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Abstract 

Maritime transportation plays a pivotal role in the economy and globalization, while it poses 

threats and risks to the maritime environment. In order to maintain maritime safety, one of the 

most important mitigation solutions is the Port State Control (PSC) inspection. In this paper, a 

data-driven Bayesian network classifier named Tree Augmented Naive Bayes (TAN) classifier is 

developed to identify high-risk foreign vessels coming to the PSC inspection authorities. By using 

data on 250 PSC inspection records from Hong Kong port in 2017, we construct the structure and 

quantitative parts of the TAN classifier. Then the proposed classifier is validated by another 50 

PSC inspection records from the same port. The results show that, compared with the Ship Risk 

Profile selection scheme that is currently implemented in practice, the TAN classifier can discover 

130% more deficiencies on average. The proposed classifier can help the PSC authorities to better 

identify substandard ships as well as to allocate inspection resources. 

Keywords: Maritime transportation, Maritime safety, Port state control (PSC), Bayesian network 

(BN), TAN classifier 

1. Introduction

Maritime transportation plays a pivotal role in the economic development and globalization 

(Teye et al., 2017; Tan et al., 2018; Zhang and Lam, 2018). According to UNCTAD (2017), over 

80% of global trade by volume and more than 70% of its value are carried on board ships and 

handled by seaports worldwide. Maritime transport is relatively safe, but once a maritime accident 

occurs, the costs and loss can be huge to both the shipping industry and society (Qu and Meng, 

2012; Chauvin et al., 2013; Zheng et al., 2017; Zheng et al., 2018; Sun et al., 2018). To reduce 

maritime risks, various international rules have been formulated under the auspices of the 

International Maritime Organization (IMO) and International Labour Organization (ILO), such as 

the International Convention for the Safety of Life at Sea (SOLAS), the International Convention 

for the Prevention of Pollution from Ships (MARPOL), the International Convention on Standards 

 Corresponding author: Xiaobo Qu, drxiaoboqu@gmail.com; xiaobo@chalmers.se 

This is the Pre-Published Version.https://doi.org/10.1016/j.trb.2019.07.017

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:drxiaoboqu@gmail.com
mailto:xiaobo@chalmers.se


2 

 

of Training, the International Convention on Certification and Watchkeeping for 

Seafarers (STCW), the International Convention on Tonnage Measurement of Ships, and the 

International Convention on Load Lines (CLL) (IMO, 2018; Knapp and Franses, 2008).  

Ships that cannot comply with these conventions are called substandard ships (Li and Zheng, 

2008). In the maritime industry, flag states, which are deemed as the nationality of a vessel and 

under whose laws the vessel is registered, are seen as the first line of defence against substandard 

ships (Knapp and Velden, 2009; Cariou et al., 2007). However, it is widely believed that many 

flag states are unable to perform well their mandated duties of ensuring that ships flying their 

flags are fully compliant with the international rules, as these ships may visit their flag state ports 

only irregularly. The situation can be worse in the open registry countries, as these flag states 

often have insufficient or substandard regulations and those regulations are poorly enforced (Li 

and Wonham, 1999). As a result, port state control (PSC), which is an internationally agreed 

regime to inspect foreign ships coming to the port state, is proposed. It acts as the “second line of 

defence” and “last safety net” to eliminate substandard vessels, and is a complement instead of a 

substitute, to consolidate the safety net of the former maritime safety administration by the flag 

state (Cariou et al., 2008; Li and Zheng, 2008).  

The Memorandum of Understanding (MoU) on PSC, which is an organization consisting of 

several PSC member authorities in a certain region, was first established in Europe in 1982 (often 

referred to as the “Paris MoU”), and by the end of 2018, nine MoUs on PSC have been signed 

around the world. The goal of the MoUs on PSC is the same: to verify that the incoming ships 

meet the requirements of the international agreements through a harmonized system of port state 

control which allows for information sharing (Kasoulides, 1993; Paris MoU, 2019). In each MoU, 

the member authorities are responsible for inspecting incoming foreign ships and should adopt the 

same set of inspection rules. In 2016, the number of inspections conducted by the nine PSC MoUs 

was 63,805 in total (Indian Ocean MoU, 2017; Caribbean MoU, 2017; Abuja MoU, 2017; Black 

Sea MoU, 2017; Viña del Mar Agreement, 2017; Tokyo MoU, 2017a; Mediterranean MoU, 2017; 

Riyadh MoU, 2017; Paris MoU, 2017), while the total number of merchant vessels in the whole 

world was 96,161 (UNCTAD, 2017). During a PSC inspection, the conditions on board that are 

not in compliance with the requirements are recorded as deficiencies and are required to be 

rectified. The PSC authorities also have the right to detain a ship until the deficiencies are rectified 

if those deficiencies might pose a danger to the crew and the marine environment (Tokyo MoU, 

2017a). After the inspection, a report on the inspected ship, including ship information (e.g., ship 

name, ship flag, ship company, etc.) and inspection information (e.g., inspection date, inspection 
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authority, the types and total number of deficiencies detected and ship detention information, etc.), 

is generated and kept in the database of the corresponding MoU.  

One of the key issues faced by PSC authorities is how to select ships on which to conduct 

PSC inspections (IMO, 2018). On the one hand, the cost of PSC inspection to the port authorities 

is high. It is estimated by Knapp (2007) that the costs for a PSC inspection with and without 

deficiencies are 759 USD and 509 USD, respectively. Further, non-essential inspections may also 

delay the fast turnover of the maritime logistics system. On the other hand, not all ships are 

substandard. Tokyo MoU, which is the MoU on PSC in the Asia-Pacific Region and was signed in 

December 1993, reported that the total number of inspections conducted by its 20 member 

authorities in 2017 was 41,616, while only 18,113 inspections found deficiencies (Tokyo MoU, 

2018). Due to the high costs and limited time and resources, it is impossible and unnecessary to 

inspect all coming ships. In order to identify as many substandard ships and ship deficiencies as 

possible after inspecting a certain number of ships, different PSC MoUs adopt different ship 

selection schemes. Taking Tokyo MoU as an example, it introduced a New Inspection Regime 

(NIR) from 2014 (Tokyo MoU, 2014) to calculate the ship risk profile (SRP) using criteria on an 

information sheet. The information sheet takes into consideration several parameters including 

ship type, age, ship company performance, previous detentions, etc. Each parameter is given a 

fixed weighting point and the SRP is determined by the total weighting points (Tokyo MoU, 

2014). Based on the total points, all ships are divided into three types: low risk ship (LRS), 

standard risk ship (SRS) and high risk ship (HRS). The higher risk a ship has, the more frequently 

it will be inspected. As the SRP adopts a simple weighted sum model to classify the incoming 

ships, the weight of each parameter is determined simply by expert judgement. In addition, it does 

not take the dependencies between different parameters into account. Another issue is that even if 

each incoming ship is given a risk profile, there is no further information about the risk level of 

the ships in the same risk profiles. As a result, when ships of the same SRP come to the port state, 

the selection of ships to be inspected is dependent on the PSC officers’ subjective judgements.  

To address the abovementioned problems, this paper aims to propose a data-driven Bayesian 

network classifier called a Tree Augmented Naive (TAN) Bayes classifier as a new scheme to 

select ships for PSC inspection. The TAN classifier is constructed and validated from a case data 

set which is built based on the online database of Tokyo MoU. It takes into account factors related 

to a ship itself and its inspection history, and calculates their mutual dependencies and 

contributions to the total number of ship deficiencies. The TAN classifier provides PSC officers 

with an informed estimate of the number of deficiencies an incoming ship will have, which helps 

them to identify higher risk ships and better allocate resources to PSC inspections. The 
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contribution of the paper is as follows. (i) The proposed TAN classifier is one of the first few 

models to take into consideration historical factors (including the number of previous detentions, 

last inspection time, number of deficiencies in the last inspection and number of flag changes) and 

the performance of the shipping company (which is responsible for verifying that the ship 

complies with the International Safety Management (ISM) code) when analyzing PSC inspection 

from a quantitative perspective. After inputting the above-mentioned information of a coming ship, 

the TAN classifier can generate the probabilities for the ship to have 0 to 2, 3 to 6, and more than 

7 deficiencies immediately based on the trained CPTs, and the timely risk index of this ship can 

also be given for the PSCOs’ reference. Thus, the proposed classifier can act as a real-time 

predictor of the number of deficiencies before conducting the PSC inspection. (ii) The newly 

proposed ship selection scheme for PSC inspection adopts a data-driven non-parametric model. 

This is the very first model that makes predictions on the possible number of deficiencies of 

incoming ships for PSC inspection. Compared with the currently used SRP ship selection scheme, 

it can identify an average of 130% more deficiencies in ships. (iii) Theoretically, our paper 

proposes a dynamic programming approach to optimally discretize input data into discrete states 

so that they can be analyzed by the TAN classifier. Moreover, by induction, it is rigorously proved 

that in the TAN classifier, random selection of root attribute variables will not influence the 

classification process. 

 

2. Literature review 

2.1 Studies on PSC inspection 

PSC inspections have received increasing attention in the literature. One stream of related 

study concerns inspection target factors, which mainly include generic characteristics such as ship 

age, ship size and ship type. Several related studies reach a concordance that ship age, ship flag 

and ship type are the main determinants of ship deficiencies and detention (Cariou et al., 2007; 

Cariou et al., 2009; Cariou and Wolff, 2015; Huang et al., 2016; Kara., 2016; Tsou, 2018). More 

specifically, some studies have also identified the extent to which the target factors would 

contribute to the deficiencies and detention (e.g. Cariou et al., 2007). Based on the target factors, 

various and innovative ship selection schemes for PSC inspection are proposed. Zhou and Sun 

(2010) proposed an automatically optimized and self-evolutional ship target system based on the 

target factors using the Generalized Additive Modelling (GAM) approach. Xu et al. (2007a) 

introduced a risk assessment system based on a Support Vector Machine (SVM) to classify 

incoming ships as either high risk or low risk according to the target factors. If a ship is decided to 
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be high risk and the inspection leads to a detention, this prediction is viewed as accurate. 

Numerical experience shows that the prediction accuracy of their proposed model was no more 

than 14%. Then, they combined the web-mining technology to improve the classification accuracy, 

which was improved to about 20% (Xu et al., 2007b). Based on these two studies conducted by 

Xu et al. (2007a, b), Gao et al. (2008) combined the K-nearest neighbour (KNN) and SVM to 

remove noisy training examples to improve the ship selection accuracy. After the improvement, 

the prediction accuracy could be more than 20%. Recently, Yang et al. (2018a) proposed a data-

driven Bayesian network to analyze factors influencing PSC inspection and then used the model 

to predict the detention rate of bulk carriers. After that, Yang et al. (2018b) combined the 

Bayesian network model with the game model between PSC port authorities and ship owners to 

present an optimal PSC inspection scheme.  

The second stream of studies focuses on the effects of PSC inspections. There are three 

research sub-areas in this stream: the effect on maritime safety, on maritime pollution and on later 

PSC inspections. Regarding the first sub-area, several papers point out that the PSC inspection can 

help reduce the probability of maritime casualties and accidents. Knapp and Franses (2007, 2008) 

used a binary logistic regression model to measure the effect of PSC inspections on the casualty 

probability and found that the casualty probability was significantly reduced in some areas such as 

the Indian Ocean Region, while there was no evidence that the casualty probability was reduced in 

other areas such as Northern Europe. Hänninen and Kujala (2014) pointed out that knowledge of 

the ship type, the PSC inspection type and the number of structural conditions related deficiencies 

could provide the most information regarding future accident involvement and the true ship safety 

state. Heij and Knapp (2018) argued that the probability of future shipping accidents was related 

to the past PSC inspection deficiencies. In addition, the PSC inspection can help reduce maritime 

accident loss. Li and Zheng (2008) pointed out that the PSC inspection could reduce the total 

number of maritime accidents and the number of ships involved in consequential maritime 

accidents. Knapp et al. (2011) claimed that the PSC inspections could bring about monetary 

benefit by reducing maritime accident loss. As to the second sub-area, Titz (1989) and Heij et al. 

(2011) both pointed out that PSC inspections contribute to protecting the maritime environment. 

Concerning the third research sub-area, Cariou et al. (2007) suggested that the number of 

deficiencies in the next PSC inspection would be reduced by 63% compared with the former. 

Cariou and Wolff (2011) pointed out that a vessel that was subject to detention and/or a high 

number of deficiencies in the previous PSC inspection was more likely to change its ship flag 

and/or classification society before the next PSC inspection to avoid future inspection. 
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Despite a large number of studies on the PSC inspection, one main drawback is that most of 

them just serve as a summary of the factors influencing the results of PSC inspections instead of 

generating real-time deficiency information about new incoming vessels. On real-time prediction, 

there are some papers focusing on ship detention in PSC inspection. Since the detention rate is 

low (for example, in Hong Kong the detention rate was 4.07% in 2017, while 599 out of the total 

908 inspections found deficiencies (Tokyo MoU, 2018)), it is more reasonable to make 

predictions on the number of deficiencies for better ship selection. Another shortcoming is that in 

most of the proposed ship selecting models, most of the target factors taken into account are ship 

generic factors, while the dynamic factors (number of ship flag changes) and ship inspection 

history (PSC detention history and last PSC inspection information) are rarely considered. To 

address these shortcomings, a TAN classifier is proposed, which takes the number of flag changes 

as the ship dynamic factor, as well as the previous detention times and the information from the 

last PSC inspection as the ship inspection history into consideration to improve the classification 

accuracy. The proposed TAN classifier can be used as a real-time predictor of the possible 

number of deficiencies of the coming ships. 

Regarding the methodologies that are used in the relevant literature, some of the studies  

focus on PSC policy itself and adopt qualitative research methods or statistical methods, such as 

the combined t-test, decomposition analysis and econometric analysis model, to analyze the target 

factors used by PSC inspection authorities (Cariou et al., 2009), and to calculate the quantitative 

link between past PSC inspection outcomes and future shipping accidents (Heij and Knapp, 2018). 

Some studies use regression methods, including but not limited to quantile regression (Cariou and 

Wolff, 2015) and binary logistic regression (Knapp and Franses, 2007; Knapp et al., 2011; Knapp 

and Hänninen, 2014) to calculate the relationships between ship target factors and the deficiencies 

detected and between PSC ship inspection results and future accident involvement. Another 

methodology adopted by researchers is the classic machine learning models, such as the GAM 

approach (Zhou and Sun, 2010), SVM model (Xu et al., 2007a; Xu et al., 2007b), and the 

combination of KNN and SVM methods (Gao et al., 2008). Several game models are also used in 

PSC-related studies (Yang et al., 2018b; Gan et al., 2010). Some studies adopt expert-based 

Bayesian network models to predict future accident involvement based on past PSC inspection 

results (Hänninen and Kujala, 2014; Li et al., 2014; Hännine et al., 2014). In particular, Yang et al. 

(2018a) used a model similar to our TAN classifier but their model differs in the model 

construction process (which involves subjective variables and manually changing the structure of 

the network), the model training process (which is trained by the gradient descent approach) and 

the prediction target (i.e., ship detention). 
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2.2 Studies on the Bayesian network in maritime risk analysis 

In recent years, we have witnessed a fast-growing number of maritime risk studies based on 

the Bayesian networks (BNs). Hänninen (2014) searched for and presented papers related to BNs 

applied to maritime safety. She concluded that BNs are rather well-suited tools for maritime safety 

management and development. There is a growing interest in and promising development of using 

BNs to conduct maritime risk analysis. In order to integrate different stakeholders’ views and 

foundational perspectives on a risk ranking which could be used in complex systems such as the 

maritime transportation system, Goerlandt and Reniers (2017) proposed a BN model to combine 

the ranking methods based on the expected values, uncertainty, and moral perspective. Trucco et 

al. (2008) proposed a Bayesian belief network with conditional probabilities estimated using 

expert knowledge to model the Maritime Transportation System (MTS). Li et al. (2014) integrated 

logistic regression and BN to analyze maritime risks. The logistic regression model was able to 

provide parameters for the BN model to alleviate the bias brought by the expert estimation. Zhang 

et al. (2016) synthesized the statistics of historical accident data from 2008 to 2013 and expert 

judgement in the Bayesian belief network to express the dependencies between the indicator 

variables. Zhang et al. (2013) applied a formal safety assessment to evaluate the navigation risk of 

the Yangtze River and then constructed a data-based BN model to identify accident consequences. 

To reduce ship risk in ice-covered waters, Li et al. (2017) developed a BN model to link the ice 

conditions with the ship speed. The model could be used to generate the probability of a certain 

speed when the ice conditions were given and could be applied in risk assessment of route finding 

problems. Wróbel et al. (2016) analyzed the risk associated with unmanned ships by using a three-

level BN model whose structure was determined based on the causes and effects of unfortunate 

events affecting ships’ safety. Lu et al. (2019) proposed a BN model for assessing the 

effectiveness of oil spill recovery in icy conditions. A systematic approach was applied to 

establish the content and structure of the model, while various datasets were combined to estimate 

the probabilities of the model variables.  

A serious drawback of the abovementioned BNs is that, due to the lack of historic data, most 

of the proposed BN models rely on expert knowledge in structure construction or model 

parameterization. The involvement of subjective judgements may bring about uncertainty and 

biases. Zhang and Thai (2016) thus pointed out that data-driven BNs are considered to be more 

objective since they are based on empirical data.  
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3. Methodology 

3.1 Bayesian network (BN)  

A Bayesian network (BN) is a directed acyclic graph containing a set of nodes and a set of 

directed arcs (Friedman et al., 1997). The nodes in the network represent the variables. The node 

at the tail of an arc is the parent node, which acts as the condition, while the node at the head is 

the child node of that parent node and is the consequence of that condition (Wang and Vassileva, 

2003). The arcs from one node to its child nodes represent their dependencies. The BN is acyclic, 

which means that from any node, there must not be a way back to the same node. All the nodes in 

the network have a finite number of mutually exclusive states that represent the values of the 

corresponding variables. The values of a node can be either continuous or discrete, and our paper 

only focuses on the discrete values. A BN contains a network structure as the qualitative part and 

several probability parameters as the quantitative part. Compared to other prediction models, BNs 

have a solid mathematical background and present a graphical relationship that is easy to 

understand. In addition, the Bayesian approach performs well in coping with unknown probability 

parameters (Yu et al., 2012). It is therefore a commonly used method to analyze and predict 

maritime risks (Li et al., 2014; Zhang et al., 2016; Hänninen and Kujala, 2014).  

3.2 The structure of the Tree Augmented Naive Bayes (TAN) classifier  

Statistical classification identifies to which of a set of categories a new observation belongs 

based on the data training observations (Warfield et al., 2000). In the classification, the classifier 

is built from a set of training data and can be used to perform prediction on the testing data. One 

of the most widely used classifiers is the Naive Bayesian classifier, which is a simple probabilistic 

classifier based on Bayes’ Theorem with strong (naive) independence assumptions between the 

features (Domingos and Pazzani, 1997; Hänninen, 2014; Zhang and Thai, 2016; Hazelton, 2010)). 

An example of a Naive Bayesian classier is illustrated in Figure 1. The Naive Bayesian classifier 

contains a class variable C  , which is the classification target, e.g., the total number of 

deficiencies in a PSC inspection, and several attribute variables 1A  to 4A . Usually, the attribute 

variables are the properties and characteristics used to describe the cases, e.g., ship age, ship type, 

ship flag, and ship recognized organization. They are easy to access and thus act as the evidence 

for classifying. The classifier will be trained using a set of cases with known states of attribute 

variables and class variable (e.g., 250 past records of PSC inspection). Then, a new case with a set 

of attribute variables can be classified by the classifier to one state of the class variable (e.g., a 

ship visits a port and the PSC authority knows its age, type, flag and recognized organization, so 

the PSC authority can have an estimate of the number of deficiencies the ship has). In the Naive 

https://en.wikipedia.org/wiki/Observation
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Bayesian classifier, it is assumed that, given the class variable, every attribute variable is 

conditionally independent of the other attribute variables (Cheng and Greiner, 1999). However, 

there are actually more or fewer connections between the attribute variables (e.g., the flag states 

can authorize some certain recognized organizations to act on their behalf to carry out statutory 

survey and certification work of their ships). Hence, this assumption will influence the 

classification accuracy of the Naive Bayesian classifier (Dong et al., 2007).  

C: The number of 

deficiencies

A4: Ship 

recognized 

organization

A3: Ship flagA2: Ship type

A1: Ship age

 

Figure 1. Example of a Naive Bayesian model. 

 

To deal with the over-simplified assumption, the Tree Augmented Naive Bayes (TAN) 

classifier is proposed to identify the interactions between the attribute variables by using a tree 

structure (Friedman, 1997). An example of the TAN model is presented in Figure 2. As illustrated 

in the figure, a typical TAN classifier contains a class variable and several attribute variables. The 

class variable has no parent and is the parent of every attribute variable. Each attribute variable 

can have at most two parent variables including the class variable (Pernkopf, 2005). In this 

example, for instance, a flag state has expertise for registering certain types of ships, and it can 

authorize certain recognized organizations to act on its behalf to carry out statutory survey and 

certification work of their ships, so the node “Ship flag” depends on the node “Ship type”, and 

“Ship recognized organization” depends on “Ship flag”. 

We now describe the TAN classifier mathematically. The class variable C  has a total of 

CN  states; the set of these states is denoted by 
1{ ,..., }

CC NS c c= . The number of attribute variables 

is denoted by I  and all the attribute variables are presented by a vector 1( ,..., )IA A A= . The i th 

attribute, iA , 1,...,i I= , can take a total of iN  states, denoted by a state set ,1 ,2 ,{ , ,..., }
ii i i i NS a a a= .  
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C: The number of 

deficiencies

A4: Ship 

recognized 

organization

A3: Ship flagA2: Ship type

A1: Ship age

 

Figure 2. Example of TAN model. 

 

The TAN classifier will be trained by a full case data set, which is a case whose values of 

both the class variable and attribute variables are known. The full case data set is denoted by 

{1,..., }K= , and one certain case is denoted by k . The state of the class variable of case k  

is denoted by 
k

Cc S ; in other words, case k  is classified to kc . The state of attribute variable iA  

of case k  is denoted by 
k

i ia S , and thus its state vector of the attribute variables is denoted by 

1( ,..., )k k k

IATT a a= .  

Based on the full data set , we can evaluate the dependency between two attribute 

variables. The dependency between two attribute variables iA  and jA  given the class variable C , 

, 1,...,i j I= , i j , is described by the conditional mutual information ( ; | )i jI A A C , which is the 

expected value of the mutual information of two random variables given the value of the third 

(Wyner, 1978). For a data set , the conditional mutual information for two attribute variables iA  

and jA   is defined as  (Cover and Thomas, 2012) 

                    
, ' ,

, ' ,

' 1 1 1 , ' ,

( , | )
( ; | ) ( , , ) log

( | ) ( | )

ji C
NN N

i s j s s

i j i s j s s

s s s i s s j s s

P a a c
I A A C P a a c

P a c P a c





= = = 

=
                        (1) 

 

where the “log” means the logarithmic operation with base 2 in this study1 and , ' ,( , , )i s j s sP a a c  , 

, ' ,( , | )i s j s sP a a c , and , '( | )i s sP a c  are abbreviated forms of , ' ,( , , )i i s j j s sP A a A a C c= = = , 

 
1 The base of the logarithmic operation can be any value greater than 1, as long as all pairs 

of attribute variables use the same base. This is because it is not the absolute values but the ratios 

of the conditional mutual information for each pair of attribute variables that will affect the result 

of the TAN classifier. 
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, ' ,( , | )i i s j j s sP A a A a C c= = = , and , '( | )i i s sP A a C c= = , respectively. This also applies to the 

remainder of the paper. , ' ,( , , )i s j s sP a a c  is the joint probability and , ' ,( , | )i s j s sP a a c  and , '( | )i s sP a c  

are conditional probabilities. Since we use the data set  to calibrate the TAN network, 

, ' ,( , , )i s j s sP a a c  should be understood as the proportion of cases in  whose states of attribute 

variable iA , attribute variable jA , and class variable C  are , 'i sa , ,j sa  , and sc , respectively.  

Similarly,  , ' ,( , | )i s j s sP a a c  should be understood as: among cases in  whose class variable state 

is sc , the proportion of cases whose states of attribute variable iA  and attribute variable jA  are 

, 'i sa  and ,j sa  , respectively.  

A complete TAN classifier contains the structure part and the quantitative part (Hruschka Jr 

and Ebecken, 2007). To learn the structure of the TAN classifier containing 1,..., iA A  as the 

attribute variables and C  as the class variable, let function :{1,..., }I  ↦ {0,..., }I  identify the 

parent attribute variable index for each attribute variable, and 

            
'',  if  has a parent variable , 1,..., , ' 1,...,  and '  

( )
0,  if  has no pare

attribute 

attributnt variable, 1,..., .  e

i i

i

i A A i I i I i i
i

A i I


= = 
= 

=
             (2) 

The construction of the TAN classifier consists of an optimization problem to find a tree 

defining a function   over 1,..., IA A  such that the tree sum of mutual information is maximized 

(Chow and Liu, 1968). In this study, a procedure called Construct-TAN (Friedman, 1997) is 

adopted to identify the tree, which is the qualitative part of the TAN classifier. The conditional 

probability tables constitute the quantitative part of the TAN classifier, and the conditional 

probabilities are estimated based on the full case data set and the learned TAN structure. The 

detailed procedure of constructing the TAN classifier will be explained in Section 4.3.  

 

4. Model construction 

4.1 Data 

A case data set containing 250 PSC inspection records (full case data) from Hong Kong is 

denoted by and established from the database of Tokyo MoU (http://www.tokyo-

mou.org/inspections_detentions/psc_database.php). Inspected vessels with incomplete 

information are omitted. The inspection time range of these cases is from January 2017 to July 

2017. Among the 250 records, 14 ships were inspected by PSC for the first time. 

4.2 Identified variables 

When a ship comes to the PSC inspection authority, it can be decided whether or not to 

inspect the ship if predictive information about the total number of deficiencies is available. To 
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achieve this goal, we first choose the number of deficiencies as the class variable. According to 

the literature related to the factors influencing the inspection results (Yang et al., 2018a, b; Zhou 

and Sun, 2010; Xu et al., 2007; Gao et al., 2008), we select 10 attribute variables whose states are 

available once the ships come to the PSC authority and that may have an impact on the class 

variable (i.e. the number of deficiencies) to construct a TAN classifier. The 10 attribute variables 

are ship age, ship gross tonnage, number of previous detentions, last inspection time (months ago), 

number of deficiencies in last inspection, number of times of changing flag, ship type, ship flag, 

ship company, and ship recognized organization. The distribution of the 11 variables over the 250 

cases is shown in Figure 3. 

  

      (a) Distribution of number of deficiencies          (b) Distribution of ship age 

  

             (c) Distribution of gross tonnage           (d) Distribution of number of previous 

                                   detentions 
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      (e) Distribution of last inspection time (f) Distribution of number of deficiencies in 

last inspection 

  

     (g) Distribution of times of changing flag          (h) Distribution of ship type 

  

(i) Distribution of ship flag performance (j) Distribution of ship company performance 
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     (k) Distribution of ship RO performance  

Figure 3. Distribution of the variables of all cases in the data set 

 

(1) Number of deficiencies (class variable) 

The number of deficiencies is the total number of deficiencies identified after the PSC 

inspection is conducted. It is the only variable that cannot be obtained when a ship comes to the 

PSC inspection authority. In the 250 inspection records, the number of deficiencies is between 0 

and 51. 

(2) Ship age 

The age of a ship is the time difference (in years) between the keel laid date and the PSC 

inspection date. In the 250 inspection records, the ship age is between 0 and 45. 

(3) Gross tonnage 

The gross tonnage (GT) is a nonlinear measure of a ship’s overall internal volume, with 100 

cubic feet as the unit. In the 250 inspection records, the ship GT is between 299 and 194,308. 

(4) Number of previous detentions 

The number of previous detentions of a ship is the sum of the detentions from the first time 

the ship went through a PSC inspection. We use “none” as the state for this attribute variable for 

the 14 ships that were inspected for the first time. In the other 236 inspection records, the number 

of previous detentions is between 0 and 18. 

(5) Last inspection time 

The last inspection time of a ship is the time interval (in month) from the last PSC 

inspection to the time of the current PSC inspection. For the 14 ships that were inspected for the 

first time, we use “none” to represent the state of this attribute variable. In the other 236 

inspection records, the last inspection time is between 0 and 180.7 months.  

(6) Number of deficiencies in last inspection 
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The number of deficiencies in the last inspection is the number of deficiencies identified in 

the last PSC inspection. Similarly, we use “none” to denote the state for this attribute variable for 

the 14 ships that were inspected for the first time. In the other 236 inspection records, the 

deficiency number in the last PSC inspection is between 0 and 55.  

(7) Number of times of changing flag 

The number of times of changing flag is the sum of the times the ship’s flag has been 

changed since the first PSC inspection. Cariou and Wolff (2011) pointed out that vessels in 

relatively bad condition (resulting in detention or a high number of deficiencies) were more likely 

to be involved in flag changing activities to reduce the PSC inspection rate. In addition, Fan et al. 

(2014) concluded that a high PSC inspection rate would motivate ship flagging-out, i.e., changing 

the flag of the ship by registering the ship in a country other than the one in which it operates. 

Thus, we include this attribute variable in the TAN classifier. For the 14 ships that were inspected 

for the first time, we use “none” to represent the state of this attribute variable. In the other 236 

inspection records, the flags of the ships were changed between 0 and 7 times.  

(8) Ship type 

According to the annual report on PSC from Tokyo MoU (Tokyo MoU, 2017a), the main 

types of ships that have been inspected in the Asia-Pacific region in 2017 are bulk carrier, 

container ship, general cargo/multipurpose, passenger ship, and tanker. Thus, the states of this 

variable are bulk carrier, container ship, general cargo/multipurpose, passenger ship, tanker and 

others. 

(9) Ship flag 

The performances of ship flags are reported in the annual report from Tokyo MoU (Tokyo 

MoU, 2017b). Assessment of the performance of each flag state takes into account the inspection 

and detention history over the preceding three calendar years and the flags are classified to be on 

the black list, grey list or white list. Only flags that have been involved in more than 30 PSC 

inspections during the previous three years are listed in the black-grey-white lists; otherwise the 

performance of the flag will not be listed (Tokyo MoU, 2017b). Thus, the states of this variable 

are white, grey, black and not listed. 

(10) Ship company 

The ship company refers to the ISM company for the ship (Tokyo MoU, 2017c), i.e., the 

ship operating company which is responsible for implementing the International Safety 

Management (ISM) code on ships.  The performance of each company is judged by Tokyo MoU 

based on the company’s deficiency and detention performance and can be obtained by searching 
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for the company IMO number in the Tokyo MoU database (Tokyo MoU, 2014). The states of ship 

company performance are high, medium, low and very low (Yang et al., 2018b). 

(11) Ship recognized organization 

Ship recognized organization (RO) is the classification society that carries out surveys and 

issues or endorses statutory certificates on behalf of a flag state. The performance of ROs is 

established annually and determined by the inspection and detention history over the last three 

calendar years (Paris MoU, 2013). The states of performance of the ship recognized organization 

are high, medium, low and not listed. 

4.2.1 Discretizing the values of the variables into discrete states 

As mentioned above, the TAN classifier works on discrete states of variables. The state of a 

variable can be represented by nominal data (nominal data has no order of rank), ordinal data (the 

order of rank is meaningful, e.g., strongly agree, agree, neutral, disagree, strongly disagree), and 

quantitative data. Quantitative data can be classified as discrete data and continuous data. The 

class variable and attribute variables in this study belong to the following categories: (i) “Ship 

type” is nominal data, and “ship flag”, “ship company” and “ship recognized organization” are all 

ordinal data if we exclude the value “not listed”. For nominal and ordinal states of variables, we 

consider each category of the values of a variable as a state of the variable. (ii) Gross tonnage and 

last inspection time are continuous quantitative data. Since the TAN classifier only deals with 

discrete states, we need to discretize the values of each continuous variable into a few states. 

Intuitively, we should discretize the possible values of a continuous variable into states of equal 

proportion. (iii) Ship age2, number of previous detentions, number of times of changing flag, and 

number of deficiencies in last inspection are discrete quantitative data. Although they are discrete 

variables, their sets of possible values are too large and we need to propose a method to group the 

possible values into a smaller number of states. 

For continuous variables (i.e., gross tonnage and last inspection time), the procedure of 

discretization into states of equal proportion is straightforward, because the values of the variable 

for all cases in  are different3. For example, suppose we want to discretize the possible values of 

a variable into states N of equal proportion, and the values of the variable in the K  cases in  

are listed in ascending order 1,..., Kv v , K N . Then, defining x    as the smallest integer greater 

than or equal to x , values in the interval  1 /
[ , ]

K N
v v

  
should be in the first state, values in the 

 
2 Ship age should normally be continuous data. But in our study the ship age is recorded as an integer number 

of years and hence it is considered to be discrete data. 
3 Due to the limited precision of measurement and recording, it is possible that two values are equal. The 

chance that two values are equal is small and has little effect on our model.  
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interval / 1 2 /
[ , ]

K N K N
v v

+      
 should be in the second state, and values in ( 1) / 1

[ , ]KN K N
v v

− +  
 should be in 

the N th state. To ensure that the states cover all possible values of the variable, including values 

that are not included in the full data set but may appear in future cases, we can define the first 

state as / / 1
( , ( ) / 2]

K N K N
v v

+      
− + , the second state as 

/ / 1 2 / 2 / 1
(( ) / 2, ( ) / 2]

K N K N K N K N
v v v v

+ +              
+ + , and the N  th state as 

( 1) / ( 1) / 1
(( ) / 2, )

N K N N K N
v v

− − +      
+ + . 

For discrete variables (i.e., ship age, number of previous detentions, number of times of 

changing flag, and number of deficiencies in last inspection), a natural way is to consider each 

possible value (e.g., 1, 2, … for ship age) as a state. However, this will lead to a large number of 

combinations of states considering that the TAN classifier accounts for the dependencies between 

variables. A large number of combinations of states require an extremely large full data set (e.g., 

billions of records), otherwise the number of cases in some states will be extremely small. Since 

we have only 250 records, we combine several possible values of a variable into one state; for 

example, ages between 0 and 5 can be considered as one state, ages between 6 and 10 can be 

considered as another state. Aggregating values of a variable into states should not be conducted 

in an arbitrary way. Instead, the possible values of a variable should be discretized into states of 

equal or approximately equal proportion. The process of discretizing the values of a discrete 

variable into a few states of equal proportion is not as straightforward as that of discretizing the 

values of a continuous variable. For a discrete variable, it is highly probable that some cases have 

exactly the same value and these cases should be in the same state. It should be noted that 

although the idea of the equal-frequency discretization method has been used in the BN-related 

literature (Dougherty and Sahami, 1995; Flores et al., 2011), no rigorous discretization method is 

proposed and there are ambiguities in implementation. We formally state the problem of 

discretizing the values of a discrete variable into states of as equal proportion as possible: 

Data discretization problem: A data set of K  cases has a discrete variable. There are V  

categories of values in ascending order for the discrete variable in the K  cases and the number of 

cases in category 1,...,v V=  is v . 
1

V

vv
K 

=
= . The data discretization problem aims to discretize 

the V  categories into N  states of consecutive categories, N V , such that each state has at least 

one category and the proportion of cases that fall into each state is as close to 1/ N  as possible. 

Letting Z +  be the set of non-negative integers, the problem is to find integer values 0 1 2, , ,..., Ns s s s  

that solve the following optimization problem: 
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                                           Min 1

2

1

1

1

n

n

s

vN
v s

n K N


−= +

=

 
 
 −
 
 
 


                                                             (3) 

subject to 

                                             1 1, 1,...,n ns s n N− + =                                                              (4) 

                                                , 1,...,ns Z n N+ =                                                                (5) 

                                                         
0 0s =                                                                             (6) 

                                                        
Ns N= .                                                                         (7) 

The objective function (3) minimizes the sum of squared deviations of the proportion of each state 

from the average proportion 1/ N . The first state will be 
1 1 1( , ( ) / 2]s sv v +− + , the second state 

will be 
1 1 2 21 1(( ) / 2, ( ) / 2]s s s sv v v v+ ++ + , and the N th state will be 

1 1 1(( ) / 2, )
N Ns sv v
− − ++ +

4. 

Theorem 1: The data discretization problem can be solved in time bounded by 2( )O NV .■ 

The idea of proving Theorem 1 is to use dynamic programming to solve model (2). The detailed 

proof is in Appendix A. 

4.2.2 States of the variables 

The total data set contains 250K =  inspected ships, where there are 14 ships without 

previous PSC inspections. For the variables “the number of deficiencies”, “ship age” and “ship 

gross tonnage”, which are irrelevant to the previous inspections, we discretize their states into 

3N =  states. For the variables that are related to previous PSC inspections, including “the number 

of previous detentions”, “last inspection time”, “the number of deficiencies in last inspection” and 

“the number of times of changing flag”, we discretize them into 4N  =  states, with the state 

“none” for the 14 ships without former inspection, while the remaining three states contain 

250 14 236K  = − =  ships. The states of the variables are in Table 1. 

4.3 Construct the qualitative part of the TAN classifier  

There are six steps to construct the qualitative part of a TAN classifier in PSC inspection 

according to the Construct-TAN procedure (Friedman et al., 1997). 

 

 

 

 
4 If the values of the variable can only be integers, then the intervals for the states can be truncated so that the 

end points of each interval are both integers. 
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                                      Table 1 Variables in TAN classifier 

 

 

4.4 Constructing the quantitative part of the TAN classifier 

There are two components in the quantitative part of the TAN classifier: the marginal 

probability distribution of each variable and the conditional probability table (CPT) for each 

variable. Marginal probability, denoted by ( )P X x= , is an unconditional probability of the 

occurrence of state x  of event X . The probabilities of states corresponding to each variable are 

the marginal probabilities in percentage form, as shown in Figure 5. 

Conditional probability ( | )P A B  is the probability of A  under condition B . In the BN 

models, the conditional probabilities of each attribute variable are presented in conditional 

probability tables (CPTs). The method used to calculate the CPTs is presented in Appendix C. The 

root variable (i.e., the class variable deficiency_no) has no parent and therefore its conditional 

probabilities are reduced to prior probabilities. Now, the construction process of the quantitative 

part of the TAN classifier is done, which involves generating the marginal probability distribution 

of each variable as presented in Figure 5 and the CPT for each variable as presented in Appendix 

C.  
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Table 2 Conditional mutual information of attribute variables 

 

Procedure 1. Construct-TAN procedure. 

Step 1:   Select deficiency_no as the class variable, and age, GT, type, flag, company, RO,     

pre_detention, last_inspection, last_deficiency_no and change_flag as attribute 

variables.  

Step 2: Compute the conditional mutual information between all pairs of attribute 

variables given the class variable ( ; | )i jI A A C  to identify their dependency, 

i jA A , 1,...,10, 1,...,10,i j i j= =  . 

Step 3: Build a complete undirected graph with attribute variables as the nodes and the 

conditional mutual information ( ; | )i jI A A C  as the weight of the edge of 
iA  and 

jA .  The results are shown in Table 2. 

Step 4: Build the maximum weighted spanning tree by sorting the weights of the 

edges from large to small, and then choose the edges from the largest weight to 

the smallest weight without forming a circle. For each chosen edge, if adding this 

edge forms a circle, it will not be chosen anymore; instead, edges with weights 

smaller than this edge will be chosen from larger weight to smaller weight. Keep 

the chosen edges and delete the others. The selected edge weights are in bold in 

Table 2. 

Step 5: Transform the undirected spanning tree into a directed tree by choosing age as 

the root variable and setting the directions of all arcs to other attribute variables 

to be outward from it.  

Step 6: Add the class variable C  (i.e. deficiency_no) to the tree and arcs from the class 

variable to every attribute variable. The structure of the TAN classifier is 

presented in Figure 4. 
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Figure 4. Structure of the TAN classifier for PSC inspection.  

 

 

Figure 5. TAN model with marginal probabilities for PSC inspection. 

 

4.5 Classification process for coming vessels  

The TAN classifier obtained in the previous subsections has 10I =  attribute variables, and 

its class variable has 3CN =  states: “0to2” is the first state, “3to6” is the second state, and “7+” is 



22 

 

the third state. We define 
0i

A as the root attribute variable (
0i

A is “age” for this classifier). Recall 

that ( )iA  is the parent attribute variable of attribute variable 0, 1,..., ,iA i I i i=  . For a specific 

incoming vessel k  with attribute variable set 1( ,..., )k k k

IATT a a=  , the TAN classifier can 

calculate the probability for it to belong to each state s Cc S  of the class variable. For ease of 

exposition, we define  

                 

(1) ( )

( ) ( ) ( ( ))0
0

0

( ) ( ( ))

( )0
0

( ( ))
0

1, ,

, ( ),,
1,

, ( ),

,
1, ( ),

( ,..., , )

( ) ( | ) ( | , )

( , | )
( ) ( | ) , 1,...,

( | )

I

i i i

i i

i

i

I

sk I k

I
I I I

s s si k i ki k
i i i

I
I

si k i kI I

s s CIi k
i i i si k

P a a c

P c P a c P a a c

P a a c
P c P a c s N

P a c













= 

= 

=  

=   =





                 (8) 

where the superscript “ I ” means the TAN has I  attribute variables and 1,..., Cs N=  refers to the 

three states of the class variable. Then, the probability that vessel k  belongs to s Cc S   is 

calculated by the following posterior probabilities formula: 

                      

(1) ( )

(1) ( )

(1) ( )

1, ,

1, ,

1, ,
1

( ,..., , )
( | ,..., ) , 1,..., .

( ,..., , )

I

I
C

I

I

sk I kI

s CNk I k
I

sk I k
s

P a a c
P c a a s N

P a a c
=

= =


                      (9) 

Two ships chosen from the testing data set are used to show the deficiency number 

classification process. The detailed information of the attribute variables of the two incoming 

ships is shown in Table 3. The results of the classification process are shown in Table 4. 

Table 3 Information on the incoming vessels 
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Table 4 Classification results of the incoming vessels  

Ship 1  Ship 2  

( 1: 0 2)P S to  in Eq. (8) 43.46 10−  ( 1: 0 2)P S to  in Eq. (8) 83.44 10−  

( 2 :3 6)P S to  in Eq. (8) 42.17 10−  ( 2 :3 6)P S to  in Eq. (8) 71.00 10−  

( 3: 7 )+P S  in Eq. (8) 51.17 10−  ( 3: 7 )+P S  in Eq. (8) 54.77 10−  

( 1: 0 2)P S to  in Eq. (9) 60.17%  ( 1: 0 2)P S to  in Eq. (9) 0.07%  

( 2 :3 6)P S to  in Eq. (9) 37.79%  ( 2 :3 6)P S to  in Eq. (9) 0.21%  

( 3: 7 )P S +  in Eq. (9) 2.04%  ( 3: 7 )P S +  in Eq. (9) 99.70%  

 

This classification process can also be shown visually by selecting the corresponding states 

of each variable in Figure 6. The posterior probability distribution of the deficiency_no is shown 

in the corresponding node.  

 

(a). Classification process of ship 1 
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(b). Classification process of ship 2 

Figure 6. Illustration of the classification process of the new incoming ships 

 

Now we are ready to present the results: the probabilities for ship 1 to have 0 to 2 

deficiencies, 3 to 6 deficiencies and more than 7 deficiencies are 60.17%, 37.79%, and 2.04% 

respectively. As the state with the highest probability is the predicted range of the number of 

deficiencies, we can conclude that the incoming vessel is most likely to have 0 to 2 deficiencies. 

Meanwhile, the probabilities for ship 2 to have 0 to 2 deficiencies, 3 to 6 deficiencies and more 

than 7 deficiencies are 0.72%, 0.21%, and 99.70% respectively, and thus the estimated deficiency 

number of this vessel is more than 7. 

4.6 Effect of the choice of root attribute variable 

Based on the construction of the TAN classifier and the posterior probabilities formulae (7) 

and (8) for classifying a case k , we have the following theorem: 

Theorem 2: To construct a TAN classifier with I  attribute variables, 2I  , different choices of 

root attribute variable node in Step 5 of the Construct-TAN procedure all have the same posterior 

probability of classifying a case k  into a state to s Cc S  in Eq. (8).■ 

We use mathematical induction to prove Theorem 2. The detailed proof is in Appendix B. 
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5. Model validation and results  

As a classifier, a typical way to validate the model is to evaluate how well it performs on 

unseen data, i.e., to check the classification accuracy using a testing data set (Hänninen, 2014; 

Hänninen and Kujala, 2014). We construct the TAN model by inputting the ships’ attribute 

variable states (i.e., states of age, flag, GT, etc.) and the class variable state (i.e., state of 

deficiency_no) in the training case set to learn the structure and parameters of the TAN classifier. 

To validate the model, in addition to the 250 cases in set  , we collected a set of another 50 

cases, denoted by  , which is mainly used as the testing data set. 

5.1 Classification accuracy  

To analyze the classification accuracy of the TAN model, we first construct a test case set 

containing the first {50,100,150,200,250}m  inspections in  . Then, we put in the attribute 

variable states of each ship in   and use the TAN classifier to calculate the state of 

deficiency_no. If the ship is indeed in the deficiency_no state, then the classification is accurate; 

otherwise it is inaccurate. The classification accuracy results for {50,100,150,200,250}m  

training cases are listed in Table 5. It can be seen from the table that as the scale of the training set 

increases, the classification accuracy shows an upward trend. When the training set contains more 

than 200 cases, the prediction accuracy is beyond 60%. This is almost twice as accurate as a 

random guess. 

Table 5 TAN classifier accuracy 

 

 

5.2 Comparison between TAN classifier and Ship Risk Profile (SRP) 

5.2.1 Introduction to SRP and comparison method 

The Ship Risk Profile (SRP) is the method currently used by Tokyo MoU for selecting ships 

to conduct PSC inspections, which is calculated daily in the corresponding PSC MoU’s database 

(Tokyo MoU, 2014). Different weighting points are given to different states of ship type, ship age, 

ship flag performance, ship RO performance, ship company performance, previous number of 
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deficiencies and detentions. Based on the total weighting points, the ships are classified into three 

risk profiles: high risk ship (HRS), standard risk ship (SRS) and low risk ship (LRS). At the same 

time, time windows of 2 to 4 months, 5 to 8 months, and 9 to 18 months, which refer to the time 

since the previous inspection, are attached to HRS, SRS, and LSR, respectively. The current 

inspection selection scheme is based on the ship inspection priority: ships without prior inspection 

are Priority I; incoming ships whose time window has been closed (i.e., HRS, SRS and LRS with 

last inspection time of more than 4 months, 8 months, and 18 months respectively) are Priority II. 

Ships within the time window (i.e., HRS, SRS and LRS with the last inspection time between 2 to 

4 months, 5 to 8 months and 9 to 18 months respectively) are Priority III. Ships that do not enter 

the time window are of Priority IV. 

We compare the “effectiveness” of the currently used SRP inspection scheme and the newly 

constructed TAN classifier. The port authority wishes to identify as many deficiencies as possible 

after inspecting a certain number of ships for the following two reasons: first, the inspection 

results only contain ship deficiencies and ship detention, but the ship detention rate is low. A more 

direct approach to improve the inspection efficiency is to inspect ships with a larger number of 

deficiencies. Second, larger numbers of deficiencies are also supposed to have strong relationship 

with ship detention (Yang et al., 2018a; Cariou and Wolff, 2015). Thus, the “effectiveness” here 

refers to the “quickness” of identifying the ships with larger numbers of deficiencies. This can be 

reflected by the inspection sequence of the incoming ships generated by using the two selection 

methods. The TAN classifier used for comparison is the one proposed in Section 4, which is 

trained by data set  (training set 1). Both SRP and the TAN classifier use the same testing data 

set   (testing set 1). Suppose that the ships in   arrive at the PSC authority at the same time, 

and the PSC authority has the resources to inspect  1,2,...,50n =  ships. If the SRP selection 

scheme is used, a list of n  ships will be chosen for inspection based on Procedure 2 in Appendix 

D; if the TAN classifier is used, another list of n  ships will be chosen for inspection based on 

Procedure 3 in Appendix E. We can then calculate the total numbers of deficiencies they can 

detect after inspecting the same number of ships n  to compare their efficiency.  

5.2.2 Comparison results 

We enumerate the possible values of 1,2,...,50n =  and draw the two total detected 

deficiency number curves in Figure 7.    
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(a) Comparison results of Testing set 1 (b) Comparison results of Testing set 2 

  

(c) Comparison results of Testing set 3 (d) Comparison results of Testing set 4 

    

(e) Comparison results of Testing set 5 (f) Comparison results of Testing set 6 

Figure 7. Comparisons of ship selection efficiency between SRP and TAN classifier  

 

Figure 7(a) illustrates that the selection performance of the TAN classifier significantly 

outperforms the currently used SRP selection scheme. We define the improvement of the TAN 

classifier over the SRP selection scheme at the m th inspection (denoted by ( )I m ) and the average 

improvement (denoted by AI ) after the total M inspections as follows: 
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( ) 100%

_ ( ( ))

total de TAN m total de SRP m
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total de SRP m

−
=   
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m

I m
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M

==
  

where _ ( ( ))total de TAN m  and _ ( ( ))total de SRP m  are the total numbers of deficiencies detected 

after the m th inspection by the TAN classifier and SRP selection scheme respectively, and 

=50M . In Figure 7(a), the average improvement over the 50 ships in testing set 1 is 101.00%. 

We further assume that the port authority has the ability to inspect 10%, 20%, …, 60% of all the 

50 incoming ships, and the improvements of the TAN classifier over the SRP ship selection 

scheme after inspecting 5, 10, 15, 20, 25, and 30 ships are 300%, 177.78%, 172%, 137.5%, 

70.41%, and 37.88% respectively. These statistics tell us that when the PSC authority only has 

limited resources to inspect the incoming ships, the TAN classifier can help to identify ships with 

higher risks better.  

It is worth mentioning that, in Figure 7(a), the ship with the largest number of deficiencies 

among the total 50 ships (i.e. 21 deficiencies) is ranked 3rd in the inspection list generated by the 

TAN classifier, while it is 27th on the inspection list in the SRP selection scheme. Although this 

ship is in the HRS category, it was inspected in Shandong, China, 2.3 months ago and is thus 

within the inspection time window. As the SRP only takes the inspection time window into 

consideration among all the high-risk ships, ships that have been inspected a short time ago would 

have lower risk indices than many other ships and are thus at the end of the SRP inspection list. In 

addition, the weighting points given to the risk parameters in SRP are rough; for example, all 

types of ships with age more than 12 will be given 1 weighting point, those with low or very low 

RO performance will be given 1 weighting point and those with low or very low company 

performance will be given 2 weighting points. Moreover, if the total weighting point is larger than 

or equal to 4, it is classified as an HRS, with no more information attached except for an 

inspection time window. On the contrary, the TAN classifier is more sensitive to the states of the 

attribute variables, as it treats them in a detailed manner (e.g., all the states of the attribute 

variables are taken into account instead of some extreme states) while also taking the 

dependencies between the variables into consideration. What is more, the TAN classifier can 

generate an expected number of deficiencies (i.e. ( _ )E deficiency no ) for each individual ship, 

which can better distinguish the ships instead of roughly classifying them into three risk profiles. 

For this ship, the age of 8 to 12, flag on the grey list, company of very low performance, RO of 

medium performance, more than two times of changing flag and previous detentions all give it a 
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higher probability of having a larger number of deficiencies in the TAN classifier. As a 

consequence, the TAN classifier assigns a higher priority to this ship than the SRP selection 

scheme does.  

To further test the robustness of the performance of the TAN classifier, we randomly divide 

the 250 training data cases in   into five mutually exclusive data sets, denoted by 
1 , 

2 , 
3 , 

4 , and 
5 , each containing 50 cases. Then, we obtain five new training sets and the 

corresponding testing sets: 
2 3 4 5

      (training set 2) and 
1  (testing set 2), 

1 3 4 5
      (training set 3) and 

2  (testing set 3), 
1 2 4 5

      

(training set 4) and 
3  (testing set 4), 

1 2 3 5
      (training set 5) and 

4  (testing 

set 5), and  
1 2 3 4

      (training set 6) and 
5  (testing set 6). After comparing the 

TAN and SRP selection scheme by using the five training sets and the corresponding testing sets, 

we find that the TAN classifier can detect 141.29%, 215.54%, 25.83%, 75.31% and 193.76% 

more deficiencies on average each time, with 130.35% more deficiencies than the SRP selection 

scheme on average in total. After further assuming that the port state has the resources to inspect 

10%, 20%, 30%, 40%, 50%, and 60% of the 50 total incoming ships, we can calculate that the 

average improvement of the TAN classifier is 348.38%, 147.23%, 108.32%, 98.29%, 70.33%, and 

48.83% after inspecting 5, 10, 15, 20, 25, and 30 ships, respectively. The comparisons are 

illustrated in Figure 7. The reasons for the superior performance of the TAN classifier are as 

follows. First, the SRP selection scheme attaches a fixed time window for the ships and this will 

unconditionally give a high priority for ships out of the time window to be inspected first, even if 

some of them have fewer deficiencies. Meanwhile, in the TAN classifier, the last inspection time 

is just viewed as one attribute variable. Second, the weighting point given to each parameter is 

based on expert knowledge and is fixed in the SRP selection scheme. In contrast, the TAN 

classifier is based on a mathematical model, as the probabilities are all based on the statistical data 

and the classification process is based on Bayes’ Theorem. Third, the ships are divided into three 

categories (excluding the small number of ships that have not been inspected before) in the SRP 

selection scheme, which means that there are 1/3 ships in each category on average and these 

ships will have the same inspection time window (i.e., the same inspection priority). On the 

contrary, the TAN classifier can generate a different risk index for each incoming ship to better 

distinguish them in order to identify the ships of higher risk.  

5.3 Comparison between TAN classifier and ordered logistic regression  

5.3.1 Introduction to ordered logistic regression 
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Among the most widely adopted methods in the research on PSC inspection are logistic 

regression models (Knapp and Franses, 2007; Knapp et al., 2011; Knapp and Hänninen, 2014; Li 

et al., 2014). Thus, we compare the performance of the TAN classifier and the logistic regression 

model in identifying ships with larger numbers of deficiencies. It should be noted that the logistic 

regression models proposed in the abovementioned studies in the brackets are all binary logistic 

regression models, in which the regression target has only two states. In our study, there are three 

states of “deficiency_no”, and its states are ordinal (i.e., the conditions of ships with 0 to 2 

deficiencies are better than ships with 3 to 6 deficiencies and are much better than ships with more 

than 7 deficiencies). We thus extend the binary logistic regression model to a multilevel ordered 

logistic regression model, which is a regression model used for ordinal dependent variables with 

multiple states (McCullagh, 1980). For more detail on the multilevel ordered logistic regression 

models, please refer to Menard (2002). We use the input data set that is used to construct the TAN 

classifier in Section 4, and the assumptions of the multilevel ordered logistic regression on the 

input data are guaranteed: (a) the input data are categorical; (b) there is no multicollinearity in the 

input data; (c) the input data are proportional odds, i.e., each independent input variable has an 

identical effect at each cumulative split of the ordinal dependent variable (Menard, 2002). It 

should be noted that the “independence” of the input data does not mean that the input variables 

are statistically independent of each other; instead, only the non-multicollinearity of the input data 

needs to be guaranteed. The verification of input data and the construction of the multilevel 

ordered logistic regression model are conducted in SPSS software.  

5.3.2 Comparison results  

After estimating the parameters in the multilevel ordered logistic regression model, we use 

testing set 1, which is used to test the TAN classifier, to test the performance of the logistic 

regression model. The testing method is almost the same as Procedure 3 proposed in Appendix E, 

which is used to test the performance of the TAN classifier, i.e., calculating the estimated 

deficiency number based on the probabilities and average deficiency numbers of different states of 

“deficiency_no”. The comparison results are shown in Figure 8. 
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Figure 8. Comparison between TAN classifier and ordered logistic regression model 

 

We can see from Figure 8 that the TAN classifier outperforms the multilevel ordered 

logistic regression model. It can detect 6.70% more deficiencies on average than the ordered 

logistic regression model. We further assume that the port state has the resources to inspect 10%, 

20%, 30%, 40%, 50%, and 60% of all the incoming ships, and that the TAN classifier can detect 

20%, 16.28%, 24.77%, 8.57%, 6.37%, and 5.20% more deficiencies than the ordered logistic 

regression model. 

 

6. Variable analysis 

6.1 Dependency of class variable on attribute variables 

 Mutual information on two random variables is a measure of the mutual dependence 

between two variables (Fraser and Swinney, 1986). In the proposed TAN classifier trained by 250 

cases, we use the mutual information ( ; )iI A C  between each attribute variable and the class 

variable to present the extent to which the attribute variables have an influence on the number of 

deficiencies. ( ; )iI A C  can be calculated by the following formula: 

                                    
,

,

1 1 ,
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( ; ) ( , ) log
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where “log” means the logarithmic operation with base 2 in this study. 
,( , )i s sP a c is the non-

negative joint probability distribution of 
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and C . ( ; )iI A C  is non-negative if and only if iA  and C  are independent, then ( ; ) 0iI A C = . 

Larger ( ; )iI A C  means that iA and C  are more dependent on each other. Table 6 presents the 

mutual information between each attribute variable and the class variable. 

Table 6 Mutual information between attribute variables and class variable 

 

It can be seen from Table 6 that the ship company has the most significant influence on the 

number of deficiencies detected in the PSC inspection. This may be because, after the NIR was 

introduced in 2014, the performance of the companies was divided into four grades according to 

the inspection results of their ships in the PSC inspection. In addition, company performance is 

also a determinant of the ship risk profile. As a result, low performance will give the company a 

bad reputation, and may thus decrease its revenue. Also, the number of deficiencies in the last 

PSC inspection is one of the dominant predictors of the number of deficiencies in the next 

inspection. Ship age and previous detention times can also have a big impact on the ship 

deficiency number. Meanwhile, the last inspection time and the performance of ship RO have the 

least influence on the number of deficiencies of a ship. 

6.2 Effects of attribute variables on class variable 

Recall the states of the variables in the TAN classifier as presented in Figure 5, in which the 

probability distribution of the class variable presents the proportions of the ships in the training 

data set belonging to the corresponding states of that variable. To identify how each state of each 

attribute variable will have an influence on the class variable, i.e., to identify in what states ships 

are more likely to have larger or smaller number of deficiencies, we assume that all the incoming 

ships are in one particular state of an attribute variable. To be more specific, to identify the 

influence of the states of “company” on the deficiency number, we can set the proportion of “S1: 

high”, “S2: medium”, “S3: low”, and “S4: very_low” equal to 100% respectively, i.e., we assume 
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that the company performance of all the incoming ships is high, medium, low and very low, 

respectively, and then record the proportions of the states of “deficiency_no” each time. The 

results are shown in the second to fifth columns in Figure 9(a). The first column in Figure 9(a) is 

the distribution of the variable among all the training cases, and we denote it as “average” in the 

horizontal ordinate. Comparing the first column with each column after the first column, if a 

column has the proportion of “S1: 0to2” of the class variable higher than that of the “average” 

column, and the proportion of “S3: 7+” of the class variable of this column is less than that of  the 

“average” column, then it can be concluded that ships in this state of the attribute variable may 

have fewer deficiencies and are in better conditions than average. Conversely, if a column has the 

proportion of “S3: 7+” of the class variable higher than that of the “average” column and the 

proportion of “S1: 0to2” of the class variable of this column is lower than that of the “average” 

column, then the ships with this state of the attribute variable may have more deficiencies and are 

in worse conditions than average. The effects of different states of the states of the class variable 

are presented in Figure 9. 

 

    

(a) Effect of different states of "company" on 

"deficiency_no" 

(b) Effect of different states of 

"last_deficiency_no" on "deficiency_no" 
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(c) Effect of different states of "age" on 

"deficiency_no" 

(d) Effect of different states of 

"pre_detention" on "deficiency_no" 

   

(e) Effect of different states of "GT" on 

"deficiency_no" 

(f) Effect of different states of "type" on 

"deficiency_no" 

  

(g) Effect of different states of "flag" on 

"deficiency_no" 

(h) Effect of different states of    

"change_flag" on "deficiency_no" 

  

(i) Effect of different states of "last_inspection" 

on "deficiency_no" 

(j) Effect of different states of "RO" on 

"deficiency_no" 

Figure 9. Effect of different states of the attribute variables on class variable 
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Figure 9(a) shows that for the ship companies, the higher the company’ performance is, the 

fewer deficiencies in PSC inspections its ships may have. Figure 9(b) indicates that, except for 

those ships that have no PSC inspection records, the more deficiencies there were in the last PSC 

inspection, the more likely it is that the ship will have more deficiencies in the next inspection. 

Figure 9(c) indicates that old ships may have more deficiencies than younger ships. Figure 9(d) 

shows that the greater the number of times a ship has been detained before, the worse performance 

in the latter PSC inspections it has. It is also the same for the number of times the ship changed 

flag, shown in Figure 9(h). As for the gross tonnage of ships, Figure 9(e) illustrates that ships with 

GT less than 11,228 are more likely to have more deficiencies. One of the reasons for this is that 

the ship’s GT will be used to determine the ship’s manning regulations, safety rules, registration 

fees, and port dues (IMO, 1969) and can thus influence the ship’s conditions. Another reason is 

that compared to larger ships, the detention cost of smaller ships is lower, and they are more likely 

to have a higher number of deficiencies due to the lack of professional management of the ship 

companies. Figure 9(f) shows that general cargo and multipurpose ships are more likely to have a 

large number of deficiencies, while tankers have fewer deficiencies. Regarding the impact of ship 

flag performance on the number of deficiencies shown in Figure 9(g), if a ship’s flag is on the 

white list, then it is more likely to have fewer deficiencies than ships whose flags are on the grey 

or black list. However, this may not be true for ships whose flags are not listed, as there are 

insufficient observations. However, it may be surprising that the longer the time since the last 

inspection, the more likely the ship is to have a smaller number of deficiencies, as indicated in 

Figure 9(i). That may be because ships with a lower risk profile are less frequently inspected, 

while ships with a worse condition are inspected more often. It is also surprising that the ships 

belonging to low performance ROs have fewer deficiencies in the PSC inspection than those 

belonging to medium performance ROs, as shown in Figure 9(j). The reason for this may be that 

there are only 6.21% and 5.08% ships belonging to the medium and low performance ROs 

respectively in the total 250 cases in the TAN classifier. The small number of cases is not typical 

enough to reflect the true situation. 

 

7. Conclusion and future research 

PSC inspection is viewed as an effective way to eliminate substandard shipping. One of the 

key issues faced by the PSC inspection authorities is how to identify high-risk incoming ships to 

inspect in order to find more deficiencies after inspecting a certain number of ships. To select the 

high-risk ships more efficiently, a data-driven Bayesian network classifier called the Tree 
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Augmented Naive Bayes (TAN) classifier is proposed in this paper. By using historical inspection 

data downloaded from the database of Tokyo MoU, which include both ship information and 

inspection information, the structure part and quantitative part of the TAN classifier are 

constructed.  

The proposed model is validated by a numerical experiment based on the historic data from 

Hong Kong port, which shows that when the number of training cases is more than 200, the 

classification accuracy of the TAN model is beyond 60%. Compared with the currently used Ship 

Risk Profile (SRP) ship selection scheme, the TAN classifier can identify about 130.35% more 

deficiencies on average after inspecting the 50 ships in the testing data set. The results of the 

numerical experiment also show that after inspecting 10%, 20%, 30%, 40%, 50%, and 60% of the 

50 total incoming ships in each testing data set, the average improvement of the TAN classifier is 

348.38%, 147.23%, 108.32%, 98.29%, 70.33%, and 48.83% after inspecting 5, 10, 15, 20, 25, and 

30 ships, respectively. The variable analysis shows that among all the attribute variables in the 

TAN classifier, the performance of the ship company and the number of deficiencies in the last 

PSC inspection are the dominant factors that influence the deficiency number. The results also 

show how the state of a specific attribute variable can have an impact on the class variable (i.e., 

the deficiency number). Theoretically, we propose a data equal-frequency discretization problem 

and present it in a mathematical and rigorous way. Then, by using dynamic programming we 

prove that this discretization method is bounded by 2( )O NV  when it is used in our model. Also, 

by induction, we prove that random selection of the root attribute variable of the TAN classifier 

will not influence the classification process of the cases in the testing data set. Practically, the 

proposed TAN classifier can help address the significant PSC inspection problem compared with 

the currently used ship selection method and the logistics regression model which is widely used 

in other literature on PSC inspection. 

The proposed model is one of the first few data-driven models to act as a real-time predictor 

of the number of deficiencies of incoming ships for PSC inspection. It can predict the possible 

number of deficiencies of incoming foreign ships and help the PSC officers to better identify high- 

risk ships, as well as to make rational resource allocations.  

One limitation of this research is the limited input data (i.e., the inspection records). On the 

one hand, some special cases may not be covered by the limited input cases. On the other hand, 

the CPTs may not be that accurate to reflect the real situation. In future research, more data cases, 

as well as more attribute variables, can be incorporated to construct the TAN model in order to 

further improve its prediction accuracy. 
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Appendix A. Proof of Theorem 1 

The problem can be solved by dynamic programming. The dynamic programming approach 

has N  stages. The state   of a stage 2,...,s N=  means that the categories 1,...,V +  belong to 

stages  ,...,s N  and that the categories 1,...,  belong to stages 1,..., 1s −  and stage 1s =  has only 

one state 0 = . The set of possible states of a stage s  is denoted by 

{ 1,..., ( 1)}s s V N s = − − − + . At state   of stage s , the immediate decision is the number of 

categories that are incorporated in state s . That is, if the immediate decision is d , then categories 

1,..., d + +  belong to stage s  and the resulting state of stage s  is d + . The set of possible 

immediate decisions is ( , ) {1,..., ( )}D s V N s = − − − . Let ( , )u s   be the minimum sum of 

squared errors over stages  ,...,s N  when the system is at state   of stage s . The recursive 

relation is: 
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( , ) min ( 1, ), 1,..., 1,
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d D s
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K N
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and the boundary conditions are 
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
.                                                  (A2) 

The optimal solution can be obtained by solving (1,0)u . Since the dynamic programming 

approach has N  stages, each stage has at most V  states, at each state of each stage, there are at 

most V  decisions, and the time required to evaluate a decision is bounded by (1)O , the problem 

can be solved in time bounded by 2( )O NV .□ 
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Appendix B. Proof of Theorem 2 

To prove the theorem, we will prove that, for a TAN classifier with I  attribute variables,

2I  , different choices of root attribute variable node all have the same value 

(1) ( )1, ,
( ,..., , )I

I

ss I s
P a a c  in Eq. (7) for a particular combination of 

( )1,..., , 1,..., , 1,...,j

C js N j I s N= = = . We will prove this conclusion by induction. That is, we first 

prove that this conclusion is true for a TAN classifier with two attribute variables; we then prove 

that if this conclusion is true for a TAN classifier with I  attribute variables, 2I  , it will also be 

true for a TAN classifier with 1I +  attribute variables. 

First, consider a TAN classifier with two attribute variables 
1 2( , )A A A=  and one class 

variable C . The two structures of the TAN classifier are shown in Figure B1. 

 

C

A1 A2

                    

C

A1 A2

 

                           (a) 1A  is the parent variable of 2A    (b) 2A  is the parent variable of 1A   

Figure B1. TAN classifier with two attribute variables 

For any case k  with states of the attribute variables 
1, ' 2,( , )k s sATT a a = , 

1' 1,...,s N= , 

21,...,s N = , we can use either the TAN classifier in Figure B1(a) (referred to hereafter as the left 

classifier, or “L” for short) or the TAN classifier in Figure B1(b) (the right classifier, or “R” for 

short) to calculate the values in Eq. (7). If we use the left TAN classifier, we have 
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If we use the right TAN classifier, we have 
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Note that in Eqs. (B1) and (B2), both ( )L

sP c  and ( )R

sP c  refer to the proportion of cases in the 

data set whose class state is sc , and both 
2, 1, '( , | )L

s s sP a a c
 and 

2, 1, '( , | )R

s s sP a a c
 refer to the 

proportion of cases with 1, 'sa  as the state of attribute variable 1A  and 2,sa   as the state of attribute 

variable 2A  among cases in the data set with class state  sc . Therefore,  

                                  1, ' 2, 1, ' 2,( | , ) ( | , ), 1,...,L R

s s s s s s CP c a a P c a a s N = = .                                         (B3) 

For a TAN classifier with I  attribute variables, we have (the superscript “ I ” means the 

TAN classifier has I  attribute variables) 
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     (B4) 

Suppose that for a TAN classifier with I  attribute variables, 2I  , different choices of root 

attribute variable node all have the same value of (1) ( )1, ,
( ,..., , )I

I

ss I s
P a a c  in Eq. (B4). Next, we 

prove that for a TAN classifier with 1I +  attribute variables and with a given maximum spanning 

tree, different choices of root attribute variable node all have the same value of  

(1) ( ) ( 1)

1

1, , 1,
( ,..., , , )I I

I

ss I s I s
P a a a c+

+

+
. 

Consider two TAN classifiers with the same maximum spanning tree of 1I +  attribute 

variables, and one classifier (left classifier, or “L”) has root attribute variable 
0
Li

A  and the other 

(right classifier, or “R”) has root attribute variable 
0
Ri

A , 0 0

R Li i , as shown in Figure B2. ( )L i
A
  is 

the unique parent attribute variable of attribute variable iA , 01,..., , Li I i i=  , in the left classifier 

and ( )R i
A
  is the unique parent attribute variable of attribute variable iA  in the right classifier. 

                                                  

                                             (a) The left classifier with I+1 as the root variable 
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                      (b) The right classifier with I+1 as 

                             the root variable (case i) 

   (c) The right classifier with I+1 as 

          the root variable (case ii) 

     Figure B2. The structures of left classifier and right classifier 

In a maximum spanning tree with at least two nodes, there exist at least two nodes, each of 

which is connected to exactly one other node in the tree. Therefore, in the left classifier, we can 

find a node that is not the root attribute variable and that is connected to exactly one other node in 

the tree. Without loss of generality, we assume that this node is the attribute variable 1IA +  

(otherwise we just swap its sequence with the sequence of 1IA +  in vector A ). 

Then, in the left classifier, 
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It should be noted that AA  in Eq. (B5) is actually the value (1) ( )1, ,
( ,..., , )I ss I s

P a a c for the 

TAN classifier with I  attribute variables and root attribute variable 
0
Li

A   in Figure B2(a). 

There are two cases of the right classifier. In Case (i), as shown in Figure B2(b), the root 

node 
0
Ri

A  is not 1IA + . Then, similar to Eq. (B5), we have 
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Note that BB  in Eq. (B6) is actually the value (1) ( )1, ,
( ,..., , )I ss I s

P a a c for the TAN classifier 

with I  attribute variables and root attribute variable  
0
Ri

A  in Figure B2(b). Based on the 

precondition of the induction, we have AA BB= . Since 1IA +  is connected to exactly one other 

node in the tree, we have  ( 1) ( 1)L RI I + = +  and therefore    
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Hence, for Case (i),  
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In Case (ii), as shown in Figure B2(c), the root node 
0
Ri

A  is 1IA + . Then since 1IA +  is 

connected to exactly one other node in the tree, we have  ( ( 1)) 1R L I I  + = + , that is, the parent 

attribute variable of  ( 1)L I
A
 + as the parent of 1IA + . Moreover, ( ) 1, 1,..., , ( 1)R Li I i I i I  + =  + , 

that is, no attribute variable other than ( 1)L I
A
 + has parent 1IA + . Therefore, in the right classifier, 
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Then, CC  in Eq. (B9) is actually the value (1) ( )1, ,
( ,..., , )I ss I s

P a a c for the TAN classifier with 

I  attribute variables and ( 1)L I
A
 + as the root attribute variable, as shown in Figure B2(c). Based on 

the precondition of the induction, we have AA CC= . Therefore, for Case (ii),  

               (1) ( ) ( 1) (1) ( ) ( 1)

1, 1,

1, , , 1, , ,
( | ,..., , ) ( | ,..., , )I I I I

I L I R
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This concludes the proof of the theorem. □ 
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Appendix C. Method used to calculate the CPTs 

The CPT of a variable in the BN contains the probabilities of each state of the variable 

under the condition of the states of its parent variables. For the class variable (i.e., the node 

“deficiency_no”), the CPT is reduced to the prior probability distribution of its states as it has no 

parent variable, as is shown in Table C1. 

                                                          Table C1 CPT of deficiency_no 

 

For an attribute variable, the CPT is dependent on the states of its parent variables, which 

include the class variable and/or another attribute variable. For the root attribute variable “age”, 

whose parent only contains the class variable, the conditions in its CPT only contain three states 

of the variable “deficiency_no”, and the probabilities of different states of “age” under the 

condition of a specific state of “deficiency_no” are the probabilities of the cases belonging to that 

state of “deficiency_no” and the state of “age” in the training data set. The sum of each column of 

the CPT is equal to 100%. The CPT of the root attribute variable “age” is shown in Table C2. 

Table C2 CPT of age 

 

For the non-root attribute variables, whose parent variables contain the class variable and 

another attribute variable, the conditions in CPT are the combination of one state of the class 

variable and one state of the parent attribute variable. An example of the CPT of node “RO” is 

shown in Table C3. 
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Table C3 CPT of RO 
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Appendix D. Procedure 2: Selection of n  ships by the SRP selection scheme 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table D1 Calculation of ship risk index 

 

Procedure 2.  Selection of n  ships by the SRP selection scheme. 

Step 1:   Divide the ships in   into four categories in sequence: ships without any PSC 

inspections before, ships whose inspection time windows are closed, ships within 

the inspection time window, and ships out of (not entering) the time window. 

Ships in the first category are considered to have equal priority. The priority of 

ships in the first category is higher than ships in the second, followed by ships in 

the third and fourth categories. Different ships in the second category have 

different priorities, so do ships in the third and fourth categories. The priorities 

of ships in the second, third, and fourth categories are determined in Step 2. 

Step 2: Calculate the risk index RI  of each ship in  . Denote the last inspection time 

for ship i , 1,...,50i = , as iL . The risk index RI  is used to indicate the relative 

risk ranking of the ships in their corresponding categories. The method to 

calculate the ship risk index RI  is in Table C1. 

Step 3: Sort the ships in   to generate the sequence of the inspection list. The sequence 

of ships is: ships in the first category are randomly sequenced, followed by ships 

in the second category in descending order of RI , followed by ships in the third 

category in descending order of RI , and followed by ships in the fourth 

category in descending order of RI . The first n  ships in the inspection list are 

selected 

Ship risk 

profile 

Time window 

(months) 

State of time window 

out of time 

window 

within time 

window 

time window closed 

LRS 9 to 18 
9

iL
RI =

 9

18 9

iL
RI

−
=

−

 

18

iL
RI =

 

SRS 5 to 8 
5

iL
RI =

 5

8 5

iL
RI

−
=

−

 

8

iL
RI =

 

HRS 2 to 4 
2

iL
RI =

 2

4 2

iL
RI

−
=

−

 

4

iL
RI =
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Appendix E. Procedure 3: Selection of n  ships by the TAN classifier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Procedure 3: Selection of n  ships by the TAN classifier. 

Step 1:   Train the TAN classifier using data set  . The class variable “deficiency_no” 

has three states: S1:0to2, S2:3to6 and S3:7+. Calculate the average number of 

deficiencies of each state of deficiency_no in the 250 cases in  . The results 

are: ships with 0 to 2 deficiencies on average have 1.00 deficiency, ships with 3 

to 6 deficiencies on average have 3.85 deficiencies, and ships with 7+ 

deficiencies on average have 10.07 deficiencies. 

Step 2: Input the states of each ship in   into the TAN classifier and the probability 

distribution of deficiency number is shown in the states of deficiency_no. Denote 

the probability for a ship to have 0 to 2, 3 to 6, or 7+ deficiencies by 0 2toD , 3 6toD  

and 7D +  respectively. 

Step 3: Use the average number of deficiencies of each state of deficiency_no in the 250 

cases in   to denote the expected number of deficiencies of that state, and 

calculate the expected number of deficiencies for every ship in   by 

0 2 3 6 7( _ ) 1.00 3.85 10.07to toE deficiency no D D D +=  + + . 

Step 4: Sort the 50 ships in   in descending ( _ )E deficiency no  to generate the 

sequence of inspection list. The first n  ships in the inspection list are selected. 




