ (1 ) 0
ˆ{ 1}, \ , .

ˆ 0

0

r

r

d

c s

d

c N s

rc rs r rd

c s

d

c N s

z x

z x
I I I N r R R d P

z x

z x

+

+

− =

− =
= = +  

=

=

  (8) 4 

As mentioned previously, if there are only two legs in a subloop, there is no difference between 5 

clockwise direction and counter-clockwise direction. Hereon, the decision variables 
sx  are 6 

assumed to equal 0 for all the subloops with only two ports. Mathematically, we have: 7 

 ˆ0, ,s rx s S r R=     (9) 8 

 ˆ0, { }, 2, \s r rx S s N r R R= = =  .  (10) 9 

3.2 Destination-based model formulation 10 

We develop a destination-based model for the subloop-based liner shipping network alteration. 11 

To reflect transshipment cost and slot-purchasing cost, we define the variables: 12 

 13 

pz : Number of transshipment containers (TEUs/week) at port p P ;  14 

ody : Number of containers (TEUs/week) transported by the shipping network for origin-15 

destination (O-D) pair ( , )o d W . 16 

 17 

Based on the above descriptions, the objective is to minimize the generalized network-wide 18 

cost, which is formulated as follows: 19 

 

( ) 1

( )

( )

, 1

( ) 1 ( , )

min ( ) (1 )

( )( )

r s

r s

h c
d

p p p s ci ci

p P r R s S c C i t c d P

h c
d od od od od

s c i ci

r R s S c C i t c d P o d W

c t z x t f

x t f g T q y

 

 

−

    = 

−

   = +  

 
+ + − 

 

 
+ + + − 

 

    

    

  (11) 20 

subject to: 21 

 , , 1 , 1 , 1
ˆ( )(1 ) 0 \ { ( )}, , , ,d d d d

c i c i c i c i s rc s rf z f z x i I h c c C s S r R d P+ + ++ − − − =     ，   (12) 22 
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 , , 1 , 1 , 1
ˆ( ) 0 \ { ( )}, , , ,d d d d

c i c i c i c i s rc s rf z f z x i I t c c C s S r R d P− − −+ − − =     ，   (13) 1 

 , 1 ,1 ,1 ,1
ˆˆ( )(1 ) 0 { 1}, \ ,

r

d d d d

c N c c c s rc rs r rf z f z x I I I N r R R d P+ + − − − = = = +  ，   (14) 2 

 ,1 , 1 , 1 , 1
ˆˆ( ) 0 { 1}, \ ,

r r r

d d d d

c c N c N c N s rc rs r rf z f z x I I I N r R R d P+ + ++ − − = = = +  ，   (15) 3 

 
, ( , )

ˆ
r s rc ci

d pd

p ci

r R s S c C i I p p d P p d W

z z y p P
    =  

   = - ，   (16) 4 

 ( , )

,

ˆ( ) , ,
r s rc ci

od

d d o d W
ci ci

pdr R s S c C i I p p

y p d

z z d P p P

y p d



    =

− =


− =  
 


    (17) 5 

 , , , ,d

ci r rc s r

d P

f E i I c C s S r R


       (18) 6 

 , ( , )od ody q o d W    (19) 7 

 {0,1}, ,s rx s S r R     (20) 8 

 , ,
ˆ 0, 0, , , , ,d d

c i c i rc s rz z i I c C s S r R d P         (21) 9 

 , 0, , , , ,d

c i rc s rf i I c C s S r R d P        (22) 10 

 0, ( , )ody o d W  . (23) 11 

Eq. (11) is the objective function. The generalized network-wide cost subsumes four terms: the 12 

first term is the container transshipment cost and inventory cost pertinent to connection time at 13 

transshipment, the second term and third terms correspond to the inventory cost with respect to the 14 

sailing time depending on whether the directions of subloops are reversed. The fourth term is the 15 

slot-purchasing cost and the associated inventory cost. 16 

Eqs. (12) and (13) are the container flow conservation equations at each port of call except for 17 

the head and the tail of a section. Eqs. (14) and (15) are the container flow conservation equations 18 

of the head and the tail of the sole section in ship route ˆ\r R R . Eq. (16) defines the number of 19 

transshipment containers at each port. In detail, containers can be loaded onto a ship at port p  20 

since either port p  is the origin of these containers or it is a transshipment port. Eq. (17) denotes 21 

the number of transported containers to and from port p . Eq. (18) enforces the ship capacity 22 

constraint. Eq. (19) imposes that the number of transported containers for each O-D pair cannot 23 

exceed the associated demand. Eq. (20) presents that 
sx  are binary variables. Eqs. (21)-(23) are 24 

nonnegativity constraints on container flow variables.  25 
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Combining the constraints pertinent to butterfly ports and some special subloops in Section 1 

3.1, the destination-based model for the subloop-based reversal of port rotation directions (called 2 

model SRPRD1) is expressed as: 3 

Objective function (11) 4 

subject to constraints (2)-(10) and (12)-(23). 5 

3.3 Computational complexity 6 

Computational complexity theory indicates that problems differ in the efforts needed to solve 7 

them (e.g. Garey and Johnson, 1979; Papadimitriou, 2003; Ibarra-Rojas and Rios-Solis, 2012; 8 

Chen et al., 2015). If an optimization problem belongs to the NP-hard class, a polynomial-time 9 

algorithm for the exact solution of this problem does not exist unless P = NP. In this paper, we 10 

attempt to prove that the problem of SRPRD belongs to the NP-hard class by proving that its 11 

decision version is NP-complete. We propose a polynomial reduction from Partition Problem (PP), 12 

whose NP-completeness is assured by Chopra and Rao (1993), to the decision version of SRPRD. 13 

With this proof we also guarantee that similar problems like the work of Wang and Meng (2013) 14 

are NP-hard. The complexity proof of SRPRD is provided in Appendix A.1. 15 

4. Solution methods 16 

Model SRPRD1 is a mixed-integer optimization model with nonlinear objective function and 17 

several nonlinear constraints. For solving model SRPRD1, we transform it into an equivalent 18 

mixed-integer linear programming model in Section 4.1, by linearizing the objective function (11) 19 

and the nonlinear constraints (2)-(8) and (12)-(15). Due to the special problem structure, we 20 

develop a Benders decomposition algorithm and a metaheuristic for solving the resulting mixed-21 

integer linear program in Section 4.2 and Section 4.3 respectively. 22 

4.1 An equivalent mixed-integer linear programming formulation 23 

In the objective function (11), the second and third cost terms contain nonlinear variables 24 

d

s cix f . First, we adjust the sequence of cost terms in Eq. (11), where all the variables in the first 25 

three adjusted terms are linear and variables d

s cix f  are put in the fourth term: 26 
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( ) 1

( ) ( , )

( ) 1

, 1 , ( ) 1 , ( ) , ( ) , ( )

( ) 1

min ( ) ( )( )

( ) .

r s

r s

h c
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x t t f t f t f

  



−

    =  

−

− −

   = +   

+ + + + −

 
+ − + − 

 

    

     
  (24) 1 

We intend to linearize the fourth term in Eq. (24) by means of the big-M modeling method. 2 

Let 
s  be an auxiliary continuous variable and 1,sM  ( ,rs S r R  ) be a large positive number. 3 

Since model SRPRD1 is a minimization problem, objective function (24) can be transformed 4 

into the following objective function (25) by introducing the additional constraints (26) and (27): 5 

 

( ) 1

( ) ( , )

min ( ) ( )
r s r
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d od od od

p p p ci ci s
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d d d
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r

t t f t f t f M x

s S r R
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−

− −

 = +   

 
 − + − − − 

 

 

    
  (26) 7 

 1, , ,s s s rM x s S r R  −    . (27) 8 

Note that the sum of ( )od od odg T q+  for all O-D pairs in the objective function (24) is a 9 

constant value which is dropped in Eq. (25). For a mixed-integer program with big-M constraints, 10 

larger values of big-M parameters can result in a weaker linear relaxation, rendering the model 11 

more time-consuming to solve. Hence, it would be better to set an opportune upper limit value for 12 

each big-M parameter. 13 

 14 

Proposition 1. The objective function (24) is equivalent to Eqs. (25)-(27) when the value of 1,sM  15 

( ,rs S r R  ) is set to be equal to
( ) 1

, 1 , ( ) 1 , ( )

( ) 1

max( , )
s

h c

c i ci c h c c t c r

c C i t c

t t t t E
−

− −

 = +

 
− + 

 
  . 16 

 17 

The proof of Proposition 1 is provided in Appendix A.2. Constraints (12) and (13) contain 18 

three nonlinear parts ( ,

d

s c ix f , ,
ˆd

s c ix z  and ,

d

s c ix z ). Let 2,rdM  ( ,r R d P  ) be a large positive 19 

number, constraints (12) and (13) can be linearized as: 20 

 
, , 1 , 1 , 1 2,

, , 1 , 1 , 1 2,

ˆ
\ { ( )}, , , ,

ˆ

d d d d

c i c i c i c i rd s

rc s rd d d d

c i c i c i c i rd s

f z f z M x
i I h c c C s S r R d P

f z f z M x

+ + +

+ + +

+ − − 
    

+ − −  −
  (28) 21 
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\ { ( )}, , , ,

ˆ (1 )

d d d d

c i c i c i c i rd s
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f z f z M x
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+ − −  − −
 . (29) 1 

 2 

Proposition 2. When 2,rdM  ( ,r R d P  ) is set as od

r o P
E q


+ , the two nonlinear constraints 3 

(12) and (13) are equivalent to Eqs. (28) and (29). 4 

 5 

The proof of Proposition 2 is given in Appendix A.3. Similar to Proposition 2, we set 3,dM  6 

( d P ) to be 2 od

o P
q

 . Then, nonlinear constraints (2)-(5) and (8) can be linearized as: 7 
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  (30) 8 
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c c N d s

z z M x
I I I N r R R d P
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= = +  

+  −
 . (31) 9 

After examining the property of the problem, we find that constraints (30) and (31) can be 10 

further simplified. These two constraints are based on the assumption that container loading 11 

operations occur at the tail port of call while container discharging operations occur at the head 12 

port of call. Such assumption can be substituted by the following two cases. 13 

For a butterfly port bp P  in route ˆr R , it connects two contiguous subloops 1s  and 2s  14 

( 1 2, rs s S ), and corresponds to two ports of call 1 2{ , }rpI i i= . Ports of call 1i  and 2i  are also two 15 

ports of call in both subloops 1s  and 2s . We assume that container loading and discharging 16 

operations occur at only one subloop (either subloop 1s  or 2s ). It is equivalent to the assumption 17 

used in Eqs. (30) because the value of objective function (11) and associated constraints (16)-(17) 18 

in model SRPRD1 are not affected. 19 

Hereon, subloop 1s  is chosen as the single subloop conducting loading and discharging 20 

operations. In this case, the number of containers that are loaded and discharged at both head and 21 

tail ports of call of subloop 2s  is assumed to equal 0. Then, Eq. (30) is transformed to: 22 



                                                                                                                                        22 

 
2 1 2 1 2 2 2 2 1 2

1 1 2 2 1 2

, , , , 1 1 2 2 1 2

1 2

( ) ( ), ( ) ( )

ˆ ˆ 0, , , , , ,

ˆ{ , }, , .

d d d d

c i c i c i c i s s r

rp b

i h c t c i t c h c

z z z z c c C c c C s s S

I i i r R p P

 

 = = = =

 + + + =   

=  

  (32) 1 

Similarly, for route ˆ\r R R , we assume that container loading and discharging operations 2 

only occur at the head port of call (i.e. 1rN + ). It is equivalent to the assumption used in Eqs. (31), 3 

and hence Eq. (31) is transformed to: 4 

 ,1 ,1
ˆˆ 0, { 1}, \ ,d d

c c rc rs r rz z I I I N r R R d P+ = = = +    . (33) 5 

It is worth noticing that Eqs. (32) and (33) are independent of decision variables 
sx  (

rs S , 6 

r R ). Let 4,rM  ( r R ) be equal to rE . According to Proposition 2 and Eqs. (32)-(33), 7 

nonlinear constraints (6)-(7) with respect to butterfly ports bp P  in route ˆr R  and nonlinear 8 

constraints (14)-(15) pertinent to routes ˆ\r R R  can be linearized in an analogous way, which 9 

are shown below: 10 
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As a result, model SRPRD1 can be reformulated to an equivalent mixed-integer linear 3 

programming (MILP) model (named SRPRD2), which can be solved by off-the-shelf MILP 4 

solvers. Model SRPRD2 is expressed as: 5 

Objective function (25) 6 

subject to constraints (9)-(10), (16)-(23), (26)-(29) and (32)-(37). 7 

4.2 Benders decomposition 8 

Model SRPRD2 is a mixed-integer linear programming model with a limited number of binary 9 

variables ( { | , }s rX x s S r R=   ). At the same time, all the remaining variables are continuous 10 

( , , ,
ˆ{ , , , , , | , , , , , , }od d d d

s p c i c i c i rc s rz y f z z i I c C s S r R p o d P      ). This property enables Benders 11 

decomposition (BD) to be an appropriate solution algorithm to solve model SRPRD2. BD is known 12 

to be an efficient method for solving MILP models (Benders, 1962). The basic idea of the method 13 

is to iteratively solve a master problem that involves only the binary variables and a dual 14 

subproblem which is the dual of the remaining linear program. The extreme rays and points 15 

generated by solving the dual subproblem can be used to define the feasibility requirements and 16 

the projected costs of the binary variables in the master problem, guiding the search process toward 17 

an optimal solution of model SRPRD2. 18 

4.2.1 Benders subproblem 19 

For given { | , }s rX X x s S r R= =    satisfying constraints (9), (10) and (20), model 20 

SRPRD2 reduces to the following primal subproblem: 21 

Primal Subproblem ( ( )PSP X ) 22 
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min ( ) ( ) ( )
r s r

h c
d od od od

p p p ci ci s
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subject to constraints (16)-(19), (21)-(23), (26)-(29) and (32)-(37), where all the binary variables 1 

( , )s rx s S r R   are replaced with the 
sx  values accordingly. 2 

Let p , { | 1,2}od

  = , 
ci , { | 1,2}s

  = , ,{ | 1,2,...,4}d ci

  = , 
1, 2,

, ,{ , | 1,2...,8}d p d p

    = , 3 

9

,d p , ,{ | 1,2,...,5}d s

  =  denote the dual variables associated with constraints (16)-(19), (26)-(29) 4 

and (32)-(37) respectively in the primal subproblem. Then, the dual of the primal subproblem is 5 

the following dual subproblem: 6 

Dual Subproblem ( ( )DSP X ) 7 
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subject to: 9 

 ,p p pc t p P  +    (40) 10 
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 ,
ˆ0, {1,2,...,4}, { 1}, \ ,d s rc rs r rI I I N r R R d P  = = = +    . (54) 2 

Introducing the free variable  , the master problem for determining the values of the 
sx  3 

variables is formulated as: 4 

Master Problem (MP) 5 

 min    (55) 6 

subject to constraints (9), (10), (20) and 7 
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where   is a subset of extreme points of the polyhedron defined by constraints (40)-(54). In MP, 9 

constraint (56) is called the optimality cut. In a generic framework of BD, MP contains not only a 10 

set of optimality cuts, but also a set of feasibility cuts, which ensures that the solution to the master 11 

problem yields a bounded dual subproblem. As the primal subproblem is always feasible and 12 

bounded, by strong duality, the dual is also feasible and bounded. Therefore, we only add 13 

optimality cuts as deemed necessary. 14 

The BD algorithm is depicted as below. In each iteration, MP is solved, and the resulting 15 

objective value serves as a lower bound. The solution X  of MP is utilized to set up DSP( )X  16 

which is solved subsequently. Once the optimal solution of DSP( )X  is obtained, the associated 17 
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objective value serves as an upper bound. The solution of DSP( )X  is used to generate a new 1 

optimality cut, which is added to MP. This process is performed repeatedly until pre-specified stop 2 

criteria are satisfied. In this study, the algorithm terminates if one of the following conditions is 3 

activated: (1) the gap between the lower and upper bound is sufficiently small; (2) the number of 4 

iterations exceeds a predefined maximum number; and (3) the running time of the algorithm 5 

exceeds a predefined time limit. 6 

4.2.2 Improving the performance of the BD algorithm 7 

Our preliminary computational results show that a straightforward implementation of BD in 8 

Section 4.2.1 results in slow convergence. Since the BD algorithm was introduced, many 9 

researchers have explored various methods to improve its performance (Fontaine and Minner, 10 

2014; Arslan and Karaşan, 2016; Bayram and Yaman, 2017; among many others). In this 11 

subsection, we develop three acceleration strategies in an effort to further enhance the overall 12 

efficacy of BD. 13 

4.2.2.1 Defining Pareto-optimal cuts 14 

When the primal subproblem ( )PSP X  is degenerate, it is common to get multiple optimal 15 

solutions of the dual subproblem ( )DSP X , for which cuts of different strengths can be generated. 16 

We are interested in generating Pareto-optimal cuts, i.e., cuts that are not dominated by any other 17 

cuts. According to Magnanti and Wong (1981), Pareto-optimal cuts can be generated by solving 18 

the following auxiliary problem: 19 

 max ( )F X   (57) 20 

subject to constraints (40)-(54) and 21 

 ( ) ( ( ))F X v DSP X=   (58) 22 

where { | , }s rX x s S r R=   is a core point, i.e., a point in the relative interior of the convex hull 23 

of the feasible subloop reversal vector, and ( ( ))v DSP X  is the optimal objective value of 24 

( )DSP X . We start the first iteration of the BD algorithm with = 1sx  ( ,rs S r R  ). The core point 25 

is updated at each iteration k ( 2k  ) using the equation 10.5 0.5k k k

s s sx x x−= + . 26 

4.2.2.2 Updating big-M coefficients 27 
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In Section 4.1, model SRPRD1 is linearized by means of the big-M method. Since container 1 

flow variables ( , , ,
ˆ, ,d d d

c i c i c if z z ) are pertinent to the particular demand characters of O-D pairs, there 2 

may exist several big-M constraints that will never be binding, weakening the bounds that are 3 

generated in each iteration of the BD algorithm.  4 

Based on this observation, we develop an acceleration strategy that dynamically updates the 5 

values of the big-M parameters during the search process of the BD algorithm. Let 0
M  denote the 6 

set of the original big-M values, i.e., 
0

1, 2, 4,{ , , | , , }s rd r rM M M s S r R d P=   M . We begin the 7 

BD algorithm by employing the original values in 0
M . At each iteration k, we calculate the value 8 

of the right-hand side of each big-M constraint in ( )PSP X . For each 
rs S , let 

1,

k

sM  be the 9 

maximum right-hand-side value of constraints (26) and (27); for each ,r R d P  , let 
2,

k

rdM  be 10 

the maximum right-hand-side value of constraints (28), (29), and (35); and for each r R , let 11 

2,

k

rdM  be the maximum right-hand-side value of constraints (34) and (36). 12 

We update the big-M values as follows. At each iteration k, we let 1, 1,
1,...,

max ( )k

s s
k k

M M


=
 = , 13 

2, 2,
1,...,

max ( )k

rd rd
k k

M M


=
 = , and 4, 4,

1,...,
max ( )k

r r
k k

M M


=
 = . These values constitute a new big-M value set14 

1, 2, 4,{ , , | , , }k

s rd r rM M M s S r R d P  =   M . We update the kth iteration big-M coefficients by 15 

1 0(1 )k k + −M M  ( 0 1k  ), where   is a small positive constant value. Then, the updated 16 

big-M coefficients are utilized to address ( )DSP X . 17 

4.2.2.3 Generating combinatorial Benders cuts 18 

The concept of combinatorial Benders (CB) cuts was initially introduced by Codato and 19 

Fischetti (2006). The advantage of CB lies in that it can further alleviate the dependency of the 20 

algorithm’s performance on the big-M values. When using CB cuts, the dual subproblem 21 

( )DSP X  is usually updated by adding the following constraint: 22 

 ( ) ( ( ))F X v DSP X  −   (59) 23 

where ( ( ))v DSP X  is the incumbent objective value resulted by the binary vector X , and   is a 24 

sufficiently small positive constant value. 25 
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If the dual subproblem ( )DSP X  with constraint (59) has no feasible solution, then there exists 1 

a minimum infeasible subset (MIS) such that at least one of the 
sx  variables in set X  should 2 

change its value to break the infeasibility. Thus, an alternative binary vector X  can be obtained by 3 

adding the following constraint, which is called the CB cut, to the MP: 4 

 

0 1

(1 ) (1 ) 1
s s

s s s s

x x

x x x x
= =

− + −     (60) 5 

The CB cut is iteratively added to the MP to search for a feasible binary vector X  that results 6 

in a feasible dual subproblem. Once the dual subproblem is feasible, a new upper bound is thus 7 

obtained, though the objective value of the MP no longer serves as a valid lower bound (Codato 8 

and Fischetti, 2006). The algorithm terminates when the MP becomes infeasible. 9 

Instead of implementing the standard CB method, we modify this method to improve its 10 

performance for the problem of SRPRD. We first run the BD algorithm that incorporates two 11 

acceleration strategies described in the previous subsections. We obtain an initial feasible solution 12 

of the MP by terminating the algorithm after a fixed number of iterations. With this initial solution, 13 

we set up the new dual subproblem that is used to generate CB cuts: 14 

CB Dual Subproblem ( - ( )CB DSP X ) 15 

 max ( )kF X   (61) 16 

subject to constraints (40)-(54) and 17 

 ( )
:1,..., 1

( ) min ( ( )) , 2k k k

k k
F X v DSP X k

 −
= −    (62) 18 

where kX  is the feasible solution of the MP generated at the kth iteration, and k  is a continuous 19 

variable. Note that constraint (62) in - ( )kCB DSP X  is in a different form as compared to constraint 20 

(59) which is used in standard CB method (Codato and Fischetti, 2006).  21 

In the first iteration of the CB method, we initialize 1  with a small positive value. At each 22 

iteration k ( 2k  ), CB-DSP ( )kX is solved with k  being a decision variable. If 0k   in the 23 

solution of CB-DSP ( )kX , then it means that the dual subproblem ( )DSP X  with constraint (59) 24 

is infeasible. Consequently, a MIS should be identified for generating a CB cut for the master 25 

problem. As the problem of identifying MISs is NP-hard (Côté et al., 2014), we endeavor to 26 

address it in a greedy fashion, which is reflected in the case of 0k   and the new CB master 27 

problem. 28 
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Specifically, if 0k  , we first update the best incumbent solution. At the same time, we also 1 

generate a cut which is similar to the CB cut in the case of 0k   and add it to the new CB master 2 

problem. Differed from 0k  , the CB cut generated by 0k   will influence the objective 3 

value. The specific CB Master Problem (CB-MP) is expressed as follows: 4 

CB Master Problem (CB-MP) 5 

 
1 0 1

min (1 ) (1 )
k k
s s

k
k k k

s s s s

k x x

x x x x
 

  

= = =

 
− + − 

  
     (63) 6 

subject to constraints (9)-(10), (20) and 7 

 
1 0,1 0

1,2...,

0 otherwise

k k

k

s s

k k k k

k kN N
 



 



  − −
−  −   = = 




  (64) 8 

 

0 1

(1 ) (1 ) 1, 1,2...,
k k
s s

k k

s s s s

x x

x x x x k k
 

 

= =

− + −  =    (65) 9 

where 
sN  denotes the number of subloops in the shipping network. 10 

In Eq. (63), we utilize the weighted objective function: (1) weigh each CB cut with 0k   by 11 

0, and (2) weigh each CB cut with 0k   by k  which is associated with k  and iterations. By 12 

iteratively setting to zero some weights of the cuts, we can readily detect alternative MISs, which 13 

is important to generate strong CB cuts in the process of the CB separation. In this way, the CB 14 

cuts will translate both the feasibility and the optimality requirements. This acceleration strategy 15 

terminates when either of the following two stop criteria is met: (1) In CB-MP, the objective value 16 

of Eq. (63) equals 0; (2) Iterator exceeds a predefined maximum number. 17 

4.3 Metaheuristic method 18 

In addition to the BD algorithm, we also develop a multi-start iterative local search (MILS) 19 

algorithm for the problem of SRPRD. The MILS algorithm is a combination of constructive 20 

heuristics and local search heuristics (Lourenço et al., 2010; Chen et al., 2018). Constructive 21 

heuristics are utilized to generate multi-start initial solutions from scratch, while local search 22 

heuristics execute local changes of solutions in the search space until a solution deemed optimal 23 

is garnered or the number of iterations is achieved. 24 
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First, we define set 
r R rS S= . Set S  denotes the set of subloops with original directions (i.e. 1 

0,sx s S=  ). In other words, the directions of all the subloops in set \S S  are reversed. The 2 

hybrid MILS solution algorithm proceeds as below (see Algorithm 1). We define a number of main 3 

iterations at step 3. In each iteration, we build an initial solution at step 4 (see Algorithm 2). Then, 4 

we define the iterations of the iterated local search. In each one, we conduct a hill climbing local 5 

search to obtain the best perturbed solution at step 7 (see Algorithm 3). This new solution is 6 

accepted only if it yields a further reduction in the generalized cost compared with the incumbent 7 

local optimum solution at step 8. The details of the components ( )Generation S  and Climbing(m) 8 

are described in the following two subsections. 9 

 10 

Algorithm 1. Hybrid MILS (model SRPRD1) 11 

Input: model SRPRD1 instance 

Output: a solution m  for model SRPRD1 

    1:  Define set S  as an empty set 

    2:  Search subloops which satisfy Eqs. (9) and (10), and store them in set S  

    3:  for ( 1it =  to 
MULTIiterit = ) do 

    4:     m ← Generation( S ) 

    5:    1iter =  

    6:     while ( ILSitit erer  ) do 

    7:        m  ← Climbing(m) 

    8:        if ( ( ) ( )z m z m  ) then 

    9:            *m  ← m  

    10:          1ititer er= +  

    11:           m ← Generation( S  of solution m ) 

    12:       else 

    13:          ILSitit erer =  

    14:       end if 

    15:     end while 

    16:   if ( 1it == ) then 

    17:     *m m=  

    18:   end if 

    19:   m  ← argmin{ *( )z m , ( )z m } 

    20: end for 

    21: Obtain a near-optimal solution m  

4.3.1 Initial solution generation 12 
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Algorithm 2 shows the generating phase of initial solution m. According to Eqs. (9) and (10), 1 

the directions of subloops with only two ports are not essential to be reversed. We first seek out 2 

these special subloops and store them in initial set S  (see step 1 and 2 in Algorithm 1). Afterward, 3 

we randomly select some subloops from the remaining ones in set \S S , and store them in set Ŝ . 4 

Update set S  which subsumes all the subloops keeping with original directions. When set S  is 5 

given, model SRPRD1 becomes a linear programming model with pure continuous variables 6 

( , , ,
ˆ, , , ,od d d d

p c i c i c iz y f z z ). It can be efficiently solved by off-the-shelf optimization solvers such as 7 

CPLEX. 8 

 9 

Algorithm 2. ( )Generation S  10 

Input: model formulation and set \S S  

Output: initial solution m  

    1:  Define set Ŝ  as an empty set 

    2: Randomly select some subloops in set \S S  (The probability of each subloop being 

selected is assumed to be rp ). and store them in set ˆ \S S S  

    3:  Update set ˆS S S  

    4:  Compute the model SRPRD1 considering the updated set S  

    5.  Obtain the initial solution m 

4.3.2 Hill climbing local search 11 

Given an initial solution m, the hill climbing local search is utilized to search the local optimum 12 

solution by incrementally altering the rotation direction of a single subloop. In Algorithm 3, we 13 

define a number of iterations (step 1). In each iteration, we only switch the direction of one subloop. 14 

If the selected subloop s  is not in set S , we add it (step 3) while if such subloop s  is already in 15 

set S , we delete it (step 6). Afterward, we employ the updated set S  to generate new solutions 16 

using Algorithm 2 and achieve its local optimum at step 9. 17 

 18 

Algorithm 3. Climbing(m)  19 

Input: model formulation, solution m and set S  

Output: optimum solution m  via local search  

    1:  for (all subloops s S ) do 

    2:     if (subloop s S ) then 

    3:        km  ←Generation( \ { }S s ) 
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    4:     end if 

    5:     if (subloop \s S S ) then 

    6:        
km  ← Generation( { }S s ) 

    7:     end if 

    8:  end for 

    9:  m  ← argmin{ ( ) |sz m s S } 

5 Numerical Examples 1 

In this section, case studies are conducted based on three small examples and a real-case 2 

example. The solution methods are coded in Matlab R2017b using CPLEX of version 12.8, and 3 

implemented on a desktop with Intel Core Quad CPU Q9550 @ 2.83 GHz and 8.00 G RAM.  4 

A constant demand multiplier (DM) is employed to reflect the variations of demand. For 5 

instance, DM = 1 denotes the original demand, and DM = 2 implies that the demand of each O-D 6 

pair is doubled. The parameters used are set as follows: the transshipment cost is =150pc  7 

USD/TEU, the unit inventory cost rate is α = 0.2 USD/TEU/h, and the connection time is tp = 3.5 8 

days (84 h) for all ports. The slot-purchasing cost odg  and the transit time Tod are assumed to be: 9 

 : 1000 0.2 Distance between the two ports (n mile), ( , )odg o d W= +      (66) 10 

 : 7 24 Distance between the two ports (n mile)/15 knots, ( , )odT o d W=  +    . (67) 11 

5.1 Small examples 12 

Three small examples, set out in Fig. 6, are utilized to analyze the potential benefits of subloop-13 

based reversal of port rotation directions at the outset. Fig. 6 presents the original port rotation and 14 

demand for O-D pairs. Since the number of binary variables in set X  is not more than three, we 15 

just enumerate all the scenarios for the set { | , }s rX x s S r R=    and calculate the associated 16 

( )PSP X  via CPLEX. The computation time for each scenario is less than 0.1 second. 17 

The first example in Fig. 6a is a simple case with four special O-D pairs. The ship route has a 18 

single subloop and the size of ships is taken as 1500 TEUs. When DM = 1, if the port rotation 19 

direction is clockwise, the maximum volume of containers that can be transported is 2000 TEUs. 20 

The liner shipping company needs to purchase ship slots from other companies once DM > 1. By 21 

contrast, if the port rotation direction is reversed, all the 6000 containers can be shipped even if 22 

DM = 3. In Fig. 7a, though the maximum inventory cost of containers in the shipping process (the 23 

shaded area in the figure) is identical, the total cost heavily depends on the port rotation direction.  24 
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In Fig. 6b, the ship route contains two outer subloops and the size of ships is set as 3000 TEUs. 1 

Fig. 7b depicts the comparison results of four scenarios for the set X  under three demand 2 

multipliers. Hereon, for the ease of representation, we use binary form to indicate the direction of 3 

subloops from right to left. For instance, “10” denotes the scenario that only the direction of the 4 

right outer subloop is reversed. 5 

When DM = 1, the company is able to transport all the containers in four scenarios and only 6 

the inventory cost exists. Scenario “10” apparently outperforms scenario “01” with around 54% 7 

reduction in the inventory cost. When DM = 1.5, transshipment cost appears in scenario “01”. It is 8 

because ships in some legs begin to be fully loaded. The company prefers to conduct transship 9 

operations in an effort to transport more containers, rather than buying slots from other companies. 10 

When DM reaches 2, scenarios “10” and “11” are still capable to accommodate the double quantity 11 

of containers, whereas the company has to employ slot-purchasing in scenarios “00” and “01”. It 12 

means that in this case the right outer subloop is the key subloop whose direction has a pronounced 13 

effect on the total cost. 14 

 15 

 16 
Fig. 6. Three small examples. 17 

 18 

The third example in Figure 6c is a ship route consisting of three subloops and its associated 19 

capacity is taken as 5000 TEUs. The box plot exhibits the cost distribution of eight scenarios under 20 
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five demand multipliers (see Fig. 7c). Results show that the direction of the sole inner subloop 1 

appreciably affects the total cost, and such influence becomes continuously larger as the demand 2 

multiplier increases. Here, we can divide eight scenarios into two groups according to whether the 3 

inner subloop is reversed. The best scenario is always in the group with the reversed direction of 4 

inner subloop while the worst scenario only arises in the other group. The main difference in the 5 

total cost of two groups is the number of purchasing slots. When the direction of the inner subloop 6 

is unchanged, the company needs to buy more slots from other companies, as shown in the table 7 

of Fig. 7c. 8 

 9 

 10 
Fig. 7. Results of three small examples. 11 

 12 

We further analyze the best and worst scenarios under various demand multipliers as depicted 13 

in Fig. 7d. First, we find that neither the best nor the worst scenario is fixed. For example, the best 14 

scenario changes from “110” to “010” when DM increases from 2 to 2.5. Furthermore, when DM 15 

is small (e.g. DM = 0.5), some transshipment containers occur in the worst scenario. It is because 16 
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the round-trip time is relatively long which may lead to a high inventory cost of some O-D pairs 1 

if the setting of subloop directions is inappropriate for them. For these O-D demand, a trade-off 2 

arises between transshipment cost and inventory cost. As the demand multiplier increases, more 3 

and more legs become fully loaded due to the constraint of ship capacity. Once transshipment 4 

operations cannot contribute to using the remaining resources of ships, the company needs to buy 5 

more slots from other companies. When DM attains 1.5, the slot-purchasing cost finally occupies 6 

the majority of total cost (over 80% for both scenarios). 7 

In addition, Proposition 3 links the relation between any two demand multipliers, and the 8 

associated proof is provided in Appendix A.4. 9 

 10 

Proposition 3. Let Opt( )DM  denote the optimal objective value of model SRPRD1 when the 11 

demand multiplier equals DM ( 0DM  ). Then, the following inequality always holds: 12 

 
1

1 2 1 2

2

Opt( ) Opt( ), 0
DM

DM DM DM DM
DM

    . (68) 13 

5.2 A case study of a liner shipping network 14 

The proposed models and algorithms are applied to an Asia-Europe-Oceania shipping network 15 

of a global liner shipping company. This network has totally 46 ports, which are identical to the 16 

ones in Fig. 9 of Wang and Meng (2013). The company operates ten ship routes including 98 legs, 17 

as described in Table 2. Table 2 also presents the size of ships (TEUs) deployed on each ship route. 18 

There are a total of 652 O-D pairs with container shipment demand. These ship routes are further 19 

decomposed into 24 subloops and 29 sections.  20 

  21 
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Table 2 The existing 10 routes and deployed ships 1 

 2 

 3 

The BD algorithm contains two stages. The first stage is the general BD algorithm 4 

incorporating Pareto-optimal cuts and updating big-M coefficients. The maximum number of 5 

iterations in the first stage is taken as 20, and the parameter   used in updating big-M coefficients 6 

is taken as 0.05. Then, stage 2 generates CB cuts to continue accelerating the performance of the 7 

BD algorithm. In this study, the second stage terminates either when the objective value of CB-8 

MP equals 0 or when the maximum number of CB cuts attains 200. 9 

Fig. 8 depicts the iterative process of the BD algorithm with three acceleration strategies when 10 

DM = 1. Stage 1 illustrates how the upper bound (UB) and lower bound (LB) of model SRPRD2 11 

are updated across 20 iterations. It is worth noticing that 
( , )

( )od od od

o d W
g T q


+  is a constant 12 

value which is dropped from the objective function, and hence the values of UB and LB are 13 

negative. In stage 2, the convergence trend of LB and CB-MP is shown in right side of Fig. 8. 14 

Finally, after generating 60 CB cuts, the BD algorithm terminates since the objective value of CB-15 

MP in Eq. (63) becomes 0. 16 

 17 
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 1 
Fig. 8. Convergence process of the BD algorithm. 2 

 3 

To evaluate the effectiveness of the proposed BD algorithm, we compare it with CPLEX and 4 

MILS algorithm under three demand multipliers. Here, we use the default settings of CPLEX to 5 

directly solve model SRPRD2. In MILS, the parameters MULTIiter  and ILSiter  are taken as 1 and 30, 6 

respectively. For each demand multiplier, we randomly generate 3 solutions of set X . These 7 

random solutions and the original solution { 0 | , }s rX x s S r R= =    are seen as the initial inputs 8 

of both BD and MILS.  9 

The computational results of three algorithms are shown in Table 3. For all cases, the BD 10 

algorithm can obtain the optimal solution. The average number of CB cuts is 80.5 and the longest 11 

computational time is not more than 15 min. The MILS metaheuristic method obtains a local 12 

optimum in one twelfth of the cases, and the count of iterations varies from 9 to 16. The 13 

computational time of CPLEX is 49.7 times of the computational time of BD and 22.8 times of 14 

the computational time of MILS on average. Results reveal the soundness of the proposed BD 15 

algorithm for solving the problem of SRPRD. 16 

 17 

  18 
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Table 3 Computational results of three algorithms 1 

 2 

 3 

We add the constant term 
( , )

( )od od od

o d W
g T q


+  to the objective value again and compare 4 

the results of the original network and the modified network with the optimal setting of subloop 5 

directions. Table 4 describes the change of cost components before and after alteration. In the last 6 

column “reversed subloops”, “5(2)” denotes that the direction of the second subloop in route 5 is 7 

reversed. For the optimized network, the directions of nine subloops are reversed when DM equals 8 

0.8 and 1, while there are eight subloops whose directions are reversed when DM becomes 1.2.  9 

Besides, results show that the subloop-based reversal of port rotation directions contributes to 10 

the reduction of the total network-wide cost 5.18% on average among three demand multipliers. 11 

The most influenced cost component is inventory cost which descends from 11.79% to 12.03% 12 

when DM increases from 0.8 to 1.2. It is observed that, the reduction of total cost continuously 13 

increases with a growth of the demand multiplier, but with a diminishing marginal return (the 14 

decline percentage drops from 5.61% to 4.47%). The reason is that as the demand multiplier 15 

increases, more legs are fully loaded and the company tends to purchase more slots whose cost is 16 

assumed to be notably larger than the cost by its own ships. High slot-purchasing cost undermines 17 

the benefit of the reversal of subloop directions.  18 

 19 

  20 
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Table 4 Comparisons of the original network and the optimized network 1 

 2 

 3 

The case of DM = 1 is worth further discussion. Table 5 shows the optimized network and the 4 

underlined ports denote that the directions of their corresponding subloops are reversed. Results 5 

reveal that (i) all the subloops of some routes whose directions are completely reversed, such as 6 

route 8; (ii) only a part of subloops of some routes are selected to alter their directions (e.g. route 7 

1 and 2); and (iii) some routes are unchanged, such as route 4 and 7. All the segments in the 8 

network are intact and meantime the number of ships in each route does not change after alteration. 9 

 10 

Table 5 The optimized network in the case of DM = 1 11 

 12 
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Furthermore, we analyze the variation of ship occupancy which is termed as the difference of 1 

the container flow on each leg before and after alteration divided by the associated route capacity. 2 

Fig. 9 plots the variations of ship occupancy on 98 legs. It indicates that the container flow patterns 3 

before and after alteration are apparently distinct. At the same time, the ship occupancy on these 4 

legs before alteration is larger since there are more points above the horizontal axis. It is because 5 

the optimal setting of subloop directions is beneficial to decrease the sailing time of many O-D 6 

pairs and the overall inventory cost is decreased by 11.94% when DM equals 1. 7 

 8 

 9 
Fig. 9. Variation of ship occupancy on legs before and after alteration: (before – after)/capacity. 10 

6 Conclusions 11 

This paper focused on the optimization of port rotation directions in a generic liner shipping 12 

network with butterfly ports. Each ship route is separated into a set of subloops on the basis of its 13 

structure and internal butterfly ports. Through optimizing the subloop directions, the modified 14 

subloops constitute a new network which is coherent with the original network as all the subloops 15 

and associated sections are intact. In particular, each port that was visited before is still visited 16 

now, and all the ships that served the ship route before still serve the same route. Nevertheless, the 17 

subloop-based reversal of port rotation directions (SRPRD) not only influences the level of service, 18 

but also the transshipment operations and shipping capacity. We proposed a new destination-based 19 

nonlinear programming formulation for SRPRD with the objective of minimizing the generalized 20 

network-wide cost including inventory cost, transshipment cost, and slot-purchasing cost.  21 
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The problem of SRPRD was proved to be NP-hard, and this complexity proof also ensures the 1 

NP-hardness of problem presented in Wang and Meng (2013). Later, we transformed the proposed 2 

model to an equivalent mixed-integer linear programming model. The structure of the reformulated 3 

model makes it well suited for decomposition. We developed a Benders decomposition (BD) 4 

algorithm incorporating three acceleration strategies which subsume adding Pareto-optimal cuts, 5 

dynamically updating big-M coefficients and generating combinatorial Benders cuts respectively. 6 

In numerical instances, three small examples were utilized to analyze the potential benefits of 7 

subloop-based reversal of port rotation directions. Then, a case study based on an Asia-Europe-8 

Oceania liner shipping network with a total of 46 ports was conducted. Computational results 9 

demonstrate the efficiency of the BD algorithm as it is comparable to a metaheuristic method and 10 

meanwhile considerably faster than solving the reformulated model with an off-the-shelf solver. 11 

Results show that the optimization of subloop directions contributes to decreasing the total cost of 12 

the original network by 5.18% on average, and the most influenced cost component is inventory 13 

cost with over 11.5% reduction. 14 

Future research directions are as follows: First, in this study the demand between each OD pair 15 

is assumed fixed. In future, it is worthwhile to investigate container liner shipping network 16 

alteration with stochastic demand. Second, some practical circumstances of the liner shipping 17 

business could be considered. For instance, container terminal operations such as berth time 18 

windows, which affect the arrival and departure time of ships at each port of call may be 19 

incorporated in modeling. We recommend that future studies could focus on these issues. 20 
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Appendix - Proofs 29 

This supplement contains all the proofs of results contained in the main paper. 30 
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A.1. Computational complexity proof. 1 

 2 

Proof. We propose a polynomial reduction from Partition Problem (PP), whose NP-completeness 3 

is assured by Chopra and Rao (1993), to the decision version of SRPRD. First, we show the 4 

decision versions of both problems. 5 

 6 

Partition Problem (PP): 

INPUT: A multiset A  of N  positive integers 
1 2{ , ,..., }Na a a . 

QUESTION: Is there a partition of set E  into two subsets 
1A  and 

2A  such that the sum of numbers 

in set 
1A  equals half of the sum of numbers in set A  (that is, the sum of numbers in set 2A  also 

equals half of the sum of numbers in set A )? 

 7 

A simple example of this problem is that given {1,1,2,3,5}A = , the valid solution is the two 8 

sets 
1 {1,2,3}A =  and 

2 {1,5}A = .  9 

 10 

Subloop-based reversal of port rotation directions (decision version called dSRPRD): 

INPUT: Parameters  , 
cit , rE , 

pt , 
pc , odg , 

odT , odq  , , , , ,rc s ri I c C s S r R p P     

( , )o d W , and a scalar K . 

QUESTION: Are there any values for decision variable set ˆ{ , , , , , }d d d od

s p ci ci cix z f z z y  ,rci I 

, , , , ( , )s rc C s S r R p P o d W      that satisfy constraints (2)-(10) and (12)-(23) and such that  

 
( ) 1

( )
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, 1
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d od od od od
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c t z x t f

x t f g T q y K

 

 

−

    = 

−

   = +  

 
+ + − 

 

 
+ + + −  

 

    

    

 

 

 11 

Next, we discuss the hardness of the problem for dSRPRD. The description of two steps for 12 

the complexity proof is as follows: 13 

1. dSRPRD NP  14 

We assume that there exists an algorithm which generates a solution for dSRPRD. Determining 15 

if the solution is feasible for dSRPRD needs several steps. First, examine whether constraints(2)-16 

(10) and (12)-(23) are satisfied for each decision variable of the solution ( ˆ, , , , ,d d d od

s p ci ci cix z f z z y ). 17 
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Then, verify if the sum of four cost terms in the objective function (11) based on the obtained 1 

solution is not more than K  (one constraint). Considering all the constraints, it takes a polynomial 2 

number of steps to verify the feasibility of a dSRPRD solution, i.e. dSRPRD NP . 3 

2. dS RDPP RPp
 4 

Consider an arbitrary instance of PP (a multiset A of N positive integers 
1 2{ , ,..., }Na a a ). We 5 

build a particular instance of dSRPRD, called dSRPRD*, as below. Set the number of ship routes 6 

to be R N=  (ship capacity of route r corresponds to the integer 
ra  in set A). Assume that the 7 

shipping network only contains three physical ports (port 1, 2 and 3). There are totally 6 O-D pairs, 8 

and demand of each pair is identical which is set to equal 0.5 rr R
a

 . The inventory cost parameter 9 

α is set to be 0. The transshipment cost 
p pc t+  is set to be +  which means that no transship 10 

operations are allowed. The slot-purchasing cost od odg T+  is set to be 1. At the same time, we 11 

let the scalar K  be equal to zero. 12 

By dSRPRD* definition, only the fourth cost term of the objective function (11) remains 13 

because the other three terms equal 0. In this case, the task of dSRPRD* is to check whether there 14 

exists a valid solution that meet constraints (2)-(10) and (12)-(23) and the objective value equals 15 

zero.  16 

In practice, instance dSRPRD* has the following properties which are beneficial to prove the 17 

solution equivalence. 18 

 19 

Property 1. The maximum number of containers transported by ship route r is 3 ra . 20 

Property 2. The feasible solution of dSRPRD* exists only if the number of containers transported 21 

by route r with clockwise direction is 3 ra  and the number of containers transported by route r  22 

with counter clockwise direction is 3 ra  . 23 

 24 

Fig. 10 depicts the influence of port rotation direction on shipping capacity. Given three O-D 25 

pairs (pair 1-3, 2-1, 3-2), if ship route r serves three physical ports and port rotation direction is 26 

clockwise as shown in Fig. 10a, then the maximum number of containers served is 1.5 ra . By 27 

contrast, if ship route r serves three physical ports and port rotation direction is counter-clockwise 28 
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(see Fig. 10b), the optimal choice to ship as many containers as possible is to ship 3 ra  containers. 1 

Therefore, Property 1 holds. 2 

The total demand of 6 O-D pairs is 6 0.5 3r rr R r R
a a

 
 =  . According to Property 1, we 3 

naturally obtain Property 2 (otherwise the company cannot transport all the containers by its own 4 

ships; it may purchase ship slots and the objective value exceeds zero). Note that Property 2 is the 5 

necessary condition of instance dSRPRD*. 6 

Next, we prove the solution equivalence, i.e., the answer of an instance of problem PP is “YES” 7 

if and only if, the answer of the related instance of problem dSRPRD* is “YES”. 8 

( ) Let 
11 1{ ,..., }NA a a=  be a solution of problem PP with a “Yes” answer. Then, we procure 9 

that 
1

0.5r rA A
a a=  . Since ship capacity of each route r corresponds to a particular integer 

ra  10 

in set A , we assign all the ship routes whose corresponding integer 
ra is in set 

1A  to the first group, 11 

and assign the remaining routes to the second group. 12 

 13 

 14 
Fig. 10. Influence of port rotation direction on shipping capacity.  15 

 16 

The itinerary of ship route r in the first group is set to be 3 2 1r r rp p p→ →  which exclusively 17 

serves three O-D pairs (pair 1-3, 2-1, 3-2). Then, the maximum number of containers transported 18 

between port 1 and 3 is 
1

0.5r rA A
a a=   (see Fig. 10b). It means that all the containers of pair 19 

1-3 can be transported by ship routes in the first group. Similarly, we can obtain the same 20 

conclusions with respect to pair 2-1, 3-2, and the other three O-D pairs in the second group. 21 
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Therefore, there is no need to purchase ship slots from other companies, and the objective value 1 

of Eq. (11) equals K ( 0K = ). 2 

( ) Let ˆ{ , , , , , }d d d od

s p ci ci cix z f z z y  be a solution of instance dSRPRD* with a “Yes” answer. As 3 

the network has no butterfly port ( R̂ = ), each ship route is treated as one outer subloop s  with 4 

three ports of call. Ship routes can be divided into two groups depending on the port rotation 5 

direction. We let 0sx =  denote the first group 
1R  of routes with clockwise direction and 1sx =  6 

denote the second group 
1\R R  of routes with counter-clockwise direction (see Fig. 10). By 7 

Property 3, the number of containers transported in the first group (serving pair 1-2, 2-3, 3-1) 8 

equals 
1

3 rr R
a

 . Meantime, the objective value equals zero means that demand of three O-D pairs 9 

(1-2, 2-3, 3-1) is satisfied by ships routes in the first group, namely 
1

3 3 0.5r rr R r R
a a

 
=   . 10 

When all the integer values 
ra  corresponding to ship capacity of routes in the first group constitute 11 

a subset 
1A , we obtain that 

1A  is a valid solution of problem PP.  12 

As per the above solution equivalence, considering an optimization problem, where its decision 13 

version (dSRPRD) is NP-complete, then, the optimization problem (SRPRD) belongs to the NP-14 

hard class. □ 15 

 16 

A.2. When 
1,sM  ( ,rs S r R  ) is set to equal 

( ) 1

, 1 , ( ) 1 , ( )

( ) 1

max( , )
s

h c

c i ci c h c c t c r

c C i t c

t t t t E
−

− −

 = +

 
− + 

 
  , the 17 

objective function (24) is equivalent to Eqs. (25)-(27). 18 

 19 

Proof. The difference between Eq. (24) and Eq. (25) is the fourth term. For the clarity of 20 

representation, we let s  be equal to: 21 

 
( ) 1

, 1 , ( ) 1 , ( ) , ( ) , ( )

( ) 1

( )
s

h c
d d d

s c i ci ci c h c c h c c t c c t c

c C i t c d P d P d P

t t f t f t f
−

− −

 = +   

 
= − + − 

 
      . (69) 22 

Then, the fourth term of Eq. (24) is the sum of s sx   for all the subloops in the network. 23 

As Eq. (25) is a minimization objective function, it is easy to verify that either of constraint 24 

(26) and (27) is binding. Therefore, depending on whether subloop s ( ,rs S r R  ) is reversed, 25 

auxiliary variable s  can be expressed as: 26 
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( )

( )

1,

1,

max , , 1

max ,0 , 0.

s s s

s

s s s

M x

M x






 − =
= 

− =

  (70) 1 

When 
1,sM is not less than 

s , 
s s sx =  always holds in Eq. (70). In this case, the objective 2 

function (24) is equivalent to Eqs. (25)-(27). Next, we explore the relationship between 
s  and 3 

( ) 1

, 1 , ( ) 1 , ( )

( ) 1s

h c

c i ci c h c c t c r

c C i t c

t t t t E
−

− −

 = +

 
− + + 

 
  , as shown below: 4 

 

( ) 1

, 1 , ( ) 1 , ( ) , ( ) , ( )

( ) 1

( ) 1

, 1 , ( ) 1 , ( ) , ( ) , ( )

( ) 1

( ) 1

, 1

( ) 1

( )

( )

(

s

s

h c
d d d

s c i ci ci c h c c h c c t c c t c

c C i t c d P d P d P

h c
d d d

c i ci ci c h c c h c c t c c t c

c C i t c d P d P d P

h c

c i c

i t c

t t f t f t f

t t f t f t f

t t


−

− −

 = +   

−

− −

 = +   

−

−

= +

 
= − + − 

 

 − + −

 −

    

    

 , ( ) 1 , ( ) , ( ) , ( )

( ) 1

, 1 , ( ) 1 , ( ) , ( ) , ( )

( ) 1

( ) 1

, 1

( ) 1

)

max( , ) (due to Eq. 22)

max(

s

s

d d d

i ci c h c c h c c t c c t c

c C d P d P d P

h c
d d d

c i ci ci c h c c h c c t c c t c

c C i t c d P d P d P

h c

c i ci

i t c

f t f t f

t t f t f t f

t t

−

   

−

− −

 = +   

−

−

= +

 
+ −  

 

 
 − + 

 

 − +

   

    

 , ( ) 1 , ( )

1,

, ) (due to Eq.18)

.

s

c h c c t c r

c C

s

t t E

M

−



 
 
 

=



  (71) 5 

When 
1,sM  ( ,rs S r R  ) is set to be equal to 

( ) 1

, 1 , ( ) 1 , ( )

( ) 1

max( , )
s

h c

c i ci c h c c t c r

c C i t c

t t t t E
−

− −

 = +

 
− + 

 
  , 6 

1,s sM   is satisfied. This completes the proof. □ 7 

 8 

A.3. When 
2,rdM  ( ,r R d P  ) is set as

od

r o P
E q


+ , the two nonlinear constraints (12) and (13) 9 

are equivalent to Eqs. (28) and (29).  10 

 11 

Proof. Based upon whether subloop s ( ,rs S r R  ) is reversed, subloops in the network are 12 

separated into two groups. The first group is composed of subloops whose direction is unchanged 13 

(i.e. 0sx = ). In this group, Eq. (12) is identical to Eq. (28) while 
2,rdM  should be not less than 14 

, , 1 , 1 , 1
ˆd d d d

c i c i c i c if z f z− − −+ − −  in order that Eq. (29) is always satisfied. The second group contains all 15 
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the subloops whose direction is reversed (i.e. 1sx = ), in which Eq. (13) is the same as Eq. (29). 1 

Meanwhile, 
2,rdM  needs to be not less than , , 1 , 1 , 1

ˆd d d d

c i c i c i c if z f z+ + ++ − −  so that Eq. (28) always holds. 2 

Now, we proceed to discuss the relation between 
od

r o P
E q


+  and the maximum of two absolute 3 

values: 4 

 

( )

( )

, , 1 , 1 , 1 , , 1 , 1 , 1

, , 1 , 1 , 1 , , 1 , 1 , 1

, , 1 , 1 , 1 , , 1 , 1

ˆ ˆmax ,

ˆ ˆmax ( ) ( ) , ( ) ( )

ˆ ˆmax ,

d d d d d d d d

c i c i c i c i c i c i c i c i

d d d d d d d d

c i c i c i c i c i c i c i c i

d d d d d d d

c i c i c i c i c i c i c i

f z f z f z f z

f f z z f f z z

f f z z f f z

− − − + + +

− − − + + +

− − − + +

+ − − + − −

= − + − − + −

 − + − − + −( )
( )

, 1

, , 1 , 1 , 1 , , 1 , 1 , 1

, 1 , , 1 , 1 , 1 , 1 , 1

2,

ˆ ˆmax max( , ) max( , ),max( , ) max( , )

ˆ ˆmax( , , ) max( , , , )

(due to Eq.18)

.

d

c i

d d d d d d d d

c i c i c i c i c i c i c i c i

d d d d d d d

c i c i c i c i c i c i c i

od

r

o P

rd

z

f f z z f f z z

f f f z z z z

E q

M

+

− − − + + +

− + − − + +



 + +

 +

 +

=



  (72) 5 

Note that in some cases, the two absolute values in Eq. (72) may not simultaneously exist. For 6 

instance, at the tail port of call t(c), there is no ( 1)i − th port of call. Nevertheless, 
od

r o P
E q


+  7 

is also not less than the single absolute value , , 1 , 1 , 1
ˆd d d d

c i c i c i c if z f z+ + ++ − − . Hence, when 2,rdM  8 

( ,r R d P  ) is set as 
od

r o P
E q


+ , constraints (12) and (13) are equivalent to Eqs. (28) and 9 

(29). □ 10 

 11 

A.4. Let Opt( )DM  denote the optimal objective value of model SRPRD1 when the demand 12 

multiplier equals DM ( 0DM  ). Then, inequality (68) always holds. 13 

 14 

Proof. First, we let 
1DMX  and 

1DM  denote the resulting set of subloop reversal variables 15 

1{ | }sx DM  and the set of container flow variables , , , 1
ˆ{ , , , , | }od d d d

c i c i c i py z z f z DM  respectively, which 16 

correspond to 1Opt( )DM . Analogously, the sets 
2DMX  and 

2DM  correspond to 2Opt( )DM . 17 

Given 1 2 0DM DM  , we multiply all the continuous variables in set 
1DM  by 2

1

DM

DM
 and 18 

obtain a new set, denoted by 
1DM . It is easy to verify that 

1DM  is a feasible container flow set 19 
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when the demand multiplier equals 
2DM  and the set of subloop reversal variables is 

1{ | }sx DM . 1 

Here, we use   to denote the objective value of model SRPRD1 when the two associated sets are 2 

given. Then, we can get the following relationship: 3 

 

1 1

1 1

2 2

1

1

2

1

2

1
2

2

Opt( ) ( , )

( , ) linear model

( , ) optimal soltuion

Opt( )

DM DM

DM DM

DM DM

DM X

DM
X

DM

DM
X

DM

DM
DM

DM

=  

=  
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=

  (73) 4 

This completes the proof. □ 5 

 6 
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