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Abstract6

The use of drones to monitor the emissions of vessels has recently attracted wide attention because7

of its great potentials for enforcing regulations in emission control areas (ECAs). Motivated by8

this potential application, we study how drones can be scheduled to monitor the sailing vessels9

in ECAs, which is defined as a drone scheduling problem (DSP) in this paper. The objective10

of the DSP is to design a group of flight tours for drones, including the inspection sequence11

and timings for the vessels, such that as many vessels as possible can be inspected during a12

given time period while prioritizing highly weighted vessels for inspection. We show that the13

DSP can be regarded as a generalized team orienteering problem, which is known to be NP-14

hard, and deriving solutions for this problem can be more difficult because additional complicated15

features, such as time-dependent locations, multiple trips for a drone, and multiple stations (or16

depots), are addressed simultaneously. To overcome these difficulties, we model the dynamics of17

each sailing vessel using a real-time location function in a deterministic fashion. This approach18

allows us to approximately represent the problem on a time-expanded network, based on which19

a network flow-based formulation can be formally developed. To solve this proposed formulation,20

we further develop a Lagrangian relaxation-based method that can obtain near-optimal solutions21

for large-scale instances of the problem. Numerical experiments based on practically generated22

instances with 300 time points and up to 100 vessels are conducted to validate the effectiveness23

and efficiency of the proposed method. Results show that our method derives tight upper bounds24

on optimal solutions, and can quickly return good feasible solutions for the tested instances. We25

also conduct experiments based on realistic tracking data to demonstrate the usefulness of our26

solutions, including those for the cases considering the uncertainty of vessel locations.27
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1. Introduction30

Over 80% of global trade volumes are carried by oceangoing vessels (Xiao et al. 2015, Ng 2015).31

These shipping activities emit large amounts of exhaust gases including carbon dioxide (CO2),32

nitrogen oxides (NOx), and sulfur oxides (SOx) (see, e.g., UNCTAD 2017, Zheng et al. 2017).33

According to the International Maritime Organization (IMO) (IMO 2018), shipping operations34

account for nearly 10–15% of anthropogenic SOx emissions around the world, with most of these35

emissions coming from densely populated coastal regions (Transport and Environment 2018). For36

example, marine transport in 2012 generated 50% and 45% of the overall SOx emissions in Hong37

Kong and Los Angeles, respectively (Environmental Protection Department 2015, Starcrest 2011).38

In these regions, SOx emissions lead to significant environmental problems along with serious39

health impacts (see, e.g., Kirschstein and Meisel 2015, Corbett et al. 2007), which result in strong40

motivations to ameliorate the polluted environment.41

Figure 1: Existing and possible future emission control areas (Safety4Sea 2018)

The high SOx emissions is mainly attributed to the consumption of heavy fuel oil which has42

an approximate sulfur percentage of 3.5%. To reduce the SOx emitted from vessels in coastal43

regions, local governments and the IMO adopt a variety of regulations; for instance, Hong Kong44

limits the use of sulfur in its port area and Los Angeles offers a subsidy for purchasing low-sulfur45

fuel (Environmental Protection Department 2015, Starcrest 2011). As shown in Figure 1, IMO46

has designated four emission control areas (ECAs) since 2015 and may set up more ECAs in the47

near future. Vessels in ECAs must use fuels containing less than 0.1% of sulfur. According to the48
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Marine Environment Protection Committee (MEPC 2016), the sulfur percentage must be below49

0.5% around the world after 2020. Although relevant emission regulations have been in effect in50

a number of coastal regions, their enforcements are far from effective (Martek 2018). Since using51

low-sulphur fuels leads to high operation costs, many shipowners take the risk of not complying52

with the regulations. Such non-compliance ratios even reach up to 12.3% according to historical53

cases (OECD 2018). Therefore, the enforcement of relevant regulations must be enhanced to reduce54

SOx emissions in ECAs.55

A promising way to improve the regulation enforcement in ECAs is the use of drones to in-56

spect vessels’ compliance with the regulations (Ward and Kobe 2015, Ship Efficiency Review 2016,57

Green4Sea 2016). With the rapid development of related technologies for unmanned aerial vehicles58

(UAVs), drones are being more commonly used in the shipping industry (Peters 2016). Recently,59

Martek Marine, a drone technology supplier, signed a 72 million USD contract with the European60

Maritime Safety Agency (Port Technology 2017). In the contract, Martek Marine promises to61

develop durable drones (over 50 kilometers for a flight trip) to sample vessels’ gases using self-62

equipped sensors. In that way, on-shore supervision managers can timely monitor the emission63

levels of the target vessels and check their compliance with designated regulations (Green4Sea64

2016, Ship Efficiency Review 2016). In addition, the Danish Environmental Protection Agency has65

also started to research and develop sensors with more accurate inspection ability (Marine Elec-66

tronics 2015). Other relevant practices to improve the airborne monitoring are also seen in Ward67

and Kobe (2015). These technological advancements will promote the practical uses of drones in68

the near future.69

Regarding the use of drones to monitor vessels’ emissions in ECAs, this study strives to validate70

this application from an operational perspective, in which relevant decisions have to be made by71

considering the following aspects:72

• Maintaining a drone fleet is costly and maximizing its utilization is of practical interest (see,73

e.g., OECD 2018). Conducting a superficial inspection of only one vessel in each flight trip74

is inefficient. Hence, the decision should assign multiple inspection tasks for each operated75

tour to increase the utilization of the drone fleet.76

• Compared with the limited fleet size of drones, the number of vessels for inspection in ECAs77

can be very large in certain time periods (see, e.g., Marine Traffic 2018), which implies that,78

sometimes, not all vessels are guaranteed to be inspected. Hence, the decision needs to79

answer how a subset of vessels can be selected for inspections, such that the effectiveness of80

monitoring operations can be maximized.81

• One important feature in this application is that sailing vessels’ locations vary from time82
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to time, causing the flying times of drones between any two vessels to change dynamically.83

Furthermore, each inspection tour is restricted by the endurance of the drone’s battery, such84

that a drone has to return to a base station to have its battery replaced before it runs out of85

power. Hence, both the sequence and the timing for operating the inspection tasks have to86

be optimized appropriately.87

Specifically, the core of the decision is to assign each drone a sequence of inspection tasks with88

time schedules, which yield a set of flight tours constrained by battery powers. Owing to the89

limited size of the drone fleet, the optimized tours should include as many vessels as possible that90

are prioritized for inspection, which can be targeted as a maximization of the weighted number of91

vessels that have been inspected during a given time period. In this paper, we refer to this decision92

problem as a drone scheduling problem (DSP) which will be investigated later.93

Consider a special case of DSP where all target vessels are anchored, and there is only one94

base station from which each drone is allowed to operate the inspection tour at most once. Then,95

the DSP is specialized into a team orienteering problem (TOP), which is a generalization of the96

orienteering problem (OP) known to be NP-hard (see, e.g., Golden et al. 1988). Notably, the DSP97

extends the TOP by considering that the locations of nodes, where vehicles collect rewards, are98

generalized to be time-dependent. Therefore, although the TOP and its variants have been studied99

with many effective models and methods (see, e.g., Butt and Ryan 1999, Boussier et al. 2007), most100

of them cannot be directly applied to tackle the DSP in a generalized setting.101

Besides TOP, several studies also focus on routing UAVs in a number of applications, such as102

military surveillance (see, e.g., Murray and Karwan 2010, Xia et al. 2017) and logistics delivery103

operations (see, e.g., Murray and Chu 2015, Wang et al. 2017, Carlsson and Song 2017). For military104

surveillance, problems are often considered with dynamics and uncertainties, such as considering105

the dynamic appearances of new targets or considering the uncertain information collected from106

locations that are short of communications. For logistics delivery, drones cooperate with trucks107

to deliver packages to geographically located customers. However, a drone is often restricted to108

carrying only one parcel, which simplifies the drone routing decision to an assignment of customers109

to drones following a one-to-one relationship, because each flight trip of a drone can be seen as a110

trivial combination of a forward trip and a backward trip. The DSP studied in this work serves111

as a more general problem for routing drones because many additional generalized features are112

addressed at the same time, such as multiple tasks being assigned to each drone and multiple113

round trips being allowed to operate for each drone at multiple stations. What’s more, the DSP114

involves the dynamic changes of vessels’ locations, a condition that is fundamentally different from115

those that consider targets with fixed locations.116

The contributions of this study can be summarized as follows. First, motivated by the ap-117
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plication of drones to inspect the emissions of vessels in ECAs, we derive a new optimization118

problem that routes drones among sailing vessels to maximize the weighted number of inspected119

vessels. This problem is of both practical and academic interest because of its potential impact120

on improving the enforcement of ECA regulations, as well as the involvement of specific features121

that generalize the well-known TOP from the literature. Second, for this problem, we model the122

dynamics of vessels using deterministic real-time location functions. By this way, we can represent123

the DSP on a time-expanded network and develop for it a well-structured mixed-integer linear124

programming (MILP) formulation that can be potentially solved by developing efficient decom-125

position techniques. Third, to solve the proposed model formulation, we develop a Lagrangian126

relaxation-based method that experimentally solves the proposed formulation with 300 time points127

and up to 100 vessels. For the subset of tested instances with no more than 80 vessels, desirable128

feasible solutions with close optimality gaps (less than 3% on average) can be obtained quickly in129

20 iterations.130

The remainder of this paper is organized as follows. Section 2 reviews recent works that are131

related to the problem. The DSP is described in Section 3 and is formulated as an MILP model132

based on a time-expanded network in Section 4. In Section 5, we further develop a Lagrangian133

relaxation-based method for the problem. Numerical experiments are presented in Section 6,134

followed by a discussion on extended solutions for handling the uncertainty of vessel locations in135

Section 7. Conclusion and discussion of future works are presented in Section 8.136

2. Literature review137

In this section, we provide comprehensive reviews on existing operations research (OR) practices138

related to ECAs in Section 2.1, the state-of-the-art techniques for solving the TOP in Section 2.2,139

and the existing studies for routing drones in various applications in Section 2.3, respectively.140

2.1. Related works on OR practices considering ECA regulations141

To the best of our knowledge, there are only a limited number of OR applications related142

to ECAs, with most of them focused on optimizing the tactics of the ship operator in response143

to ECA regulations. Given that shipping operators are requested to use high-cost clean fuels144

in ECAs, existing OR works have mainly been contributed to optimize the speed of vessels, the145

objective of which is to minimize total fuel cost while following the ECA regulations. Different146

from conventional studies without ECA regulations (see, e.g., Meng et al. 2016, He et al. 2017),147

Doudnikoff and Lacoste (2014) show that vessels prefer to sail in low speeds inside ECAs but148

fast outside to catch up with the predetermined port call schedules and this practice results in an149

increase in CO2 emissions. In addition to speed optimization for vessels, Fagerholt et al. (2015)150
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further take into account the decision on vessels’ sailing paths in nearby regions of ECAs. An151

optimization model is developed to select paths from a realistic candidate path set. Their results152

show that ECA regulations may lead vessels to sail long distance paths, in order to save on total153

fuel cost. Sailing paths and speeds are also jointly optimized in Fagerholt and Psaraftis (2015),154

where the proposed model additionally determines the crossover points intersected by the vessels’155

paths and the boundary of an ECA.156

The DSP can be seen as another OR practice related to ECAs. This work attempts to help157

supervision departments enforce the ECA regulations.158

2.2. Related works on TOP159

The DSP generalizes a conventional TOP that aims to design round-trips for a set of vehi-160

cles, such that the total collected rewards from visited nodes are maximized. One may refer to161

Vansteenwegen et al. (2011) and Gunawan et al. (2016) for a comprehensive review on recent162

state-of-the-arts for the TOP.163

Both exact and heuristic methods are studied for the TOP. Boussier et al. (2007) propose a164

set-partition formulation by generating all possible routes, whose linear programming relaxation165

can be effectively solved by a column generation technique. With the obtained relaxation bounds,166

the authors develop a branch-and-price algorithm that optimally solves the problems with up167

to 100 nodes. To improve the computational efficiency, Keshtkaran et al. (2016) introduce a168

bounded bidirectional dynamic programming technique, where possible partial paths are extended169

in both forward and backward directions. To speed up partial path explorations, they embed a170

called decremental state space relaxation rule to dynamically control the number of visits to each171

included node. Valid cuts from classic vehicle routing problems, such as subset-row inequalities,172

are also utilized to strengthen the relaxation bounds. Bianchessi et al. (2018) propose a new two-173

index compact formulation for the TOP, based on which a branch-and-cut algorithm with newly174

developed valid cuts are proposed, and the problems with up to 100 nodes are solved. To tackle175

larger instances, Lin and Vincent (2012) develop a standard simulated annealing method that finds176

new best solutions for some benchmark instances with up to 288 nodes. Dang et al. (2013) study177

a particle swarm optimization algorithm enhanced with a faster evaluation process. The proposed178

algorithm achieves a stable performance on extensive test instances having up to 399 nodes.179

Routing drones can be regarded as an extension of TOP for real applications, in which drones180

equipped with sensors are dispatched to patrol a set of targets, such that total rewards collected181

from the patrolling operations can be maximized. Compared with the classical TOP and its variant182

problems (see, e.g., Archetti et al. 2014, Ke et al. 2016), some generalization features are addressed183

in the DSP. First, in the DSP, a drone is allowed to operate more than one trips from multiple184
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stations, a situation that generalizes the TOP by considering multiple depots and designing one185

or more routes for each vehicle to collect rewards. Second, the DSP can also be seen as a TOP186

that considers dynamically located nodes, which implies that the traveling time between any two187

nodes will be dependent on what time the travel happens. These generalization features make the188

problem more complicated, such that existing models and methods for the TOP cannot be directly189

applied to the DSP.190

2.3. Related works on routing drones in various applications191

Drones have been successfully applied for military use. Shetty et al. (2008) study the routing192

of a fleet of drones to destroy a designated set of differently prioritized targets. They propose193

a two-phase solution framework that involves solving a target assignment subproblem for each194

drone in the first phase and then solving a traveling salesman problem to gain a routing plan in195

the second phase. Considering a more complex environment in which new targets may appear196

dynamically, Murray and Karwan (2010) develop an integer programming model that reassigns197

drones to the updated set of tasks in response to any changes in the battlefield. Mufalli et al.198

(2012) consider the routing of drones for military surveillance missions, where drones carry sensors199

and collect information from designated targets. Their proposed model decides the sensors for each200

drone by incorporating payload capacity constraints. A fleet of drones are then routed following201

these constraints to maximize the information gained from the surveillances. Uncertainty on the202

information collected from the surveillances is also considered. For this consideration, Xia et al.203

(2017) develop a region-sharing strategy that dynamically routes drones to collect information204

rather than sticking to a predetermined routing plan. The proposed strategy is proven to be205

effective in a modern battlefield where communications between drones and ground stations are206

often blocked.207

Cooperation between drones and trucks is investigated in last-mile delivery operations, which208

aim to improve operational efficiency. Murray and Chu (2015) study a joint scheduling problem209

for both drones and trucks, where drones are dispatched to service customers near the depot and210

trucks are mainly responsible for delivering far packages. Wang et al. (2017) investigate another211

cooperation manner between drones and trucks, where trucks are allowed to carry drones along the212

working routes. In this way, drones can fly from the trucks to visit those customers who are far from213

the depots. Similar cooperations between drones and trucks are also considered by Carlsson and214

Song (2017) and Agatz et al. (2018). Carlsson and Song (2017) theoretically analyze the delivery215

efficiency improved from the cooperation and prove that the potential improvement is dependent216

on the square root of the ratio of the truck’s speed and the drone’s speed. Agatz et al. (2018)217

investigate a new variant of the traveling salesman problem by considering the collaboration with218
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a drone. They model the problem as an integer program and develop a heuristic method based219

on local search and dynamic programming. Improvements from the collaboration are also shown220

in their numerical experiments. Dorling et al. (2017) study a package delivery problem, in which221

packages are delivered using drones only. By considering some practical constraints, including222

limited endurance time and limited carried weights, they regard the problem as a multi-trip vehicle223

routing problem with side constraints.224

From the aforementioned works, we notice that drones are routed among fixedly located nodes,225

and the distances between the geographical nodes are all fixed in their problems. A fundamental226

difference of our case from these earlier studies is that the locations of the vessels for inspection227

are time-dependent. This generalization makes routing drones much more difficult.228

3. Problem description229

In this section, we formally describe the DSP. Relevant notations for the problem are presented230

in Section 3.1. Vessels’ real-time location coordinates are defined in Section 3.2. Calculation of231

drone’s real-time flying time between pair of vessels and stations is discussed in Section 3.3. The232

objective and constraints for the problem are given in Section 3.4.233

3.1. Notations234

Consider an ECA that includes a set of base stations K where drones stop for battery replace-235

ments. Let τ0 denote the time needed for each battery replacement operation. Each station k ∈ K236

is associated with a fixed location coordinate (αk, βk). A set of identical drones, denoted by M , are237

operated to inspect the real-time emission condition of the vessels in the ECA for a given planning238

period denoted by [0, Tmax]. Let mk denote the number of drones initially allocated at station k.239

Suppose each drone is able to fly in a maximum speed s and its maximum endurance time is up240

to Q minutes owing to its battery power limit.241

Let V denote the set of vessels, and each vessel v ∈ V is assumed to sail at speed sv, where242

sv < s. Within the planning period, we define [ev, lv] as a time interval when vessel v is sailing243

inside the ECA, which can be regarded as a time window for inspecting vessel v. The inspection244

time for each vessel v ∈ V is τv. We assume vessels have different weights of importance for245

inspection. For example, vessels with a non-compliance history should be highly weighted, while246

vessels that have been previously inspected in other zones can be weighted with lower values. We247

denote by wv the weight (or revenue) for inspecting each vessel v ∈ V .248

A drone can start and end an inspection tour at the same station or at different stations. The249

itinerary of a drone mainly consists of three operations, including battery replacement at stations,250

emission inspections over vessels, and flying trips between two adjacent vessel inspection tasks.251
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When a drone flies to a vessel, it will follow the vessel’s sailing track for a short period of time in252

order to conduct emission inspections. A drone that has returned to a station is allowed to restart253

a new tour after its used battery is replaced with a fully charged one. An example of feasible254

tours is illustrated in Figure 2, where two stations denoted by K = {k1, k2} and six sailing vessels255

(candidates to be inspected) denoted by V = {v1, v2, v3, v4, v5, v6} are included in the ECA. In the256

example, a feasible tour can either form a loop based on a single station (i.e., k2 → v1 → v2 → k2257

for drone B) or form a path between two stations (i.e., k1 → v3 → v4 → k2 and k2 → v5 → v6 → k1258

for drone A). The DSP is to design for drones a group of such tours with corresponding time259

schedules (hereafter called scheduled tours), with the aim of inspecting as many vessels as possible260

during a given time period while prioritizing highly weighted vessels for inspection.261

Figure 2: Example of drone’s feasible tours in an ECA

3.2. Real-time location coordinates of the vessel262

The DSP differs from the conventional TOP mainly in the aspect that the vessel locations263

are not fixed during the planning horizon. In other words, each scheduled tour is constituted by264

a sequence of real-time locations of the vessels when they are being inspected. To design good265

scheduled tours, one has to identify each vessel’s real-time location at any time of the planning266

period. In the problem, we target on incoming vessels, each of which has a port to call in the ECA.267

Sailing tracks of these vessels are relatively fixed, compared with the cases of freely sailing vessels.268

Hence, we assume vessels’ real-time locations during the next short time period can be predicted269

based on the vessels’ sailing statuses (e.g., speed and course), which are precisely accessed by an270

automatic identification system (see, e.g., Marine Traffic 2018). On the basis of this assumption,271

the location coordinates of each vessel v ∈ V at any time t ∈ [ev, lv], denoted by (αv(t), βv(t)), are272

priorly known.273

Figure 3 gives an example to describe the variation of a vessel’s location coordinates during274
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the given period, where the horizontal axis stands for the time and the vertical axis stands for the275

coordinate value. As noted in the figure, during time window [ev, lv], vessel v may stay at a fixed276

location (αp, βp) in port or sail along a designated direction in the prediction. Given the predicted277

real-time locations for all target vessels, we are now allowed to estimate the flying time of the drone278

between each two moving vessels in the system.279

Figure 3: An example of vessel’s real-time location coordinate

3.3. Calculate drone’s flying time in a tour280

At any time of the planning period, the drone’s flying time between two vessels depends on the281

real-time locations of the vessels in the ECA. Before calculating the flying time, we first show the282

following optimal strategy for a drone to finish a given sequence of inspection tasks.283

Proposition 1. Given a tour (i.e., the base stations and the set of ordered vessels for inspection),284

there exists an optimal schedule such that the inspection of each vessel is finished as early as possible.285

Proof. Given an inspection tour by {k → v1 → ... → vn → k′}, we first observe that it is always286

beneficial to finish the tour as early as possible. Suppose the tour starts from station k at time t0,287

and the drone can fly in different ways (i.e., different speeds and directions) to inspect the vessels,288

potentially resulting in two different schedules (i.e., schedule 1 and schedule 2) with their return289

times to station k′ represented by t1 and t2, respectively, where t1 < t2. Suppose schedule 2 is in290

an optimal solution for the DSP, then schedule 2 in the solution can be replaced by schedule 1,291

which forms another feasible solution with the same objective value. Thus, schedule 1 is also in an292

optimal solution for the DSP.293

Following the above observation, we next show that a drone can finish a tour earlier if the294

inspection of the last vessel could be completed earlier. Suppose vessel vn is the last vessel to be295
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inspected in the tour, and there are two schedules that respectively finish the inspection of vessel296

vn in two different locations (i.e., location 1 and location 2) at times t1 and t2, where t1 < t2 (see297

the illustrative example in Figure 4). Suppose the flying time for a drone to return to the end298

station from location 2 is denoted by t̄. Thus, for the drone that finishes the inspection at location299

1, it can always follow the sailing track of vessel vn from location 1 to location 2 and then fly back300

to the end station at time t1 + t̄+(t2− t1)svn/s, which will be earlier than t2 + t̄, namely the return301

time after finishing the last inspection at location 2.302

Figure 4: Illustration of the two possible locations to inspect the last vessel in a tour

Figure 5: Illustration of the locations to inspect two adjacent vessels in a tour

Next, we prove that if a drone wants to inspect the next vessel earlier, it has to finish the303

inspection task of current vessel earlier, which is valid for each pair of adjacent inspection tasks304

in a given tour. Suppose a drone flies for a time length of t̄ from location 1 (at time t1), where305

inspection of vessel vi is finished, to a next vessel vj at location 2 (at time t1 + t̄) (see the illustrative306

example in Figure 5). If the drone finishes the inspection of vessel vi at t′ where t′ < t1, it can fly307

along the sailing track of vessel vi to location 1 and then fly to location 2 at time t′+ t̄+(t1−t′)svi/s308

that is earlier than t1 + t̄. Given that the drone arrives location 2 earlier, it can further fly to vessel309

vj for an earlier inspection.310

By summarizing the above three segments of discussions, we conclude that inspecting every311

next vessel as early as possible is an optimal condition for the problem.312

Proposition 1 implies that given any sequence of inspection tasks, there always exists such an313

11



optimal schedule that requires the inspection of each vessel to be finished as early as possible.314

This property significantly simplifies the design of optimal time schedule for each tour (i.e., the315

timings of the vessels to be inspected). Therefore, whenever and wherever a drone is located, the316

drone is always motivated to fly in a most direct path with the maximum speed to somewhere the317

next target vessel is potentially located. Based on that, we can estimate the flying time using the318

manner of the two-dimensional Euclidean distance calculation.319

Let τv,v′(t) denote the flying time needed for a drone that leaves vessel v at time t and320

reaches the next vessel v′ for inspection. Given that the real-time location of vessel v at time321

t is (αv(t), βv(t)), and after the drone’s flying trip to vessel v′, the real-time location of vessel v′ is322

(αv(t+ τv,v′(t)), βv(t+ τv,v′(t))). Then, the minimum value of τv,v′(t) can be determined by solving323

the following equation.324

[
s · τv,v′(t)

]2
=
[
αv(t)− αv′(t+ τv,v′(t))

]2
+
[
βv(t)− βv′(t+ τv,v′(t))

]2
. (1)

Furthermore, denote by τk,v(t) the flying time needed from station k at time t to vessel v, and325

by τv,k(t) the flying time needed from vessel v at time t to station k. Given the real-time locations326

before and after a flying trip, similarly, minimum values of τk,v(t) and τv,k(t) can also be easily327

determined by solving the following equations, respectively.328

[s · τk,v(t)]2 = [αk − αv(t+ τk,v(t))]
2 + [βk − βv(t+ τk,v(t))]

2 , (2)

[s · τv,k(t)]2 = [αv(t)− αk]2 + [βv(t)− βk]2 . (3)

Proposition 2. Equations (1), (2), and (3) always have positive roots.329

Proof. Since the right-hand-side of (3) is a positive constant, equation (3) must have an unique330

positive root. We next prove the existence of positive roots for (1) and (2), both of which can be331

equivalent to finding a positive value of τ such that the following function satisfies f(τ) = 0.332

f(τ) = [s · τ ]2 − [a− a(τ)]2 − [b− b(τ)]2 , (4)

where a drone initially locates at (a, b) and inspects the next vessel at location (a(τ), b(τ)) after a333

time period of τ .334

Note that (a(0), b(0)) is the initial location of the next inspected vessel at τ = 0. Let `0 =335 √
[a− a(0)]2 + [b− b(0)]2 represent the Euclidean distance between (a, b) and (a(0), b(0)). Thus,336

by following the triangle inequality, there is `0 + sv · τ >
√

[a− a(τ)]2 + [b− b(τ)]2. Substituting337
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this inequality into (4), we have338

f(τ) = [s · τ ]2 − [a− a(τ)]2 − [b− b(τ)]2 ,

> [s · τ ]2 − (`0 + sv · τ)2,

> (s2 − s2
v)τ

2 − 2sv`0 · τ − `20.

Since s > sv, we can always find a large enough τ ′ to guarantee f(τ ′) > 0. Together with the339

initial condition that f(0) = −`20 < 0, there is at least one root in (0, τ ′). This proposition is thus340

proved.341

Proposition 2 theoretically implies that any target vessel staying in the ECA can be inspected,342

if drone’s battery is sufficiently endurable. Motivated by Proposition 1, if there exist multiple343

positive roots for an equation, the calculated flying time should take the value of the smallest one.344

Based on (1)–(3), drone’s flying time among vessels and stations at any time of the planning period345

can be uniquely determined.346

3.4. Objective and constraints347

The DSP aims to design for drones a set of scheduled tours for monitoring the emissions of348

vessels. The objective of the problem is to maximize the total weights of the vessels that have been349

inspected (i.e., the weighted number of inspected vessels) during a given time period. The output350

decision has to observe the following constraints, which are necessary to define a feasible solution351

of this problem.352

Tour feasibility constraints. A feasible scheduled tour must start from a station and end by353

returning to the same station or another. The maximum round-trip time of the scheduled tour is354

bounded by Q minutes.355

Inspection constraints. Each vessel can be inspected at most once during the given time period.356

In other words, a vessel can be included in exactly one tour if this vessel is to be inspected.357

Safety constraints. At each station, the time gap between two adjacent launches or landings of358

drones must be no smaller than a safety threshold (set as 1 minute in our study). These constraints359

are employed to avoid the situation where too many drones are operated at the same time over the360

same station, which may lead to a crash.361

4. Time-expanded network formulation362

In this section, we formulate the DSP as a network flow-based problem with integer flow363

restrictions. In Section 4.1, we construct the underlying network by expanding vessels and stations364
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with additional time dimensions. In Section 4.2, an MILP formulation is proposed to represent the365

DSP based on this constructed time-expanded network.366

4.1. Construct a time-expanded network367

Time-expanded network is widely adopted in representing various applied problems, such as368

service network design and railway timetabling (see, e.g., Caprara et al. 2002, Crainic et al. 2014,369

Ng and Lo 2016). We represent the DSP by constructing a time-expanded network, where vessels370

and stations are associated with disjoint time points in T = {1, ..., Tmax} to form the network371

nodes. The length of gap between each two adjacent time points can be differently set (e.g., 1 or372

5 minutes), which coordinates the network scale and the discretization accuracy on time. In our373

study, we set the length of gap as 1 minute. Provided with the evenly distributed time points, we374

construct vessel-time nodes in N = {(v, t)|v ∈ V, t ∈ Tv}, where Tv = {ev, ev + 1, ..., lv} is the set375

of discretized time points included in vessel v’s time window, and construct station-time nodes in376

N0 = {(k, t)|k ∈ K, t ∈ T}.377

Given each pair of vessel-time nodes (v, t) and (v′, t′), we establish an arc from (v, t) to (v′, t′)378

if {t′− t− 1 < τv,v′(t) + τv′ ≤ t′− t} holds. The constructed arc stands for a flying trip that leaves379

vessel v at time t for the next inspection over vessel v′; the inspection operation over vessel v′380

(with time τv′) is included in this arc. Hence, holding arc (i.e., an arc adjacently connecting (v, t)381

to (v, t+ 1) for any v ∈ V and t ∈ T ) is not generated.382

A flying trip starting from the location of vessel v at time t to the location of station k can be383

represented by a directed arc from (v, t) to (k, t′) for some t′ satisfying {t′ − t− 1 < τv,k(t) + τ0 ≤384

t′ − t}. Note that the battery replacement operation (with time τ0) is already included in the385

arc. Thus, any newly arriving drone at a station is allowed to immediately start off the next tour.386

Similarly, we construct an arc by connecting (k, t′) to (v, t) if {t− t′ − 1 < τk,v(t) + τv ≤ t− t′} is387

satisfied, which implies a flying trip from station k to vessel v started off at time t′. Note that the388

inspection operation over vessel v is in the arc, and hence a holding arc between each two adjacent389

vessel-time nodes with respect to the same vessel is not generated.390

Let A denote the arc set including all the generated arcs. An acyclic time-expanded network,391

denoted by G = (N∪N0, A), is then constructed to formulate the problem. For ease of presentation,392

we define i as the node index, and let ui and ti denote node i’s corresponding vessel (or station)393

and time point, respectively. Given e(i, j) denoted as the arc connecting node i to node j, we394

assign its arc weight by wi,j = 1
2(wui + wuj ), where wu = 0 if u ∈ K. An illustrative example of395

the time-expanded network is presented in Figure 6, which is a time scheduled representation of396

the inspection tours in Figure 2.397

In network G, a path from one station-time node to another corresponds to a possible scheduled398

tour for a drone by subjecting it to the aforementioned tour feasibility constraints. Since any return399
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arc to a station-time node has included the battery replacement time τ0, the maximum time length400

for a feasible path is given by Q0 = Q+ τ0. Based on the network representation, the DSP can be401

formulated as selecting a number of paths, such that inspection constraints and safety constraints402

are further observed, and the total weights of the selected paths are maximized.403

Figure 6: An example of three tours on a time-expanded network

4.2. MILP formulation404

Basing on network G, we present an arc-based formulation in which a path is decided by a405

set of arc type binary variables xi,j . Let xi,j = 1 if arc e(i, j) is included by a path, and xi,j = 0406

otherwise. The number of drones staying at station k at time t is denoted by an integer variable407

yk,t. Let yk,0 = mk for k ∈ K. Note that yk,0 is not a variable but a constant parameter used in the408

model. Define continuous variable qi as the remaining working time of a drone on arrival at node i409

of the network. Based on the three sets of decision variables {xi,j |e(i, j) ∈ A}, {yk,t|k ∈ K, t ∈ T},410

and {qi|i ∈ N ∪N0}, the DSP is formulated as follows.411

(F) : max
∑

e(i,j)∈A

wi,jxi,j , (5)

s.t.
∑
j∈N

xi,j −
∑
j∈N

xj,i = yui,ti−1 − yui,ti , ∀i ∈ N0, (6)

∑
j∈N∪N0

xi,j −
∑

j∈N∪N0

xj,i = 0, ∀i ∈ N, (7)

qi − (tj − ti)xi,j +Q0(1− xi,j) ≥ qj , ∀i ∈ N, ∀j ∈ N ∪N0, (8)

Q0 − (tj − ti)xi,j ≥ qj , ∀i ∈ N0,∀j ∈ N (9)
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∑
i∈N∪N0

∑
j∈N :uj=v

xi,j ≤ 1, ∀v ∈ V, (10)

∑
j∈N

xi,j +
∑
j∈N

xj,i ≤ 1, ∀i ∈ N0, (11)

xi,j ∈ {0, 1}, ∀e(i, j) ∈ A, (12)

yk,t ∈ {0, 1, ..., |M |}, ∀k ∈ K,∀t ∈ T, (13)

qi ≥ 0, ∀i ∈ N ∪N0. (14)

The objective function (5) maximizes the weights of all included arcs, which correspond to412

total revenues obtained by inspecting the vessels. Constraints (6) calculate the number of drones413

staying on each station-time node by linking the decision variables in {xi,j |e(i, j) ∈ A} and {yk,t|k ∈414

K, t ∈ T}. Note that the number of drones in any station at any time must be ranged by [0, |M |].415

Constraints (7) enforce that the arrival and departure of a drone on each vessel-time node must416

be balanced. Constraints (8) and (9) capture the charge depletion of the battery during the flight417

and update the remaining time of the drone upon arrival at each node, where the remaining time418

will recover to Q0 after the used battery is replaced with a fully charged one upon visiting any419

station-time node. Constraints (7)–(9) are the tour feasibility constraints. Constraints (10) restrict420

that each vessel can be inspected at most once, which corresponds to the inspection constraints.421

Constraints (11) are the safety constraints that allow at most one drone to take off and land at each422

station-time node, given that the length of disjoint time gap and the safety time threshold are both423

equal to 1 minute in our study. The types and feasible domains of the decision variables are defined424

in (12)–(14). Note that the value of each variable yk,t is determined by a set of binary variables425

xi,j in (9), which is guaranteed to be an integer. Therefore, relaxing each yk,t ∈ {0, 1, ..., |M |} by426

0 ≤ yk,t ≤ |M | does not affect the integrity of this variable.427

Model (F) is an MILP formulation whose size grows in the scale of network G. Although428

an off-the-shelf MILP solver such as CPLEX is available for a direct solution, our preliminary429

numerical tests show that the MILP solver is limited to solving problems with up to 40 vessels and430

the computations can be rather time-consuming. We are thus motivated to study a new solution431

approach that can be more effective and efficient for solving (F).432

5. A Lagrangian relaxation-based method433

Lagrangian relaxation-based techniques are widely applied to solve various operations research434

problems (i.e., Fisher 2004, Cacchiani et al. 2012), in which a Lagrangian subproblem is formed435

by dropping complicating constraints and penalizing violations of the dropped constraints in the436

objective function. In most situations, the Lagrangian subproblem has a decomposable structure437
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and can be solved by a number of separated easier decisions. Knowing that optimal objective of a438

Lagrangian subproblem provides a valid bound (an upper bound in our case) on the optimal value439

of original problem, it is always available to measure the obtained feasible solutions with known440

optimality gaps.441

In this section, we present a Lagrangian relaxation-based solution method to solve (F). In442

Section 5.1, we relax the inspection constraints from (F) to obtain a Lagrangian subproblem,443

which is then solved by equivalently optimizing a set partitioning-like formulation based on a444

limited number of columns. In Section 5.2, a lower bounding strategy is discussed. In Section 5.3,445

we propose a subgradient optimization procedure to iteratively converge the best-known upper446

bound to the best-known lower bound for the DSP.447

5.1. Lagrangian relaxation448

Relaxing Constraints (10) of (F) and bringing them into the objective function with associated449

Lagrangian multipliers πv ≥ 0 for each v ∈ V , we obtain the Lagrangian subproblem LR(Π), where450

Π = {πv|v ∈ V } denotes the vector of Lagrangian multipliers.451

LR(Π) : max
∑

(i,j)∈A

wi,jxi,j +
∑
v∈V

πv(1−
∑

i∈N∪N0

∑
j∈N :uj=v

xi,j), (15)

s.t.
∑
j∈N

xi,j −
∑
j∈N

xj,i = yui,ti−1 − yui,ti , ∀i ∈ N0, (16)

∑
j∈N∪N0

xi,j −
∑

j∈N∪N0

xj,i = 0, ∀i ∈ N, (17)

qi − (tj − ti)xi,j +Q0(1− xi,j) ≥ qj , ∀i ∈ N, ∀j ∈ N ∪N0, (18)

Q0 − (tj − ti)xi,j ≥ qj , ∀i ∈ N0, ∀j ∈ N (19)∑
j∈N

xi,j +
∑
j∈N

xj,i ≤ 1, ∀i ∈ N0, (20)

xi,j ∈ {0, 1}, ∀e(i, j) ∈ A, (21)

0 ≤ yk,t ≤ |M |, ∀k ∈ K,∀t ∈ T, (22)

qi ≥ 0, ∀i ∈ N ∪N0. (23)

To solve LR(Π), we reformulate it into a set partitioning-like formulation, LR(Π, R), where R452

denotes a path set of network G and each path r ∈ R connects an origin station-time node o(r) to453

a destination station-time node d(r). With battery power restrictions defined in (18) and (19), the454

maximum time length of each path is limited by Q0, i.e., td(r) − to(r) ≤ Q0 holds for each r ∈ R.455

The weight of path r in the Lagrangian subproblem is determined by ρr =
∑

v∈V (r) (wv − πv),456

where V (r) represents the subset of vessels that are inspected in path r. Binary variable θr is457
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defined for each r ∈ R. Let θr = 1 if path r is operated, and otherwise let θr = 0. Then, the set458

partitioning-like formulation is given by459

LR(Π, R) : max
∑
r∈R

ρrθr +
∑
v∈V

πv, (24)

s.t.
∑

r∈R:o(r)=i

θr −
∑

r∈R:d(r)=i

θr = yui,ti−1 − yui,ti , ∀i ∈ N0, (25)

∑
r∈R:{o(r)=i or d(r)=i}

θr ≤ 1, ∀i ∈ N0, (26)

θr ∈ {0, 1}, ∀r ∈ R, (27)

0 ≤ yk,t ≤ |M |, ∀k ∈ K,∀t ∈ T. (28)

Note that constraints (17)–(19) are not included in LR(Π, R) since they are naturally satisfied460

for each generated path in R. Constraints (25) are reformulated from (16), which calculate the461

number of drones remained at each station-time node. Constraints (26) are the safety constraints462

reformulated from (20), which allow at most one path started or ended on each station-time node.463

Constraints (27)–(28) define the types and feasible domains of the decision variables, where each464

yk,t is also relaxed to be continuous without affecting its integral condition.465

We next solve the Lagrangian subproblem LR(Π, R) to derive a valid upper bound on the466

optimal solution of (F). Note that solving LR(Π, R) by enumerating all the possible paths of R is467

intractable because the size of R can be extremely large. Let l∗(i, j,Π) denote the largest weight468

path from station-time node i to station-time node j, where arc weights of the underlying network469

are determined according to vector Π. Let L∗(Π) = {l∗(i, j,Π)|i ∈ N0, j ∈ N0, 0 < tj − ti ≤ Q0}470

denote a path set that only includes the largest weight paths for all possible station-time node471

pairs. If there are multiple largest weight paths, all of them are included in L∗(Π). Now, we have472

Proposition 3 to show that the optimal solutions of LR(Π, R) and LR(Π, L∗(Π)) must have equal473

objective values.474

Proposition 3. Optimal value of LR(Π, L∗(Π)) is equal to the optimal value of LR(Π, R).475

Proof. We prove this proposition by showing an evidence that the paths selected in any optimal476

solution of LR(Π, R) must be included in L∗(Π).477

Note that there are at most one path started or ended on each station-time node (i.e., the478

safety constraints), therefore, any feasible solution of LR(Π, R) allows at most one path that can479

be operated between each two station-time nodes. Suppose for some pair of station-time nodes, a480

path r excluded from L∗(Π) is selected in an optimal solution of LR(Π, R). Then, we can replace481
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this path by the largest weight path l∗(o(r), d(r),Π) to form a new solution without violating any482

constraints of LR(Π, R) while having the solution objective improved because ρl∗(o(r),d(r),Π) > ρr.483

This newly formed solution contradicts the original assumption that an optimal solution involves484

a path excluded from L∗(Π), and this proposition is thus proved by contradiction.485

According to Proposition 3, obtaining the optimal value of LR(Π, R) can be realized in two486

phases, where in the first phase we construct the largest weight path set L∗(Π) whose size is roughly487

proportional to the square of the station-time node number in G, and in the second phase we solve488

LR(Π, L∗(Π)) based on the provided path set L∗(Π). Since G is an acyclic network, the largest489

weight path from any i ∈ N0 to j ∈ N0 with 0 < tj − ti ≤ Q0 can be found in O(|V |2|Q0|) using a490

dynamic programming approach (see Proposition 4). Given L∗(Π), we employ an existing MILP491

solver to find an optimal solution of LR(Π, L∗(Π)). According to our preliminary numerical tests,492

LR(Π, L∗(Π)) can be solved quickly by CPLEX because of the limited size of L∗(Π).493

Proposition 4. A dynamic programming approach finds the largest weight path from any i ∈ N0494

to j ∈ N0 with 0 < tj − ti ≤ Q0 in a time complexity of O(|V |2|Q0|).495

Proof. According to the construction of G under Proposition 1, each vessel-time node can be496

linked by only one vessel-time node for each different previously inspected vessel. Therefore, for497

each vessel-time node, there can be at most |V | − 1 candidate arcs linked by previous vessel-time498

nodes. In the dynamic programming, since G is acyclic in the time dimension, we can update the499

largest weight partial path ended with each vessel-time node in a total of |tj − ti| separated steps500

along with the increase of time points. Given that each step involves the update of the largest501

weight partial paths on |V | nodes with respect to the same time point and the update on each node502

requires at most |V | candidate exploration checks, time complexity O(|V |2) is hence needed for503

one step. Because of the battery power restriction, i.e., 0 < |tj − ti| ≤ Q0, the proposed dynamic504

programming procedure can proceed for at most |Q0| steps. Therefore, the overall time complexity505

of the dynamic programming is O(|V |2|Q0|).506

5.2. Lower bound solution507

The optimal value of LR(Π) is an upper bound on the optimal value of (F), which can be used508

to gauge the quality of a feasible solution (or lower bound solution) in our problem. Based on the509

progressive information of solving a Lagrangian subproblem, we next discuss a solution strategy510

on finding feasible solutions of (F), which is integrated as a lower bounding step in the Lagrangian511

relaxation-based method.512

It is worth noting that, after relaxing (10), solution of a Lagrangian subproblem may result513

in an infeasible path which inspects a vessel several times. Therefore, in the set partitioning-like514
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formulation, not all paths in R and even in L∗(Π) can constitute a feasible solution to (F). Ideally,515

if an optimal solution of LR(Π, L∗(Π)) is obtained to include a set of operated paths that do not516

violate any constraints of (10), these paths constitute an optimal solution to (F). By this property,517

we are motivated to find lower bound solutions based on those feasible paths that are already in518

the set L∗(Π). Let L̄∗ denote the set of feasible paths in L∗(Π), the paths of which are ruled out519

by executing a feasibility check on each path of L∗(Π). Given L̄∗, a lower bound solution can be520

derived by solving the following MILP formulation:521

LB(L̄∗) : max
∑
r∈L̄∗

ρ′rθr, (29)

s.t.
∑

r∈L̄∗:o(r)=i

θr −
∑

r∈L̄∗:d(r)=i

θr = yui,ti−1 − yui,ti , ∀i ∈ N0, (30)

∑
r∈L̄∗

∑
i∈N(r):ui=v

θr ≤ 1, ∀v ∈ V, (31)

∑
r∈L̄∗:o(r)=i or d(r)=i

θr ≤ 1, ∀i ∈ N0, (32)

θr ∈ {0, 1}, ∀r ∈ L̄∗, (33)

0 ≤ yk,t ≤ |M |, ∀k ∈ K,∀t ∈ T. (34)

where ρ′r =
∑

v∈V (r)wv and N(r) is a subset of nodes visited by path r. Other parameters and522

variables used in LB(L̄∗) are the same as those defined for LR(Π, L∗(Π)). Similar with the solution523

to LR(Π, L∗(Π)), LB(L̄∗) can also be quickly solved by CPLEX because L̄∗ is a further reduced524

set of L∗(Π) that is known to be with a limited size.525

5.3. A subgradient optimization procedure526

Given any vector Π, an upper bound on the optimal value of (F) can be derived by solving a527

Lagrangian subproblem LR(Π), and a feasible solution (i.e., a lower bound) of (F) can be obtained528

by solving LB(L̄∗). Next, we apply a well-known subgradient optimization procedure to finding529

near-optimal multipliers for the Lagrangian dual problem. The algorithmic procedure is presented530

in Algorithm 1.531

In a real practice, because of the dynamic change of vessel’s status, prediction error on a532

vessel’s real-time information can be enlarged if execution of the plan is delayed a lot. Therefore,533

the proposed method is required to be capable of finding good lower bound solutions within a534

particular limited period of time, in order to guarantee effectiveness of the planning solution.535

In this regard, at the lower bounding step, we allow L̄∗ to accumulate feasible paths of L∗(Π)536

from multiple consecutive iterations. Let L̄∗δ be the set of feasible paths in L∗(Πδ), where Πδ is the537
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Lagrangian multiplier vector in the δth iteration. In each iteration of the subgradient algorithm,538

we construct the feasible path set by L̄∗ = L̄∗∪L∗(Πδ) in Step 2. When L̄∗ grows to a considerable539

size that leads to a significantly slow computation, we refresh L̄∗ = ∅. In the algorithm, the size540

of L̄∗ is restricted by |L̄∗| ≤ 3|L∗(Π)|, according to our preliminary tests showing that adding any541

more paths over that size barely improves the lower bound.542

Algorithm 1 Subgradient optimization procedure

Step 1. Initialization. Multipliers in Π are initialized by zeros. The best-known upper bound
and lower bound are initialized by ub = +∞ and lb = −∞. Iterator is set by δ = 0;

Step 2. Upper bounding. Let Πδ denote the vector of multipliers used in the δth iteration.
Solve LR(Πδ) and obtain its optimal solution objective value as ub(Πδ). Update the best-
known upper bound by ub = ub(Πδ) if a smaller upper bound is found. Set L̄∗ = L̄∗(Πδ);

Step 3. Lower bounding. Solve LB(L̄∗) to gain a lower bound solution whose objective value is
obtained as lbδ. Update the best-known lower bound by lb = lbδ if a better solution is
detected;

Step 4. Multiplier updating. If constraints (10) are violated by the optimal solution of LR(Πδ),
update Πδ+1 ← Πδ using the formula below

πδ+1
v ← max

{
0, πδv +

λ
(
ub(Πδ)− lb

)
‖∆‖2

∆v

}
, (35)

where given x̂i,j ∈ xδ as the arc-design variables of the optimal solution to LR(Πδ),
∆v = 1−

∑
i∈N∪N0

∑
j∈N :uj=v x̂i,j and ‖∆‖2 =

∑
v∈V (∆v)

2. The constant parameter λ
is a scalar chosen between 0 and 2. We set λ = 1 in this work;

Step 5. Stop criteria checking. The algorithm stops if at least one of the following conditions
is activated: (i) Constraints (10) are satisfied by xδ; (ii) Iterator exceeds a maximum
number δmax; (iii) Running time of the algorithm exceeds a predefined time limit tmax;
(iv) Gap between lb and ub is small enough. Otherwise, set δ ← δ + 1 and move to
Step 2 for the next iteration.

In addition, the subgradient optimization procedure may sometimes oscillate between two non-543

optimal vectors of multipliers, causing the iterated upper bound values fail to converge. To avoid544

this situation, we half the value of the scalar λ in (35) if current best upper bound does not improve545

for a certain number of iterations.546

6. Numerical experiments547

This section reports on the results of the experiments conducted to show the effectiveness and548

efficiency of the Lagrangian relaxation-based method. The solution algorithm is implemented in C549
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using the CPLEX of version 12.6. Experiments are performed on an Intel Xeon (2.1 GHz) Desktop550

PC with 16 GB RAM.551

In Section 6.1, we introduce the test data generated for the DSP. An overview on the perfor-552

mance of the Lagrangian relaxation-based method is shown in Section 6.2, and its performance on553

obtaining fast solutions is reported in Section 6.3. Section 6.4 involves a sensitivity analysis on554

solutions produced in different parametric settings. A case study based on realistic data of vessel555

locations is provided in Section 6.5. The effectiveness of our solution in response to uncertain vessel556

locations is examined in Section 6.6.557

6.1. Generation of test data558

We generate the test data based on practical conditions of the Pearl River Delta (PRD) of559

China1. Relevant data for the ECA, the vessels to be inspected, the base stations, and the deployed560

drones are defined and generated as follows.561

Figure 7: Map of the ECA in Pearl River Delta

ECA. The ECA considered in our experiment is based on the case of PRD, which is roughly562

shaped as a rectangular zone with a length of 170 nautical miles and a width of 20 nautical miles563

(North of England P&I Association 2018) as shown in Figure 7. We represent this rectangular564

zone ranged horizontally by [−85, 85] and vertically by [0, 20] in a two-dimensional coordinate565

system. Vessels that are to be inspected are those new incoming vessels in the ECA, with each566

vessel planning to call one of the three core ports, including Hong Kong port (HK) in Hong Kong,567

1China established three ECAs within its territorial waters in 2015, including the PRD ECA. The ECAs of China
were established according to China’s domestic laws rather than by the IMO. Therefore, they are not plotted in
Figure 1.
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Yantian port (YT) in Shenzhen, and Chiwan port (CW) in Shenzhen. According to the real568

geographical locations of the ports, we fix their coordinates in the two-dimensional coordinate569

system as HK-(20, 0), YT-(40, 0), CW-(0, 0), respectively.570

Vessels. New incoming vessels that sail inside the ECA to call any one of the above three ports571

are candidates for the emission inspection. At the beginning of a planning period, we suppose572

vessels are randomly located in the rectangular zone, which follows an even distribution. We573

assume vessels in the ECA generally sail in a constant speed between 5 and 10 knots, and real-time574

locations of a sailing vessel are roughly tracked by a straight path directing from the vessel’s current575

location to its destination location for the port call. Considering that calling a port normally lasts576

approximately 6–48 hours, which is usually longer than the length of a planning time period (i.e., 5577

hours in our case), we suppose all target vessels in the ECA have identical time windows [0, Tmax]578

for the inspection. We also generate the importance weight (or revenue) of inspecting a vessel by579

a random integer value in [5, 15].580

Stations and drones. The base stations of a drone are located along the coastline of the PRD.581

In the two-dimensional coordinate system, a station’s vertical coordinate is fixed to be 0 and its582

horizontal coordinate is randomly determined within [−85, 85], which follows an even distribution.583

We assume a station initially stores five drones, and each drone can fly at a maximum speed of 30584

knots for at most 120 minutes. Moreover, the time for inspecting each vessel’s emission is set to 5585

minutes. The time for replacing a drone’s battery is also assumed to be 5 minutes.586

Table 1: Description of the generated instances in each class

ClassID |V | |K| |M | |N ∪N0| |A| |L∗|

v20k1 20 1 5 6300 85918 10017

v20k2 20 2 10 6600 93197 17267

v20k3 20 3 15 6900 100418 32772

v40k1 40 1 5 12300 339209 14682

v40k2 40 2 10 12600 355852 49469

v40k3 40 3 15 12900 370260 67411

v60k1 60 1 5 18300 765071 12189

v60k2 60 2 10 18600 790915 41102

v60k3 60 3 15 18900 809579 85862

v80k1 80 1 5 24300 1358247 18685

v80k2 80 2 10 24600 1382376 35975

v80k3 80 3 15 24900 1412064 82570

v100k1 100 1 5 30300 2134459 19609

v100k2 100 2 10 30600 2178150 73806

v100k3 100 3 15 30900 2210219 94374
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Consider a planning period of 5 hours (i.e., Tmax = 300 minutes), which has a gap of 1 minute587

between each two adjacent time points. Test instances are generated and clustered in different588

classes, including the number of vessels |V | ∈ {20, 40, 60, 80, 100} and the number of stations589

|K| ∈ {1, 2, 3}. We denote as “vakb” a class of instances that are associated with a vessels and b590

stations. Each class contains five randomly generated instances.591

Table 1 summarizes the information averaged over the five instances for each class. The number592

of vessels, number of stations, and number of deployed drones are shown in columns “|V |,” “|K|,”593

and “|M |,” respectively. Columns “|N ∪N0|” and “|A|” report the average node and arc number594

of each time-expanded network constructed by an instance in each class. Column “|L∗|” reports595

the average number of paths that are generated in L∗(Π). All these data are used to measure the596

scale of the test instances generated for each class.597

6.2. Overview of the solution performance598

For the Lagrangian relaxation-based method proposed in Section 5, we now compare its perfor-599

mance with a benchmark method that uses an optimization solver to directly solve the model (F).600

We adopt ILOG CPLEX 12.6 as the optimization solver. The Lagrangian relaxation-based method601

stops if the number of iterations exceeds 1000 or the percentage gap between the best-known upper602

bound and lower bounds is smaller than 0.1%. Both methods are confined to a run-time limit of603

7200 seconds.604

Table 2 compares the results produced by the Lagrangian relaxation-based method and by605

CPLEX. For each method, we report in column “Obj” the average solution objectives over the five606

test instances for each class, and best objectives are marked in bold. Column “Gap(%)” reports the607

average percentage gap between the best-known lower bound lb and the best-known upper bound ub608

found by each method (i.e., Gap(%)= 100(ub− lb)/ub). Column “Time” reports the computation609

time (in seconds) used by each method for the solution. We report in column “Opt/Fea” the610

number of instances that are solved for proven optimality (Opt) / the number of instances that are611

solved with feasible solutions (Fea) by CPLEX for each class. For the Lagrangian relaxation-based612

method, we report in column “MaxGap(%)” the maximum gap value of 100(ub− lb)/ub obtained613

among the five instances for each class and in column “Iter” the average number of iterations614

that are processed by the subgradient optimization procedure for the solution. The symbol “–”615

indicates that no feasible solutions are found within the time limit.616

Table 2 shows that the Lagrangian relaxation-based method solves most of the test instances617

with up to 60 vessels to near-optimality (less than 1%) within the time limit, significantly out-618

performing CPLEX. In smaller classes of instances with 20 and 40 vessels, although CPLEX can619

sometimes obtain the same feasible solutions as those obtained by Lagrangian relaxation-based620
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method, few of these solutions are proven to be optimal within the time limit. This shortcom-621

ing stems from the fact that CPLEX can hardly derive even acceptable upper bounds for these622

instances, thus leading to large average percentage gaps that range from 10.67% to 86.24%. For623

some classes of instances with 60 vessels and all the classes of instances with 80 and 100 vessels,624

CPLEX fails to obtain any feasible solutions within the given time limit. By contrast, for these625

larger instances, the Lagrangian relaxation-based method can still obtain solutions with an average626

percentage gap mostly no greater than 5%. For the largest class of instances v100k3 which are also627

the hardest set of instances in the experiment, the Lagrangian relaxation-based method can also628

achieve acceptable solutions with an average percentage gap of approximately 7% within the time629

limit.630

Table 2: Solution performance on solving the instances for each test class

ClassID CPLEX Lagrangian

Obj Gap(%) Time Opt/Fea Obj Gap(%) MaxGap(%) Time Iter

v20k1 81.6 38.02 7200 0/5 81.6 0.16 0.28 433 211

v20k2 144.4 30.41 7200 0/5 144.4 0.16 0.28 866 306

v20k3 172.8 11.63 4342 2/5 172.8 0.28 0.58 1683 256

v40k1 184.2 54.27 7200 0/5 184.2 0.10 0.10 757 136

v40k2 243.4 42.08 7200 0/5 244.6 0.54 1.23 6804 331

v40k3 354.2 10.67 6324 1/5 354.2 0.53 0.71 7200 219

v60k1 144.4 86.24 7200 0/5 144.4 0.17 0.31 1521 402

v60k2 n/a n/a 7200 0/0 308.4 0.86 2.38 6886 308

v60k3 n/a n/a 7200 0/0 308.4 1.63 3.32 7200 155

v80k1 n/a n/a 7200 0/0 274.2 0.18 0.41 3025 389

v80k2 n/a n/a 7200 0/0 408.0 0.71 2.06 6372 373

v80k3 n/a n/a 7200 0/0 448.0 2.40 4.36 7200 141

v100k1 n/a n/a 7200 0/0 499.0 4.77 10.56 7200 194

v100k2 n/a n/a 7200 0/0 570.6 5.62 8.32 7200 75

v100k3 n/a n/a 7200 0/0 719.0 7.05 8.52 7200 66

Table 2 also indicates that the classes of instances with more stations are harder than those631

with fewer stations. This conclusion is based on the observation that average percentage gaps632

and average computation times both increase in the number of |K| among the solved classes of633

instances with the same |V |. For example, as shown in Table 2, for the classes of instances with634

60 vessels and with the number of stations increased from 1 to 3, the average percentage gap635

increases from 0.17% to 1.63% and the average computation time increases from 1521 seconds to636

7200 seconds. This result is attributed to the fact that when |K| is larger, the time-expanded637

25



network has more origin-destination node pairs, which lead to additional computation time on638

running a dynamic programming to obtain a larger path set L∗ in each iteration of the subgradient639

optimization procedure. These variations of the sizes of |L∗| based on different |K| can also be640

seen from the final column of Table 1. Moreover, when |L∗| increases, the lowering bounding step641

of the Lagrangian relaxation-based method will probably require CPLEX to run an MILP with a642

larger path set L̄∗, which also slows down the convergence of the overall solution algorithm.643

(a) v80k1 (b) v80k3

(c) v100k1 (d) v100k3

Figure 8: Convergence of the Lagrangian relaxation-based method on solving the instances with 80 and 100 vessels

We next examine the convergence of the Lagrangian relaxation-based method for solving the644

large instances having 80 and 100 vessels. Figure 8 illustrates the variations of the best-known645

lower and upper bounds obtained for the first 60 iterations. Four instances respectively selected646

from v80k1, v80k3, v100k1, and v100k3 are illustrated in the figure. The results show that the647

Lagrangian relaxation-based method for solving these large instances can converge rapidly at early648

iterations because of the constant increase of lower bounds and the decrease of upper bounds. The649

lower bound is rarely improved after around 20 iterations, whereas the upper bound can be further650
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improved until the bound gap is close enough. This finding implies that, although the conver-651

gence rate of the Lagrangian relaxation-based method may depend on the scale of the instances652

(as seen in Table 2), its convergence effect at each iteration is independent of the instance’s scale.653

The convergence condition likewise suggests that we practically only need to run the Lagrangian654

relaxation-based method for a limited number of iterations (e.g., 20 observed from Figure 8) for655

solution output, because the obtained best-known lower bound solution after that number of iter-656

ations is already close to those further solutions that can be potentially detected by continuing the657

iterative optimization procedure.658

6.3. Performance of the Lagrangian relaxation-based method on finding fast solutions659

To prove computationally that the proposed Lagrangian relaxation-based method is of practical660

interest in producing quick and good solutions, we further examine its performance on finding lower661

bound solutions in a small number of iterations. Table 3 compares the results produced by the662

Lagrangian relaxation-based method with different maximum iteration number restrictions (subject663

to 5, 10, and 20 iteration) and by CPLEX with different computation time limits (subject to 600664

and 1800 seconds). In each solution scenario, we report in columns “Obj” and “Time” the average665

solution objective and average computation time for each class of instances, respectively. Column666

“Gap(%)” reports the average percentage gap between the best-known lower bound found by the667

Lagrangian relaxation-based method within the designated iterations and the best-known upper668

bound found by the method in 7200 seconds. The average solution objectives obtained by CPLEX669

with time limits of 600 and 1800 seconds are reported in columns “Obj(600s)” and “Obj(1800s),”670

respectively. In these two columns, we report “(n)” if there are n ∈ {1, 2, 3, 4} instances that are671

solved with feasible solutions for an instance class. We report symbol “–” if no feasible solutions672

are found. The best objective value is marked in bold in the table.673

As shown in Table 3, for the smallest classes of instances with 20 vessels, both CPLEX and the674

Lagrangian relaxation-based method can quickly find lower bound solutions with equal objective675

values. When the number of vessels increases to 40, feasible solutions are barely found by CPLEX676

within 1800 seconds. However, the Lagrangian relaxation-based method can still find good solutions677

with Gap(%) less than 1% in at most few minutes. For more and larger classes of instances for678

which CPLEX cannot find any feasible solutions, the Lagrangian relaxation-based method can also679

quickly output acceptable solutions after 10 iterations for most of the instances with no more than680

80 vessels. Their average computation times required for processing the 10 iterations are no greater681

than 10 minutes. For the largest classes of instances with 100 vessels, the Lagrangian relaxation-682

based method can still solve the instances with |K| = 1 very efficiently. For the remaining instances683

with |K| ∈ {2, 3}, the Lagrangian relaxation-based method is able to output quick solutions with684
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Table 3: Compare the Lagrangian relaxation-based method and CPLEX on obtaining fast solutions

ClassID Lagrangian (Iter=5) Lagrangian (Iter=10) Lagrangian (Iter=20) CPLEX

Obj Gap(%) Time Obj Gap(%) Time Obj Gap(%) Time Obj(600s) Obj(1800s)

v20k1 81.6 0.16 5 81.6 0.16 11 81.6 0.16 24 81.6 81.6

v20k2 144.4 0.16 14 144.4 0.16 28 144.4 0.16 58 144.4 144.4

v20k3 172.8 0.28 27 172.8 0.28 52 172.8 0.28 108 172.8 172.8

v40k1 184.2 0.09 12 184.2 0.09 34 184.2 0.09 80 - (4)

v40k2 241.2 1.76 57 243.4 0.97 169 244.6 0.54 465 - (4)

v40k3 353.0 0.87 116 354.2 0.52 317 354.2 0.52 754 - -

v60k1 143.2 1.34 13 144.4 0.17 33 144.4 0.17 68 - (4)

v60k2 295.6 5.00 71 307.2 1.26 203 308.4 0.85 463 - -

v60k3 295.6 5.74 195 307.2 2.03 513 308.4 1.63 1172 - -

v80k1 235.2 12.93 17 265.4 2.46 47 274.2 0.18 138 - -

v80k2 358.4 11.72 45 395.2 3.05 128 408.0 0.71 383 - -

v80k3 410.8 9.08 107 436.4 4.70 332 447.6 2.47 997 - -

v100k1 343.8 34.28 24 413.8 20.72 60 480.8 8.18 204 - -

v100k2 420.0 30.59 111 502.6 16.05 324 559.0 7.54 1170 - -

v100k3 547.2 29.26 123 659.8 14.70 414 711.2 8.05 1484 - -

average percentage gaps ranging from 14.70% to 16.05% in 10 iterations. However, to obtain better685

solutions (with an average percentage gap less than 10%), the algorithm needs more than 1000686

seconds to process a total of 20 iterations for the solution.687

Results in Table 3 computationally demonstrate that our proposed Lagrangian relaxation-based688

method is capable of producing fast and good solutions for practical use. For the classes of instances689

with no more than 80 vessels, desirable feasible solutions with close optimality gaps (less than 3%690

on average) can be obtained in 20 iterations.691

6.4. Sensitivity tests for solutions produced in different settings692

In the DSP, many input parameters are assumed to be known in advance. Sensitivity analysis693

on some parameters, such as the endurance of a drone’s battery Q and the number of deployed694

drones |M | for the planning, are of real practical interest to be studied.695

As mentioned earlier, a bottleneck in the use of drones for monitoring vessels in the ECA is696

induced by the limit of battery’s endurance. In general, using durable drones can cover more697

vessels for the inspection, i.e., a vessel that is originally too far to inspect can now be included698

in a longer scheduled tour. Figure 9 illustrates the variation of the solution objectives based on699

different endurance levels of a drone, where Q ∈ {30, 60, 90, 120, 150, 180}. Results of the three700
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instances selected from v60k1, v80k1, and v100k1 are reported and tracked by dotted, dashed, and701

solid lines, respectively, in the figure.702

Figure 9 shows that the total importance weight from finished inspections is obviously increasing703

in the value of Q. The trend of the curves show that the obtained solution can be more significantly704

improved when Q increases from 30 to 60 minutes in the instance of v100k1. This result implies that705

the practitioners should be motivated to upgrade their drones to be more enduring if the drones’706

original endurance is limited. Moreover, given that the drones can fly for 60 minutes, increasing707

the drone’s endurance ability can be still helpful in increase the effectiveness of inspections for all708

the three instances, and the increment of effectiveness is roughly proportional to the endurance709

ability of a drone.710

Figure 9: Variation of solution objectives based on different battery endurance limits

We also conduct sensitivity tests for the solutions based on different numbers of deployed drones.711

Figure 10 illustrates the variations of solution objectives of three instances that are selected from712

v60k1, v80k1, and v100k1 for the tests. In each instance, the number of deployed drones varies713

from 1 to 7. The variations in solution objectives are tracked by dotted, dashed, and solid lines,714

respectively for, the instances of v60k1, v80k1, and v100k1.715

Figure 10 shows that deploying more drones in the system can help increase the solution objec-716

tive. However, the improvement effect weakens for all cases. Rationally, there exists a maximum717

size for the fleet of drones, in which case deploying any additional drone will no longer improve718

the objective. As shown in Figure 10, for the instance of v60k1, the solutions with respect to more719

than two deployed drones roughly have the same solution objective. For the instance of v80k1,720

the maximum size for the fleet of drones should be around four, after which the solution objective721

no longer improves. For the instance of v100k1, the objective value continues improving in the722
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number of deployed drones because more vessels are to be inspected. Hence, the maximum size for723

the fleet of drones must reach a number greater than seven. The solution sensitivity testing toward724

different numbers of deployed drones can also be employed to determine an economic size for the725

drone fleet, which is a trade-off number by considering the improved effectiveness of inspections726

and the increased cost brought by deploying any additional drone in the system.727

Figure 10: Variation of solution objectives based on different deployed drone numbers

6.5. A case study based on realistic vessel locations728

A case study based on realistic vessel location data is provided to examine the DSP solution. We729

capture the location data of 20 vessels sailing inside the PRD zone from the automatic identification730

system, with the time between 7am and 5pm on the day of April 23, 2018. The real-time location731

of each vessel is collected every 3 minutes. The time period is discretized by 200 time units. Table 4732

presents the vessel information, where columns “ev” and “lv” are known as the earliest and latest733

time in the planning period to inspect each vessel. Location data is recorded by longitude and734

latitude coordinates. We report in columns “(long, lat)1” and “(long, lat)2” the real-time longitude735

and latitude coordinates of each vessel at ev and at lv. The importance weight to inspect each736

vessel is given in column “wv”.737

Based on the realistic data, we consider three scenarios to test the DSP solutions. The first738

is a base scenario considering a single drone base station near HK, whose (long, lat) coordinates739

are given as (114.2, 22.2), and two drones are deployed. The second scenario is extended from the740

base scenario, in which we enforce that each scheduled tour of drone has only one vessel to inspect.741

Solution of this scenario can be obtained by running our algorithm based on a modified time-742

expanded network, where all arcs between vessel-time nodes are removed. In the third scenario,743

we include an additional base station near CW, with its (long, lat) coordinates fixed as (113.9,744
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22.5). No extra drones are initially assigned to CW. In all scenarios, suppose each drone can fly745

at a maximum speed of 50 knots. Drone’s endurance time is set to 180 minutes (i.e., 60 time746

units). The time for battery replacement and for inspecting each vessel’s emission are both set747

to 6 minutes (i.e., 2 time units). To keep safety, only one takeoff or landing operation is allowed748

within each unit time gap. The flying distance between any two locations is computed based on749

the longitude-latitude system.750

Table 4: Vessel location information from the automatic identification system

vesID ev lv (long, lat)1 (long, lat)2 wv

1 0 200 (115.7648, 22.1244) (113.9978, 21.9606) 9

2 0 200 (113.6590, 22.6906) (113.6590, 22.6906) 6

3 22 200 (112.2582, 21.0000) (113.6992, 21.6238) 12

4 0 200 (115.1477, 22.6217) (115.1477, 22.6223) 11

5 107 152 (115.6915, 21.7184) (114.6279, 21.3918) 10

6 0 200 (113.2773, 21.8341) (113.2772, 21.8342) 5

7 0 200 (114.1736, 22.1468) (114.3988, 21.8596) 13

8 0 200 (113.6650, 22.7431) (113.6650, 22.7431) 9

9 0 200 (113.9115, 21.9928) (113.9110, 21.9928) 14

10 0 105 (114.9545, 22.1662) (115.9969, 22.4363) 7

11 105 200 (115.9936, 22.3878) (115.0738, 22.0925) 13

12 0 200 (113.9138, 22.0128) (113.9133, 22.0122) 12

13 0 200 (113.1858, 21.9587) (113.1858, 21.9587) 6

14 0 200 (113.6712, 22.7367) (113.6712, 22.7368) 12

15 0 114 (115.0276, 22.1681) (115.9687, 22.3358) 14

16 0 85 (115.1677, 22.2293) (115.9931, 22.4543) 12

17 0 200 (113.5007, 23.0596) (114.0402, 21.9674) 7

18 0 200 (114.7369, 22.6056) (114.7370, 22.6056) 9

19 0 200 (113.5733, 22.8176) (113.5735, 22.8176) 14

20 0 200 (113.5373, 22.9935) (113.5373, 22.9935) 5

Table 5 illustrates the solutions of the three scenarios, each of which is obtained by running the751

Lagrangian relaxation-based method for at most 20 iterations. The designed tours in each solution752

have information of IDs (i.e., A1 or B2) and sequences of (vessel/station, time) pairs. Each tour753

ID indicates the operation sequence of the tour for some drone. For example, A1 indicates the first754

tour operated by drone “A”. From Table 5, we see that there are eight tours designed to complete755

the inspections of 17 vessels out of the total 20 vessels in Scenario-1. The total weighted vessel756

number is obtained as 176, which is significantly better than the solution objective of Scenario-2757

(129) and is slightly worse than that of Scenario-3 (181). The significant objective improvement758
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from Scenario-2 to Scenario-1 demonstrates the strength of allowing to operate multiple inspection759

tasks in one tour for the solution. Moreover, the use of an extra drone base station also helps to760

improve the solution effectiveness, because more feasible inspection tours can be considered for the761

solution. For example, the vessel 20, which is not inspected in the solution of Scenario-1, can now762

be included by the tour A2, with CW being its destination station, in Scenario-3.763

Table 5: Solutions based on different scenarios

Scenario-1 (Obj = 176) Scenario-2 (Obj = 129) Scenario-3 (Obj = 181)

A1: (HK,1)→(16,32)→(HK,63) A1: (HK,1)→(18,19)→(HK,37) A1: (HK,1)→(16,32)→(HK,63)

A2: (HK,65)→(7,69)→(HK,73) A2: (HK,38)→(12,48)→(HK,58) A2 (HK,64)→(2,83)→(19,89)

A3: (HK,81)→(2,100)→(14,104) A3: (HK,59)→(7,63)→(HK,67) →(20,96)→(14,105)→(CW,115)

→(8,107)→(19,112)→(HK,135) A4: (HK,68)→(19,91)→(HK,114) A3 (CW,116)→(8,126)→(CW,136)

A4: (HK,137)→(6,162)→(3,173)→(HK,198) A5: (HK,115)→(1,129)→(HK,143) A4 (CW,137)→(17,144)→(6,163)

B1: (HK,3)→(10,29)→(15,33)→(HK,60) A6: (HK,144)→(11,172)→(HK,200) →(3,174)→(HK,199)

B2: (HK,61)→(18,79)→(4,91)→(HK,117) B1: (HK,2)→(15,28)→(HK,54) B1: (HK,2)→(15,28)→(10,32)→(HK,59)

B3: (HK,118)→(5,143)→(HK,168) B2: (HK,56)→(9,67)→(HK,78) B2: (HK,60)→(7,64)→(18,83)

B4: (HK,169)→(12,179)→(17,182) B3: (HK,79)→(14,99)→(HK,119) →(4,95)→(HK,121)

→(9,185)→(1,190)→(HK,200) B4: (HK,120)→(17,134)→(HK,148) B3: (HK,122)→(1,136)→(5,150)→(HK,174)

B5: (HK,149)→(3,174)→(HK,199) B4: (HK,176)→(12,186)→(9,189)→(HK,200)

Based on Scenario-3, we next look into how the initial allocation of drones to base stations764

influences the solution, when the total number of used drones are fixed. Suppose three drones are765

allocated to HK and CW, thus generating four different allocation combinations, i.e., (HK:3,CW:0),766

(HK:2,CW:1), (HK:1,CW:2), and (HK:0,CW:3). For the first two cases, where no less than two767

drones are allocated to the station of HK, the 20 vessels are all inspected in both solutions, obtaining768

the total weighted vessel number as 200. For the solution of (HK:1,CW:2), vessel 10 will not769

be covered for inspection, and the obtained weighted vessel number is reduced to 193. When770

all the three drones are allocated to the station of CW at the beginning, neither vessel 10 or771

vessel 16 is included in any inspection tour, resulting in the solution objective further reduced to772

181. It is hence seen that the initial allocation of drones can be an active factor to influence the773

solution effectiveness. This fact motivates experienced practitioners to reposition drones during774

non-operating hours, so as to increase the number of inspected vessels.775

6.6. Solution analysis considering the uncertainty of vessel locations776

In the model, real-time locations of vessels are estimated based on their sailing courses and777

these estimations are assumed to be accurate over the planning horizon. In practice, the estimated778

paths may deviate from the actual paths during the planning horizon if vessels do not strictly follow779
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their preset courses. Consequently, the solution derived from our model using the estimated vessel780

locations shall be revalidated for the actual realized locations. In this subsection, we examine the781

robustness of our method in response to the uncertainty of vessels’ actual paths. The experiments782

are based on the practical dataset used in Section 6.5. We treat the real-time paths of vessels in783

the dataset as the actual paths, which are not used in our algorithm. When estimating vessels’784

real-time locations, we construct auxiliary straight-line paths to replace the actual paths. The785

obtained solution on the estimated vessel locations is then examined on the setting with actual786

vessel locations.787

(a) Actual paths (b) Estimated paths

Figure 11: Illustration of the actual and estimated paths of vessels

The deviation of estimating vessels’ actual locations is realized as follows: (i) Figure 11(a)788

illustrates the actual sailing paths of three vessels (vessel 1, vessel 3, and vessel 17 in Table 4) from789

the dataset, shown by the solid-line tracks, which are not used in our algorithm. Instead, we plot790

straight lines to connect their origin and destination locations, shown as dashed-line tracks, which791

are utilized to estimate the real-time location of each vessel at any time point of the planning hori-792

zon. (ii) To obtain a path with uncertain deviations, we identify the possible estimated sailing path793

based on the vessel’s possible destination locations at the end of the planning horizon. Specifically,794

we define for each vessel a squared uncertainty area to capture its possible destination locations.795

As illustrated in Figure 11(b), for vessel 17 starting from its origin location (113.5007, 23.0596),796

there are a set of candidate paths (i.e., path-1, path-2, and path-3) for estimation, each of which797

ends at a possible destination location within the given uncertainty area. Only one candidate path798

is chosen for each vessel for the estimation.799
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The central location of the squared area is denoted by (αv, βv). Each possible location in the800

squared area has its longitude in [αv − γ · dv, αv + γ · dv] and its latitude in [βv − γ · dv, βv + γ · dv],801

where dv indicates the maximum estimation deviation and γ is a ratio to scale the coverage for this802

squared area. In the experiments, for each vessel v, we define the central location of the area by803

αv = αv(lv) and βv = βv(lv), where (αv(lv), βv(lv)) is known as the last location of the vessel during804

the planning period (i.e., the red-point location in Figure 11(b)), namely, the location (long, lat)2805

of Table 4. For each sailing vessel v, we set dv = 1 and γ ∈ (0, 1). If a vessel keeps staying in a port806

area during the planning period, we set dv = 0 showing that we are certain about the location of807

this vessel. To simulate our solution with the uncertainty, we estimate the path of each vessel using808

an auxiliary straight line which ends at a random location inside the uncertainty area. With the809

vessel locations estimated from these paths, we derive a solution using the Lagrangian relaxation-810

based algorithm. The obtained solution is recorded as a group of vessel inspection sequences, and811

then we examine the performance of operating these inspection sequences on the actual vessel812

locations. Note that, when operating on actual vessel paths, drones may miss some last vessels in813

the sequences and return to stations before running out of battery, due to the distance estimation814

gaps between the estimated and the actual vessel locations. In this case, we allow drones to skip815

those last inspection tasks and return to stations ahead of time.816

Table 6: Analysis of the solution on estimated vessel paths with uncertain deviations

Instance ID Obja Obje Realized ratio No. of vessels missed No. of tours missed

γ = 0.1 E1 169 176 0.96 1 0

E2 172 172 1.00 0 0

E3 176 176 1.00 0 0

E4 168 168 1.00 0 0

E5 148 173 0.86 2 0

Avg. 0.96 0.60 0.00

γ = 0.3 E6 164 175 0.94 1 0

E7 170 170 1.00 0 0

E8 158 171 0.92 1 0

E9 153 173 0.88 2 0

E10 154 179 0.86 2 0

Avg. 0.92 1.20 0.00

γ = 0.5 E11 159 177 0.90 2 1

E12 156 165 0.95 1 0

E13 158 171 0.92 1 0

E14 164 176 0.93 1 0

E15 155 180 0.86 2 0

Avg. 0.91 1.40 0.20
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We perform the experiments following the Scenario-1 setting defined in Section 6.5, where one817

station and two drones are involved. Table 6 illustrates the solutions computed under different818

sets of estimated vessel paths. The uncertainty level γ is selected from {0.1, 0.3, 0.5}. We generate819

five instances for each selected value of γ, where the estimated vessel paths in each instance are820

determined randomly. For each instance, we report in columns “Obja” and “Obje” the solution821

objectives with respect to actual vessel paths and estimated vessel paths, respectively. The next822

column reports the realized ratio computed by (Obja/Obje). The last two columns report the823

number of vessels missed and the number of tours missed, by comparing the solution on actual824

paths and that on estimated paths.825

As shown in Table 6, for the instances with γ = 0.1, about 96% of the total weighted vessel826

numbers with respect to the solution on estimated paths can be realized by operating the prede-827

termined inspection sequences on actual vessel paths. This average ratio reduces to 92% and 91%828

for the groups of instances with γ = 0.3 and γ = 0.5, respectively. The reductions of the total829

collected weight from “Obje” to “Obja” mainly attributes to the fact that some planned vessel830

inspections are not operated, while the number of such missed inspections grows with the uncer-831

tainty level (γ) of the path estimation. Furthermore, given that the theoretically best objective is832

176 (the result of Scenario-1 in Section 6.5), only one instance out of the 15 instances reaches the833

“optimal” objective value. Despite the loss of optimality, the values reported in column “Obja”834

still significantly outperforms the Scenario-2 solution (with objective 129) reported in 6.5, in which835

case drones are restricted to inspect only one vessel in each tour.836

7. Discussion on two extended solutions for the DSP with uncertain vessel locations837

In this study, we assume that the sailing speed and course of a vessel are fixed over the whole838

planning horizon. However, vessels’ real-time locations are uncertain in practice, for instance, a839

vessel may occasionally adjust its sailing speed and course rather than stick to a given plan for safety840

or congestion reasons [e.g., avoidance of ship collisions (Qu et al. 2011, Weng et al. 2012)]. As seen841

in Section 6.6, the deviated estimations of vessel locations lead to some preset inspections being842

missed. In order to decrease this negative effect, one is encouraged to incorporate the uncertainty843

of vessel paths in designing the inspections tours. In this section, we briefly discuss two simple844

extensions of our method, a sample average-based solution and a rolling horizon-based solution, to845

capture the uncertainty of vessel locations.846

7.1. A sample average-based solution847

Sample average-based methods are widely applied in stochastic operation systems, such as848

seaport terminals, airports, and warehouses. Given a set of candidate solutions, the quality of849
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each solution is repeatedly examined by a large number of random settings, and the solution with850

respect to the best overall performance is selected for the output. For the DSP, the randomness851

of the problem is mainly from the uncertain sailing paths of vessels. Suppose we have obtained852

15 candidate solutions derived from different settings of path estimations (e.g., solutions of the853

instances E1-E15 in Table 6). Instead of using a single objective value to evaluate each solution, we854

randomly generate significantly many test instances (e.g., one thousand instances) for calculating855

the average objective for each of the 15 solutions. The evaluation of a given solution over each856

specific test instance can be realized by running the Lagrangian relaxation-based algorithm on a857

reduced time-expanded network, a similar case with the calculation of a solution based on actual858

vessel locations in Section 6.6.859

7.2. A rolling horizon-based solution860

Rolling horizon implementation is known to be effective in tackling discrete-time stochastic861

dynamic optimization problems in response to the uncertain future information (see, e.g., Sethi862

and Sorger 1991). The method resorts to a group of dynamic decisions according to the real-time863

information to reduce the impact of uncertainty on the solution. For the DSP, the inspection864

tours in a solution could be adjusted by multiple decisions that are made at different time points865

of the planning horizon. Drones can immediately follow the updated tours when their current866

vessel inspections are finished. For an example planning horizon with length of 5 hours, we can867

dynamically change each drone’s inspection tours every 60 minutes, according to current vessels’868

sailing data from the tracking system. To do so, tours assigned to each drone are timely re-optimized869

and updated if the actual real-time locations of vessels are far from their previous estimations.870

To implement the rolling horizon-based solution, at each time point when the information is871

updated, we have to solve a real-time DSP, where current statuses of drones and vessels shall872

be accessed for the input. In order to realize the real-time scheduling for drones, in the model873

we need to differentiate the flows of drones on the time-expanded network, such that locations874

and remaining working time of each operated drone can be captured. Specifically, to describe875

the real-time problem, we refer to each path as an inspection tour for a particular drone, that is,876

tour design variables in the model should be drone-specific (i.e., using binary variable xhi,j ∈ {0, 1}877

to determine whether drone h passes arc e(i, j) on the network). Moreover, the tour feasibility878

constraints are associated with specific drones as well, and a feasible path in the solution may start879

from a vessel-time node, which represents a partial sequence of inspection tasks that are operated880

by a working drone with remaining battery powers. Since the revised formulation of the real-time881

DSP is structurally similar with the model (F), we can also apply the Lagrangian relaxation-based882

method for the solution.883
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8. Conclusion884

This paper examines a drone scheduling problem that develops for drones a set of scheduled885

tours to inspect vessels in emission control areas. To address the time-dependent locations of the886

sailing vessels, we construct a time-expanded network, and based on that develop for the problem a887

mixed-integer linear programming formulation. A Lagrangian relaxation-based method is proposed888

to solve larger instances for the problem. On the basis of random instances generated from the889

case of the Pearl River Delta, we conduct numerical experiments to examine the effectiveness890

and efficiency of the proposed solution method. Experimental results show that the Lagrangian891

relaxation-based method significantly outperforms a commercial solver and can derive tight upper892

bounds for the formulations with 300 time points and up to 100 vessels. For those instances with893

no more than 80 vessels, the proposed method can derive near-optimal solutions (with optimality894

gaps less than 3%) in only 20 iterations. Experiments based on realistic tracking data are also895

conducted to demonstrate the usefulness of our solutions.896

In this work, we assume the power usage of drones is not affected by the flying speed, and897

our proposition suggests that drones should fly at their maximum speeds to generate optimal898

scheduled tours. However, in reality, flying too fast may lead to stronger air resistances, causing899

drone’s endurance time to be shortened. For this practical consideration, a future study can be900

conducted to show how the battery consumption is affected by drone’s flying speed. Based on that,901

the inspection tours can be optimized by regarding drone’s speed as an additional decision. This902

extension will further improve the power management for drones, which is valuable in increasing903

both safety and efficiency of drone usages in various applications.904
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