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dynamics model with the real-world license plate recognition (LPR) data. Due to the highly 

nonlinear and multi-modal response function in the calibration of the optimization problem, 
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approaches are inapplicable to deal with the calibration work. In this paper, a surrogate-based 

simulation optimization approach is proposed to deal with the expensive-to-evaluate response 

function in the day-to-day dynamics calibration work. More specifically, the kriging metamodel 

is adopted to surrogate the optimization function of the calibration process. With this meta-

modeling approach, a sound solution can be achieved with only a few sampling points in a 

comfortably afforded computation burden, thus giving a valid estimation of the parameters in 

the day-to-day dynamics model. Finally, a case study based on the real-world LPR data is 

conducted to validate the proposed model and calibration method.  

Keywords: Traffic; Calibration; Day-to-day dynamics; Simulation-based optimization; 

License plate recognition (LPR) data 

This is the Pre-Published Version.https://doi.org/10.1016/j.trc.2019.06.009

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:zhiyuanl@seu.edu.cn


-2- 

1 Introduction 

Traffic assignment problem is the last step of the classical four-step transportation 

forecasting model, which is a special case of the most general partial share demand modeling 

approach. Conventional traffic assignment approaches assume that the network characteristics 

(e.g., road capacity and infrastructure construction) and the traffic demand keep unchanged for 

a relatively extended period. However, a stable equilibrium state may never be achieved in real 

life due to the variation of network demand and infrastructure during the planning period. The 

traffic dynamics model that focuses on the one-shot final stable equilibrium state is usually 

classed as the within-day dynamics model. The within-day dynamics model can be dated back 

to Merchant and Nemhauser (1978a, 1978b) and since then a lot of researches are focused on 

this area, and interested readers are referred to Peeta and Ziliaskopoulos (2001), Szeto and Lo 

(2006), Mun (2007) for a comprehensive review. In contrast, another type of dynamic traffic 

assignment patterns, termed as day-to-day dynamics models, takes into consideration the 

network evolution over days, and road users can learn from the past experiences and adjust their 

route choice behaviors from day to day during this period. The day-to-day dynamics model can 

be traced back to Horowitz (1984), Smith (1984), Cascetta (1989), Cascetta and Cantarella 

(1991), Friesz et al. (1994), Cantarella and Cascetta (1995), just to name a few. Recently, the 

day-to-day dynamics models have been applied to model the unexpected network disruption 

(He and Liu, 2012), dynamic congestion pricing (Liu et al., 2017), adaptive pricing with park-

and-ride (Liu and Geroliminis, 2017), design of transit operator strategies (Cantarella et al., 

2015), urban railway network (Wu et al., 2013) and intelligent transportation systems 

(Cantarella, 2013), etc.  

Day-to-day dynamics models are essential to describe travelers’ route choice and route 

switching behaviors each day; inevitably the route adjustment ratio is vital for all of the day-to-

day dynamics models. All the existing day-to-day dynamics models are approached either 

theoretically or experimentally. From a theoretical point of view, the day-to-day dynamics is 

formulated as the evolution process of the network state variables (including link/route flows 

and costs) over successive time periods such as days or weeks, either as a deterministic (e.g. 

Guo et al., 2016) or stochastic (e.g. Cantarella and Watling, 2016) process, in continuous (e.g. 

He et al., 2010) or discrete (e.g. Cantarella, 2013) time. The focus of many existing studies is 
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on the theoretical issues such as the convergence of defined dynamic processes and stability 

properties of the network equilibrium, rather than implementation ones like the calibration 

against observed data. They usually take a plausible constant as the route adjustment ratio, 

leading to the lack of practical application value of these models. As for experimental analysis 

(e.g., Meneguzzer and Olivieri, 2013; Ye et al., 2018), the day-to-day dynamics models observe 

travelers’ route choice directly and route switching behaviors over time. However, the 

experimental analysis of day-to-day dynamics is based on the laboratory-like or simulated-

based controlled experiments with hypothetical choice situations and a limited number of 

participants in simple networks. Therefore, it is an emerging research need to investigate the 

day-to-day dynamics from travelers’ actual travel behaviors and to calibrate and validate the 

day-to-day dynamics with real-world data. 

License plate recognition (LPR) data are burgeoning and useful data sources in urban and 

highway transportation systems (Zhan et al., 2015). LPR data are widely used in the electronic 

toll collection systems, traffic monitoring systems and law enforcement systems. The recorded 

information of LPR data is abundant, including the vehicle license plate number, vehicle type, 

timestamp at the stop lines, instantaneous speed, intersection name, and intersection number, 

etc. For example, according to the Ministry of Public Security (2016), the recognition accuracy 

of the license plate number in China should be no less than 95% in the daytime, and no less 

than 90% in the nighttime. Such a high recognition accuracy makes it suitable to use the LPR 

data to re-identify the same vehicle through successive intersections. Specifically, the LPR 

cameras record the license plate numbers and timestamp sequences for all passing vehicles 

departing from the stop line of the road, and we can trace the same vehicle between upstream 

and downstream intersections regarding the license plate number and timestamp sequence. 

Thus the trajectories of vehicles can be acquired. In this study, we will take full advantages of 

the LPR data to investigate the day-to-day dynamics of route choice and route switching 

behaviors, and calibrate as well as validate the day-to-day dynamics with LPR data. 

The calibration of day-to-day dynamics model is extremely complicated to deal with 

because of the highly nonlinear and multi-modal response function in the optimization problem 

(as shown in Section 3.2). For example, when we calculate the response for a particular input 

variable, we need to first obtain the traffic flows and costs from the first day to the last day in 
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terms of the flow and cost updating processes in the day-to-day dynamics model without a 

closed-form function, which is a tedious work especially when the network size is large-scale 

and the period is long-term. Therefore, the calibration of day-to-day dynamics model cannot be 

handled with the gradient-based nonlinear regression algorithms or other analytical 

optimization approaches. In order to solve this complicated problem, we use a surrogate-based 

simulation optimization approach to deal with the expensive-to-evaluate response function1. 

More specifically, the kriging metamodel is adopted to surrogate the optimization function of 

the calibration process. With this meta-modeling approach, a sound solution can be achieved 

with only a few sampling points in a comfortably afforded computation burden, thus giving a 

valid estimation of the parameters in the day-to-day dynamics model. 

1.1 Literature review 

The day-to-day dynamics model is one category of the dynamic traffic assignment models 

describing the network flow evolutionary process and has been extensively studied since 

Horowitz (1984) and Smith (1984). The day-to-day dynamics model can be formulated as either 

deterministic process models with the steady state of user equilibrium (e.g., Smith, 1984; Smith 

and Wisten, 1995; Cho and Hwang, 2005; Yang and Zhang, 2009; Bie and Lo, 2010; Cantarella 

and Watling, 2016), stochastic user equilibrium (e.g., Cantarella and Cascetta, 1995; Smith and 

Watling, 2016) and boundedly rational user equilibrium (e.g., Mahmassani and Chang, 1987; 

Guo and Liu, 2011; Wu et al., 2013; Di et al., 2015; Ye and Yang, 2017); or stochastic process 

models with the steady state as the equilibrium probability distribution (e.g., Cascetta, 1987, 

1989; Cascetta and Cantarella, 1991; Davis and Nihan, 1993; Hazelton, 2002; Hazelton and 

Watling, 2004; Parry and Hazelton, 2013; Watling and Cantarella, 2013; Watling and Cantarella, 

2015; Hazelton and Parry, 2016). 

However, as claimed in Mahmassani (1990), the difficulty of day-to-day dynamic traffic 

assignment model is to verify the day-to-day evolutionary process based on real-world observed 

data. Some studies investigated the influencing factors (such as information, experience, risk, 

uncertainty, etc) of day-to-day dynamics with simulation and laboratory-like experiments (e.g., 

Mahmassani and Chang, 1986; Mahmassani, 1990; Hu and Mahmassani, 1997; Lotan, 1997; 

 
1 It should be noted that the concept of ‘simulation’ here refers to a random observation of the network systems. 
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Mahmassani and Jou, 2000; Srinivasan and Mahmassani, 2003; Avineri and Prashker, 2005; Lu 

et al., 2011; Ben-Elia et al., 2013; just to name a few). However, the calibration of the day-to-

day dynamics model is sparse. He and Liu (2012) modeled the day-to-day dynamic traffic flow 

evolutionary process with a prediction-correlation model in a link-based approach. Their 

proposed model is calibrated and validated based on the field data after the collapse of I-35W 

Mississippi River Bridge in Minneapolis, Minnesota. On the contrary, Meneguzzer and Olivieri 

(2013) calibrated a route-based day-to-day dynamics model based on a laboratory-like 

experiment with 30 participants. Ye et al. (2018) also calibrated the parameters of different 

route-based day-to-day dynamics models based on a virtual experiment with 268 participants 

in a three-path network. However, in many existing studies, the route choice behaviors of day-

to-day dynamics were not considered, and also the network size and number of participants 

were restricted with controlled experiments. In this paper, we will bridge these gaps and 

calibrate the route-based day-to-day dynamics model with real-world LPR data, which can 

better reflect the actual route choice and route change behaviors from day to day. 

The simulation-based optimization approach has also been widely used to solve the 

problems of congestion pricing (Chen et al., 2016; He et al., 2017), traffic signal control (Chong 

and Osorio, 2015; Osorio and Bierlaire, 2013; Osorio and Nanduri, 2015a, 2015b), transit 

scheduling (Zhang and Xu, 2017), vehicle sharing (Cardin et al., 2017), supply chain 

management (Noordhoek et al., 2018), liner shipping (Dong and Song, 2009), etc. In general, 

there are three classes of methods for the simulation-based optimization, including the direct-

search method, the stochastic gradient method, and the metamodel (or surrogate) method 

(Osorio and Bierlaire, 2013). Among these methods, the metamodel method is favored due to 

the determinacy of the metamodel response(s), thus making it computationally more efficient 

than other methods. The metamodel is an approximated model that is inexpensive to compute 

to describe the original model with the complicated and computationally expensive response(s). 

The metamodel method includes the response surface method, the regression spline method, 

the spatial correlation (also known as the kriging) method, the radial basis function (RBF) 

method, and the neural network method (Barton and Meckesheimer, 2006; Chen, 2017). The 

similarity of these models is that they are approximated models, rather than exact optimization 

models. The differences are mainly in the approximating functions: 1) the response surface 
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method uses first or second order polynomial probability models to fit the system response; 2) 

the regression spline method uses piecewise polynomial basis functions to fit the objective 

function; 3) the spatial correlation method, which is also known as the kriging method, 

estimates the interpolated function values based on a Gaussian process governed by the 

covariance of previously known data; 4) the radial basis function (RBF) method approximates 

the response with a series of radially symmetric functions whose center are at different points; 

and 5) the neural network method typically approximates the response with multi-layer neural 

networks and now is widely used in artificial intelligence and machine learning algorithms. For 

a comprehensive review of the metamodel, we refer readers to Forrester and Keane (2009), Han 

and Zhang (2012) and Kleijnen (2017). 

The kriging model is a widely-used surrogate model (or metamodel). We choose the 

kriging metamodel in this paper because it is more flexible than polynomial regression models 

in fitting arbitrary smooth response functions and less sensitive than other meta-models (such 

as RBF) to a small change in the design of experiment (Barton and Meckesheimer, 2006). The 

kriging method dates back to the early 1960s in the geology literature (Cressie, 1990), and has 

been successfully adopted in statistics and global optimization problems (Jones et al., 1998; 

Sacks et al., 1989). Sacks et al. (1989) proposed a DACE (which is the acronym of design and 

analysis of computer experiments) algorithm for spatial correlation parametric regression based 

on kriging method. The DACE algorithm is then extended to an efficient global optimization 

(EGO) in Jones et al. (1998) by introducing a diagnostic test based on cross-validation and 

infilling new points with maximization of expected improvement (EI). The outline of the EGO 

algorithm is summarized as follows: 1) build an easy-to-compute kriging metamodel for the 

complicated response function; 2) cross-validation; 3) find the new point which maximizes the 

EI; 4) add the new point, evaluate it and update the kriging metamodel. Interested readers may 

refer to Kleijnen (2009, 2017) for a comprehensive review of the kriging metamodel.  

1.2 Objectives and contributions 

This paper aims to investigate the day-to-day traffic flow evolutionary process from the 

viewpoint of travelers’ route choice behaviors, and calibrate and validate the route based day-

to-day dynamics model with real-world data. Due to the highly nonlinear and multi-modal 
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response function in the optimization problem, it is extremely complex to calibrate the 

parameters in the day-to-day dynamics model, especially when the network size is large-scale 

and the period is long-term. Thus, a surrogate-based simulation optimization approach is 

proposed to deal with the expensive-to-evaluate response function. With this surrogate-based 

simulation optimization approach, the parameters in the route based day-to-day dynamics 

model can be well calibrated. To sum up, the contributions of this paper are threefold: 1) a 

surrogate-based simulation optimization approach is proposed to calibrate the classic 

deterministic process of route based day-to-day dynamic model; 2) the proposed route-based 

day-to-day dynamics model is validated with the surrogate-based simulation optimization 

approach based on the real-world license plate recognition data; 3) some insights for the 

parameters are discussed in this paper.  

The paper is organized as follows: Section 2 first introduces the network representation 

and notations used in this paper and then proposed a general framework of the route based day-

to-day dynamics model. Section 3 introduces the methodology, including how to trace vehicles’ 

trajectories with LPR data and the surrogate-based simulation optimization approach for 

calibrating the route based day-to-day dynamics model. Section 4 conducts a case study with 

the LPR data obtained in Yuyao City, China to calibrate and validate the route based day-to-day 

dynamics model and the proposed surrogate-based simulation optimization approach, and 

analyses the results of the calibration work. Finally, Section 5 concludes this study and gives 

some future research directions.  

2 Problem Description 

2.1 Network representation and notations  

Consider a general and strongly connected transportation network, which is represented 

by ( , )G N A= , where N  is the set of nodes and A  is the set of directed links. We denote 

the set of OD pairs by W , the set of paths between OD pair w W  by 
wK , and the demand 

of OD pair w W   by 
wq  . 

wkf   denotes the traffic flow of route 
wk K  , and 

( , )w wk wf k K= f  . 
av   denotes the traffic flow on link a A  , and ( , )av a A= v  . Let t  
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denote the time epoch, which is a particular day in the calendar. Then, t

wkf  is the traffic flow 

of route 
wk K   on day t  , and ( , )t t

w wk wf k K= f  . Other notations in this paper are 

summarized in Table 1.  

Table 1: Summary of the notations used in the day-to-day dynamics model 

Notation Explanations 

W  Set of OD pairs 

w  OD pair w W  

wK  Set of routes between OD pair w W   

k  Traffic route 
wk K   

wq  Traffic demand between OD pair w W   

t

wC   Vector of forecasted costs between OD pair w  on day t  

t

wkC   Forecasted cost of route k  between OD pair w W  on day t  

t

wc   Vector of actual costs between OD pair w  on day t  

t

wkc   Actual cost of route k between OD pair w W  on day t  

t

wf  Vector of route flow between OD pair w  on day t  

t

wkf   Traffic flow of route k  between OD pair w W  on day t   

t

wR   Matrix of route adjustment ratio for OD pair w  on day t  

,

t

k jr   

Route adjustment ratio, i.e., the portion of travelers choosing route j  on day 

1t −  but switching to route k  on day t , , 1, ,
w

t

k j wk K
r j K w W


=     

t

wkp   
Choice probability of route k  between OD pair w W  on day t  in terms 

of the utility function 

   Weighting parameter used for adjusting the forecasted cost on the next day 

   
Reconsideration ratio, i.e., the portion of travelers who will reconsider the 

route choice decisions of the previous day in the next day 

   Dispersion parameter in the logit-type function 

2.2 A general framework of route based day-to-day dynamics model 

Day-to-day dynamics models are of great value in describing travelers’ route choice and 

route adjustment behaviors from epoch to epoch. To model the evolution process of the day-to-
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day dynamics, network state variables of flows and costs can be represented as link-based or 

route-based models. Link-based day-to-day dynamics models formulate the network evolution 

process in terms of the link flows and costs, of which the initial values can be easily observed 

(He et al., 2010; Zhou et al., 2017). However, in a link-based day-to-day dynamics model, the 

flow adjustment process is reflected with the aggregated link flows, which cannot directly 

observe the route choice and adjustment behavior of travelers. On the contrary, route-based 

models trace travelers’ route choices and model the route adjustment process from day to day, 

thus can reflect travelers’ route choice behavior during the adjustment process. The focus of 

this paper is on the calibration and validation of day-to-day dynamics from the perspective of 

user behavior, thus only route-based models are considered here.  

Generally, the day-to-day dynamics models involve two aspects: a) travelers’ learning and 

forecasting behavior (i.e., cost updating model), and b) travelers’ route choice updating 

behavior (i.e., flow updating model). The cost updating model describes how previous 

experience (mainly refers to the costs of previous days) influences the forecasted cost on the 

next day, while the flow updating model describes how present choices are influenced by the 

decisions of previous days and then updates the network flows.  

2.2.1 Cost updating model 

In principle, the cost updating model can be formulated by a disaggregate assignment 

model, i.e., the forecasted cost on route 
wk K  of user i  on day t  depends on the actual 

and forecasted route costs on previous days, which is expressed as follows: 

 , , 1 , 1 , 2 , 2( , , , , )i t i t i t i t i t

wk wk wk wk wkC C C c C c− − − −=   (1) 

 
, , 1 , 1 , 2 , 2( , , , , )w

i t i t i t i t i t

w w w w

− − − −=C C C c C c   (2) 

where the capital ,i t

wkC  and the lowercase ,i t

wkc  represent the forecasted and actual costs on 

route 
wk K  of user i  on day t , respectively, and the bold ,i t

wC  and ,i t

wc  are the vectors 

of ,i t

wkC  and ,i t

wkc . 

As claimed in Cascetta (2009), however, the disaggregate model would be complex for 

route choice models in terms of the random utility theory, making it not applicable to analyze 

the aggregated route flows. Therefore, an aggregated route-based model is more suitable. More 

specifically, in an aggregated cost updating model, the forecasted cost is a function of the actual 
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and forecasted route costs on the previous days, which can be expressed as follows: 

 1 1 2 2( , , , , )t t t t t

wk wk wk wk wkC C C c C c− − − −=   (3) 

 1 1 2 2( , , , , )t t t t t

w w w w w

− − − −=C C C c C c   (4) 

where the capital t

wkC  and the lowercase t

wkc  represent the aggregated forecasted and actual 

costs of route 
wk K  on day t , respectively, and the bold t

wC  and t

wc  are the vectors of 

t

wkC  and t

wkc . 

For the sake of simplicity, the forecasted cost on day t  is usually assumed to depend only 

on the forecasted cost 1t

w

−
C  and the actual cost 1t

w

−
c  on day 1t − : 

 1 1( , )t t t

w w w

− −=C C C c   (5) 

As for the cost function, we assume it only depends on the forecasted cost as well as the 

actual cost on the previous day. Actually, one can assume that the current day’s forecasted cost 

depends on all of the previous days’ route choice, implying that travelers never forget any 

experiences in the past. Such a model is regarded as an infinite learning process as claimed in 

Cantarella and Watling (2016). However, the travelers’ route choice behaviors are highly 

influenced by unexpected incidents occurring more recently (Liu et al., 2017). Thus, some other 

researches (e.g., Cascetta, 1989; Cantarella and Watling, 2016; Liu et al., 2017) assume that 

travelers’ route choice behaviors are only influenced by the most recent days (such as the most 

recent m days), resulting in a finite learning process. Compared to the above mentioned finite 

learning process model, the cost function adopted in this paper is a special case with m=1, and 

it is also widely assumed in the day-to-day dynamics model (e.g., Bie and Lo, 2010; Davis and 

Nihan, 1993; Guo et al., 2016; He and Liu, 2012; Hu and Mahmassani, 1997; just to name a 

few). It should be noted that the model can be easily extended when more than one day’s 

memory is considered. For example, if we consider three days’ memory, i.e., 

3 3
1

1 1

(1 )t t i t

w i w i w

i i

 − −

= =

= + − C c C  , then we need to calibrate two more parameters in the 

experiment. The length of memory does not influence the framework of other portions in the 

day-to-day dynamics model. 

It is worth noting that Eq. (5) is a recursive equation because the actual costs on days 

prior to t-1 will influence the forecasted cost  1t

w

−
C , thus the choice behavior on day t is still 

implicitly influenced by the actual costs on days prior to  t-1. We use an exponential filter to 
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formulate the cost updating model, that is, the forecasted cost on day t   is a convex 

combination of the actual route cost 1t

w

−
c  and the forecasted cost 1t

w

−
C  on day 1t − , which is 

shown as follows (Cantarella and Cascetta, 1995): 

 1 1(1 )t t t

w w w − −= + −C c C   (6) 

where (0,1]   is the weight to adjust the forecasted cost on day t  in terms of the actual 

cost and forecasted cost on day 1t − .  

2.2.2 Flow updating model 

The flow updating model reflects the flow evolution process from day to day. In a flow 

updating model, one of the most important elements is the route adjustment ratio. We denote 

,

t

k jr  as the portion of travelers choosing route j  on day 1t −  but switching to route k  on 

day t . For a specific OD pair w , it is obvious that , 1,
w

t

k j wk K
r j K


=   . Then the route 

flow updating model can be formulated as follows: 

 
1

, , ,
w

t t t

wk k j wj w

j K

f r f k K w W−



=        (7) 

To express it in a vector form, we can obtain the following formulations: 

 1,t t t

w w w w W−=   f R f   (8) 

The route adjustment ratio matrix t

wR  is usually formulated as a function of the forecasted 

cost in Eq. (6), namely: 

 ( )t t

w w=R R C   (9) 

Combining with Eq. (8), the route flow can be obtained as follows: 

 1( )t t t

w w w

−= f R C f   (10) 

From the perspective of user behavior, when we model the route updating process, there 

are some travelers who repeat the previous day’s route choices without any reconsiderations, 

while the others reconsider the previous day’s choices and decide whether changing to a new 

route with a probability model. This process can also be captured with an exponential filter 

model: 

 , (1 ), ,t t

j j wj wr p j K w W =  + −       (11) 
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 , , , , ,

w

t
t twk

k j wk w wt

wl

l K

p
r p j k j K k K w W

p
 



=  =       


  (12) 

where   is the reconsideration ratio, i.e., the portion of travelers who will reconsider the 

previous route choice decisions, and t

wkp  is the route choice probability that a traveler who 

chooses route 
wk K  on day t  in terms of the Eq. (16) discussed later. We can see that the 

flow conservation condition still holds: 

 

, , ,

(1 )

(1 )

(1 )

1

w
w

w

w

w

w

t t t

k j j j k jj K
k K k j

k K

t t

wj wkj K
k j
k K

t

wk

k K

r r r

p p

p

  

 

 


 









= +

=  + − + 

=  + −

= + −

=

 



   (13) 

With the above discussion, the route flow updating model can be reformulated as: 

 

1

,

1 1

, ,

1 1

,

1 1

1 1

(1 )

(1 )

= (1 ) , ,

w

w

w

w

w

t t t

wk k j wj

j K

t t t t

k j wj k k wj

j k
j K

t t t t

k j wj wk wk

j k
j K

t t t

wk wj wk

j K

t t t

wk wj wk w

j K

f r f

r f r f

r f p f

p f f

p f f k K w W

 

 

 

−



− −




− −




− −



− −



= 

=  + 

 =  +  + −  

=   + − 

  + −     











  (14) 

Note that 
1

w

t

j wj K
f q−


= , then we can obtain the route flow (Cantarella and Cascetta, 

1995): 

 1(1 ) , ,t t t

wk w wk wk wf q p f k K w W  −=   + −        (15) 

Generally, the route choice probability t

wkp  is calculated in terms of the random utility 

theory. It is assumed that the error terms of the perceived utilities associated with all paths 

follow the Gumbel distribution, thus the logit-type function can be adopted here to obtain the 

route choice probability: 

 , ,

t
wk

t
wj

w

C
t

wk wC

j K

e
p k K w W

e





−

−



=    


  (16) 
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where    is related to the perceived utility standard deviation (SD) by the form of 

( ) 6t

wkSD C  =  for all of the days. A large value of   indicates a small standard deviation, 

i.e., the perception error is small and travelers will tend to choose the path with minimum cost. 

When   approaches infinite, then it becomes deterministic user equilibrium problem. If the 

value of   is small, the standard deviation will be large, and the perception error will be large. 

Thus, travelers will use many different routes and some of them may be much expensive than 

the shortest path (Sheffi, 1985). 

Substituting Eq. (16) into (15) and aggregating it in a vector form, then we can obtain 

that: 

 1( ) (1 )t t t

w w w wq  −=   + − f p C f   (17) 

It should be noted that the flow t

wf  in Eq. (17) contains two components (Liu et al., 

2017): the one is inertia, which reflects the part of travelers who will insist on the route choices 

the same as the previous day; and the other is regret, which reflects those travelers who will 

change to another route different from the previous day. However, we cannot just treat the first 

term in Eq. (17) as the regret and the second term as the inertia, because the first term indicates 

the reconsideration portion of travelers, namely, these reconsidered travelers may still insist on 

the previous route. Actually, the regret and inertia effects are integrated in the cost updating and 

flow updating models. 

The day-to-day dynamics model introduced above is a deterministic process model, which 

is in line with the classic work of Cantarella and Cascetta (1995). As claimed in Cantarella and 

Cascetta (1995), the general framework of the deterministic day-to-day dynamics model 

proposed in their paper can evolve towards many different types of attractors (e.g., fixed-point 

equilibrium state, periodic equilibrium state, and chaotic state). It should be noted that LPR 

data collected for the calibration of day-to-day dynamcis model is neither from an equilibration 

state, nor after a disruption; thus, the general deterministic process model of day-to-day 

dynamics proposed in Cantarella and Cascetta (1995) is a very suitable alternative for this paper. 

It is obvious that in the day-to-day dynamics model,   ,    and    are three 

parameters to be calibrated. To simplify the notation, in the kriging metamodel introduced in 

the next section, we group these three parameters in a set and denote it by ( , , )  =x , and 
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say x  is a set of variables in the kriging metamodel. In the next section, we will introduce 

how to trace vehicle’s trajectory based on the LPR data and how to calibrate and validate the 

day-to-day dynamics model based on the surrogate-based simulation optimization approach 

with the vehicle’s trajectory data.  

3 Methodology 

One of the most significant advantages of the LPR data is that we can trace the same 

vehicle between upstream and downstream intersections with the license plate number and 

timestamp sequence and then obtain its trajectory. In this section, we propose a surrogate-based 

simulation optimization approach to calibrate the route-based day-to-day dynamics model with 

the real-world LPR data.  

3.1 Tracing vehicles’ trajectories 

It is well known that with a given link flow pattern, the corresponding route flow pattern 

is generally not unique. In order to obtain the unique route flow pattern that occurs in reality, 

we need to trace the day-to-day vehicles’ trajectories, which can be recognized by the LPR 

cameras from each day. Five types of vehicle records during the procedure of tracing vehicles’ 

trajectories are cast off. Firstly, the recorded vehicles without specific license plate numbers are 

eliminated, and this will not affect the calibration results because only less than 1% vehicles 

are recorded without specific license plate numbers, and these eliminated vehicles just like the 

sampled vehicles, which do not affect the results. Secondly, the recorded vehicles equipped 

with non-native plates are excluded from the database due to the ineffectiveness for the analysis 

of the day-to-day dynamics. In this paper, we focus on the analysis of commuters’ day-to-day 

dynamic route choice and route adjustment process, thus the vehicles with non-native plates are 

mostly non-commuters, which should be eliminated. Thirdly, the buses have fixed routes, 

therefore they should be eliminated from the database. As for bus transport, the daily route is 

fixed and would not change with day-to-day dynamic evolutions, thus they are not considered 

in this paper. However, one might also investigate the day-to-day dynamics model from the 

perspective of the person (rather than vehicles like this paper), then the public transport users 

should be taken into consideration because they will change their daily public transport modes 

and lines dynamically. Fourthly, the trucks are not commuter vehicles, thus should be eliminated. 
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Finally, the taxis are cruising in the cities without relatively fixed origins and destinations, thus 

they are not the focus of day-to-day dynamics in this paper. Therefore, the eliminated data will 

not affect the results of the day-to-day dynamics model in this paper. 

After eliminating the vehicle records discussed above, then we can define the regular 

travels as the travels that are recorded at least three times during the morning peak hours (07:00-

09:30) for weekdays of one week, and the corresponding vehicles are regular vehicles. 

Compared to other vehicles or nonpeak hours, the day-to-day dynamics of travel trajectories of 

regular vehicles on the peak hours can be easily traced. The afternoon peak hour is not suitable 

for the analysis here, because many travelers may not go back home directly after work, but 

instead have some social activities. The detailed procedures for LPR data processing are 

summarized as follows: 

It should be noting that the day-to-day dynamics model discussed in this paper focuses on 

the travelers’ route choice and route switching behaviors from one day to the next day, 

especially on the commuters’ travel behaviors with private vehicles. This is in line with the 

mainstream research in the day-to-day dynamics model. As for public transport, the daily route 

is fixed and would not change with day-to-day dynamic evolutions, thus they are not considered 

in this paper. However, one might also investigate the day-to-day dynamics model from the 

perspective of the person (rather than vehicles like this paper), then the public transport users 

should be taken into consideration because they will change their daily public transport modes 

and lines dynamically.  

Algorithm 1. Procedures for data processing. 

Step 1: Eliminate the recorded vehicles with defective license plate numbers or unrecognized 

numbers. 

Step 2: Eliminate the recorded vehicles equipped with non-native license plates. 

Step 3: Eliminate the buses, trucks, and taxis through the color recognition, and only reserve 

the private vehicles for analysis. 

Step 4: Select the regular vehicles and trace their daily route choices based on regular 

vehicles’ trajectories. 

Step 5: For each OD pair, aggregate the flows on each route for each day. 
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Figure 1: Illustration of the fine-grained route change behaviors 

In a real-world transportation network, there may be so many intersections equipped with 

LPR cameras. This may result in a serious problem for the day-to-day dynamics analysis, i.e., 

the fine-grained and too specific route plans in the observed day-to-day dynamics evolution 

process. For example, as shown in Figure 1, a commuter departs from his/her home for the 

working place, and he/she will go through a series intersections equipped with LPR cameras. 

On day t , his/her trajectory is traced by the LPR data as Home→A→B→C→D→E→Office. 

However, on the next day 1t + , he/she may go to the petrol station near location B, but his/her 

position is identified by the LPR camera F, rather than B. Thus, the trajectory is recognized as 

Home→A→F→C→D→E→Office, which is different from the previous day’s trajectory. This 

is similar to the red-blue bus problem or the overlapping problem in the logit-based route choice 

model. To overcome this fine-grained route change behaviors in the observed day-to-day 

dynamics evolution process, we make a rational approximation in this paper, i.e., only arterial 

roads (or expressways) are abstracted in the network for day-to-day dynamics analysis. This 

approximation avoids the over-frequent fine-grained route changes in the observed day-to-day 

dynamics evolution process, but still keeps the substantive characteristics of day-to-day 

dynamics. 

3.2 Surrogate-based simulation optimization 

The surrogate-based simulation optimization approach is dominant for solving the 

optimization problems with expensive-to-evaluate response functions. Here we will use the 

kriging metamodel, which is a typical surrogate-based simulation optimization approach, to 

calibrate the route based day-to-day dynamics model introduced in Section 2. The detailed 

process of the calibration is described in the flow diagram of Figure 2.  
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3.2.1 The original model 

It is intuitive to define an objective function for the calibration of day-to-day dynamics 

with the observed and theoretical traffic flows. Given an initial set of sampled values of the 

variables ( , , )  =x  and the initial evolutionary state2, we can obtain the traffic flows and 

costs from the evolution process of the day-to-day dynamics model. Compared with the 

observed traffic flows, we can define the optimization model with the mean square error (MSE) 

as follows: 
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where (i) t

wkf  and ˆ t

wkf  are the theoretical and observed route flow of route 
wk K  between 

OD pair w W  on day t T , respectively, (ii) T , W  and 
wK  are the cardinalities of the 

set of epochs, the set of OD pairs, and the set of routes between OD pair w W , respectively, 

and (iii) the forecasted cost t

wkC  is defined as: 

 ( )1 11t t t

wk wk wkC c C − −= + −   (19) 

where 1t

wkc −  and 1t

wkC −  are the actual the forecasted costs of route k  between OD pair w W  

on day 1t − . 

 
2 The initial evolutionary state of the flows can be set as any feasible flows. However, a good initial state, which 

better reflects the actual traffic situations, can accelerate the computational speed to reach a relatively stationary 

state. Therefore, we set the initial flows the same as the observed flows with LPR data. 
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Figure 2: Flowchart of the calibration for the day-to-day dynamics model 

Therefore, it can be seen that the response function (18) is a highly nonlinear and complex 

one of the variables ( , , )  =x . To illustrate the complexity of this multi-modal response 

function (18), we depict the surface of the response function in Figure 3, when   is set as 1.0 

and   and   take different combinations of values between 0 and 1. Note that the other 

input data are same as those used in the case study in Section 4. 

From Figure 3, it is obvious that the optimization model (18) is highly nonlinear and 

multi-modal, and thus it is very challenging to calibrate the variables of ( , , )  =x . When 

we calculate the objective function for a particular input variable, we need to first obtain the 

traffic flows and costs from the first day to the last day in terms of the flow and cost updating 

processes in Eqs. (6) and (17) without a closed-form function, which is a tedious work 

especially when the network size is large-scale and the period is long-term. Therefore, gradient-
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based nonlinear regression algorithms or other analytical optimization approaches are not 

applicative for solving the optimization model defined in (18). Here, it is reasonable to adopt 

a surrogate-based simulation optimization approach to deal with the expensive-to-evaluate 

objective function, which will be introduced in following sections.  
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Figure 3: Illustration of the highly nonlinear and multi-modal response function ( 1.0 = ) 

3.2.2 A surrogate model: the Kriging metamodel  

The kriging metamodel of the simulation-based optimization is used as a surrogate in this 

paper to calibrate the parameters of  ,   and   in the day-to-day dynamics model. In this 

kriging metamodel, the optimization model defined in (18) is replaced by the sum of a constant 

value and a Gaussian random error term as follows3: 

 ( ) ( )Y y= +x x   (20) 

where ( )Y x  is the response function (i.e., the MSE defined in (18)),   is the mean of ( )Y x , 

and ( )y x  is a stationary Gaussian random process with the mean E[ ( )] 0y =x , variance 2  

and non-zero covariance. The covariance is defined as follows: 

 ( ) ( ) 2 ( ) ( )Cov[ ( ), ( )] ( , )u v u vy y  = x x x x   (21) 

where ( ) ( )Cov[ ( ), ( )]u vy yx x  is the covariance between two arbitrary points ( )u
x  and ( )v

x  

and ( ) ( )( , )u v x x   is the kriging function (also called the Gaussian exponential correlation 

 
3 Actually, this is a stochastic process model in essences. In the stochastic process approach, the errors are correlated 

relating to the distances (not Euclidean distance, but a function of Euclidean distance) between sampled points, rather 

than independent in deterministic process model. After introducing the correlated error terms, it is powerful to replace 

the regression terms in deterministic process model by a simple constant term, resulting in a stochastic process model 

as shown in Eq. (20). The detailed analysis is referred to Jones et al. (1998). 
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function). The kriging function is defined by a function of the Euclidean distance between ( )u
x  

and ( )v
x  as follows: 

 ( )
2

( ) ( ) ( ) ( )

1

( , ) exp
L

u v u v

l l l

l

x x 
=

 
= − − 

  
x x   (22) 

where 
1[ , , , , ]l L  =λ  denotes the vector of scaling coefficients of the unknown model 

parameters to be tuned, ( )u

lx   and ( )v

lx   denote the thl   variable in ( )u
x   and ( )v

x  , and L  

denotes the dimension of x  (here 3L =  in the day-to-day dynamics model in this paper). 

Note that the parameter 
l  can be regarded as measuring the importance of the variable 

lx , 

saying that the variable 
lx  is important means that even a small value of 

( ) ( )u v

l lx x−  may 

resulting in a significant difference in the response function at ( )u
x  and ( )v

x . Thus, the larger 

of 
l , and the greater of the ‘distance’ between ( )u

lx  and ( )v

lx , hence the lower of correlation 

between them. 

Now the kriging metamodel has five parameters to be estimated:  , 2 , 
1  for  , 

2  for   and 
3  for  . From the derivation by Sacks et al. (1989) and Jones et al. (1998), 

with n input variables of ( , , )  =x  , we can estimate these five parameters through 

maximizing the likelihood as follows: 
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where y   is the observed MSE defined in (18), 1   is the 1n   unit column, and n   is the 

number of sample points for variable ( , , )  =x , which will be determined by the design of 

experiment. Ψ  is the determinant of Ψ , where Ψ  is the matrix of ( , ) x x  defined as 

follows: 
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  (24) 

The maximization of the likelihood function defined in (23) can be approximated with 

the natural logarithm and neglecting the constant term, thus giving a concise log-likelihood 
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function as follows: 

 ( )
T 1
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1 ( ) ( )
ln( ) ln constant
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Ψ
Ψ

y 1 y 1
  (25) 

Solving the first derivations of the above log-likelihood function and setting them to be 

zero, then we can obtain the estimation of  , 2 , 
1 , 

2  and 
3 . However, as claimed in 

Kleijnen (2015), this estimation is a difficult mathematical problem, and the divide-and-

conquer methodology (e.g., profile likelihood or concentrated likelihood method) is used here 

for estimation. The algorithm to estimate the above five parameters is summarized as follows: 

Up to now, the maximum likelihood estimate of the response function ( )Y x   can be 

obtained by the following function: 

Algorithm 2. Procedure for parameters estimation. 

Step 1: Initialize the parameters of 
1̂ , 

2̂  and 
3̂ , and obtain the ( ) ( )ˆ ( , )u v x x  defined 

in Eq. (22) and Ψ̂  defined in Eq. (24). 

Step 2: Solve the first derivation of (25) with respect to  , which gives the estimator of 

the mean: 

 
T 1

T 1

ˆ
ˆ

ˆ


−

−
=

Ψ

Ψ

1 y

1 1
  (26) 

Step 3: Substitute Ψ̂  obtained in Step 1 and ̂  obtained in Step 2 into (25), and solve 

its first derivation with respect to 2 , which gives the estimator of the variance: 

 
T 1

2
ˆˆ ˆ( ) ( )

ˆ
n

 


−− −
=

Ψy 1 y 1
  (27) 

Step 4: Substitute ̂  and 2̂  into (25), and then it is only the function of 
1 , 

2  and 

3 . Solve the remaining problem (Kleijnen, 2015; Lophaven et al., 2002): 

 2 ˆˆmin
n


−

Ψ   (28) 

and then update 
1̂ , 

2̂  and 
3̂ . 

Step 5: Update ̂   and Ψ̂   with the updated 
1̂  , 

2̂   and 
3̂  , and substitute this 

updated Ψ̂  into Eqs. (26) and (27). 

Step 6: If the convergence criteria have not been satisfied, then return to Step 2; otherwise, 

stop and output the estimators of ̂ , 2̂ , 
1̂ , 

2̂  and 
3̂ . 
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 T -1ˆˆ ˆˆ ˆ( ) ( )Y  = + −Ψx ψ y 1   (29) 

where ˆ( )Y x  is the estimate of the response function of ( )Y x , and ψ̂  is the estimate of the 

correlation vector between the thi   sample point ( )i
x   and the untried point x  , which is 

defined as follows: 
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That is to say, when we have a new input variable x  , then we can first obtain the 

correlation vector based on (30), and then obtain its response in terms of (29). Note that the 

errors induced by the correlation will also influence the estimation of prediction accuracy. The 

estimation error now is of the form as follows: 
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With the kriging metamodel introduced above, then we can obtain the estimated optimal 

values for the variables ( , , )  =x   with the maximization of expected improvement 

discussed in Section 3.2.5. 

3.2.3 Design of experiment 

In the kriging metamodel, we need to generate n  initial sample points of x , and this 

process is called the ‘space-filling’ design of experiment (DoE). DoE affects the solution quality 

and the computational efficiency, and a better DoE strategy will make it find a better solution 

within less computation time. The Monte Carlo sampling technique is one of the most widely 

used sampling approaches using random or pseudo-random numbers to sample from a 

probability distribution. It is entirely random in principle, thus with enough iterations, it will 

recreate the same distribution as the original objective function through sampling. However, 

the problem of ‘clustering’ may be encountered when only a small number of sample points are 

afforded for simulation (e.g., see p. 457 in Palisade Corporation, 2004).  

To overcome the ‘clustering’ problem in the Monte Carlo sampling, McKay et al. (1979) 

introduced Latin Hypercube sampling technique in the DoE. Different from the entirely random 

Monte Carlo sampling, Latin Hypercube sampling stratifies the input probability distributions 
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to ensure each of the input variable has all portions of its range represented (Sacks et al., 1989). 

Iman and Helton (1988) compared the Latin Hypercube sampling with Monte Carlo sampling 

and showed a significant advantage of the Latin Hypercube sampling in the DoE. In this paper, 

we use the Latin Hypercube sampling technique to generate the initial sample points for the 

kriging metamodel. More specifically, each variable of x  is stratified into n  equal intervals 

( n  is the number of desired sample points), and in each subinterval, a sample point is randomly 

generated. When the afforded number of simulation n   is modest, this Latin Hypercube 

sampling approach makes simulations converge faster than Monte Carlo sampling method. 

3.2.4 Cross validation 

Substituting the initial sampled points generated by the Latin Hypercube sampling 

approach into the kriging metamodel, then we can obtain an initial estimation of the response 

function in (29). In addition, we use the cross validation to evaluate the accuracy of the model. 

The basic idea behind the cross validation is to leave out one of the sampled points, called ( )i
x , 

and then predict its response value back with the only 1n −  remaining points. We can also get 

the cross-validated standard error without the sampling point ( )i
x  based on the Eq. (31). Then 

the standardized cross-validated residual (SCVR) is defined as follows: 
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where ( )( )iY x  is the observed response value of sampled point ( )i
x , ( )( )i

iY− x  is the predicted 

value with the cross validation leaving out the sampled point ( )i
x , and ( )( )i

is− x  is the cross-

validated standard error without the sampling point ( )i
x . It is said that a metamodel is valid 

when the value of SCVR is roughly in the interval [ 3, 3]− +  , which is a 99.7% confidence 

interval in statistics. However, sometimes the value of SCVR may be out of the interval 

[ 3, 3]− + , thus some transformations are necessary to improve the fit of the metamodel. The log-

transformation and the inverse-transformation are two typical transformation methods. We will 

test these two transformations when the value of SCVR is out of the interval [ 3, 3]− + . 
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3.2.5 An efficient method to get an approximation solution for expected improvement (EI) 

maximization 

Up to now, the optimal solution solved by the kriging metamodel may be a local optimum 

because it neglects the uncertainty in the response function (Jones et al., 1998). In order to 

obtain an efficient global approximation, here we use the concept of expected improvement (EI) 

and seek for a maximization of EI to reach the global approximation. Specifically, EI 

maximization is an infill criterion to generate new sample points, and next we will introduce 

how to maximize the EI.  

As for the n sampled points of x , we can obtain n values of 
( )nY  in terms of (29). 

Define the current best value of the response function as (1) ( )

min min( , , )nY Y Y=  . For an 

untried point x , we model its response through a normally distributed random variable Y  

with mean Ŷ  in Eq. (29) and variance 2ŝ  in Eq. (31). Then the expected improvement at 

point x  is expressed as follows: 

 
minE[ ( )] E[max( ),0]I Y Y −x   (33) 

where 
min( ) max( ,0)I Y Y= −x  is the improvement at point x , and E[ ( )]I x  is the EI at point 

x . Due to the normal distribution of Y , the closed-form of E[ ( )]I x  can be expressed as 

follows: 
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where ( )   and ( )   are the standard normal density and distribution functions, respectively. 

Therefore, the EI function can be easily computed with an analytical solution under the 

Gaussian assumptions and the optimum now is an efficient global approximation value.  

Compared to other heuristic algorithms, such as the genetic algorithms and neural network 

algorithms, the surrogate-based simulation optimization method can obtain reliable outputs 

without running the expensive-to-evaluate objective function. Therefore, it takes less 

computation time and cost. Besides, with the process of expected improvement (EI) 

maximization (Jones et al., 1998), we can obtain an efficient global approximation of the 

solution because the closed-form of the EI function can be derived and easily computed. 
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Therefore, we choose the surrogate-based simulation optimization method rather than some 

heuristic algorithms, e.g., the genetic algorithm and the neural network, to calibrate the 

parameters in the day-to-day dynamics model. 

4 Case Study 

4.1 Study area and LPR data analysis 

To demonstrate the effectiveness of the methodology proposed in this paper, a case study 

is conducted in this section. The study area is located in the downtown area in Yuyao City, 

China. This area consists of 31 LPR detect points in 40km2 as shown in Figure 4. The LPR data 

provided is from June 15, 2018 to July 3, 2018. The total number of records of regular vehicles 

defined in Section 3.1 reaches up to 7,588,041 during the study period of 19 days inside the 

study area. An illustration of the LPR data label is provided in Table 2. The case study is coded 

in Python 3.5 running on a desktop with Intel(R) Core(TM) i5-8400 CPU @ 2.80 Hz, 81 GHz 

and 8.00G RAM. 

 

Figure 4: Study area and LPR locations (red points: LPR locations, blue lines: road links) 

Table 2: Illustration of the LPR data 

License 

Plate No. 
Timestamp 

Intersection 

No. 
Intersection Name 

Lane 

No. 
Speed 

Entrance 

Direction 

ZB 12344 
2018-06-26 

07:43:40 

330281000

000010356 

Intersection of 

Zhongshan Road and 

Xianqindi Road 

02 40 3 

 
4 The capital letter ‘Z’, which is originally written in Chinese, indicates Zhejiang Province in China.  
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Notes: 

1) The license plate number in Yuyao City starts from ‘ZB’ followed by four number or 

capital letters. 

2) The timestamp recorded the date and time with the precision of 1 second. 

3) The intersection number is made up of 18 numbers. 

4) The intersection number and name also distinguish the LPR points. 

5) The lane number begins with ‘01’ from the outside to the inside. 

6) The recorded speed is positive integers (km/h). 

7) As for the entrance direction, ‘01’ represents the north, ‘02’ represents the east, ‘03’ 

represents the south, and ‘04’ represents the west.  

Note that the traffic demand flows are not input data, but they can be computed through 

the LPR data by aggregating the same origin and destination inside the study area. The actual 

route costs on a particular day can be measured by averaging the route costs of all vehicles on 

the same day, and each vehicle’s cost can be obtained by the recorded timestamp at its origin 

and destination. In this paper, we use the BPR (Bureau of Public Roads) function to calculate 

the forecasted link travel costs, and then add the link costs belong to the same route as the 

forecasted route costs. Our focus in this manuscript is on the day-to-day dynamic route choice 

and route adjustment behavior. For a particular day, we treat is a static traffic flow model; thus 

congestion is not taken into consideration. In the future work, we will extend it to a doubly 

dynamics model, which incorporates the within-day dynamics model (e.g., cell/link 

transmission model) and the day-to-day dynamics model to better describe the system dynamics. 

4.2 Results  

Although travelers’ route choice behaviors evolve from day to day, the real route choices 

may not be the whole feasible route set physically. Actually, most of the travelers may have a 

psychological route set, which is much smaller than the physical route set. As shown in Figure 

5, during the study period, almost 80% of the travelers choose no more than 3 different routes 

as their daily routes. This is intuitive with our daily life. Imagining that in a real-world travel, 

one from his/her home to his/her work place from day to day, he/she may only choose the most 

frequently used route, and if this route is over-saturated or he/she has some special tasks in 
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some day, he/she may choose other alternative routes. However, the number of alternative 

routes must be much smaller than the feasible routes between his/her home and work place, due 

to the high costs of the alternative routes.  

 

(a) 4N                  (b) 5N                   (c) 6N   

 

(d) 7N                  (e) 8N                   (f) 9N   

 

(g) 10N                  (h) 11N                  (i) 12N   

Figure 5: Number of routes chosen by travelers from day to day (N is the smallest number of 

days that a traveler occurs inside the study area equipped with LPR cameras during the study 

period) 

With the proposed methodology of calibrating the day-to-day dynamics model and the 

LPR data obtained in Yuyao City, the parameters are finally calibrated as 0.43 = , 0.51 =  

and 3.56 = . It reveals that when travelers forecast the travel costs for the next day, the actual 

costs of the current day only weight 43%, while the weight of the forecasted travel costs of the 

current day reaches up to 57%. Similarly, more than half travelers will reconsider the travel 

routes in the next day and make decisions whether to change to other routes or not, based on 
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the logit-type utility function, while 49% travelers would not make any reconsiderations. There 

are no specific criteria for evaluation of the calibrated value of  . Cantarella and Cascetta 

(1995) stated that [0.4,0.8]   seems likely and our result is still in this region. Besides, the 

parameters of the cost function in a within-day scale do not consider traffic dynamics in this 

paper but only use the BRP function. In future work, we will integrate the within-day dynamics 

model and the day-to-day dynamics model to better reflect the traffic dynamics within one day 

scale. 

The parameter    is a measure of the travelers’ sensitivity to the route costs. It is not 

dimensionless, its unit should be proportional to the reciprocal of the standard deviation of route 

cost. A large value of   indicates a small standard deviation, i.e., the perception error is small 

and travelers will tend to choose the path with minimum cost. When   approaches infinite, 

then it becomes deterministic user equilibrium problem. If the value of   is small, the standard 

deviation will be large, and the perception error will be large. Thus, travelers will use many 

different routes and some of them may be much expensive than the shortest path (Sheffi, 1985). 

The calibrated value of perception variance is 3.56 =  in this study, which is much larger 

than that in some SUE models (e.g., Damberg et al., 1996), revealing that the actual 

psychological route set for the day-to-day dynamics is much smaller than feasible route set 

physically. The value 3.56 =  also indicates that the variance of perceived travel costs on 

different routes among the entire period is 2 2var( ) 6 0.13t

wkC  = = , i.e., the error term in the 

perceived route cost is Gumbel distributed with zero mean and 0.13 of variance. 

There are various studies working on the calibration of random utility theory, including 

Cascetta et al. (1996) for the modified logit route choice model, Cascetta and Papola (2001) for 

the implicit availability/perception logit-type model, Cascetta et al. (2002) for the logit-type 

route perception model, and Cantarella and de Luca (2005) for the multilayer feedforward 

networks of route choice model, just to name a few. It is worth noting that the parameter   in 

this paper should be considered included in the cost attribute coefficient to be calibrated against 

real data, as always the case in a linear utility specification for a random utility model, see 

Cascetta (2009).  

The route flow evolution process is described in Figure 6. It is obvious that the system is 

not in a stationary state at the end of the study period due to the perturbation of the network and 
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the limited data that are available. However, this does not influence the calibration framework 

proposed in this paper. It should be noted that the network system in this study evolves neither 

from an equilibration state, nor after a disruption. It evolves from a general day, i.e. day n in the 

evolutionary process. With such an input, the system can represent a general day-to-day 

dynamics process. The convergence trend of the expected improvement is shown in Figure 7. 

It can be found that the proposed surrogate-based simulation optimization approach for day-to-

day dynamics calibration can converge within 8 iterations in this case study. 

 

Figure 6: Route flow evolution process from day to day (red lines with asterisk are observed 

values while blue lines with dot are predicted values) 
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Figure 7: The iteration process of the expected improvement 

There are three reasons that the surrogate-based approach takes effect on the calibration of 

the day-to-day dynamics model. Firstly, it uses the kriging metamodel with the sum of a 

constant value and a Gaussian random error term, i.e., ( ) ( )Y y= +x x , to replace the original 

complicated optimization model defined in Eq. (18). Thus, there is no need to calculate the 

expensive-to-evaluate function and the computational effort is reduced. Secondly, in the design 

of experiment procedure, the Latin Hypercube sampling technique is used to generate the initial 

sample points for the kriging metamodel, and this enables us to find a better solution for space 

filling within less computation time. Finally, after introducing the expected improvement (EI) 

maximization procedure, we can obtain an efficient global approximation of the solution 

because the closed-form of the EI function can be derived and easily computed. Therefore, we 

choose the surrogate-based simulation optimization method rather than some heuristic 

algorithms, e.g., the genetic algorithm and the neural network, to calibrate the parameters in the 

day-to-day dynamics model. 

5 Conclusions 

This paper studies the day-to-day dynamics model from the perspective of travelers’ actual 

route choice behaviors, and calibrates and validates the route-based day-to-day dynamics model 

with the real-world LPR data. A surrogate-based simulation optimization approach is proposed 

to deal with the highly nonlinear and multi-modal response function in the day-to-day dynamics 
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calibration work. Results reveal that over 70% travelers choose their daily routes no more than 

4 different routes. The route cost updating parameter of  , the reconsideration rate of  , 

and the parameter of   in the logit-type utility function are calibrated as 0.43, 0.51 and 3.56. 

When travelers forecast the travel costs for the next day, the actual costs of the current day only 

weigh 43%, while the weight of the forecasted travel costs of the current day reaches up to 57%. 

In addition, more than half travelers will reconsider the travel routes in the next day and make 

decisions whether to change to other routes or not, based on the logit-type utility function, while 

49% travelers would not make any reconsiderations. The value 3.56 =  indicates that the 

variance of perceived travel costs on different routes among the entire period is 

2 2var( ) 6 0.13t

wkC  = = , i.e., the error term in the perceived route cost is Gumbel distributed 

with zero mean and 0.13 of variance. This also indicates that the actual psychological route set 

for the day-to-day dynamics is much smaller than feasible route set physically.  

In this paper, the parameters of   ,    and    are all constant for the whole study 

period. However, the cost updating ratio and the reconsideration rate may be day-dependent or 

cost-dependent. For example, the situation may be that the bigger of the gap between the actual 

cost of the current day and the forecasted cost of the next day, the larger of reconsideration rate 

for the next day. The day-to-day dynamics model formulation and calibration for the multi-

modal transportation systems (e.g., Fu and Lam, 2018; Pi et al., 2019; Zhang and Liu, 2019) 

with different data sources (e.g., Gu et al., 2019; Xu et al., 2018), need to be further studied in 

the future research. Some emerging machine/deep learning approaches (e.g., Li et al., 2018; Liu 

et al., 2019) also can be tested for the calibration of day-to-day dynamics models. With the 

calibrated parameters in the day-to-day dynamics models, there will be many applications in 

the transportation management and control, such as Liu et al. (2017), Cheng et al. (2019) and 

Pan et al. (2019). 
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