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Abstract. In the daily operations of a shipping line, minimization of a ship’s bunker fuel 

consumption over a voyage comprising a series of waypoints by adjusting its sailing speeds and 

trim settings plays a critical role in ship voyage management. To quantify the synergetic influence 

of sailing speed, displacement, trim, and weather and sea conditions on ship fuel efficiency, we 

first develop a tailored method to construct two artificial neural network models using ship voyage 

report data. We proceed to address this sailing speed and trim optimization problem by putting 

forward three viable countermeasures within a two-phase optimal solution framework: sailing 

speeds of the ship are optimized in an on-shore planning phase, whereas trim optimization is 

conducted dynamically by the captain in real time when she/he observes the actual weather and 

sea conditions at sea. In the on-shore speed optimization problem, simultaneous optimization of 
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sailing speeds and trim settings is beneficial in suggesting more informed sailing speeds because 

both factors influence a ship’s fuel efficiency. In Countermeasure 3, we address speed and trim 

optimization simultaneously by proposing a two-step global optimization algorithm that combines 

dynamic programming and a state-of-the-art simulation-based optimization approach. Numerical 

experiments with two 9000-TEU (twenty-foot equivalent unit) containerships show that (a) 

Countermeasure 1 saves 4.96% and 5.83% of bunker fuel for the two ships, respectively, compared 

to the real situation; (b) Countermeasure 2 increases the bunker fuel savings to 7.63% and 7.57%, 

respectively; and (c) the bunker fuel savings with Countermeasure 3 attain 8.25% on average. 

These remarkable bunker fuel savings can also translate into significant mitigation of CO2 

emissions.    

Keywords: ship fuel efficiency; speed optimization; trim optimization; neural network; data-driven 

optimization  
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1. Introduction 

Seaborne transportation is the backbone of international trade and the world economy: the 

volume of seaborne shipments totaled 10.7 billion tons in 2017 (UNCTAD, 2018). This large 

volume of seaborne cargoes is carried by ocean-going fleets consisting of 94,171 ships with a total 

tonnage of 1.92 billion (UNCTAD, 2018). In recent years, ship fuel efficiency has become a public 

concern in the shipping industry for environmental and commercial reasons. The International 

Maritime Organization (IMO) reported that the shipping industry was responsible for 949 million 

metric tons (MT) of global CO2 emissions, or 2.7% of the total, in 2012 (Smith et al., 2014). In the 

commercial aspect, shipping companies are making unprecedented efforts to reduce ships’ bunker 

consumption because the bunker fuel cost generally dominates the variable operating cost of a ship. 

After suffering from high fuel prices of USD 600 per MT and above for five years from 2009 to 

2014, shipping companies still pay close attention to the fleet’s bunker fuel consumption, mainly 

because of the current slump in the maritime transport market. To reduce fuel consumption, 

shipping lines have taken various measures, including slow steaming, virtual (just-in-time) arrival 

at ports, weather routing, hull and propeller cleaning, engine maintenance, and optimization of the 

operating plan for each ship or fleet (IMO, 2012).  

A voyage represents the journey from the departure from one port to the arrival at the next 

port (IMO, 2009; all the consecutive voyages of a liner ship over a round service form a trip). 

Therefore, curbing the bunker fuel consumption of a ship over each voyage is one of the main 

concerns of a shipping line’s ship operation department. Once a ship’s sailing route over a voyage 

is determined, the main duty of voyage management that confronts the ship operation department 

is planning its daily sailing speeds and trim settings (aft draft minus forward draft; see Fig. 1). This 

voyage planning duty for speed and trim optimization can be explained as follows with the aid of 
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Fig. 2. The voyage under consideration, e.g. from Singapore to Jebel Ali, consists of n  sailing 

segments connected by consecutive main waypoints at sea. The waypoints at the predefined 

geographic locations are used to verify the ship’s on-time performance to avoid possible schedule 

delays over the voyage. Given the expected time of arrival (ETA) at the voyage’s destination port 

and the weather and sea conditions over each sailing segment, the on-shore officers and/or the 

ship’s captain at sea attempt to determine the ship’s sailing speeds and trim settings over these n  

segments, denoted by  
1

n

k k
v

=
 and  

1

n

k k
t

=
, respectively, such that the bunker fuel consumption of 

the ship over the whole voyage is minimized while the ETA is maintained.  

 

Fig. 1. Trim of a ship 

 

 

Fig. 2. Ship speed and trim optimization over a voyage 

Let us first examine the current practice of ship speed and trim optimization over a voyage 

that has been adopted by the shipping industry, based on our long-term research collaboration with 

a global shipping line under a non-disclosure agreement. 
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Regarding speed management, the current practice is for the on-shore officers in charge of 

ship voyage management to simply issue the ETA at the destination and allow the captain at sea 

to determine the sailing speeds over the segments of the voyage. This practice is used because of 

the straightforward nature of the average speed calculation implied by the stringent ETA and 

because of the culture that has formed throughout the long history of commercial shipping in which 

the ETA is essentially the only speed-related instruction given by the shipping company to the 

captain, assuming that some special speed requirements (e.g., speed agreement items in a charter 

contract) are not considered. Therefore, planning of sailing speeds over consecutive segments of a 

voyage has basically been absent from ship voyage management. However, the high bunker fuel 

prices from 2009 to 2014 and the sluggish maritime transport market conditions in recent years 

have been motivating shipping companies to explore the possibility of further savings of bunker 

fuel by making fine adjustments in the daily sailing speeds of their ships by considering the actual 

weather, sea, and load conditions. One technical challenge that precludes finer planning of the 

ship’s sailing speed is the lack of ship fuel efficiency models that enable on-shore officers to 

precisely estimate a ship’s fuel efficiency at different speeds under different weather, sea, and load 

conditions. 

Regarding trim optimization, captains use trim tables or charts (curves) in the process of 

trim adjustment. These trim tables or charts indicate which trim value leads to the highest energy 

efficiency given a combination of sailing speed and displacement (i.e., the total weight of the ship 

itself, the cargo, ballast water, and bunker, expressed in MT). The trim tables and charts for a 

particular ship are generally estimated from model-ship tests or computational fluid dynamics 

(CFD) simulations conducted by ship yards or classification societies, which usually adopt or 

assume a calm water environment (Reichel et al., 2014). Therefore, the current practice for ship 
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speed and trim optimization over a voyage is very elementary without any advanced scientific 

support, and could be significantly improved by means of operations research techniques. The 

purpose of this study is to improve the current practice of speed and trim optimization over a 

voyage by developing some viable solution countermeasures based on optimization techniques 

and industry (voyage report) data collected by the operation department of a shipping company. 

1.1. Literature Review 

Many determinants influence the daily bunker fuel consumption of a ship at sea (referred 

to as fuel efficiency or fuel consumption rate, expressed in MT per day), including the sailing speed, 

displacement, trim, and weather and sea conditions (i.e., wind, waves, sea currents and sea water 

temperature). Among these factors, the influence of sailing speed is the most significant. It is well 

known that a ship’s fuel consumption rate is proportional to its sailing speed to the power of  . 

The famous cubic law adopts 3 =  (Carlton, 2012; MAN Diesel & Turbo, 2004). In reality,   

can be much higher than 3 for containerships (e.g., 4, 5, or higher), especially at high speeds 

(Psaraftis and Kontovas, 2013). This inspired fruitful research into sailing speed optimization, 

together with optimization of shipping service network design (Agarwal and Ergun, 2008; Brouer 

et al., 2014; Angeloudis et al., 2016), service frequency determination (Notteboom and 

Vernimmen, 2009; Ronen, 2011), service capacity planning (Dong et al., 2015), service reliability 

(Lee et al., 2015), ship fleet deployment (Álvarez, 2009; Ng, 2015; Wang and Meng, 2017), 

schedule design or recovery (Fagerholt et al., 2010; Li et al., 2016), cargo routing (Bell et al., 2013; 

Song and Dong, 2012), and bunkering planning (Meng et al., 2015; Aydin et al., 2017). For the 

recent review on ship sailing speed optimization, readers are referred to Psaraftis and Kontovas 

(2013) and Wang et al. (2013). 
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According to the Admiralty coefficient (Carlton, 2012), a ship’s actual displacement 

(thereby, the cargo load) also influences its fuel efficiency, which indicates that the decisions made 

in cargo booking and routing will influence the bunker consumption of the ship fleet. Therefore, 

some recent studies on fleet deployment, schedule design and cargo routing simultaneously 

considered the influence of both sailing speed and cargo load on the bunker fuel cost. Vilhelmsen 

et al. (2014) captured the influence of cargo load on tramp ships’ bunker fuel consumption in ship 

routing decisions by considering two load states: laden (fully loaded) and ballast (without cargo). 

Xia et al. (2015) and Wang et al. (2015) addressed the joint planning of fleet deployment, speed 

optimization and cargo routing for liner container shipping.  

When the fuel efficiency of a specific in-service ship is investigated at the operational level, 

the influence of the weather and sea conditions is generally more significant than that of the ship’s 

displacement (Carlton, 2012; MAN Diesel & Turbo, 2004; Zhang et al, 2016; Meng et al., 2017). 

The influence of sea currents can be strong along coastal areas (i.e., the boundaries of the ocean 

basin), but when the ship enters the open sea for trans-ocean sailing, the influence of sea currents 

becomes weak and that of weather conditions (wind and waves) can be significant (Carlton, 2012; 

MAN Diesel & Turbo, 2004). Few empirical studies have been performed to quantify the influence 

of weather conditions on ship fuel efficiency (in terms of power or speed loss). Kwon (1982) and 

Townsin et al. (1993) proposed a nonlinear regression model to quantify the influence of wind and 

waves on a ship’s fuel efficiency based on data taken from naval architectural experiments. 

Molinero and Mitsis (1984) included more determinants in their bunker fuel efficiency model for 

a cruise ship. Meng et al. (2016) adopted the models created by Kwon (1982) and Townsin et al. 

(1993), and updated the regression results for modern mega-containerships based on shipping log 

data from their industry partner. The operations research studies that examine the influence of 
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weather and sea conditions focus mainly on the ship’s environmental routing problem, especially 

the weather routing problem (Chen, 1978; Kosmas and Vlachos, 2012; Lo and McCord, 1995; 

Papadakis and Perakis, 1990). A few of the most recent studies also considered the speed loss or 

gain caused by the weather and sea conditions when optimizing the average sailing speed over 

each leg of a service. Lee et al. (2018) took the initiative to employ publicly accessible weather 

archive big data to mine the influence of weather and sea conditions on ship fuel efficiency (speed 

loss/gain) via machine learning techniques. They further incorporated it into a biobjective speed 

optimization model for a round liner service that considers both bunker fuel consumption 

minimization and service level maximization. This is also a pioneering data-driven optimization 

research in maritime studies. 

The trim can also have a significant influence on a ship’s fuel efficiency, and it is believed 

that trim optimization could save 4% to 6% of bunker fuel (even up to 15% in some conditions) 

(DNV GL, 2017; IMO, 2017; Reichel et al., 2014). However, the influence of trim is quite 

complicated; it depends on sailing speed, displacement, and weather and sea conditions, and 

cannot be captured by the white-box (regression) models in Kwon (1982), Molinero and Mitsis 

(1984), Townsin et al. (1993) and Meng et al. (2016). As mentioned above, CFD simulation may 

provide a means to address the influence of trim on a ship’s fuel efficiency (Reichel et al., 2014). 

However, its incapability to incorporate the influence of weather and sea conditions frustrates 

marine operation practitioners. Analytical methods for trim optimization based on the calculation 

of ship resistance, propeller characteristics, and engine performance can account for the governing 

physical laws and their mutual interactions, but they generally have low estimation accuracy 

(Coraddu et al., 2017). 
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Some recent pioneering studies of ship fuel efficiency have attempted to develop black-

box data analysis models to address the synergetic influence of several determinants (speed, 

displacement, trim, and weather and sea conditions) on a ship’s fuel efficiency. Pedersen and 

Larsen (2009) and Beşikçi et al. (2016) developed some artificial neural network (ANN) models 

to examine the bunker fuel efficiency of tankers. Pedersen and Larsen (2009) studied ship fuel 

efficiency from the viewpoint of naval architectural experiments and thus introduced time as an 

input variable, which is necessary from the perspective of voyage management. Thus, in this sense, 

the ANN model used by Beşikçi et al. (2016) is more appropriate for ship voyage management. 

However, the knowledge of Beşikçi et al. (2016) regarding ship fuel efficiency is biased. They 

regarded engine revolutions per minute (RPM), together with speed, draft (equivalent to 

displacement), trim, and weather and sea conditions, as an input (exogenous) variable of the ANN, 

which actually confuses the effects of the factors outside the engine with the effects of engine 

performance. In fact, from the perspective of ship fuel efficiency estimation, engine RPM is an 

endogenous variable that depends on the factors outside the engine, including sailing speed, draft, 

trim, and weather and sea conditions. It is also worth noting that no operations research studies 

have been based on these ANN models. 

A considerable gap exists between industry requirements and existing studies, as reflected 

in the current practices of ship voyage management and the literature review above: the existing 

studies mainly addressed ship speed optimization at the strategic or tactical level (i.e., the average 

speed over a service or leg) and did not provide a solution to the daily speed planning of the ship 

addressed in this study, which intrinsically requires consideration of the added influence of 

displacement, weather and sea conditions, and trim on ship fuel efficiency; the existing trim 

optimization studies produced trim charts and tables, but their failure to incorporate the influence 
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of weather and sea conditions frustrated marine operation practitioners. This is not surprising 

because the empirical studies conducted to clearly quantify the synergetic influence of sailing 

speed, displacement, trim, and weather and sea conditions remain in their infancy.  

1.2. Objectives and Methodological Approach 

This study tackles the proposed ship speed and trim optimization problem over a voyage 

with the following objectives: 

• Taking advantage of historical voyage report data, propose a tailored method to build ANN 

models that can precisely quantify the influence of sailing speed, displacement, trim, and 

weather and sea conditions on a ship’s fuel consumption rate. 

• With the ANN models, develop solution countermeasures to optimize the speed and trim for 

each segment with the objective of minimizing the total fuel consumption over the voyage 

while respecting the ETA.    

Our industry collaborators shared with us the voyage report data from February 2014 to 

March 2015 for two 9000-TEU containerships (referred to as ships S1 and S2 hereinafter). These 

ships both operate on the Far East – Middle East services that connect main Asian ports (Busan, 

Kwangyang, Qingdao, Ningbo, Kaohsiung, Shenzhen, Singapore) and those in the Persian Gulf 

(Jebel Ali, Sohar). Based on the data, we constructed two ANN models. The first model [ANN1] 

quantifies the synergetic influence of sailing speed, displacement, trim, and weather and sea 

conditions on a ship’s fuel consumption rate. It can be used by a captain at sea to determine the 

optimal trim for each segment. However, when the onshore officers determine the speed for each 

segment, they do not know the directions of the wind, waves and sea currents, because this 

information is not provided by their weather information service providers (WISPs). We, therefore, 
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developed a second model [ANN2] that quantifies the influence of several factors but excludes the 

influence of the directions of the wind, waves, and sea currents.  

 

Fig. 3. Optimal solution countermeasures in a two-phase planning framework 

 

With the developed ANN models on ship fuel efficiency, we then examine the speed and 

trim optimization problem and propose three optimal solution countermeasures in a two-phase 

planning framework, as shown in Fig. 3. In the first phase, the onshore officers plan the ship’s 

sailing speeds  
1

n

k k
v

=
 over all segments of the voyage, whereas the captain at sea conducts trim 

optimization based on the observed weather and sea conditions. This two-phase planning 

framework is developed to improve the current practice of ship speed and trim optimization over 
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a voyage. We introduce the onshore speed planning phase to address the recent attempts by 

shipping lines to explore the possibility of further saving bunker fuel by making fine adjustments 

to the daily sailing speeds. Speed optimization is conducted on shore because its purpose is to 

correct the arbitrary nature of the captain’s rapid decision making at sea; in the meantime, the 

onshore officers have a global view of the weather and sea conditions over the whole voyage and 

of the consequences to shippers and to onward connections to other services if the ETA is violated. 

Trim optimization is conducted by the captain at sea during the second planning phase because the 

actual weather and sea conditions observed at sea are essential in trim decisions. 

The three solution countermeasures can be explained in an incremental manner. 

• Countermeasure 1 (C1) optimizes the ship’s trim for each segment based on [ANN1], 

which considers the influence of weather and sea conditions (called dynamic trim 

optimization), instead of using static trim tables and charts; C1 adopts enumeration as the 

optimization method. 

• Countermeasure 2 (C2) employs C1 as the real-time trim optimization procedure at sea, 

but it also allows the onshore officers to conduct speed optimization based on [ANN2]. In 

C2, the trim settings are assumed to be zero (i.e., an even keel) for all the segments. A 

dynamic programming model, rather than a mathematical programming model, is 

developed because ANN is regarded as a black-box function. 

• Countermeasures 3 (C3) is similar to C2, but sailing speeds and trim settings are optimized 

simultaneously during the onshore speed planning phase to allow more informed speed 

decisions, because speed and trim both influence a ship’s fuel efficiency and their 

influences are closely interwoven. In contrast, in C2, optimality is compromised because 

the trim is assumed to be zero in speed optimization. We propose a two-step global 
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optimization algorithmic procedure that combines dynamic programming and a state-of-

the-art simulation-based optimization approach to address this simultaneous speed and trim 

optimization problem. 

1.3. Potential Industrial Impact and Methodological Contributions 

(i) Potential Industrial Impact 

The improvements achieved by these three countermeasures over the current practice of 

speed and trim optimization can be revealed by comparison with the real situation. Numerical 

experiments with two 9000-TEU containerships show that (a) C1 saves 4.96% and 5.83% of 

bunker fuel for the two ships, respectively, compared to the real situation; (b) C2 increases the 

bunker fuel savings to 7.63% and 7.57%, respectively; and (c) C3 attains average bunker fuel 

savings of 8.25%. These remarkable bunker fuel savings could also translate into significant 

mitigation of CO2 emissions. These promising results would encourage the shipping industry to 

improve their current practice of speed and trim planning. In the meantime, this study also provides 

tangible solutions to fulfil these bunker fuel savings from a technical perspective.   

 (ii) Methodological contributions 

First, this study’s methodological contributions to the literature on ship speed optimization 

can be summarized in the following two aspects. 

• Contribution 1. This study introduces a highly accurate ANN model for ship fuel efficiency 

analysis to ship speed optimization. Our numerical experiments reveal the advantages of 

adopting ANN for ship fuel efficiency analysis in speed optimization: (a) compared to existing 

ship fuel efficiency models (e.g. the cubic law and the Admiralty coefficient), adopting ANN 

in speed optimization (C2) results in estimation of fuel consumption (i.e. the objective of the 

optimization model) that more closely matches the actual achievable fuel consumption. In 
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contrast, the estimated fuel consumption calculated by speed optimization with the existing 

ship fuel efficiency model is not reliable because it differs greatly from the achievable situation. 

(b) Meanwhile, adopting a highly accurate ship fuel efficiency model like ANN may create the 

possibility of remarkable bunker fuel savings through speed optimization. Compared to speed 

optimization with the cubic law, C2 saves 0.57% and 3.69% of bunker fuel for ships S1 and 

S2, respectively. 

• Contribution 2. This study takes the initiative to factor the influence of trim on ship fuel 

efficiency into speed optimization, which is desirable in theory because speed and trim both 

influence a ship’s fuel efficiency and their influences are closely interwoven. Numerical 

experiments also reveal its advantages from an economic perspective: compared to speed 

optimization with the cubic law (plus C1 as the real-time dynamic trim optimization at sea), 

C3 additionally saves 1.10% and 4.34% of bunker fuel for ships S1 and S2, respectively; 

compared to C2 ignoring the influence of trim in on-shore speed optimization, C3 

incrementally increases the bunker fuel savings over the real situation for the two ships by 0.58% 

and 0.72%, respectively. The mathematical complexity caused by simultaneous optimization 

of speed and trim brings considerable economic and environmental benefits.   

Contribution 3. Our contribution to the existing studies on ship trim optimization is also 

significant. This study overcomes the drawbacks of trim tables and charts, which are the focus of 

the existing trim optimization literature, in the sense that trim tables and charts are unable to reflect 

the consideration of weather and sea conditions. C1 saves 4.96% and 5.83% of bunker fuel for the 

two ships, respectively, compared to the real situation. Numerical experiments also reveal that no 

matter what data model is adopted for ship fuel efficiency analysis in onshore speed optimization, 
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the additional application of dynamic trim optimization at sea (C1) is always beneficial and can 

result in considerable bunker fuel savings.     

2. ANN Models for Ship Fuel Efficiency 

2.1. Voyage Report Data 

When a commercial ship sails at sea, the captain is required to report the sailing profile to 

onshore officers on a regular basis, usually daily. The sailing profile includes many aspects of the 

ship’s sailing behavior, such as the geographic location, local time and Greenwich Mean Time, the 

distance covered since last report, speed, cargo and ballast water loaded, displacement, trim, 

weather and sea conditions (wind, waves, sea currents, and sea water temperature), and fuel 

consumption by the main engine, auxiliary engines and boilers. At noon each day, the captain 

makes a data entry describing the recent sailing profile to the onshore officers, which is why 

captains refer to the voyage report data as noon report data. The voyage report data are also called 

shipping log data because these data are recorded in the logbook.  

The voyage report data for ship S1 contained 1094 entries in total. After a data 

preprocessing procedure that removes the entries for ship operation in port areas or with absent 

values in some fields, 242 entries were obtained for fuel efficiency modeling. Similarly, 181 entries 

were used for ship S2’s fuel efficiency modeling. Most data entries reflect a ship’s daily sailing; 

however, data entries for the first or last segment of a voyage usually reflect durations shorter than 

1 day because the departure from or arrival at a port rarely occurs at noon. 

2.2. ANN Model Building for a Single Ship 

Motivated by the studies by Beşikçi et al. (2016) and Pedersen and Larsen (2009), we 

constructed a feedforward ANN ship fuel efficiency model using voyage report data, as illustrated 

in Fig. 4. The input layer involves ten explanatory variables: sailing speed (knots), displacement 
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(MT), trim (m), wave height (m), wave direction, wind force (Beaufort scale number), wind 

direction, sea current speed (knots), sea current direction, and sea water temperature (˚C). The 

directions of the wind, waves, and sea currents, relative to the ship’s movement, are recorded by 

the deck officers in a fuzzy manner, as defined in Fig. 5. For waves, “A” denotes the following 

wave, and “E” is the head wave. Waves from directions “B” and “H” (or “C” and “G”, or “D” and 

“F”) generally have the same influence because of the ship’s symmetric structure. Unlike the study 

by Beşikçi et al. (2016), our study does not designate engine RPM as an input variable because the 

engine RPM is determined by the ten variables in the model. The output of the network is the fuel 

consumption rate, given in MT per day. In the hidden layer, ten neurons are adopted for two 

reasons: (a) Pedersen and Larsen (2009) verified that ten neurons are adequate with respect to fit 

performance; and (b) given the data sizes of ships S1 and S2, the use of more neurons in the hidden 

layer will cause a severe overfitting issue (poor generalization). Fig. 6 illustrates the distributions 

of the 181 data entries for ship S2 against these explanatory variables and the output fuel efficiency. 

To ensure the good generalization of ANN, a total of L  neural networks are trained in our 

study based on the same data set: ( ) ( )1
1 ,..., 1

L
ANN ANN . The L  neural networks differ in that 

different initial weights are adopted for multiple consecutive trainings. For a given input x  that 

contains information on speed, displacement, trim, and weather and sea conditions, the average of 

the outputs of these L  networks is used as the prediction: 

[ANN1] ( ) ( ) ( )1

1

1
1

L
lANN

l

f ANN
L =

= x x   (1) 

The rationale behind Eq. (1) is that the output of a specific trained neural network might suffer 

greatly from overfitting, but the average of the outputs of multiple networks is generally 

sufficiently robust (Mathworks, 2015). 

 



17 
 

     

Fig. 4. An ANN model for ship fuel efficiency                     Fig. 5. Definition of wave (wind, sea currents) directions 
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Fig. 6. Distribution of 181 voyage report data entries for ship S2 
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As mentioned above, when the onshore officers optimize the speed for each segment, they 

cannot determine the directions of the wind, waves and sea currents. We have therefore developed 

a second model [ANN2] that is the same as [ANN1] except that [ANN2] fixes the directions of 

wind, waves, and sea currents at a neutral value (“C” or “G” in Fig. 4): 

[ANN2] ( ) ( ) ( )2

1

1
2

L
lANN

l

f ANN
L =

= x x   (2) 

2.3. Performance of the ANN Models 

The available voyage report data are randomly partitioned into two sets, with 80% of the 

data entries for the training set and 20% for the test set. To assess the fit performance of the ship 

fuel efficiency model [ANN1], we use the root mean square error (RMSE) defined by 

 ( )( ) ( )
2

1

1

1 N
e eANN

e

RMSE f
N =

 = −
  x y ,  (3) 

where ( )e
x  and ( )e

y  denote the network input information revealed by data entry 1,...,e N=  and 

the corresponding actual fuel consumption rate, and the R2 value for linear regression between the 

predicted fuel consumption rate ( )1ANNf x  (output) and the actual rate y  (target). Our preliminary 

experiments suggested that 10L =  is sufficient for ships S1 and S2 in terms of RMSE and R2 

values over both the training and test tests. 

An alternative method to show the performance of ANN models is comparison with that 

of ship fuel efficiency models of other forms in existing studies. Multi-linear regression is the 

simplest method of modeling the influence of many determinants on ship fuel efficiency (Molinero 

and Mitsis, 1984; Wang et al., 2017; referred to as the model [MLR]). However, a linear 

relationship between ship fuel efficiency and some determinants, such as the sailing speed and 

trim, is difficult to accept in the shipping industry. For instance, it is well known that the cubic law 



20 
 

(Carlton, 2012; MAN Diesel & Turbo, 2004) roughly quantifies the influence of a ship’s sailing 

speed (V ) on its ship fuel efficiency ( Fr , MT/day): 

[CBC] 3

1Fr c V=  ,  (4) 

where 1c  is a coefficient to be calibrated. To improve the fit performance, the power “3” can be 

replaced by another coefficient to be calibrated: 

[CBC’] 2

1

c

Fr c V=  .  (5) 

If the effect of displacement (  ) is also considered, the cubic law becomes the Admiralty 

coefficient (Carlton, 2012) : 

[ADM] 3 2 3

1Fr c V=   ,  (6) 

 or a more precise variant with more coefficients to be calibrated (Meng et al., 2016): 

[ADM’] 32

1

cc

Fr c V=     (7) 

Existing studies (Jalkanen et al., 2009; Meng et al., 2016; Townsin et al., 1993) also modeled the 

influence of weather and sea conditions (e.g., wind and waves) on ship fuel efficiency as a penalty 

on the sailing speed by using a generalized nonlinear regression model: 

[NLR] ( )( )
2

3

1 1 ,
c

c

Fr c p WD WH V =  +   ,  (8) 

where the penalty is constructed based on the wave direction (WD ) and wave height (WH ), 

 ( ) ( )( )2

1 3, ,
EcE Ep WD WH WD WH c WH c WH=  +    (9) 

 ( )

2

1 2 3

2

1 2 3

2

1 2 3

2

1 2 3

1,

, or

, , or

, or

,

D D D

C C C

B B B

A A A

WD E

c WH c WH c WD D F

WD WH c WH c WH c WD C G

c WH c WH c WD B H

c WH c WH c WD A



=


 +  + =


=  +  + =


 +  + =
  +  + =

  (10) 
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There are in total 18 coefficients to be calibrated in model [NLR]. In view of the strong correlation 

between the wave height and wind force, it is also possible to substitute wind force for wave height 

in model [NLR]. Table 1 shows the fit performance of models [ANN1] and [ANN2] over ships S1 

and S2, against that of models [CBC], [CBC’], [ADM], [ADM’], [NLR], and [MLR].  

Table 1 shows that the fit performance of [ANN1] is quite good for both training and test 

sets: the RMSE values are all less than 9.5 MT/day, and the R2 values are also sufficiently high. 

The results on the test set verify the model’s generalization ability. Moreover, the fit performance 

of model [ANN2], although worse than that of model [ANN1], is also acceptable from a practical 

viewpoint. The gap in the fit performance between the two models represents the value of 

directional information for weather and sea conditions in ship fuel efficiency estimation. 

The fit performance of models [CBC], [CBC’], [ADM], [ADM’], and [NLR] is relatively 

worse. When the fit performance of these five models is compared, [CBC’] is better than [CBC], 

[ADM’] is better than [ADM], and [NLR] might further improve the fit performance over the 

training set. This offers the insight that the incorporation of more determinants and/or the 

introduction of more coefficients to be calibrated in ship fuel efficiency model will generally 

improve the fit performance. Model [MLR] has the same number of determinants of fuel efficiency 

as [ANN1], and its fit performance is also fair even though it simply adopts linear regression. The 

experiments in Section 4 reveal that model [MLR] is not reliable in speed optimization because of 

its incompetence in capturing the nonlinear influence of sailing speed on ship fuel efficiency. In 

contrast, models [CBC], [CBC’], [ADM], [ADM’], and [NLR] are quite reliable in speed 

optimization. 
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Table 1. Fitting performance of ANN against ship fuel efficiency models in existing literature (ship S1) 

   CBC CBC’ ADM ADM’ NLR MLR ANN1 ANN2 

Ship S1 Training set # Data entries 193 

  RMSE (MT/day) 12.44 11.79 14.52 11.63 9.92 9.25 6.56 9.70 

  R2 0.7784 0.8009 0.6980 0.8628 0.8610 a 0.8770 0.9706 a 0.9311 a 

  Adjusted R2 0.7784 0.7998 0.6980 0.8613 - 0.8710 - - 

           

 Test set # Data entries 49 

  RMSE (MT/day) 12.18 10.85 14.85 10.81 12.95 9.82 8.23 10.25 

Ship S2 Training set # Data entries 144 

  RMSE (MT/day) 13.63 11.84 13.77 11.61 9.00 8.55 6.06 8.40 

  R2 0.8011 0.8500 0.7969 0.8803 0.9210 a 0.9220 0.9837 a 0.9622 a 

  Adjusted R2 0.8011 0.8489 0.7969 0.8786 - 0.9160 - - 

           

 Test set # Data entries 37 

  RMSE (MT/day) 15.25 12.74 15.57 12.49 17.42 10.20 9.34 9.91 

Note: a R2 value is obtained from linear regression between targets (actual fuel consumption rates) and outputs (estimated 

fuel consumption rates) of the model. 
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3.  Countermeasures for Optimal Voyage Management of Ships 

The ANN models of ship fuel efficiency in Section 2 enable us to predict how much bunker 

fuel a ship consumes on one segment when the ship’s sailing speed, displacement, trim, and 

weather and sea conditions are known. Based on the models, this section proposes three 

countermeasures to improve the current practice of ship speed and trim optimization over a voyage.   

3.1. Countermeasure 1 (C1): Dynamic Trim Optimization on the Sea 

At the beginning of a specific sailing segment k  of the voyage shown in Fig. 2, the captain 

at sea knows almost all the information about the ship’s fuel efficiency on this segment: kV ─ the 

sailing speed indicated by the sailing distance and the planned arrival time at the next waypoint; 

and kI ─ the information on both displacement and weather and sea conditions. Trim optimization 

conducted by the captain is to determine an optimal trim setting kt  in a given interval ,k kT T    such 

that the fuel consumption rate over this segment is minimized: 

 ( ) ( )1 ( )

1

1
min , , 1 , ,
k k k

L
ANN l

k k k k k k k k
T t T

l

f V t I ANN V t I
L 

=

=    (11) 

where ( )1 , ,ANN

k k k kf V t I  is the predicted fuel consumption rate of model [ANN1] for the input 

, ,k k kV t I=x  on segment k . To solve the model in practice, we can discretize the trim interval 

,k kT T    with a fine granularity, e.g., 0.01 m, into a set 

  1 2: , ,..., ,kQ

k k k k k kT T T T T Q= =   (12) 

 and perform an enumeration method to search for the optimal trim value: 

 ( )* 1arg min , ,
k k

ANN

k k k k k
t T

t f V t I


=   (13) 

Compared to the current practice of trim optimization relying on static trim tables/charts, 

C1 makes trim optimization at sea dynamic: in addition to sailing speed and displacement, the 
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influence of weather and sea conditions on ship fuel efficiency is also considered when 

determining the optimal trim setting. Moreover, C1 is quite easy to deploy in practice.  

3.2. Countermeasure 2 (C2): Speed Optimization on Shore + C1 

As mentioned in Section 1, the onshore officers of a shipping company have strong 

motivation to finely plan the daily sailing speeds of a ship over a voyage to save bunker fuel by 

taking the influence of the actual weather, sea and load conditions into account. One difficulty that 

prevents them from fulfilling this delicate speed planning is their incapability of precisely 

predicting the ship’s fuel consumption rates at different speeds under different weather, sea and 

load conditions. Fortunately, this shortcoming is now addressed by ship fuel efficiency models 

[ANN1] and [ANN2]. We, therefore, developed a decision-support tool for onshore officers to use 

in planning the sailing speeds of a ship over consecutive shipping segments before a voyage begins. 

This onshore speed optimization procedure, in conjunction with trim optimization of C1 at sea, 

constitutes our Countermeasure 2. Two points are noteworthy. First, we assume in C2 that onshore 

speed optimization does not account for trim optimization, that is, that the onshore officers assume 

a zero trim (even keel). This assumption will be relaxed in the next countermeasure. Second, due 

to the dynamic nature of air and sea movement, the weather and sea conditions experienced by the 

ship over a specific segment of the voyage, precisely speaking, depend on the speed decision over 

this segment and the preceding segments. However, our industry collaborators commented that the 

weather and sea conditions over each segment can be roughly treated as independent of speed 

because of the stringent ETA requirement and the additional restriction that the arrival time at each 

waypoint should not deviate excessively (e.g., maximum 12 hours) from the time implied by the 

average speed derived from ETA.  
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The sailing speed optimization problem over a voyage consisting of n  segments for 

onshore officers is to design an optimal sailing speed kv  for each segment  1,...,k n  to 

minimize the ship’s fuel consumption over the whole voyage. Associated with each segment k , 

the information kI   on ship displacement, wave height, wind force, sea current speed, and sea water 

temperature can be determined beforehand (note that kI   differs from kI  in that kI   does not 

contain information on the directions of wind, waves, and sea currents), and the ship’s trim kt  is 

assumed to be zero. Here, the assumption of known weather and sea conditions on all the segments 

beforehand is justifiable for two reasons: (a) WISPs can usually provide 7-to-15-day weather and 

sea condition forecasts; and (b) the proposed models in Countermeasures C2 and C3 can be used 

in practice by following a rolling horizon principle. 

If the ship adopts sailing speed kv , its fuel consumption rate in MT/day over segment k  

can be predicted by model [ANN2] as ( )2 , ,ANN

k k k kf v t I  , or say ( )2 ,0,ANN

k k kf v I  . Thus, the bunker 

fuel consumption of the ship over this segment, with the sailing distance kD , can be calculated by 

 ( ) ( ) ( )2 2 2, , ,0, ,0,
24

ANN ANN ANN k
k k k k k k k k k k

k

D
F v t I F v I f v I

v
  = = 


  (14) 

in which ( )24k kD v  is the sailing days on segment k . The onshore officers attempt to minimize 

the ship’s total bunker fuel consumption over all the segments: 

 
   

( ) ( )2 2

, 1,..., , , 1,..., , 1
1 1

min ,0, ,0,
24k k

n n
ANN ANN k

k k k k k k
v k n a k n n

k k k

D
F F v I f v I

v  +
= =

 
 = =  

 
    (15) 

subject to the ETA constraint at the end of the voyage: 

  1 , 1,...,k
k k

k

D
a a k n

v
+ = +     (16) 



26 
 

 1 : 0a = , 1na ETA+    (17) 

where ka  denotes the arrival time at waypoint k . Meanwhile, the sailing speeds should be 

maintained in the technically feasible range: 

  , 1,...,kV v V k n     (18) 

The objective (15) and constraints (16)-(18), with kv  as the main decision variables and 

ka  as the auxiliary decision variables, mathematically model the speed optimization problem 

confronting onshore officers. A barrier in the solution of this model is the objective evaluation in 

Eq. (15): once a solution  
1

n

k k k
v V

=
=  is constructed, it has to be input into model [ANN2] to query 

the ship fuel efficiency ( ) 2

1
,0,

n
ANN

k k k k
f V I

=
 . Traditional solution methods for mathematical 

programming models thus do not work with this optimization problem. Fortunately, it can be seen 

from objective (15) that this model exhibits the properties of overlapping subproblems and an 

optimal substructure, which indicates that this complicated problem can be broken down into 

several simpler subproblems in a recursive manner. This encourages us to adopt a dynamic 

programming (DP) approach to solve this model.  

In the DP approach, the problem has n  stages, each of which representing a sailing 

segment connecting two main waypoints. At the beginning of stage k , the arrival time ka  of the 

ship at waypoint k  is known as the system state, and the onshore officers devote their efforts to 

determine the arrival time 1ka +  at the next waypoint to minimize bunker fuel consumption. The 

optimal value function at stage k , that is, the minimum total fuel consumption on segments 

, 1,...,k k n+ , can be defined as 

 ( )
 

( )
1

2

, ,...,
min ,0,

k k n

n
ANN

k k s s s
v v v

s k

U a F v I
+ =

=    (19) 
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It can be rewritten in a recursive manner, yielding the Bellman equation: 

[DPSPEED]

( ) ( ) ( ) 

( )

2

1 1

2

1

min ,0,

min ,0,
24

k

k

ANN

k k k k k k k
V v V

ANN k k
k k k k k

V v V
k k

U a F v I U a

D D
f v I U a

v v

+ +
 

+
 

= +

   
=  + +  

   

 ,  1,...,k n   (20) 

where ( )1 1 0n nU a+ + =  is the boundary condition, 1na ETA+  . In the first term of (20), the sailing 

time of the ship on segment k  is calculated as ( )24k kD v  instead of k kD v  because the unit of 

( )2 ,0,ANN

k k kf v I   is MT per day. The above DP formulation [DPSPEED] can be solved via backward 

induction by using the Bellman equation (20) in a recursive manner.  

In practice, the feasible range of state ka  can be discretized with a fine, say hourly, 

granularity: 

 ( )   1 2 1, ,..., 1, 1,..., 1 , 2,3,..., 1kM i i

k k k k k k k ka A A A A A A i M k n+ − = = −  +   (21) 

where 
k kM A=  can be set to a value such as 24 for practical use. With the feasible ranges of state 

variables discretized, model [DPSPEED] boils down to a shortest-path problem over a time-space 

network, as shown in Fig. 7. In this network, a node labeled as i

kA  in layer k  represents a possible 

state at stage k , which indicates that the arrival time at waypoint k  is i

kA , i.e., i

k ka A= . The link 

that connects nodes i

kA  and 1

j

kA +  represents a possible state transition from stage k  to stage 1k + , 

over which the sailing speed is 

 
1

ij k
k j i

k k

D
V

A A+

=
−

  (22) 

The cost associated with this link can be calculated as the corresponding bunker consumption: 

 ( ) ( )2 2 2 1

1

,0, ,0, ,0,
24 24

j i
ij ANN ij ANN ij ANNk k k k
k k k k k k k k kij j i

k k k

D D A A
c F V I f V I f I

V A A

+
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  −
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 − 
  (23) 
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Fig. 7 shows that determination of an optimal speed plan over the whole voyage to minimize 

bunker fuel consumption is equivalent to finding the shortest path in a time-space network. The 

idea of a shortest-path representation of ship speed optimization was originally proposed by 

Fagerholt et al. (2010). Therefore, both the DP approach and the traditional shortest-path 

algorithms (e.g., Dijkstra’s algorithm) can be adopted to solve the optimization problem. Our 

preliminary experiments revealed that the DP approach and Dijkstra’s algorithm can both solve 

realistic-sized instances to optimality within 1 second. 

 

Fig. 7. Shortest-path representation of the dynamic programming model [DPSPEED] 

 

3.3. Countermeasure 3 (C3): Speed and Trim Optimization on Shore + C1 

C2 optimizes the sailing speeds of the ship during the planning phase, without accounting 

for the influence of trim on the ship fuel efficiency by simply setting the trim values as zero. This 

policy can be further improved by simultaneously optimizing speed and trim by the onshore 

officers using [ANN2]. The purpose is to obtain better speed settings for the captain. The dynamic 
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trim for each segment is still determined by the captain using C1 with [ANN1] after observation 

of the directions of the wind, waves, and sea currents. 

3.3.1. Speed and Trim Optimization via Dynamic Programming 

A straightforward approach for simultaneous optimization of speed and trim is to retrofit 

the models in Section 3.2 and address this problem via DP. If the available trim interval over 

segment (stage) k  is expressed in a practical discretization form (12), the Bellman equation (20) 

can be revised accordingly to reflect trim optimization: 

 

( ) ( ) ( ) 
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1 1
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1
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,  1,...,k n  (24) 

The boundary condition at the final stage is the same as in model [DPSPEED]. In practice, we can 

discretize the speed range ,V V    with a practical granularity of, for example, 0.1 knots, 

  1 2, ,..., ,MV V V V V M= =   (25)  

and rewrite Eq. (24) as 

[DPSPEED-TRIM] ( ) ( )2

1
,

min , ,
24k k k

ANN k k
k k k k k k k k

v V t T
k k

D D
U a f v t I U a

v v
+

 

   
=  + +  

   

  (26) 

Additionally taking  
1

n

k k
t

=
 as decision variables further complicates the solution process 

because the dimension of model [DPSPEED-TRIM] increases. To construct a shortest-path 

representation of model [DPSPEED-TRIM], we must replace each link in Fig. 7 with several links to 

reflect the decisions on trim. Specifically, the link that represents the state transition from i

k ka A=  

to 1 1

j

k ka A+ +=  should be replaced by exactly 
k kQ T=  links, with each link representing a possible 
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choice on trim value over the set kT , which is shown in Fig. 8(a). The costs over these links can 

respectively be calculated as 

( ) ( )2 1 2 1 2 1 1

1

, , , , , ,
24 24

j i
ANN ij ANN ij ANNk k k k

k k k k k k k k k k kij j i
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− 
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 ( )2 2 1

1
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F V T I f T I
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+

+

  −
 =  

− 
.  

This significantly complicates the structure of the time-space network. 

However, we notice that this problem has a nice structure: the trim kt  only affects the fuel 

consumption of stage k , and it has no effect on future states, and thereby no effect on the fuel 

consumption of future stages. This can be seen from Fig. 8(a): all the links start from the state 

i

k ka A=  and point to states 1 1

j

k ka A+ += . We thus can merge the nodes to which these links point 

into one state 1 1

j

k ka A+ += . Meanwhile, if we can determine the minimum bunker cost over these 

links via trim optimization 

 ( )* 2arg min , ,
k k

ANN ij

k k k k k
t T

t F V t I


= ,  (27) 

these links can also be merged into one with the cost 

 ( ) ( )2 * 2 * 2 * 1
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The result of state merging is illustrated in Fig. 8(b). 
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(a) Before state merging 

 

 

(b) After state merging 

Fig 8. State merging in dynamic programming model [DPSPEED-TRIM] with trim optimization 
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With the state merging illustrated in Fig. 8, we finally have the shortest-path representation 

of model [DPSPEED-TRIM] shown in Fig. 9. It can be seen that trim optimization and speed 

optimization are decoupled, though their effects on ship fuel efficiency are interwoven. Therefore, 

the following two-step procedure (Procedure 1) can be employed to globally solve model 

[DPSPEED-TRIM], which implements trim optimization in the first step, and a shortest-path algorithm 

for speed optimization in the second step. 

 

 

Fig. 9. Shortest-path representation of dynamic programming model [DPSPEED-TRIM] 
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Procedure 1. Two-step global optimization algorithm for model [DPSPEED-TRIM] 

Step 1. (Trim optimization) Construct a DP network based on the main waypoints of the voyage 

and the discretization toward the arrival time at each waypoint (equivalent to speed range 

discretization). For each link over the DP network, determine the best trim value and update 

the link cost. 

Step 2. (Speed optimization) Find a shortest path through the DP network constructed in Step 1, 

and output the speeds over the consecutive sailing segments indicated by the shortest path 

as the optimal speed plan. 

 

3.3.2. Simulation-based Optimization Approach for Trim Optimization 

A straightforward approach to solve the trim optimization problem in Eq. (27) is 

enumeration: we enumerate all the trim values in kT , i.e., all the trim values in ,T T    with a 

granularity of e.g. 0.01 m, calculate the corresponding fuel consumption values and choose the 

best one. However, our preliminary experiments showed that this enumeration method cannot 

deliver the optimal solution within a practically acceptable time limit. For example, for a long-

haul voyage from Singapore to the Persian Gulf, representing a 181-hour sailing of ship S2 over 

nine segments, the constructed network for DP consists of 218 nodes and 2931 links whose costs 

are to be determined. For each link, 657 trim values (min: −3.00 m, max: 3.56 m, granularity: 0.01 

m is required in practice) must be tried (enumerated), and each trim value should be input into 

10L =  trained ANNs to query the ship fuel efficiency in terms of MT per day (see Eq. (2)). The 

total number of ANN queries reaches 2,931×657×10=19,256,670. We failed to construct this DP 

network within 10 h, though the CPU time for each ANN query is much less than 0.01 s (basically 

0.001 to 0.005 s). We thus resorted to parallelizing the link cost calculation so that cost calculation 

(trim optimization in Eq. (27)) for several links can be conducted simultaneously over multiple 

processor cores. The construction of this DP network over a workstation with 12 cores consumed 
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7318 s (2.03 h) even when all the 12 cores were fully used. The onshore officers collaborating with 

us commented that this is still unacceptable from an industry viewpoint. 

The above analysis indicates that the computational bottleneck lies in the great number of 

trim values enumerated and the consequent significant workload of ship fuel efficiency queries 

with ANNs. Hence, a smarter trim optimization method rather than enumeration may be required 

to reduce the computational burden. To this end, we propose a simulation-based optimization 

technique for trim optimization in Eq. (27). The state-of-the-art simulation-based optimization 

technique provides some efficient approaches for global optimization of a black-box function. A 

typical simulation-based optimization approach takes advantage of surrogate models (also known 

as response surface models or metamodels) to approximate the black-box function under 

examination. Compared to the black-box function, the corresponding surrogate models have 

explicit mathematical expressions and thus their function evaluations are much cheaper (although 

crude). Meanwhile, these well-defined surrogate models always possess fine mathematical 

properties, such as differentiability or twice differentiability. Once a new solution (point) is 

evaluated (sampled), the surrogate model is updated with a further reduction in approximation 

errors, thus yielding a better approximation to the black-box function. This study employs 

surrogate model-based optimization approaches because we wish to take advantage of their 

computational competence to find good solutions with a limited number of black-box function 

evaluations, which eliminates the necessity of enumerating and evaluating every trim value. 

Specifically, we adopt a cubic radial basis function (RBF) surrogate model (Müller and 

Shoemaker, 2014). In fact, we tested ten surrogate models including linear RBF (RBFlin), cubic 

RBF (RBFcub), thin-plate spline RBF (RBFtps), linear regression polynomial (POLYlin), reduced 

quadratic regression polynomial (POLYquadr), reduced cubic regression polynomial (POLYcubr), 
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multivariate adaptive regression spline (MARS), a mixture of RBFcub and MARS (MIX_RcM), 

a mixture of RBFcub and POLYquadr (MIX_RcPqr), and a mixture of RBFcub and POLYcubr 

(MIX_RcPcr), and found that the choice of surrogate models has little influence on the 

computational time or solution quality of the simulation-based optimization algorithmic procedure. 

For instance, the experimental results for a long-haul voyage of ship S2 from Singapore to a port 

in the Persian Gulf are shown in Fig. 10. 

 

 

Fig. 10. Influence of surrogate model choice on optimal objectives and CPU times of on-shore optimization of C3 

 

Specifically, for the trim optimization problem of segment k  defined by Eq. (27), 

supposing that m  trim values 
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MARS: Multivariate adaptive regression spline; 

MIX_RcM: Mixture of RBFcub and MARS;

MIX_RcPcr: Mixture of RBFcub and POLYcubr;

MIX_RcPqr: Mixture of RBFcub and POLYquadr;

POLYcubr: Reduced cubic regression polynomial; 

POLYlin: Linear regression polynomial;

POLYquadr: Reduced quadratic regression polynomial; 

RBFcub: Cubic RBF;

RBFlin: Linear RBF; 

RBFtps: Thin-plate spline RBF
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 ( ) ( )
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,

1

m
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g t t T
=
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that interpolates the data points 
( ) ( )( ) ( ) ( )( ) ( ) ( )( )2 2 2

1 1 2 2
, , , ,..., ,ANN ANN ANN

k k k k k m k m
T f T f T f . In Eq. (29), ,k r , 

1,...,r m= , are real number coefficients to be calibrated. With the surrogate model (29), an 

algorithmic procedure repeating “surrogate model fitting - sampling” iterations can be designed 

for the trim optimization problem (27), which is illustrated by Fig. 11. For the details of the 

sampling strategy, we refer readers to Müller (2014). 

To evaluate the performance of the surrogate model-based algorithmic procedure for trim 

optimization and to clarify how CPU times scale as the instance sizes increase, we constructed 16 

voyages (instances) consisting of 2 to 32 sailing segments (representing a ship’s sailing at sea in 

roughly 2 to 32 days) based on the voyage report data for ship S1. The maximum number of black-

box function evaluations is set at 10. The experiments were tested on a 12-core workstation to 

allow us to parallelize the link cost calculation for the DP network over all the processor cores. 

The CPU time required for constructing the DP network is shown in Fig. 12. For a long voyage 

with a 32-day sail distance, the surrogate model-based trim optimization method requires about 40 

min, which is only 15% of the time required by the enumeration method. The absolute gap between 

the objectives of the surrogate model-based algorithmic procedure and the enumeration method 

averages only 0.01 MT per voyage. As the average fuel consumption of a voyage exceeds 100 MT, 

the relative gap is less than 0.01%. We can thus conclude from a practical perspective that the 

surrogate model-based algorithmic procedure for trim optimization solves all instances (voyages) 

to global optimality. 
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Fig. 11. The algorithmic procedure for trim optimization (20) based on the surrogate model 

 

 

 

Fig. 12. CPU time for constructing the DP network against instance size  
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4. Numerical experiments 

This section evaluates the performance of Countermeasures C1, C2, and C3 in ship speed 

and trim optimization. The voyage report data for ships S1 and S2 are used in these experiments. 

For S1, 327 report entries were extracted, representing its sailing over seven round trips (March 

2014 to Feburary 2015) of which each contains 12 voyages (legs). For S2, only five round trips 

(June 2014 to March 2015), each of which contains 10 to 11 voyages, have complete data, and we 

have a total of 209 voyage report data entries. Note that for a small number of report data entries, 

if the values of some fields (basically the directions of wind and/or sea currents) were null, the 

industry specialists who provided the voyage report data filled in the values via interpolation from 

the entries for the previous segment and the next segment.  As a result, the number of data entries 

used in this section is slightly larger than that used for calibrating the ANN models in Section 2.   

We first evaluate the benefits of these three solution countermeasures in bunker fuel 

savings in comparison with the real situation, to reveal their practical implications for the shipping 

industry. We then further justify our methodology by comparing this study with the methodologies 

in existing studies with more numerical experiments. At last, we show the possibility of extending 

our speed optimization model in a multiobjective optimization framework.  

4.1. Practical Implications of the Three Solution Countermeasures 

4.1.1 C1 versus Real Situation: Bunker Fuel Savings via Dynamic Trim Optimization  

For the 327 sailing segments of ship S1’s 84 voyages, we collect the actual bunker fuel 

consumption, the bunker fuel consumption with C1, and the bunker fuel savings of C1 compared 

to the real situation, and present them in the top two diagrams of Fig. 13(a). The fuel consumption 

rates (MT/day) in the real situation and those fulfilled by C1 are also plotted in the bottom diagram 
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of Fig. 13(a). Similarly, the results for the 209 sailing segments of ship S2’s 51 voyages are 

presented in Fig. 13(b). 

 

      

                                     (a)Ship S1                                                                               (b) Ship S2 

Fig. 13. Bunker fuel savings of C1  

 

Fig. 13 shows that C1 brings significant fuel savings to ships S1 and S2. For the two ships, 

the bunker fuel savings with C1 over a daily sailing segment can reach 25 and 40 MT, respectively. 

The middle subplots of Fig. 13 show that the bunker fuel savings over some segments are negative, 

which indicates that in some scenarios, more bunker fuel would be consumed if C1 were adopted. 

In fact, these negative values originate from the prediction errors of ship fuel efficiency model 

[ANN1], which cannot be completely eliminated in theory.  

To provide an overview of C1’s bunker fuel savings for ships S1 and S2, we report the 

aggregated results in Table 2. We can see that compared to the real situation, C1 saves 849.80 MT 
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(4.96%) of bunker fuel for ship S1 over its seven round trips. For ship S2, C1 saves 554.87 MT 

(5.83%) of bunker fuel over its five round trips. This provides the insight that additional integration 

of the influence of weather and sea conditions into trim optimization could bring further 

considerable bunker fuel savings over the static trim optimization relying on trim charts or tables. 

This insight is highly consistent with industry specialists’ observations. However, this study moves 

far beyond their observations by developing a systematic method of integrating the influence of 

weather and sea conditions into trim optimization and evaluating the corresponding benefits in a 

quantitative manner.      

Table 2. Fuel savings of Ships S1 and S2 by C1 (dynamic trim optimization)  

Ship FuelReal FuelC1 SaveC1-Real 

S1 (7 round trips) 17129.71 16279.91 849.80(4.96%) 

S2 (5 round trips) 9513.26 8958.39 554.87(5.83%) 
Note: Unit: MT 

 

4.1.2. C2 and C3 versus C1: Additional Benefits Produced by Speed Planning on Shore 

Table 3 lists the experimental results of C2 and C3 for the seven trips of ship S1 and five 

trips of ship S2. It can be seen that compared to the real situation, C1 saves 4.96% and 5.83% of 

bunker fuel for ships S1 and S2, respectively; C2 attains 7.63% and 7.57%, respectively; and C3 

increases the savings to 8.21% and 8.29%, respectively. The incremental bunker fuel savings of 

C2 relative to C1 are also remarkable: overall, C2 brings bunker fuel savings of 2.67% and 1.74% 

over the real situation for ships S1 and S2, respectively, compared to C1. We thus conclude that 

onshore officers’ speed planning helps to correct the arbitrary nature of captains’ decisions in 

operating ships at sea and therefore produces considerable bunker fuel savings. The incremental 

savings of C3 over the real situation for the two ships relative to C2 are 0.58% and 0.72% in 

percentage, and 98.51 and 67.67 MT in weight.  
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The results thus far are encouraging. If we take the average savings of the two ships with 

C3 over the reality, i.e., (8.21%+8.29%)/2 = 8.25%, considering that 50 million MT of bunker fuel 

was burned by the main engines of containerships in 2012 (Smith et al., 2014), the annual fuel 

savings with C3 would be remarkable. The monetary savings for shipping lines would be more 

considerable in the future because bunker fuel prices are expected to follow an increasing trend 

due to limited supply (Chen and Solak, 2015). Moreover, these remarkable bunker fuel savings 

could also translate into significant mitigation of CO2 emissions. 

 

Table 3. Fuel savings of Ships S1 and S2 by C1, C2, and C3 

Ship Trip FuelReal FuelC1 SaveC1-Real FuelC2 SaveC2-Real FuelC3 SaveC3-Real 

S1 

1 2183.30 2246.38 −63.08 (−2.89%)    2149.54  33.76 (1.55%)    2142.61  40.69 (1.86%) 

2 2391.90 2275.44 116.46 (4.87%) 2207.83  184.07 (7.70%) 2187.59  204.31 (8.54%) 

3 2383.40 2274.51 108.89 (4.57%) 2208.28  175.12 (7.35%) 2204.80  178.60 (7.49%) 

4 2485.41 2338.96 146.45 (5.89%) 2278.06  207.35 (8.34%) 2260.01  225.40 (9.07%) 

5 2758.20 2485.20 273.00 (9.90%) 2426.30  331.90 (12.03%) 2406.93  351.27 (12.74%) 

6 2384.00 2270.33 113.67 (4.77%) 2223.86 160.14 (6.72%) 2207.55  176.45 (7.40%) 

7 2543.50 2389.09  154.41 (6.07%) 2328.35  215.15 (8.46%) 2314.22  229.28 (9.01%) 

Overall 17129.71 16279.91 849.8 (4.96%) 15822.22  1307.49 (7.63%) 15723.71  1406.00 (8.21%) 

S2 

1 2361.60 2108.78 252.82 (10.71%) 2009.87  351.73 (14.89%)  1989.20   372.40 (15.77%) 

2 2087.00 1961.26 125.74 (6.02%) 1941.93  145.07 (6.95%) 1903.70  183.30 (8.78%) 

3 1959.80 1885.20 74.60 (3.81%) 1852.37 107.43 (5.48%) 1848.27  111.53 (5.69%) 

4 1679.90 1571.67 108.23 (6.44%) 1566.22  113.68 (6.77%) 1564.84  115.06 (6.85%) 

5 1424.96 1431.49 −6.53 (−0.46%) 1422.33 2.63 (0.18%) 1419.04  5.92 (0.42%) 

Overall 9513.26 8958.40  554.86 (5.83%) 8792.72   720.54 (7.57%) 8725.05  788.21 (8.29%) 
Note: Unit: MT. 

 

4.2. Implications from the Comparison with Existing Methodologies 

As mentioned in Section 1.1, speed optimization for containerships has been well 

addressed by existing studies. This section attempts to compare this study with existing studies to 

reveal the benefits of adopting the methodology of our study. Most existing studies dealt with 

speed optimization of containerships in the context of a round service or service network and 

sought to determine the optimal average sailing speed over each leg. Few studies have addressed 

optimization of a ship’s daily sailing speed over a voyage. On the other hand, it can be seen from 
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Section 3.2 that onshore daily speed optimization over a voyage can be well solved by DP via a 

shortest-path network: the global optimal solution can be easily found by an efficient algorithm. 

Thus, it will be difficult to justify the necessity of comparing this study with other studies in terms 

of the approaches of modeling and solving the onshore daily speed optimization over a voyage 

(i.e., an alternative method other than DP). 

For onshore speed optimization over a voyage, the major difference between this study and 

existing studies lies in the choice of a ship fuel efficiency model, i.e., the method to quantify a 

ship’s bunker fuel consumption in a time unit (e.g., day). Section 2.3 provides several 

representative ship fuel efficiency models used in existing studies, including [CBC], [CBC’], 

[ADM], [ADM’], [NLR], and [MLR]. Hence, we replaced model [ANN2] by an alternative ship 

fuel efficiency model ([CBC], [CBC’], [ADM], [ADM’], [NLR], or [MLR]) in onshore speed 

optimization of C2, and repeated all of the experiments for C2, to assess the influence of this 

replacement on the performance of sailing speed optimization. Specifically, we attempted to 

answer the following two questions: 

• These fuel efficiency models ([CBC], [CBC’], [ADM], [ADM’], [NLR], and [MLR]) have 

different levels of accuracy in fuel efficiency estimation. Will this difference in accuracy have 

a great influence on the results of speed optimization? 

• With this replacement of the ship fuel efficiency model used in onshore speed optimization of 

C2, will the trim optimization performed at sea (C1; based on [ANN1]) still bring considerable 

fuel consumption savings in addition to on-shore speed optimization? 

4.2.1 Influence of Ship Fuel Efficiency Model Choice on Speed Optimization 

Table 4 shows the optimal objective (referred to as estimated fuel consumption) of the 

speed optimization with each ship fuel efficiency model. The estimated fuel consumption of 
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onshore planning with C3 (simultaneous speed and trim optimization to determine better sailing 

speeds) is also listed in the last column of Table 4. However, with a specific ship fuel efficiency 

model (such as [CBC]), it is still questionable whether the obtained solution (speeds) of speed 

optimization can fulfil the estimated fuel consumption listed in Table 4 in reality, because the 

accuracy issue of e.g. model [CBC] (R2=0.7784 over the training set) might erode the reliability 

of the obtained optimal objective. To overcome this, we re-calculate the bunker fuel consumption 

of ships S1 and S2 by inputting the obtained optimal speeds associated with e.g. [CBC] and some 

important information from voyage report data (displacement and weather and sea conditions) into 

[ANN1] (i.e., the most reliable ship fuel efficiency model; see Table 1), and obtain the 

corresponding achievable fuel consumption in reality. Table 5 shows the achievable fuel 

consumption in reality with the optimal sailing speeds associated with each ship fuel efficiency 

model. Fig. 14 compares the estimated fuel consumption and the achievable fuel consumption. 

Our first observation with Fig. 14 is that the achievable fuel consumption values associated 

with [CBC], [CBC’], [ADM], [ADM’] and [NLR] are nearly the same, which is also quite close 

to the achievable fuel consumption of C2 with [ANN2]. This observation reveals that models 

[CBC], [CBC’], [ADM], [ADM’], and [NLR] are competent to reflect the influence of sailing 

speed on ship fuel efficiency in a relatively accurate way, and thus the results (solutions) of speed 

optimization are rather reliable, although the optimal objective (estimated fuel consumption) of 

speed optimization might differ greatly from the achievable situation. In this sense, the accuracy 

issue of the ship fuel efficiency model will not have a significant influence on the result of speed 

optimization. 

Fig. 14(b) shows that the adoption of [ANN2] in speed optimization (C2) would save 3.69% 

of bunker fuel in reality compared to speed optimization with [CBC]. This finding indicates that a 
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highly accurate ship fuel efficiency model, like ANN, may create the possibility of remarkable 

fuel savings via speed optimization, which is one of the benefits of adopting the ANN ship fuel 

efficiency model in speed optimization. 

Table 1 shows that the fit performance of [MLR] is quite good and much better than that 

of [CBC], [CBC’], [ADM], [ADM’], and [NLR]. However, Fig. 14 shows that the result of speed 

optimization with [MLR] is not reliable at all: a large difference exists between the achievable fuel 

consumption and the estimated fuel consumption (optimal objective), and the achievable fuel 

consumption is even much higher than the real situation recorded by the voyage report data. This 

finding reveals that [MLR] is unable to reflect the influence of sailing speed on ship fuel efficiency 

in a sufficiently accurate way, although its fit performance is attractive. Good fit performance of a 

ship fuel efficiency model does not necessarily imply a high degree of reliability in speed 

optimization. Actually, the reliability of a ship fuel efficiency model depends on whether it 

quantifies the influence of sailing speed on bunker fuel efficiency in a sufficiently accurate way 

because we are conducting speed optimization here.  

4.2.2 Additional benefit of trim optimization at sea 

With the speed optimization results in Section 4.2.1 with each ship fuel efficiency model, 

such as C2, we also apply trim optimization at sea (C1) to evaluate the additional benefit of trim 

optimization at sea compared to the policy in which only speed optimization is conducted. Table 

6 shows the achievable bunker fuel consumption with onshore speed optimization plus trim 

optimization at sea. Fig. 15 illustrates its comparison with the achievable bunker fuel consumption 

with speed optimization alone (i.e., the results shown in Table 5). 
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Table 4.     Estimated bunker fuel consumption with on-shore speed optimization based on different ship fuel efficiency models (unit: MT) 

 

Ship Trip CBC CBC’ ADM ADM’ NLR MLR 
ANN 

(C2-Speed Opt) 

ANN 

(C3-Speed Opt) 

S1 1 2277.64 2362.77 2203.43 2308.73 2291.66 2246.97 2218.72 2109.12 

 2 2291.09 2372.41 2316.26 2347.35 2400.52 2304.45 2319.10 2193.62 

 3 2237.30 2337.33 2243.74 2304.36 2468.19 2370.38 2293.87 2176.71 

 4 2353.39 2421.78 2339.89 2385.98 2405.34 2326.19 2332.85 2205.56 

 5 2492.44 2530.14 2553.89 2517.22 2514.25 2496.63 2439.29 2323.83 

 6 2214.39 2316.97 2193.69 2275.18 2317.84 2291.32 2228.38 2126.34 

 7 2446.33 2486.68 2407.95 2448.92 2428.27 2434.61 2424.36 2292.54 

 Overall 16312.59 16828.09 16258.85 16587.75 16826.07 16470.56 16256.57 15427.72 

S2 1 2165.82 2219.07 2169.77 2185.45 2301.72 2260.41 2123.89 1975.88 

 2 2054.63 2145.41 2030.80 2104.16 2147.71 2173.78 2037.79 1879.47 

 3 1752.12 2034.28 1664.47 1975.82 2116.49 1847.87 1908.16 1810.81 

 4 1388.16 1676.21 1386.18 1660.00 1801.76 1565.12 1572.98 1508.83 

 5 1287.76 1600.42 1286.20 1587.43 1708.27 1439.28 1496.56 1453.84 

 Overall 8648.48 9675.39 8537.42 9512.86 10075.94 9286.46 9139.37 8628.83 
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Table 5.     Achievable bunker fuel consumption with on-shore speed optimization based on different ship fuel efficiency models in reality (unit: 

MT) 

 

Ship Trip CBC CBC’ ADM ADM’ NLR MLR 
ANN 

(C2-Speed Opt) 

ANN 

(C3-Speed Opt) 

S1 1 2235.12 2235.12 2235.30 2235.12 2234.04 2604.72 2233.49 2234.92 

 2 2320.32 2320.32 2320.32 2320.32 2326.98 2555.86 2300.56 2296.16 

 3 2331.53 2331.53 2331.53 2331.53 2334.86 2595.47 2307.49 2322.26 

 4 2370.80 2370.80 2370.80 2370.80 2372.39 2641.36 2364.14 2376.89 

 5 2526.77 2526.77 2526.77 2526.77 2532.03 2737.01 2507.55 2495.05 

 6 2321.01 2321.01 2321.01 2321.01 2325.13 2589.97 2301.17 2314.91 

 7 2461.22 2461.22 2461.83 2461.22 2462.06 2692.74 2457.14 2463.24 

 Overall 16566.78 16566.78 16567.58 16566.78 16587.49 18417.12 16471.54 16503.43 

S2 1 2307.52 2307.52 2309.86 2307.52 2320.51 2264.87 2131.63 2174.37 

 2 2158.36 2158.36 2155.31 2158.36 2159.50 2185.09 2062.58 2101.76 

 3 1997.72 1997.72 1997.03 1997.72 1997.42 2231.84 1938.01 1962.92 

 4 1660.69 1660.69 1660.69 1660.69 1660.89 1969.28 1646.73 1661.21 

 5 1480.44 1480.44 1481.13 1481.13 1481.59 1815.46 1471.32 1482.86 

 Overall 9604.72 9604.72 9604.01 9605.41 9619.90 10466.53 9250.26 9383.11 
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(a) Ship S1 over 7 round trips 

 

(b) Ship S2 over 5 round trips 

Fig. 14.  Influence of ship fuel efficiency model choice on on-shore speed optimization results 
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Table 6.     Achievable bunker fuel consumption with optimal speeds based on different ship fuel efficiency models and optimal trim settings via 

C1 (unit: MT) 

 

Ship Trip CBC CBC’ ADM ADM’ NLR MLR ANN (C2) ANN (C3) 

S1 1 2150.16 2150.16 2150.14 2150.16 2148.38 2483.66 2149.54 2142.61 

 2 2213.24 2213.24 2213.24 2213.24 2223.30 2424.90 2207.83 2187.59 

 3 2218.44 2218.44 2218.44 2218.44 2225.34 2486.49 2208.28 2204.80 

 4 2277.22 2277.22 2277.22 2277.22 2278.42 2514.55 2278.06 2260.01 

 5 2444.42 2444.42 2444.42 2444.42 2443.56 2627.64 2426.30 2406.93 

 6 2245.17 2245.17 2245.17 2245.17 2244.47 2477.80 2223.86 2207.55 

 7 2350.37 2350.37 2349.99 2350.37 2351.55 2559.64 2328.35 2314.22 

 Overall 15899.01 15899.01 15898.61 15899.01 15915.03 17574.68 15822.22 15723.72 

S2 1 2176.24 2176.24 2179.04 2176.24 2187.95 2195.20 2009.87 1989.20 

 2 2030.92 2030.92 2029.15 2030.92 2034.00 2122.69 1941.93 1903.70 

 3 1903.95 1903.95 1903.86 1903.95 1903.35 2171.87 1852.37 1848.27 

 4 1581.10 1581.10 1581.10 1581.10 1581.87 1920.00 1566.22 1564.84 

 5 1429.14 1429.14 1429.88 1429.88 1430.25 1758.03 1422.33 1419.04 

 Overall 9121.35 9121.35 9123.02 9122.09 9137.43 10167.80 8792.72 8725.04 
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(a) Ship S1 over 7 round trips 

 

(b) Ship S2 over 5 round trips 

Fig. 15. Benefits of introducing trim optimization at sea (C1)
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It can be seen from Fig. 15 that when compared to speed optimization alone, the application 

of trim optimization at sea can save an additional 3.94% (4.03% if [MLR] is excluded) to 4.72% 

of bunker fuel for ship S1, and save 2.85% (4.95% if [MLR] is excluded) to 7.01% of bunker fuel 

for ship S2. This further demonstrates the benefits of trim optimization at sea. 

Fig. 15 also shows the superiority of conducting complicated simultaneous speed and trim 

optimization on shore with an accurate ship fuel efficiency model (ANN). The achievable fuel 

consumption with C3 is 1.10% (ship S1) and 4.34% (ship S2) lower than that obtained by speed 

optimization with [CBC] plus trim optimization at sea. This finding justifies the value of adopting 

the methodology in C3. 

4.3. Multiobjective Onshore Speed Optimization 

Mansouri et al. (2015) noted the necessity of considering multiple objectives in shipping 

operations to enhance environmental sustainability while maintaining certain levels of shipping 

service. Lee et al. (2018) further developed stepwise service level functions to reflect port operators’ 

tolerance of ships’ arrival delays when addressing ship speed optimization over a round service. 

Our speed optimization models ([DPSPEED] and [DPSPEED-TRIM]) can be retrofitted to include 

multiple objectives by using the - constraint approach.  

To illustrate this, model [DPSPEED] is retrofitted to construct a bi-objective speed 

optimization model that considers both bunker fuel consumption and the ship’s arrival delays at 

the destination port. Two long-haul voyages are used as numerical examples: Voyage 1 represents 

one of ship S1’s journeys from Jebel Ali to Singapore (3466 nm, 8.6 days), and Voyage 2 

represents one of ship S2’s journeys from Singapore to Jebel Ali (3479 nm, 7.6 days). Fig. 16 

shows the Pareto frontiers of these two voyages. For bunker fuel consumption, the optimal 
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objective of speed optimization and the fuel consumption of speed optimization plus trim 

optimization at sea are both illustrated. 

 

(a) Voyage 1 (ship S1): Jebel Ali to Singapore 

 

 

(b) Voyage 2 (ship S2): Singapore to Jebel Ali 

Fig. 16. Pareto frontier of multiobjective speed optimization 
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The shipping company could balance its interests in fuel consumption and arrival lateness 

(delay) at the destination port through the Pareto frontier. The Pareto frontier for Voyage 1 is quite 

smooth. By contrast, the Pareto frontier for Voyage 2 shows that ship S2 could save 7.00 MT of 

bunker fuel if it arrives at Jebel Ali 2 hours after the ETA. If arrival delays of 4, 6, and 8 hours are 

allowed, these bunker fuel savings increase to 13.78, 19.94, and 22.56 MT, respectively. These 

arrival delays might be acceptable in practice as long as the arrival time does not deviate 

excessively from the contracted time window. Fig. 16 further illustrates the benefits of adopting 

trim optimization at sea, compared to speed optimization alone. Fig. 16(b) shows that if trim 

optimization is also adopted at sea, ship S2 can nearly fulfil the fuel savings corresponding to an 

arrival delay of 11 hours, while still maintaining ETA.  

5. Conclusions and Discussion 

This study introduces to the academic community the ship speed and trim optimization 

problem over a voyage. To address the industry requirements for this problem, two ANN models 

for ship fuel efficiency are constructed to enable us to predict a ship’s fuel consumption rate given 

its sailing speed, displacement, trim, and weather and sea conditions, with or without directional 

information of wind, waves and sea currents. With this prediction capability, we propose three 

optimal solution countermeasures in a two-phase planning framework for this speed and trim 

optimization problem: sailing speeds are optimized in an on-shore planning phase, while trim 

optimization is conducted dynamically by the captain in real time when the actual weather and sea 

conditions at sea are observed. Trim optimization with [ANN1] in the real-time phase can be easily 

solved by the enumeration method, which represents our first countermeasure (C1). The other two 

countermeasures (C2 and C3) adopt C1 for real-time trim optimization at sea, and also include 

speed optimization on shore. In onshore speed optimization, C2 ignores the possible influence of 



53 
 

trim on ship fuel efficiency by fixing the trim at zero, which makes a DP model workable in terms 

of both solution effectiveness and efficiency. To allow more informed speed decisions, it is 

necessary to optimize speed and trim simultaneously in the onshore speed planning phase due to 

their closely interwoven influences on ship fuel efficiency. C3 addresses this simultaneous speed 

and trim optimization problem with a two-step global optimization algorithmic procedure that 

combines DP and a state-of-the-art simulation-based optimization approach. The models and 

solution algorithms in this study are all driven by the black-box characteristic of the ANN ship 

fuel efficiency models. Hence, this is evidently a data-driven optimization study (Simchi-Levi, 

2013) and could not have been conducted without the voyage report data provided by our industry 

collaborators. 

Our methodological contributions to the literature on ship speed optimization are twofold. 

(a) This study introduces a highly accurate ANN model for ship fuel efficiency analysis to the 

problem of ship speed optimization. Compared to existing studies, adopting ANN in speed 

optimization (C2) for one thing makes the estimated fuel consumption much closer to the actual 

achievable fuel consumption in reality, and for another may create the possibility of remarkable 

bunker fuel savings via speed optimization. (b) This study takes the initiative to factor the influence 

of trim on ship fuel efficiency into speed optimization, by considering the closely interwoven 

influences of speed and trim on ship fuel efficiency. Numerical experiments have shown that 

simultaneous speed and trim optimization will enable onshore officers to make more informed 

speed decisions.  

As far as the contribution to existing studies of ship trim optimization is concerned, this 

study overcomes the drawbacks of trim tables and charts, upon which the trim optimization 

literature focuses, in the sense that trim tables and charts are unable to reflect consideration of 
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weather and sea conditions. Numerical experiments have also revealed that no matter what data 

model is adopted for ship fuel efficiency analysis in onshore speed optimization, the additional 

application of dynamic trim optimization at sea (C1) would always be beneficial and bring 

considerable bunker fuel savings. 

The experimental results of the three countermeasures compared to the real situation are 

extremely encouraging. Experiments with two 9000-TEU containerships show that (a) C1 saves 

4.96% and 5.83% of bunker fuel for the two ships, compared to the real situation; (b) C2 increases 

the bunker fuel savings to 7.63% and 7.57%; and (c) C3 further enhances the savings to 8.21% 

and 8.29%. These bunker fuel savings and the resulting mitigation of CO2 emissions are significant. 

This study is highly consistent with IMO’s promotion of improved voyage planning as a fuel-

efficiency measure (IMO, 2012), and with the appeals of ClassNK, a leading ship classification 

society, for the evolution from eco-ships to eco-shipping, which highlights the roles of data 

analytics and managerial approaches in improving ship fuel efficiency (Nakamura, 2015). 

The most important insight of this study for the shipping industry is the discovery that the 

proposed two-phase optimal solution countermeasures can considerably improve the industry 

status quo in ship speed and trim optimization over a voyage, leading to remarkable fuel cost 

savings and emission reductions. Such an insight is not yet apparent to the industry. At the same 

time, we note that the shipping industry is very conservative. A new initiative taken by a shipping 

company may be resisted not only by the internal pressure of the company, but also by ship owners, 

port operators, and shippers. Shipping companies are thus reluctant to share data, which has led to 

the dearth of data-driven research (Christiansen et al., 2013; Fransoo and Lee, 2013; Meng et al., 

2014; Lee and Song, 2017). For this reason, our three countermeasures are introduced in an 

incremental manner. As a first step, we will work with the shipping company regarding field 
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implementation of C1, which requires the least change of the state-of-the-art shipping practices. 

After that, C2 and C3 will be implemented gradually, and we envision that they will be 

implemented using a rolling horizon, with the speed for each segment updated each day to 

compensate for uncertainties in future weather and sea conditions. 

However, this does not mean that these three countermeasures will be adopted in the 

shipping industry very soon. First, providing a technical solution does not mean overcoming 

cultural barriers. The implementation of speed optimization in C2 or C3 requires that captains 

adopt the daily speed suggestion from the onshore officers. This would cause resistance from 

captains because this new practice erodes their authority as endowed by the long history of 

commercial shipping. Second, communication between the various players in the shipping industry 

is accompanied by complicated issues of autonomy and mutual trust. For instance, the IMO noted 

that trim optimization is ignored in the great majority of cases in shipping practice and more 

companies have opted out of trim optimization in the recent development of energy efficiency 

regulations, because the fuel-saving performance of the trim tables or curves estimated by the CFD 

approach is not convincing to captains at sea (IMO, 2016). We face a similar issue in voyage speed 

optimization. Some WISPs and/or ship classification societies have actually begun to provide the 

commercial service of fine adjustments to daily sailing speeds over a voyage to save bunker fuel. 

However, the fuel efficiency estimation behind these services is also based on ship motion models 

and hydrodynamics and aerodynamics calculations in computers, which still provokes skepticism 

from captains about the reliability and economic value of these services. This study provides a 

complementary solution to the existing industry solutions and practices based on voyage report 

data (which should be more convincing from the perspective of shipping companies), but 

confirmation of its performance in sea trials will take considerable time. It is also possible for 
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WISPs to implement the models in this study in their software and promote them throughout the 

industry. 

In the era of eco-shipping, multiple sources of data related to ship fuel efficiency are 

available, such as voyage report data, data returned by advanced sensors around the ship, and 

detailed weather and sea information from WISPs or other organizations. Exploring the methods 

and benefits of combining these data sets in ship voyage management would emerge as a promising 

beam of research in the community of maritime studies (Coraddu et al., 2017; Fujitsu, 2016; 

Yoshida, 2017). For instance, the information on weather and sea conditions contained in each 

voyage report data entry is a snapshot of the whole day, and this should be corrected as the average 

condition on the corresponding day. The data correction in this study was performed manually by 

our industry collaborators with the data from their WISPs. This may be improved by a data parser 

in the form of a software package suggested by Lee et al. (2018) that can parse and process the 

weather information from publicly accessible data sets (e.g., Copernicus data). Certainly, studies 

of data analysis and optimization models based on these separate and/or combined data sets are 

also important.   
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