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We study a new service network design problem, where the number of available resources at each terminal

is limited, and each commodity is delivered along a single path that prevents flow partition. Such a single-

path constraint is motivated by currently emerging requirements in bulk transportation, express delivery,

hazardous material transportation, etc. We model this problem with two mathematical formulations, i.e.,

node-arc and arc-cycle formulations, both of which lead to large-scale and computationally difficult mixed-

integer programs. The node-arc formulation faces a significant computation burden. To that end, we develop

a two-stage mathematical integer programming based heuristic for the arc-cycle formulation to produce

high-quality solutions. In the first stage, a column generation procedure is executed to generate an optimal

solution for the linear relaxation of the restricted master problem, and in the second stage, four heuristic

strategies are designed to efficiently generate integer feasible solutions for the original problem. We conduct

extensive experiments to verify the effectiveness of our proposed approach by comparing it with a commercial

solver (CPLEX). We also examine the performance differences among four heuristic strategies, in terms of

the frequency of finding integer feasible solutions and the quality of solutions.

Key words : Transportation; service network design; single-path constraints; resource constraints; column

generation heuristic

1. Introduction

Nowadays increasing demands of freight transportation lead to increasingly complex requirements

for service network design. Carriers will be challenged in providing customers with highly efficient

and reliable services. To overcome this challenge, carriers have to manage limited resources (e.g.,

vehicles, carrying units, handling equipment, and power units) that they own in an efficient and
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cost-effective manner. Thus, recent studies have paid much attention to service network design with

resource management (SNDAM), to better manage resources at the minimum total cost (Andersen

et al. 2009, 2011). In particular, the resource management is achieved through the so-called design-

balance constraints in the service network design models (Pedersen et al. 2009), by assuming that

each service will be operated by a resource, and there should be an equal number of resources

entering and leaving each node in the network. As a significant extension of the SNDAM, Crainic

et al. (2016) further introduced resource-availability constraints: resources are required to return to

their home terminals and there are limited resources assigned to each terminal in the network. This

extension enlarges the range of resource management in the service network design. Most of the

studies considering limited available resources assume that the network flow of a single commodity

can use over one path from origin to destination. However, nowadays increasingly more real-world

planning problems ask for single-path delivery that prevents commodity flow partition. For exam-

ple, the commodity itself can be a single heavy-weight cargo, which eliminates the possibility of

commodity partition and may require bulk transportation. Due to increasing e-commerce activities

and express shipments, single-path requirements become more and more important in city distri-

bution or local distribution networks in a large urban area. In express package delivery, which can

be requested by customers online, each set of packages with common origin and destination will

be considered as a commodity and transported along a single network path to facilitate operations

and ensure customer satisfaction (Barnhart et al. 2000). Avoiding flow partition can obviously

reduce the operation cost related to package loading, unloading and sorting, which accounts for a

large part of the total transportation cost. For hazardous material transportation, where the risk

of suffering an accident is high, it is suggested to route hazardous materials as a package along a

single origin-destination path (Verter and Kara 2008). Other application of non-split flows can be

found in the food distribution (Bortolini et al. 2016), and the offshore wind maintenance service

logistics (Gundegjerde et al. 2015, Schrotenboer et al. 2020).

Considering resource-availability constraints and single-path requirements, in this paper, we

focus on a new service network design problem, which complements the existing studies and tack-

les currently emerging requirements as mentioned above. In particular, we consider a scheduled

service network design problem in the context of time-space networks for consolidation-type carri-

ers, where services represent transportation operations defined in terms of origin and destination

terminals, route, speed, and capacity (Andersen et al. 2011). In the corresponding time-space net-

works, resources for performing transportation services follow a cyclic schedule, i.e., the schedule

is operated repetitively over a certain number of periods (e.g., a week, or a season). The goal is

to generate a tactical plan by optimally 1) selecting services and their departure times, and 2)

routing the commodities from their origins to destinations, with the aim of minimizing the total
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cost. In addition, such constraints as satisfying given demands, resource availability limitations,

and single-path should be respected. We refer to the introduced problem as the single-path service

network design problem with resource constraints (SPSNDRC)

The inclusion of single-path requirements and resource-availability constraints poses significant

methodological challenges. To the best of the authors’ knowledge, it is not significantly addressed

in the extant literature. Therefore, we aim to provide a complete model and efficient solution

approaches for the SPSNDRC. We first present a node-arc integer programming formulation for

the SPSNDRC. The arc-node formulation allows us to solve instances of relatively small size to

optimality by using commercial mixed integer programming (MIP) solvers such as CPLEX or

Gurobi. To solve large instances, we propose an MIP-based method in this paper. In particular, we

introduce an arc-cycle formulation, which involves an exponential number of variables but enables

implementable and efficient solution approaches. We develop a two-stage MIP-based heuristic. In

the first stage, the column generation procedure is executed to enumerate a subset of design-cycles

for given resources at each terminal, and thus optimal solution is generated for the linear relaxation

of the restricted master problem, which is a relaxation of the SPSNDRC formulation. In the second

stage, integer feasible solutions are generated based on the solution obtained in the first stage

through four heuristic strategies. We use heuristic strategies to effectively reduce the model size,

but keep the possibility of finding high-quality solutions. Finally, we evaluate our approach over

forty instances, which are generated based on forty benchmark SNDAM instances in the literature,

by comparing it with CPLEX. Also, for further comparisons, CPLEX is implemented to solve

the node-arc model as a benchmark. The computational results demonstrate the efficiency and

effectiveness of our proposed two-stage approach.

In summary, we describe the main contributions of our paper as follows.

• We propose a new problem called SPSNDRC, where a limited number of resources are available

at physical terminals, and the single-path requirements for routing commodities are considered.

This new setting appears in practical planning problems, enlarges the range of resource management

in the service network design, and raises significant methodological challenges.

• We model the SPSNDRC problem with two mathematical formulations, i.e., node-arc and

arc-cycle formulations. The MIP solver CPLEX is used to solve forty problem instances in order

to evaluate the strength and weakness of the node-arc formulation, thereby analyzing the compu-

tational complexity of the SPSNDRC.

• We develop a two-stage MIP-based heuristic to produce high-quality solutions to the

SPSNDRC. In particular, four heuristic strategies are introduced to efficiently search for integer

feasible solutions. Extensive computational experiments are performed to evaluate the effectiveness

of our proposed approach.
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The remainder of this paper is organized as follows. We give the literature review in Section 2.

Following the problem statement provided in Section 3, we present two mathematical formulations

in Section 4. We then present the solution approach in Section 5. In Section 6, we present compu-

tational results to evaluate the performance of our proposed approach. Finally, we summarize our

results and conclude this paper in Section 7.

2. Literature Review

Most studies related to the SPSNDRC can be found in the domain of network design and service

network design (SND) (Magnanti and Wong 1984, Ahuja et al. 1993, Crainic 2000, Hewitt et al.

2010). For excellent survey papers on general issues of network design and service network design,

please refer to Crainic (2000) and Wieberneit (2008). We provide a brief review related to SND

models and resource management issues.

SND represents a large family of mathematical optimization problems and is widely used to model

the decision-making issues appeared in telecommunication, transportation, logistics, manufacturing

industries, and other fields; see Magnanti and Wong (1984), Crainic (2000), Pedersen et al. (2009),

Li et al. (2012), Lo et al. (2013), Zhu et al. (2014), Chouman and Crainic (2015), Bortolini et al.

(2016), Li et al. (2017b), and the references therein. Crainic (2000) gave an excellent survey of

SND. The authors discussed tactical planning within the larger context of transportation systems

and planning issues, and introduced fundamental formulations for the service network design. In

the context of SND, resource management issues are explicitly studied by Pedersen et al. (2009),

Vu et al. (2013), Chouman and Crainic (2015), Crainic et al. (2016), Andersen et al. (2009, 2011),

Li et al. (2017b), and Crainic et al. (2018). Depending on specific applications, resources can refer

to carrying units (e.g., railcars, trailers, and containers), handling equipment units, and power

units (e.g., tractors) for performing transportation services, etc. By utilizing resources continuously

following cyclic routes, the SNDAM model is able to improve operational efficiency.

Regarding the SNDAM, Andersen et al. (2009) studied the computational performance of arc-

and cycle-based formulations, by solving limited-size instances with a commercial MIP solver. Their

computational study was based on a priori enumeration of cycles for resources and paths for com-

modities. The computational results showed that cycle-design and path-flow variables contribute

to efficient model solving. Andersen et al. (2011) further presented an effective branch-and-price

approach for the SNDAM problem. This approach decomposes the SNDAM problem into (1) a

master problem, handling a variant of the multicommodity network design problem with vehicle

management constraints, and (2) two types of subproblems for generating cycles of resources and

paths of commodities, respectively. Pedersen et al. (2009) developed a tabu search metaheuris-

tic for the design-balanced capacitated multicommodity network design problem (DBCMND). In
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this problem, the design-balanced constraints require that the number of resources entering and

leaving a terminal should be equal. The neighborhood operators focus on the design vector of a

feasible solution. In particular, the neighboring solutions are generated through adding or deleting

arcs from the design vector. Vu et al. (2013) further developed a three-stage metaheuristic for

the DBCMND, which combines exact approach and neighborhood-based heuristic. Chouman and

Crainic (2015) introduced a cutting-plane matheuristic for the DBCMND. In this method, the

cut-plane procedure is implemented to compute tight lower bounds, and a variable-fixing approach

is used to reduce the problem size. To efficiently solve the service network design with resource

constraints (SNDRC), Crainic et al. (2016) proposed a matheuristic approach in which column

generation, slope scaling, and mathematical programming techniques are combined. Barnhart and

Schneur (1996), Kim et al. (1999), and Lai and Lo (2004) also discussed the design-balanced con-

straints. Among these works, the authors all assumed the resources are homogeneous, the number

of resources is unlimited, and each arc can be used once by resources. To be more realistic, Li et al.

(2017b) relaxed homogeneous-asset assumption and explicitly studied the service network design

with heterogeneous assets.

Among them, Pedersen et al. (2009), Vu et al. (2013), Chouman and Crainic (2015), and Crainic

et al. (2016) assume that the transportation system has a single vehicle type, resources are capac-

itated, and each network link can be used only once by resources. The authors all assumed that

resources are homogeneous. Li et al. (2017b) relaxed homogeneous-resource assumption and explic-

itly study the service network design with heterogeneous resources. In all the above works, except

for Crainic et al. (2016), researchers implicitly dealt with where the resources should be in the

network. That is, where the resources start to perform the services is the optimization output of

the SND models. Crainic et al. (2016) enlarged the range of resource management by considering

that resources are required to return to their home terminals and that there are limited resources

assigned to each terminal in the network. Crainic et al. (2018) extended the work presented in

Crainic et al. (2016) to handle multiple types of resources (heterogeneous resources). In particular,

Crainic et al. (2018) studied a service network design model that encompasses both strategic and

tactical planning decisions for a consolidation-based carrier. Crainic et al. (2018) further extended

the matheuristic in Crainic et al. (2016) to efficiently solve this new model. The aim of this paper

is to examine single-path requirements in the context of the service network design with resource

constraints. Zhu et al. (2014) studied the scheduled service network design problem for freight rail

transportation. Different from previous researches, Zhu et al. (2014) integrated into a single sched-

uled service network design formulation all the major tactical planning issues including service

selection and scheduling, car classification and blocking, train makeup, and freight routing of time-

dependent customer shipments. To solve the resulting complicated model, the authors proposed a



6

matheuristic approach integrating slope scaling, long-term memory-based perturbation strategies,

and ellipsoidal search. Other researches for integer commodity flow variables include Gundegjerde

et al. (2015), Bortolini et al. (2016), and Schrotenboer et al. (2020). Bortolini et al. (2016) studied

the multi-modal fresh food distribution network design problem. The authors presented a tri-

objective model for jointly minimizing the operating cost, the carbon footprint, and the delivery

time for the fresh food distribution. This model is applied to an industrial case study where the

fruits and vegetables are distributed from a set of Italian producers to multiple European retailers

through a multi-modal transportation network. Gundegjerde et al. (2015) and Schrotenboer et al.

(2020) examined tactical and strategic decision making in the offshore wind maintenance service

logistics. Gundegjerde et al. (2015) studied the vessel fleet size and mix problem that arises for the

maintenance operations at offshore wind farms, and proposed a stochastic three-stage programming

model. Schrotenboer et al. (2020) studied the stochastic maintenance fleet transportation problem

for offshore wind farms. In this problem setting, a maintenance provider determines an optimal,

medium-term planning for maintaining multiple wind farms while controlling for uncertainty in

the maintenance tasks and weather conditions.

In addition to issues of design-balance, and mandatory return to the home-terminal, the

researchers also examined other aspects of the resource management. Chen and Schonfeld (2016)

introduced a dispatching model, devoted to managing intermodal logistics operations while counter-

ing delay and delay propagation. The authors explicitly examined coordination decisions in freight

transfer scheduling, where unsplittable flows are used to model the practical operation. Laaziz

and Sbihi (2019) presented an SND model in the case of intermodal rail-road container freight

transportation from the freight forwarder perspective. The authors considered the design-balance

constraints for train flow conservation at each terminal and gateway, and constraints for train full

loading. Further, Laaziz and Sbihi (2019) introduced penalties cost related to under loaded trains

in order to take into account the trade-off between cost effectively satisfying transportation demand

and cost effectively using trains and rail.

3. Problem Statement

Following the literature, we assume that in the SPSNDRC, the schedule length is given and that the

services are operated in a regular and repetitive pattern, which represent the fixed schedules of real-

world transportation services. The schedule length T may be one day, one week, or one month, and

can be divided into tmax periods, i.e., T = {1,2, . . . , tmax}. The decisions include selecting services

and their departure times, and routing commodity demands through the selected service network,

where origin and destination are given for each demand. A route that a resource selects is a cycle

composed of a series of services, waiting at terminals, and, eventually, repositioning movements.
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As we discussed in Section 1, flow of a commodity must be transported along a single path in the

SPSNDRC. In addition, we allow the transfer of a shipment from one resource to another. That is,

while a shipment may travel on a sequence of services, each of those services can be contained in

different resource routes. In addition, a single type of resource is required for each service. For ease

of exposition, we use a vehicle to represent a resource for better presenting problem statement and

mathematical programming models in the following part of this paper.

Let G̃= (L,E) be the physical network with a terminal set L and an arc set E. To model the

transportation operations of a carrier, we define a time-space network G= (N,A) with a node set

N and an arc set A. Different from the physical network, the nodes in the time-space network

have time-dependent characteristics. We use node lt ∈ N to represent terminal l at time period

t for any l ∈ L and t ∈ T , i.e., N = L× T = {lt : l ∈ L, t ∈ T}. We divide the arcs in A into two

disjoint sets. The first one, denoted by S, contains all the service arcs that link nodes belonging

to different physical locations. In particular, each service arc models the operation of a service

between two different terminals during certain time periods. Let di,j be the number of time periods

required for operating a service between terminals i and j. We assume that a service duration is

expressed as an integer multiple of time unit (or period) and is shorter than the schedule length as

well. Thus, for each service (denoted by < i, j >) between terminals i and j ∈ L and for any time

period t ∈ T , we create a corresponding service arc (it, j(t+di,j) mod tmax). Due to the cyclic nature

of the studied problem, the time-space network wraps around (Crainic et al. 2016). In particular,

we model a service < i, j > with duration di,j that departs from terminal i at period t such that

t+ di,j > tmax as arriving at the destination at period ((t+ di,j) mod tmax). Each service < i, j >

is associated with a capacity ui,j, which restricts the maximum shipment demand that service arc

(i, j) can fulfill. The second set of holding arcs, denoted by H, is composed of arcs connecting nodes

located at the same terminal but having consecutive time realizations. In particular, for each pair

of terminal l and period t, the holding arc is denoted by (lt, l(t+1) mod tmax). Holding arcs show that

commodities and resources are waiting at specific terminals. To reflect the real-world operations,

we set an infinite capacity for holding arcs. It is clear that the total number of holding arcs in H

is equivalent to the number of physical terminals times the schedule length because resources can

wait at any terminals at any time periods. For illustration purpose, we use Figure 1 to show an

example of building a time-space network from the physical network. There are three terminals

in the physical network and five time periods. We can see that the time-space network includes

fifteen nodes and fifteen service arcs.

Demands are defined in terms of the number of commodities that are needed to be transported

through the network. Let K be the set of commodities. For each commodity k ∈K, there are qk

such commodities needed to be transported from their origin o(k) to destination d(k). We define
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cki,j to be the cost of sending commodity k along arc (i, j). We choose to ignore the per arc costs

as the costs of acquiring a resource are dominating all other costs (Andersen et al. 2009). The

origin and destination of each commodity is known beforehand. Each commodity can be distributed

through any itinerary, made up of service arcs and holding arcs. In the SPSNDRC, one of its

unique features is that the flow of each commodity must be served along a unique path linking its

origin and destination, which prevents the flow partition. This constraint is inspired by real-life

instances, e.g., customers prefer to receive goods at one time, instead of in batches. Moreover, it

helps to release the stress of sub-package operations and reduce the risk of transportation errors

considerably.

A limited number of homogeneous resources are used to perform transportation services. Let V

be the set of resources. Each terminal l contains a set of resources (denoted by Vl ⊆ V ) and each

resource v belongs to a particular terminal. Each resource v ∈ V has a fixed cost Fv and is associated

with a set of valid cycles (denoted by θv). In particular, due to the cyclic nature of the problem, the

itinerary that a resource travels is a cycle with a sequence of service arcs and possibly, holding arcs,

satisfying the design-balanced constraint. Following the full resource-utilization policy, resources

must return to their home terminals after services. Specifically, for a specific terminal l, resource

v ∈ Vl must depart from one node in lT , where lT = {lt : t ∈ T}, and then go back to the same



9

node. In addition, we assume that a service arc is executed by at most one resource, with no such

limit applied for holding arcs though, by following existing studies in the literature (e.g., Crainic

et al. (2016)). Finally, we use Figure 2 to show an example of resource operation, where one vehicle

starts from terminal a at period 2 and returns to the same node after performing the service. The

corresponding physical cycle is a→ b→ d→ c→ a in the physical network. For each physical cycle

τ ′, let χ(τ ′) be the sum of duration of arcs included in τ ′.

4. Mathematical Formulations

In the SPSNDRC, one decision is selecting resource services and their schedules. Such schedules

are cyclic itineraries for the available resources. Note that an itinerary is actually a sequence of

service arcs and possibly holding arcs in the time-space network. We thus can present formulations

with decision variables associated with either arcs, or cycles.

In this section, an arc-based formulation (node-arc model) is first introduced. This model is

straightforward and can be solved using MIP solvers (e.g., CPLEX). However, as our computational

experiments will show, the computational difficulties also explode significantly as the instance size

increases. We then propose a cycle-based formulation, with which we introduce an MIP-based

approach to solve the SPSNDRC in the next section. This method includes particular column gener-

ation subproblems for dynamically constructing cycles, which can further contribute to decreasing

the model size and thus reducing the computational efforts.

4.1. Notation

We further give the following notation.

Parameters

• Ti and Tj: the departure and arrival times of arc (i, j), respectively.

• tk: the time period when commodity k becomes available for distribution. For the purpose of

presentation, we define tk− 1 = tmax, if tk = 1.

• rτi,j: it takes value 1 if arc (i, j) is part of cycle τ , and 0 otherwise.

Sets

• At: the set of arcs across period t in the time-space network, i.e., At = {(i, j)∈A : Ti ≤ t < Tj}.

• Bk: the set of arcs starting before period tk and ending not later than tk, i.e., Bk = {(i, j) ∈

A : Ti ≤ tk− 1<Tj}.

Decision variables

• xki,j: it indicates if arc (i, j) is used to distribute flow of commodity k (i.e., xki,j = 1) or not.

• yvi,j: it indicates if arc (i, j) is traveled by resource v (i.e., yvi,j = 1) or not.

• δv: it indicates if resource v is used in the final schedule (i.e., δv = 1) or not.

• zτv : it is equal to 1 if cycle τ is chosen as the itinerary of resource v.
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4.2. Node-Arc Formulation

We first present the node-arc formulation for the SPSNDRC. With this formulation, we can solve

small problem instances, using MIP solvers. The integer feasible solution obtained by this formu-

lation will be used as a benchmark for evaluating the proposed column-generation-based approach

in the next section. The node-arc formulation can be described as follows:

minZ =
∑
v∈V

Fvδv +
∑
k∈K

∑
(i,j)∈A

qkcki,jx
k
i,j (1)

∑
(i,j)∈A

xki,j −
∑

(j,i)∈A

xkj,i =


1, if i= o(k)

−1, if i= d(k)

0, otherwise

∀i∈N,∀k ∈K, (2)

∑
k∈K

qkxki,j ≤ ui,j
∑
v∈V

yvi,j, ∀(i, j)∈ S, (3)

∑
v∈V

yvi,j ≤ 1, ∀(i, j)∈ S, (4)

∑
(i,j)∈At

yvi,j = δv, ∀t∈ T,∀v ∈ V, (5)

∑
(i,j)∈A:i∈lT

yvi,j ≥ δv, ∀v ∈ Vl,∀l ∈L, (6)

∑
(i,j)∈A

yvi,j −
∑

(j,i)∈A

yvj,i = 0, ∀i∈N,∀v ∈ V, (7)

∑
(i,j)∈Bk

xki,j = 0, ∀k ∈K, (8)

yvi,j ∈ {0,1}, ∀(i, j)∈A,∀v ∈ V, (9)

δv ∈ {0,1}, ∀v ∈ V, (10)

xki,j ∈ {0,1}, ∀(i, j)∈A,∀k ∈K. (11)

The objective function (1) is to minimize the total cost including the fixed costs of resources and

flow costs of commodities. Flow conservation is enforced by constraints (2). Constraints (3) state

that the total commodity quantity on every service arc cannot exceed its capacity. Constraints (4)

regulate that every service arc can be used by at most one resource. Then, equations (5) state

that for each period, if a resource is utilized, it should be engaged in only one activity. Constraints

(6) state that each resource must depart from its home terminal, if it is used. Design-balanced

requirements are implied by constraints (7). Equations (8) are introduced to exclude the case that

a commodity flow travels across one period more than once. We use the example in Figure 3 to

illustrate constraints (8). In this example, we assume that between nodes a and b, b and c, and b and
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Figure 3 Illustration of Constraints (8)

d, the traveling time for each pair is one period, and between a and d, the duration is three periods.

Remember that in the SND literature, it is generally assumed that the total transportation duration

of each commodity is not greater than tmax. Figure 3(a) gives a valid commodity path where the

total traveling duration is three periods. But in Figure 3(b), the path for the same commodity

covers eight periods, greater than tmax = 5. We can avoid this scenario through constraints (8).

Finally, variable restrictions are enforced by constraints (9)-(11).

4.3. Arc-Cycle Formulation

We next present the arc-cycle formulation for the SPSNDRC. With this formulation, due to its

nature of incorporating service cycles, we propose a column-generation-based approach to solve it

in the next section. We formulate the arc-cycle model as follows:

minZ =
∑
v∈V

∑
τ∈θv

Fvz
τ
v +

∑
k∈K

∑
(i,j)∈A

qkcki,jx
k
i,j (12)

∑
(i,j)∈A

xki,j −
∑

(j,i)∈A

xkj,i =


1, if i= o(k)

−1, if i= d(k)

0, otherwise

∀i∈N,∀k ∈K, (13)

∑
k∈K

qkxki,j ≤ ui,j
∑
v∈V

∑
τ∈θv

rτi,jz
τ
v , ∀(i, j)∈ S, (14)

∑
v∈V

∑
τ∈θv

rτi,jz
τ
v ≤ 1, ∀(i, j)∈ S, (15)

∑
τ∈θv

zτv ≤ 1, ∀v ∈ V, (16)

∑
(i,j)∈Bk

xki,j = 0, ∀k ∈K, (17)

zτv ∈ {0,1}, ∀τ ∈ θv,∀v ∈ V, (18)
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xki,j ∈ {0,1}, ∀(i, j)∈A,∀k ∈K. (19)

The objective function (12) minimizes the summation of fixed cost for the resources and the

flow costs. Flow conservation, expressed by (13), remains unchanged. Constraints (14) and (15)

are identical to (3) and (4), while constraints (16) ensure each resource to be used no more than

once. Commodity related constraints (17) are unchanged and constraint (18)-(19) are the variable-

type constraints. Route-length request, design-balanced requirement and the demand for resources

departing from their origins are needless in this new formulation since these constraints are already

considered in the process of cycle-searching in advance.

The SPSNDRC formulation (12)-(19) with all variables in the constraint matrix is called the

master problem (MP). We refer to a MP with only a subset of its columns as the restricted master

problem (RMP). In our proposed MP-based heuristic in Section 5, the column generation procedure

needs to solve the LP relaxation of MP by solving the LP relaxations of several RMPs. Hereafter,

we refer to the linear relaxation of the RMP as the L-RMP. We now discuss the definition of the

pricing problem, which will be solved in column generation. Let αi,j, βi,j, and φv respectively, be

dual variables associated with constraints (14)-(16). Then, the reduced cost πτv of variable zτv is

calculated as

πτv = Fv −φv +
∑

(i,j)∈S

ui,jαi,jr
τ
i,j −

∑
(i,j)∈S

βi,jr
τ
i,j = Fv −φv +

∑
(i,j)∈S

(ui,jαi,j −βi,j)rτi,j.

For a resource v, Fv, φv, and ui,j are all determined. Then, the pricing problem is equivalent to

searching for a cycle τ such that
∑

(i,j)∈τ
(ui,jαi,j − βi,j) is minimized. In Section 5.3, we will detail

how the pricing problem is solved.

5. Solution Approach

In the arc-cycle model, the number of cycles grows exponentially with increase of the schedule

length, and hence the set of cycles is too large to enumerate, even for reasonably sized instances.

Thus, further decreasing the number of cycle-related variables is essential for large-scale prob-

lems. In this section, we propose an MIP-based heuristic to produce high-quality solutions to the

SPSNDRC. Algorithm 1 shows the outline of the proposed approach. This is a two-stage method.

In the first stage, the column generation procedure is executed to solve the L-RMP. As a result, a

subset of design-cycles for given resources at each terminal will be generated. In the second stage,

feasible integer solutions for the SPSNDRC are created from the optimal solution of the L-RMP.

The main advantage of applying column generation is that not all the possible cycles of resources

need to be enumerated. Instead, the problem can be first formulated as an RMP, which contains

only a few cycles, as long as the linear relaxation of the model is feasible. Then the pricing problem
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Algorithm 1. MIP-based Heuristic.

input instance data.
/* Model Initialization */

for each l with |Vl|> 0 do
for each v in Vl do

construct physical cycle τ ′ in G̃.
for each τ ′ with χ(τ ′)≤ tmax, construct cycles τ in G.

end for
end for
initialize the L-RMP using the constructed cycles.
solve the RMP.
if the L-RMP is infeasible, then return: no solution is found.

/* Stage 1: Column Generation Execution*/
repeatedly solve the pricing problem until no valid cycle is found (see Procedure 1).

/* Stage 2: Producing a Feasible Solution */
choose one heuristic strategy from H1, H2, H3 and H4.
build a restricted MIP model based on the optimal solution of the ultimate L-RMP.
solve the small MIP model with solver CPLEX.
if this MIP model is infeasible, then return: no solution is found.
else

return: the best integer solution.
end if

is solved to select a new column with a negative reduced cost to be added to the L-RMP. This

process is repeated until no more columns can be added to the L-RMP. One can then conclude that

the current L-RMP solution is an optimal solution of the linear relaxation of the original arc-cycle

model yielding thus a lower bound of its integer version. After that, we introduce heuristic strategies

to get integer solutions from the optimal solution of the L-RMP. Detailed implementations of the

general column generation and branch-and-price can be found in Andersen et al. (2011), Crainic

et al. (2016) and Li et al. (2017a). We now detail the proposed approach.

5.1. Restricted Master Problem and Its Linear Relaxation

In the context of the SPSNDRC, the RMP is created by including all the x-variables and some z-

variables defined over a subset θ of resource cycles. In particular, we work on a subset θv for each

resource v. We will detail how to generate θv in the next subsection. To get the linear relaxation

of the RMP, we drop integral constraints for variables and replace (18)-(19) with the following two

constraints:

0≤ xki,j ≤ 1, ∀(i, j)∈A,∀k ∈K, (20)

0≤ zτv ≤ 1, ∀τ ∈ θv,∀v ∈ V. (21)

The L-RMP is then presented as

minZ =
∑
v∈V

∑
τ∈θv

Fvz
τ
v +

∑
k∈K

∑
(i,j)∈A

qkcki,jx
k
i,j

(13) and (17),
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k∈K

qkxki,j ≤ ui,j
∑
v∈V

∑
τ∈θv

rτi,jz
τ
v , ∀(i, j)∈ S,

∑
v∈V

∑
τ∈θv

rτi,jz
τ
v ≤ 1, ∀(i, j)∈ S,

∑
τ∈θv

zτv ≤ 1, ∀v ∈ V,

(20)− (21).

5.2. Model Initialization

The column generation algorithm solves the LP relaxation of MP by solving the LP relaxations

of several RMPs. To perform the column generation and further heuristic strategies for building

integer solutions, we first need to generate some feasible cycles for the resources, and thus initialize

the L-RMP. Given terminal l and its associated resource set Vl, initial design-cycle variables zτv are

added with three steps, which we discuss in detail in the remainder of this section.

Step 1. In the physical network G̃, construct all cycles τ ′ starting from terminal l, such that the

total arc duration of each cycle does not exceed the schedule length tmax;

Step 2. Based on each physical cycle τ ′, construct cycles τ in the time-space network G;

Step 3. Add design-cycle variables.

Step 1. Construct physical cycle τ ′. The first step is to find all the cycles starting from

terminal l in graph G̃. Such cycles are referred to as physical cycles. To identify all the physical

cycles, we implement the search algorithm in Ahuja et al. (1993).

The search algorithm can find all terminals in graph G̃ that can reach a specific terminal l

along directed paths. In particular, we implement the search algorithm to find a path starting

from terminal l and ending at terminal l. Note that any valid physical cycle τ ′ should not contain

inner loop and has a total arc duration not greater than the schedule length tmax. To that end,

We record the accumulated duration of the path, while implementing the search algorithm. The

search algorithm might be terminated earlier if the accumulated duration is greater than tmax. Let

Ω(l) be the set of all valid physical cycles at terminal l. For each τ ′ in Ω(l), let χ(τ ′) be the sum

of duration of arcs included in τ ′.

Step 2. Construct cycles τ in the time-space network. The second step is to construct a

set of cycles in the time-space network, based on a physical cycle τ ′. The underlying idea is that

we first create a cycle in the time-space network by making one physical cycle start at any involved

terminal and at any period t ∈ T . If the resulting cycle has a duration being less than tmax, we

then append some holding arcs to this cycle such that its duration is exactly equal to the schedule

length. To simplify our presentation, we assume that a physical cycle τ ′ is associated with terminal
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Figure 4 Physical Cycle τ ′ with χ(τ ′) = tmax

l, and is denoted as a sequence of terminals, i.e., l→ j→ k→ · · · → l. Now physical cycle τ ′ may

fall into one of the following two cases:

Case 1. χ(τ ′) = tmax. To construct a cycle in the time-space network, the resource can start from

terminal l at any period t∈ T = {1,2, . . . , tmax}. Each cycle scenario defines one valid cycle starting

from one period t ∈ T in the time-space network. Let ϕ be the number of cycle scenarios that

will be considered in the algorithm implementation. Obviously, we can consider at most ϕ= tmax

cycle scenarios in this case. As an illustration, Figure 4(b) displays one cycle starting at terminal

a in period 1. It corresponds to the physical cycle τ ′ in Figure 4(a). Let Γ1 be the set of cycles

constructed in Case 1.

Case 2. χ(τ ′)< tmax. Recall that for a resource, the duration of its itinerary (cycle) must be equal

to the schedule length tmax. In this case, we need to construct in the time-space network a cycle τ

with duration χ(τ) equal to tmax. To that end, we can add ∆ = tmax−χ(τ ′) holding arcs to cycle

τ ′ such that its duration can be increased to tmax. Note that these additional holding arcs may

be inserted between any two consecutive terminals in τ ′. For our considered instances in Section

6.1, we chose to insert additional holding arcs between the first and second terminals, and between

the second and third terminals. Furthermore, the resource can start from terminal l at any period

t∈ T = {1,2, . . . , tmax}. As a result, each scenario defines one valid cycle in the time-space network.

Now look at physical cycle τ ′ = l→ j→ k→ · · · → l. For illustration, consider ϕ= 2 and starting

period of 1. From τ ′, we are able to construct two cycles in the time-space network, which both

start at period 1.

cycle 1 :
l1→ l2→ · · ·→ l1+∆→ j[(1+∆+dl,j) mod tmax]→ k[(1+∆+dl,j+dj,k) mod tmax]→ · · ·→ l1,

cycle 2 :
l1→ j[(1+dl,j) mod tmax]→ j[(2+dl,j) mod tmax]→ j[(1+∆+dl,j) mod tmax]

→ k[(1+∆+dl,j+dj,k) mod tmax]→ · · ·→ l1,
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Figure 5 Physical Cycle τ ′ with χ(τ ′)< tmax

where j[(1+dl,j) mod tmax] and j[(1+∆+dl,j) mod tmax] are terminal j at periods [(1 + dl,j) mod tmax]

and [(1 + ∆ + dl,j) mod tmax], respectively. k[(1+∆+dl,j+dj,k) mod tmax] denotes terminal k at period

[(1 + ∆ + dl,j + dj,k) mod tmax]. Note that we can get different cycles if we change the starting

period of τ ′. Let Γ2 be the set of cycles constructed in Case 2.

We now use example in Figure 5 to illustrate the above method. The physical cycle at terminal

b has a duration of three period, e.g., τ ′ = b→ d→ c→ b. Since the schedule length is 5, we need

to add two holding arcs to τ ′. Suppose we add these arcs between b and d, d and c. We can get

two constructed cycles: b1→ b2→ b3→ d4→ c5→ b1 and b1→ d2→ d3→ d4→ c5→ b1, which both

start at period 1 (see Figure 5(b)).

Step 3. Add design-cycle variables. Let Γ = Γ1 ∪Γ2. For each resource v, we add a design-

cycle variable zτv for each cycle τ in Γ.

Using these generated design-variables, we then initialize the L-RMP. Note that given a ϕ, this

initialization method may not ensure that the restricted network derived from these constructed

cycles can support the transportation of commodity demands. Our experimental experience shows

that this method with ϕ= 2 can produce feasible L-RMP for all the considered instances in Section

6. If the resulting L-RMP is infeasible, we can increase the value of ϕ to produce more cycles until

the resulting L-RMP becomes feasible.

5.3. Stage 1: Column Generation Execution

Once the L-RMP solution is obtained, the pricing problem is solved to check whether there exists

some design cycle with a negative reduced cost, in which case, the corresponding decision variable

would be added to the current L-RMP and might improve the optimum value of the current L-RMP.

Given a time-space network G, we first create a new graph G′ by appending a copy of G after

G. As an example, see Figure 6. Recall that for a resource, any valid cycle should start from and

end at the same terminal in graph G. To illustrate, consider in Figure 2 the resource and its cycle:
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a2→ a3→ b4→ d5→ c1→ a2. As one may observe, this cycle corresponds to one path in graph G′:

a2→ a3→ b4→ d5→ c1+tmax → a2+tmax (see Figure 6). Following this equivalence, finding a cycle

with a minimum
∑

(i,j)∈τ
(ui,jαi,j − βi,j) reduces to finding a shortest path in graph G′, where each

arc weight wi,j is set equal to ui,jαi,j −βi,j. Procedure 1 presents how one new column is added to

the current L-RMP.

Consider terminal l with |Vl|> 0. For resource v at terminal l, each valid cycle can start from

any time period in the schedule horizon. We thus need to solve tmax shortest path problems. In

particular, for time period t, we solve in graph G′ a shortest path problem with source lt and sink

lt+tmax . Let p and λ(p) be the returned shortest path and its length, respectively. Path p defines a

cycle τ in graph G. If Fv −φv +λ(p)< 0 (negative reduced cost), we add a new column zτv to the

current L-RMP, for resource v at terminal l.

Procedure 1. Implementation of the Pricing Algorithm.

input the current L-RMP.
input graph G.
input dual variables set αi,j , βi,j and φv.
create graph G′ and set each arc weight wi,j = ui,jαi,j −βi,j .
for each l with |Vl|> 0 do

for t = 1 to tmax do
solve the shortest path problem with source lt and sink lt+tmax .
let p be the returned shortest path in G′ and the corresponding cycle τ in graph G.
let λ(p) be the length of p.
for each v in Vl, do

if Fv −φv +λ(p)< 0, do
add the corresponding variable zτv to the current L-RMP.

end if
end for

end for
end for
return the updated L-RMP.
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Figure 6 Graph G′
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5.4. Stage 2: Heuristic Strategies for Building a Feasible Solution

The solution to the ultimate L-RMP provides a lower bound to the SPSNDRC, and is often not

integral. In this section, we present four heuristic strategies that aim at building integer solutions

starting from the solution of the last L-RMP. The fundamental idea is to first build a smaller

MIP model, derived from the optimal solution (x, z) of the ultimate L-RMP, and then solve this

restricted model by solver CPLEX.

5.4.1. Heuristic Strategy 1: Variables Conversion

The most intuitive idea is to apply MIP solver to the model by considering all the design-cycle

variables used to optimally solve its continuous relaxation. That is, we change in the ultimate

L-RMP all the design-cycle variables to binaries and solve the resulting MIP model. Note that this

MIP model is defined over the original time-space network G and includes all x- and z- variables.

Hereafter, we refer to this greedy strategy as H1.

5.4.2. Heuristic Strategy 2: Fixing Cycles

This strategy aims to make use of the potential information behind the optimal solution of the final

L-RMP. For large-scale problem instances, the final L-RMP model contains a lot of design-cycle

variables zτv for each resource. On the other hand, only a small number of itineraries take positive

values in the solution, while most of the design-cycle variable values are zeros. Thus, we conjecture

that in the final solution, the design-cycle variables taking higher values are more promising than

the others. That is, the corresponding cycles are more likely to be used to transport more goods

than those cycles with design cycle variable values close to zero.

Following the above observation, the main idea of the second heuristic strategy lies in that

among cycles of each resource, enumerated in the column generation procedure, $ cycles are chosen

and fixed as potential cycles of this resource in the final schedule. These chosen cycles lead to a

relatively smaller time-space network with fewer service and holding arcs. In this smaller network,

we then solve an arc-cycle model for the SPSNDRC, where one decision is made for commodity

flow distribution. The second heuristic strategy works as follows.

Let ψv be the set of cycles fixed for resource v. Consider a solution z to the ultimate L-RMP. For

resource v, let ψv be the set of cycles enumerated in the column generation procedure. Without loss

of generality, suppose ψv = {τ1, τ2, · · · , τ|ψv |} with zτ1v ≥ zτ2v ≥ · · · ≥ z
τ|ψv |
v . Define Ṽ = {v : |ψv|> 0}.

For each v in Ṽ , we choose the first min{$, |ψv|} cycles in ψv, and add them into set ψv. Define

ψ = ∪v∈Ṽ ψv. Cycles in ψ define a “smaller” time-space network G∗ = (N∗,A∗), where node set

N∗ and arc set A∗ only include nodes in cycles in ψ. Using Ṽ , ψ, K, and G∗, we then develop a

restricted arc-cycle model, which is finally solved by CPLEX. Hereafter, we refer to this heuristic

strategy as H2. Its performance depends on the settings of parameter $. A small $ may lead to an
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infeasible model, whereas a large $ can result in many useless itineraries in the model, and thus

increases computational difficulty as well. In Section 6, we will examine the effect of parameter $

on the performance of heuristic strategy H2.

5.4.3. Heuristic Strategy 3: Fixing Single-paths

Similar to the second strategy, this strategy aims to decrease the model scale and solution difficulty

through fixing commodity flow variables. After the column generation procedure, we examine

all the flow variables in the optimal solution of the ultimate L-RMP, and determine the set K1

of commodities, of which the demands have already been transported along single-paths. In our

implementation, we chose to randomly fix single-paths for a certain proportion (denoted as η) of

commodities in K1. Namely, from set K1, bη|K1|c commodities are randomly chosen to follow the

single-paths, which are by solution x. Such chosen commodities form set K2. Given the L-RMP

solution x, let SG be the set of arcs, included in single-paths for commodities in K2. That is,

SG= {(i, j)∈A : ∃k ∈K2, x
k
i,j = 1}. Each arc in SG should be traveled exactly once by one resource.

Further, we re-define the capacities of arcs in SG, by subtracting flows of commodities, which use

these arcs. Let θv be the set of cycles for resource v, after the column generation procedure is

executed. Let K =K\K2.

We then solve a smaller arc-cycle model to produce potential feasible solutions to the SPSNDRC.

minZ ′ =
∑
v∈V

∑
τ∈θv

Fvz
τ
v +

∑
k∈K

qkcki,jx
k
i,j (22)

∑
(i,j)∈A

xki,j −
∑

(j,i)∈A

xkj,i =


1, i= o(k)

−1, i= d(k)

0, otherwise

∀i∈N,∀k ∈K, (23)

∑
k∈K

qkxki,j ≤ ui,j
∑
v∈V

∑
τ∈θv

rτi,jz
τ
v , ∀(i, j)∈ S, (24)

∑
v∈V

∑
τ∈θv

rτi,jz
τ
v ≤ 1, ∀(i, j)∈ S, (25)

∑
τ∈θv

zτv ≤ 1, ∀v ∈ V, (26)

∑
v∈V

∑
τ∈θv

rτi,jz
τ
v = 1, ∀(i, j)∈ SG, (27)

∑
(i,j)∈Bk

xki,j = 0, ∀k ∈K, (28)

zτv ∈ {0,1}, ∀τ ∈ θv,∀v ∈ V, (29)

xki,j ∈ {0,1}, ∀k ∈K,∀(i, j)∈A. (30)
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Equation (22) is the objective, but its value isn’t the final cost because the commodity trans-

portation costs for all the k ∈K2 need to be added then. Constraints (23), (24), (25), (26), and

(28) are easy to understand since they are parallel to (13)-(17). Constraints (27) are newly added

and they guarantee that the arcs chosen are served by resources. We refer to the third heuristic

strategy as H3.

5.4.4. Heuristic Strategy 4: Simultaneously Fixing Cycles and Single-paths

Lastly, we try to further reduce the instance scale and solution complexity by simultaneously

fixing resource cycles and commodity single-paths. It is expected to find potentially better solutions

for some instances. On the one hand, this strategy should guarantee that service arcs in the fixed

cycles can support the demand distribution of the fixed commodities. On the other hand, the fixed

cycles should be able to support the distribution of those commodities, of which paths are not

fixed. We refer to this strategy as H4.

6. Computational Evaluation

In this section, we evaluate the performance of the proposed approach. Our approach was coded in

C and compiled on VC++ 2010. As a comparison benchmark, CPLEX was implemented to solve

each instance with the node-arc formulation. We set a time limit of 10 hours for CPLEX to solve

each instance, and let CPLEX focus on finding hidden feasible solutions.

Through preliminary tuning, we set some selected parameters in CPLEX as follows: (1)

CPXPARAM Emphasis MIP =4. It lets CPLEX focus on finding hidden feasible solutions; (2)

CPXPARAM MIP Strategy FPHeur = 1. The feasibility pump heuristic tries to find a feasible solu-

tion without taking the objective function into account; (3) CPXPARAM MIP Strategy RINSHeur

= 10; (4) CPX PARAM PROBE = 1, a moderate probing level; and (5) CPX PARAM NODESEL

= 1, a best-bound search strategy. Note that although the above parameter setting is used in our

experiments, we still do believe that all CPLEX strategies potential are maybe, not fully explored

in CPLEX’s MIP Solver for the instances studied in this paper. We implemented each heuristic

strategy with one hour after the standard column generation procedure. We implemented all the

experiments on a PC 2.0 GHz with 8GB RAM.

6.1. Test Instances

Since the SPSNDRC is a new service network design problem, there are no benchmark instances

in the literature. However, recall that the SPSNDRC is an extension of the SNDAM and that

Andersen et al. (2011) evaluated their approach using 43 instances. We thus chose to generate

SPSNDRC instances based on these SNDAM instances. We generated 40 problem instances, which

have the same network structure and commodity demands as the first 40 instances of the data set
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in Andersen et al. (2011). In particular, we increased original arc capacities and the number of

resources, in order to ensure the generated instances are feasible when “single-path” constraints

are introduced. In the following, we describe how instances are generated in detail.

Let γ1 be the number of resources in an instance in Andersen et al. (2011). Let γ2 be the number

of resources which we add to the original Anderson’s instance. That is, there are (γ1 +γ2) resources

in each generated instance. Let γ3 be the capacity which we add to the original capacity of each

service arc. Then we generated each instance through the following five steps:

Step 1. Set γ2 = γ3 = 0.

Step 2. We assign resources to physical terminals in turn.

Step 3. We solve the node-arc model for the SPSNDRC using CPLEX with a time limit of 10

hours. If CPLEX demonstrates it is feasible, a new instance has been generated and the procedure

terminates. If within 10 hours, CPLEX cannot validate feasibility of the instance, then we decide

that the instance is infeasible.

Step 4. If γ2 < 10 , we add µ resources to the instance (e.g., γ2 = γ2 +µ ) (µ is set to 2 for small

and medium instances, and 5 for large instances), and go to Step 2.

Step 5. If γ3 < 70, we increase each arc capacity by 10, set γ3 = γ3 + 10, and go to Step 2.

Table 1 displays the characteristics of instances. As an indicator of the computational complexity,

we display in the last two columns of Table 1, the number of x- and y-variables in each node-arc

formulation. In terms of this, we refer to instances 1-15 as small instances, instances 16-25 as

medium instances, and instances 26-40 as large instances.

6.2. Computational Results

6.2.1. Results of the Node-arc Model

To analyze the solution complexity of the SPSNDRC, we first solve the node-arc model using

CPLEX with a time limit of 10 hours. Table 2 summarizes the results. In each case, we report in

columns 2 and 3 the lower bound (LB) and the best MIP solution (UB CPLEX) at termination

respectively, which occurred after 10 hours or once the algorithm had found a provably optimal

integer solution. Column 4 displays for each instance the percentage gap between the lower bound

and upper bound at termination. Column 5 displays the solution time in CPU seconds for find-

ing the provably optimal solution, or at termination. As a comparison, columns 6-8 display the

results of the CG procedure, including the lower bound, the number of cycles generated, and the

corresponding computation time.

The results in Table 2 demonstrate the solution difficulty of the SPSNDRC instances. As one

may observe, CPLEX within 10 hours found a provably optimal solution of only three instances.

Although CPLEX could obtain feasible solutions for the other 11 instances, the relative gaps
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Table 1 Characteristics of Problem Instances

Instance |L| |E| tmax |N | |S|+|H| |K| |V | #x #y
1 5 10 15 75 150+75 20 8 4500 1800
2 5 15 20 100 300+100 25 8 10000 3200
3 5 15 25 125 375+125 25 8 12500 4000
4 5 15 15 75 225+75 100 25 30000 7500
5 5 15 15 75 225+75 200 54 60000 16200
6 5 15 40 200 600+200 200 50 160000 40000
7 5 15 40 200 600+200 200 30 160000 24000
8 5 15 40 200 600+200 200 50 160000 40000
9 5 15 40 200 600+200 200 50 160000 40000
10 5 15 40 200 600+200 200 25 160000 20000
11 7 30 30 210 900+210 200 65 222000 72150
12 7 30 30 210 900+210 200 40 222000 44400
13 7 30 30 210 900+210 200 65 222000 72150
14 7 30 30 210 900+210 200 40 222000 44400
15 7 30 30 210 900+210 200 35 222000 38850
16 5 15 50 250 750+250 400 80 400000 60000
17 5 15 50 250 750+250 400 80 400000 60000
18 5 15 50 250 750+250 400 60 400000 60000
19 5 15 50 250 750+250 400 60 400000 60000
20 5 15 50 250 750+250 400 70 400000 60000
21 7 30 30 210 900+210 400 50 444000 55500
22 7 30 30 210 900+210 400 55 444000 61050
23 7 30 30 210 900+210 400 80 444000 77700
24 7 30 30 210 900+210 400 70 444000 66600
25 7 30 30 210 900+210 400 40 444000 44400
26 7 30 50 350 1500+350 300 50 555000 92500
27 7 30 50 350 1500+350 300 30 555000 55500
28 7 30 50 350 1500+350 300 25 555000 46250
29 7 30 50 350 1500+350 300 50 555000 92500
30 7 30 50 350 1500+350 300 50 555000 92500
31 10 40 30 300 1200+300 200 58 300000 87000
32 10 40 30 300 1200+300 200 60 300000 90000
33 10 40 30 300 1200+300 200 40 300000 60000
34 10 40 30 300 1200+300 200 60 300000 90000
35 10 40 30 300 1200+300 200 50 300000 75000
36 10 50 30 300 1500+300 100 30 180000 54000
37 10 50 30 300 1500+300 100 35 180000 63000
38 10 50 30 300 1500+300 100 30 180000 54000
39 10 50 30 300 1500+300 100 45 180000 81000
40 10 50 30 300 1500+300 100 50 180000 90000

at termination, on average, are very large. For four large instances, i.e., instances 27-29 and 32,

CPLEX even cannot solve the LP relaxation at the root node in 10 hours. We think that it is

because CPLEX has focused on finding hidden integer feasible solutions, did not even leave the

root node, and thereby did not report on finding a lower bound.

In summary, the node-arc model can only be applied to small instances. For medium and large

ones, this method is not effective, and other strategies should be introduced. Hereafter, we refer to

this solution approach as the pure CPLEX strategy.

The computational results in Table 2 show that the number of cycles generated range from

167 to 24803. As instance scale increases, the CG procedure generated more cycles, which makes

instances more difficult. In most of the 40 instances, the computing time of the CG procedure is

less than 1700 seconds.
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Table 2 Results for the Node-arc Model

Instance
CPLEX CG procedure

LB UB CPLEX GAP(%) CPUs Obj #Cycles CPUs

1 69153.64 69160 0.00 6750.97 62560.00 167 0.41
2 83550.68 83558 0.00 9396.86 79558.00 864 1.08
3 93968.00 93968 0.00 344.64 88118.00 1185 2.11
4 248105.77 273548 9.30 36000 262048.00 970 1.30
5 405391.97 444460 8.79 36000 434682.22 2812 5.29
6 960419.00 1030299 6.78 36000 960419.00 7880 251.30
7 250860.00 311340 19.43 36000 250780.00 5142 247.29
8 1076797.50 1167580 7.78 36000 1076227.50 7180 125.52
9 1090728.00 1160318 6.00 36000 1084790.50 5250 171.66
10 903795.00 934210 3.26 36000 895060.00 5050 137.66
11 919711.67 - - 36000 921408.08 18078 83.15
12 192979.56 361837 46.67 36000 193212.00 12890 88.34
13 845427.67 - - 36000 851291.00 16231 71.34
14 778116.00 - - 36000 785976.00 12755 69.90
15 835817.00 - - 36000 837647.00 9900 77.89
16 2451351.70 - - 36000 2452158.33 14504 366.96
17 2724653.67 - - 36000 2724653.67 10317 554.76
18 611043.00 777461 21.41 36000 611043.00 7405 501.90
19 1184297.00 - - 36000 1184177.00 9440 481.70
20 2389456.89 - - 36000 2387279.11 9860 606.45
21 407605.20 - - 36000 409411.00 18760 360.75
22 795741.84 - - 36000 800089.67 18117 261.40
23 1755747.22 - - 36000 1756380.56 22401 328.85
24 1693906.78 - - 36000 1695083.17 24803 266.14
25 809308.52 894492 9.52 36000 811328.36 13399 229.85
26 1874768.86 - - 36000 1876387.00 20454 1684.37
27 * - - 36000 937443.00 12141 1662.57
28 * - - 36000 948619.00 11439 1285.90
29 * - - 36000 2076188.00 20508 1319.64
30 1968603.81 - - 36000 1968723.00 17804 1627.64
31 433974.00 - - 36000 440577.50 11701 83.93
32 * - - 36000 983704.71 15594 102.63
33 211022.20 369290 42.86 36000 212690.00 11036 99.44
34 215665.48 - - 36000 217298.67 13356 145.81
35 207786.58 - - 36000 210488.86 13015 93.01
36 208677.36 - - 36000 208782.00 13224 148.97
37 218894.41 - - 36000 219483.33 9815 168.23
38 102133.50 - - 36000 102372.50 9684 147.51
39 412535.35 - - 36000 413600.90 13857 169.78
40 408887.09 - - 36000 409764.33 19685 105.19

*: CPLEX could not solve the linear relaxation within 10 hours.
-: CPLEX could not return a feasible solution within 10 hours.

6.3. Results of Heuristic Strategy H1

We next turn our attention to the performance evaluation of the first heuristic strategy. We imple-

mented heuristic strategy H1 with a time limit of one hour after the standard column generation.

The total computation time of our heuristic strategies is one hour plus the time for the CG proce-

dure. The computational results are reported in Table 3. For heuristic strategy H1, column 3 shows

the objective value of the best-found integer solution (UB). Column 4 gives the relative objective

gap between the best node value (LB) and the objective value (UB) of the incumbent solution at
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termination. The last column (GAP+ (%)) shows the relative objective gap between the integer

solutions returned by CPLEX with the node-arc model and that returned by H1.

Table 3 Results of Heuristic Strategy H1

Instance UB CPLEX
H1

GAP+(%)
UB GAP(%)

1 69160 69160 0.00 0.00
2 83558 83558 0.00 0.00
3 93968 93968 2.77 0.00
4 273548 268548 2.42 -1.83
5 444460 439460 1.09 -1.12
6 1030299 980299 2.00 -4.85
7 311340 271340 7.58 -12.85
8 1167580 1157580 7.03 -0.86
9 1160318 1135318 4.40 -2.15
10 934210 909210 1.56 -2.68
11 * 961335 4.00 -
12 361837 286837 32.64 -20.73
13 * 935041 8.96 -
14 * 863346 8.95 -
15 * 891967 5.97 -
16 * 2485945 1.36 -
17 * 2844712 4.22 -
18 777461 697461 12.39 -10.29
19 * 1318217 10.17 -
20 * 2556418 6.62 -
21 * 599131 31.67 -
22 * 954823 16.21 -
23 * 1851825 5.15 -
24 * 1814229 6.57 -
25 894492 894492 9.30 0.00
26 * * * *
27 * 1013909 7.54 -
28 * 1019887 6.99 -
29 * * * *
30 * 2167123 9.15 -
31 * 632640 30.36 -
32 * 1097790 10.28 -
33 369290 359290 39.86 -2.71
34 * 380682 42.92 -
35 * 380346 44.06 -
36 * 260902 18.72 -
37 * 294440 24.11 -
38 * 211710 49.58 -
39 * 476289 12.54 -
40 * 464491 11.15 -

*: CPLEX could not return a feasible solution within 10 hours.

As one may observe from Table 3, the first heuristic strategy H1 reached a remarkable improve-

ment of the solution quality. This strategy found feasible solutions for 38 of 40 instances, whereas

the pure CPLEX strategy obtained solutions only for 14 instances with ten times computing effort.

Now look at those 14 instances where the pure CPLEX strategy found feasible solutions. Strat-

egy H1 produced better solutions to 10 of 14 instances and the solutions for some remaining four

instances are at least as good as that provided by the pure CPLEX strategy. The computing time

of strategy H1 is less than 1.5 hours for each instance, which is significantly less than that of the

pure CPLEX solution strategy (see Table 2).

6.4. Results of Heuristic Strategy H2

We next examine effectiveness of the second heuristic strategy. As previously stated, its performance

depends on how many cycles are fixed for each resource. In this computational study, we examined

six settings of $, i.e., 5, 10, 15, 20, 30, and 40. Table 4 summarizes the statistical results of H2,

in comparison with the pure CPLEX solver. Columns 2-4 display the maximum, minimum and

average GAP+(%) for each instance group respectively. #Fre. denotes the number of instances



25

Table 4 Statistical Results of Heuristic Strategy H2

Instance group

$= 5 $= 10 $= 15
GAP+(%)

#Fre.
GAP+(%)

#Fre.
GAP+(%)

#Fre.
Min Max Avg. Min Max Avg. Min Max Avg.

1-15 -41.46 5.98 -8.21 13 -41.46 0.00 -7.76 15 -40.07 0.00 -7.44 15
16-25 -20.58 -7.27 -13.92 10 -20.58 -6.71 -13.64 10 -20.58 -6.71 -13.64 10
26-40a -31.14 -31.14 -31.14 15 -21.66 -21.66 -21.66 14 -25.73 -25.73 -25.73 15

Instance group

$= 20 $= 30 $= 40
GAP+(%)

#Fre.
GAP+(%)

#Fre.
GAP+(%)

#Fre.
Min Max Avg. Min Max Avg. Min Max Avg.

1-15 -41.46 0.00 -7.49 15 -38.69 0.00 -7.30 15 -40.07 0.00 -7.35 15
16-25 -20.58 -6.71 -13.64 10 -19.94 -3.91 -11.92 10 -19.94 0.00 -9.97 10
26-40a -28.43 -28.43 -28.43 14 -28.43 -28.43 -28.43 13 -23.02 -23.02 -23.02 12

a: The Min, Max and Avg. are all equal because the pure CPLEX strategy solved only one instance in group 26-40.

where feasible solutions are found. We report detailed computational results in Tables 11 and 12

in the Appendix.

Results in Tables 4, 11 and 12 show that with six different settings of $, strategy H2 found

feasible solutions to 38, 39, 40, 39, 38, and 37 instances, respectively. This significantly extends

the solution ability of the pure CPLEX strategy. Further, we can observe that for small instances

1-15, it is better to fix more cycles for each resource. As instance size increases, it benefits from

fixing fewer cycles for each resource.

Now we examine the performance difference among six settings of $. Let us look at instances

where the pure CPLEX strategy could find feasible solutions. We can see that H2 with $ = 5,

on average, reached a better performance improvement (e.g. smaller objective values). If we focus

on those 35 instances (see them in Tables 11 and 12) where H2 found feasible solutions under

six settings, we can see that H2 with $= 5 obtained better upper bounds. In contrast, the worst

performance was obtained for $ = 40. If we compare six settings in pairs, we can draw the same

conclusion that H2 found the best average objective values when $ was set to 5. In addition,

increasing the number of fixed cycles decreases the frequency of finding feasible solutions. The

reason is described as follows. These instances are very hard to solve. When we fix more cycles, the

resulting restricted arc-cycle model has more variables. This leads to a harder MIP model. When

the time limit of one hour reached, the MIP solver still could not find a feasible solution. However,

this does not mean that the restricted model is infeasible.

In summary, $= 5 is a better one among six settings in strategy H2, if we aim to improve the

upper bounds and frequency of finding feasible solutions.

6.5. Results of Heuristic Strategy H3

We next evaluate the performance of the third heuristic strategy. In this comparison study, we

examined six different settings of parameter η: 1/10, 1/5, 1/4, 1/3, 1/2 and 100%. Table 5 sum-

marizes some statistical results of H3, in comparison with the pure CPLEX strategy. We report

detailed computational results in Tables 13 and 14 in the Appendix.
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Table 5 Statistical Results of Heuristic Strategy H3

Instance group

η= 1/10 η= 1/5 η= 1/4
GAP+(%)

#Fre.
GAP+(%)

#Fre.
GAP+(%)

#Fre.
Min Max Avg. Min Max Avg. Min Max Avg.

1-15 -40.07 0.00 -6.87 13 -34.55 0.00 -6.75 14 -37.31 0.00 -6.79 14
16-25 -16.08 -16.08 -16.08 7 -5.59 -5.59 -5.59 8 -3.35 -3.35 -3.35 6
26-40a -16.25 -16.25 -16.25 13 -13.54 -13.54 -13.54 12 -17.60 -17.60 -17.60 10

Instance group

η= 1/3 η= 1/2 η= 100%
GAP+(%)

#Fre.
GAP+(%)

#Fre.
GAP+(%)

#Fre.
Min Max Avg. Min Max Avg. Min Max Avg.

1-15 -34.55 0.00 -6.34 13 -35.93 1.83 -6.97 11 -9.67 7.23 -0.48 6
16-25 - - - 7 - - - 2 - - - 0
26-40a -24.37 -24.37 -24.37 11 -24.37 -24.37 -24.37 15 -24.37 -24.37 -24.37 14

a: The Min, Max and Avg. are all equal because the pure CPLEX strategy solved only one instance in group 26-40.

Results show that under six settings, strategy H3 found feasible solutions for 33, 34, 30, 31, 28 and

20 of the 40 instances, respectively. In comparison with the pure CPLEX execution, H3 significantly

improved the frequency of finding feasible solutions. Parameter η affects the performance of H3. If

we focus on the success frequency, η= 1/10 and 1/5 are better settings. Under these two settings,

H3 got feasible solutions for 33 and 34 out of the 40 instances, respectively. We further look at

29 instances (see them in Tables 13 and 14) for which these two values of η both found feasible

solutions. On average, H3 with η = 1/10 produced solutions that were 0.23% better than what

H3 with η= 1/5 could produce. Fixing all the single-paths is not a good strategy. For example, it

produced feasible solutions for only 20 instances.

We next analyze the quality of solutions produced under the first four settings, which produced

high successful ratio of finding feasible solutions. In small instances 1-15, the performance of H3

deteriorates when a larger η is applied. We can explained it as follows. These small instances include

fewer network arcs and commodities. If we fix single-paths for more commodities, the search space

shrinks and thus the probability of finding feasible solutions decreases. For small instances, the

best choice is to set η to 1/5. As one may observe, the performance of H3 varies with the number of

commodities in each instance. If one instance has more commodities, it is better to not fix too much

single-paths. For example, consider medium instances 16-25 where there are 400 commodities. For

these instances, a higher fixing ratio may restrict the path choice for those commodities, which

do not follow single-paths in the L-RMP solution. Our results also show that for most of these

ten instances, the resulting models are infeasible if paths of over 50% commodities are fixed. For

medium instances, it is better to fix paths for 20% commodities.

We finally examine large instances 26-40. In comparison with the last instance group, these

instances include fewer commodities, but more network nodes and arcs. From the computational

results, we can observe that a higher fixing ratio does not significantly affect the frequency of finding

feasible solutions. Conversely, too small η will produce larger MIP models, which thus cannot be

solved within one hour.
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In summary, η = 1/5 on average is the best setting in strategy H3, if we want to improve the

upper bounds and frequency of finding feasible solutions.

6.6. Results of Heuristic Strategy H4

We finally evaluate the performance of heuristic strategy H4. We examined its performance under

nine combinations of $ and η. The computational results are reported in Tables 15-17 in the

Appendix. Table 6 gives the frequency of finding feasible solutions. From these results, we can draw

the following conclusions:

(1) Under these nine settings, heuristic strategy H4 found feasible solutions for 29, 30, 29, 20,

23, 24, 6, 12, and 11, instances respectively.

(2) This strategy also significantly shrank the search space, while decreasing the model scale. As a

result, the frequency of finding feasible solutions declined, in comparison with previous three fixing

strategies (H1, H2, and H3). Further, in this strategy, fixing single-paths has a greater impact on

successful frequency than fixing cycles. One may observe that after fixing 50% paths, the resulting

models under each setting of $, become infeasible for most of the instances. But in general, η= 1
10

is a better setting.

(3) The performance varies across instance groups. For small instances 1-15, the better fre-

quencies of finding feasible solutions were reached for the first three parameter settings. For 11

instances, heuristic H4 with each of these three settings all got feasible solutions. In particular,

heuristic H4 with η = 1
10

and $ = 20, on average, found solutions with better objective function

values. Now we focus on medium instances 16-25 that includes 400 commodities. Heuristic H4

failed in most of these 10 instances. For example, we found that in our experiments, the restricted

models are infeasible for most of these 10 instances. Now look at large instances 26-40, which

have fewer commodities than instances 16-25. With the first three parameter settings, heuristic H4

found feasible solutions for most instances in this group. In particular, heuristic H4 with the first

parameter setting reached the best performance: higher frequency of finding feasible solutions and

higher solution quality (e.g., better upper bounds).

In summary, we would recommend parameter setting η= 1
10

and $= 20, when heuristic strategy

H4 is applied.

6.7. Comparison of Four Heuristic Strategies

We have demonstrated that our proposed four heuristic strategies significantly outperformed the

pure CPLEX execution for the considered test instances. It produced better solutions within shorter

computing times. In this section, we compare four heuristic strategies. In this comparison study,

we chose the best parameter setting for each heuristic strategy, which is determined in the previous

sections. In Table 7, we summarize the comparison results across the instance groups. Detailed
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Table 6 Frequency of Finding Feasible Solutions of Heuristic Strategy H4

Parameter setting
Instance group

1-15 16-25 26-40

η= 1
10
,$= 10 14 0 15

η= 1
10
,$= 20 13 3 14

η= 1
10
,$= 30 14 2 13

η= 1
5
,$= 10 11 0 9

η= 1
5
,$= 20 12 1 10

η= 1
5
,$= 30 13 0 11

η= 1
2
,$= 10 2 0 4

η= 1
2
,$= 20 6 0 6

η= 1
2
,$= 30 3 0 8

Table 7 Comparing Four Heuristic Strategies
Instance H2 ($ = 5) H3 (η = 1

5
) H4 (η = 1

10
,$= 20)

group Avg. UB Avg.
GAP+(%)

#Fre. #Beat Avg. UB Avg.
GAP+(%)

#Fre. #Beat Avg. UB Avg.
GAP+(%)

#Fre. #Beat

1-15 600191.46 -4.11 13 12 619107.64 -2.69 14 13 541898.62 -3.63 13 13
16-25 1496725.30 -9.23 10 10 1526046.75 -7.12 8 7 1242312.67 -7.73 3 3
26-40 775811.20 -17.27 15 15 521031.33 -6.51 12 12 693607.43 -14.86 14 14

results are presented in Table 18 in the Appendix. The statistical measures here are calculated

based on the results of heuristic strategy H1. #Beat represents the number of instances where one

heuristic strategy produced an equivalent or better solutions, in comparison with heuristic H1.

The computational results show that H2, H3, and H4 significantly outperformed H1. In par-

ticular, H2, H3 and H4 respectively produced equivalent or better solutions for 38, 29, and 29

instances. In comparison with the other three strategies, H1 only found better solutions for 1, 8,

and 10 instances.

Table 8 Comparing H4 with H2 and H3

Instance group No. of H4 beating H2 No. of H4 beating H3

1-15 2 7
16-25 1 3
26-40 2 12

We now compare the performance of H2 (fixing cycles) and H3 (fixing single-paths). The com-

putational results show that H2, on average, outperformed H3. As one may observe, H2 reached

a greater frequency of finding feasible solutions. H2 and H3 found feasible solutions for the same

32 instances. For these 32 instances, H2 produced solutions that are on average 3.78% better than

what H3 could produce. Such a conclusion is stable across different instance scales.

We next examine the benefits of simultaneously fixing cycles and paths. Table 8 shows the number

of instances where H4 produced better solutions. On the one hand, the computational results in

Table 18 show that simultaneously fixing cycles and paths decreased the probability of finding

feasible solutions in one hour, while shrinking the solution space. On the other hand, the results in

Table 8 obviously demonstrate that H4 did improve the solution quality in some instances, if we
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focus on those instances where three heuristic strategies could find feasible solutions. In particular,

such benefits are more significant when comparing H4 and H3.

To further show the performance difference, we carried out a Wilcoxon signed ranks test

(Wilcoxon 1945). The objective value is chosen as the measurement. The used data covers results

for 26 instances where four heuristic strategies all found feasible solutions. The null hypothesis is

that the objective value difference between two algorithms is zero. The statistical test results are

given in Table 9. The asymptotical significances are all smaller than 0.05.

Following the above analysis, we recommend H2 as the best heuristic strategy.

6.8. Impact of Single-path Constraints

In the SPSNDRC, one main feature is introducing single-path constraints for commodity trans-

portation, a main difference from previous studies. In this subsection, we analyze how this require-

ment would influence the computational difficulty and capacity utilization of resources and arcs.

We used the node-arc formulation to execute the computational tests. Define continuous variables

fki,j, which represent the flows of commodity k on arc (i, j). Changing constraints (1)-(3) and

(11) to the following constraints (31)-(34), we could get a new node-arc formulation without the

single-path requirements.

minW =
∑
v∈V

Fvδv +
∑
k∈K

∑
(i,j)∈A

cki,jf
k
i,j (31)

∑
(i,j)∈A

fki,j −
∑

(j,i)∈A

fkj,i =


qk, if i= o(k)

−qk, if i= d(k)

0, otherwise

∀i∈N,∀k ∈K, (32)

∑
k∈K

fki,j ≤ ui,j
∑
v∈V

yvi,j, ∀(i, j)∈ S, (33)

0≤ fki,j ≤ qk, ∀(i, j)∈A,∀k ∈K. (34)

We also solved this new formulation for all the 40 instances with a larger time limit of 50 hours.

The computational results are reported in Table 10. Our results show that under these two settings,

feasible solutions are returned for only ten out of 40 instances. That is, the small instances 1-10 are

demonstrated integer feasible. Thus, we include in Table 10 results for these ten instances. Here UB

and LB represent the best integer solution and the global lower bound at CPLEX’s termination,

Table 9 Results of Wilcoxon Signed Ranks Test

Statistics H2-H1 H3-H1 H4-H1 H3-H2 H4-H2 H4-H3

Z -4.320a -3.105a -4.016a -4.325b -2.93b -3.835a

Asymp.Sig.(2-tailed) 0.000 0.002 0.000 0.000 0.003 0.000

a. Based on positive ranks.

b. Based on negative ranks.
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respectively. Columns 4 and 9 present the computing times to prove optimality, or the remaining

gap after 50 hours. Here we report the computing time in hours. The capacity utilizations for

services arcs are shown in columns 5 and 10, respectively. For the single-path case, the capacity

utilization for arc (i, j) is calculated as
∑
k∈K

qkxki,j/ui,j. For the other formulation, it is calculated

as
∑
k∈K

f
k

i,j/ui,j. In addition, columns 6 and 11 respectively present the number of resources used

under the two settings.

Table 10 Impact of Single-path Constraints

Instance
Model with single-path constraints Model without single-path constraints

UB LB Gap(%)(CPUs) Arc utilization (%) #Resource UB LB Gap(%)(CPUs) Arc utilization (%) #Resource
1 69160 69160 0(1.88h) 71.05 7 64160 64160 0(3.71h) 85.41 6
2 83558 83558 0(2.61h) 69.05 5 83558 83558 0(18.66h) 77.84 5
3 93968 93968 0(0.10h) 66.19 4 93968 90458.22 3.88(50h) 72.44 4
4 268548 265232.59 1.25(50h) 87.66 21 263548 257195.28 2.47(50h) 90.81 20
5 444460 431556.46 2.99(50h) 89.16 29 439460 430168.36 2.16(50h) 89.65 28
6 1010299 1010299 0(49.26h) 70.28 20 1000299 978861.92 2.19(50h) 97.75 18
7 356340 320276.83 11.26(50h) 75.48 24 341340 295968.09 15.33(50h) 88.49 21
8 1072580 1036509.47 3.48(50h) 80.17 10 1062580 1012077.34 4.99(50h) 92.24 8
9 1245318 1245318 0(48.41h) 82.74 45 1215318 1215318 0(49.30h) 91.87 39
10 954210 954210 0(47.26h) 78.66 24 944210 944210 0(49.41h) 85.28 22

In regard of the computational difficulty, all the instances got larger gaps or CPU time, when

we eliminated the single-path constraints. This phenomenon was explained when we explored the

mechanism of CPLEX. We found that CPLEX eliminated much more invalid rows for the node-

arc formulation with single-path constraints in the preprocessing process, thus largely shrinking

the model scale. Although removing single-path constraints can increase feasible regions, models

with more valid rows turned out to be more difficult to solve. Besides, results show that the arc

utilizations are increased for all these ten instances, when we removed the single-path constraints.

Consequently, enforcing single-path constraints produced larger utilizations of resources, as shown

in column 4.

Note that the above observation is concluded from these specific ten instances, where CPLEX

could get feasible solutions within 50 hours. We cannot generalize this conclusion for the other

larger instances.

7. Conclusions and Future Work

We extended existing service network design models with resource constraints, and considered

both resource-availability constraints and single-path requirements for routing commodities. In this

paper, we study the single-path service network design with resource constraints in the context of

the time-space network, which leads to a large-scale and computationally difficult model. We first

presented a node-arc integer programming formulation for the SPSNDRC. With this formulation,

only the small problem instances can be solved by using MIP solvers. In order to deal with larger

instances, we next proposed an arc-cycle formulation, from which the column-generation-based
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approach can be applied to solve the model efficiently as it incorporates a set of service cycles

therein. In particular, due to the cycle-based nature of this model, there can be a huge number

of variables for instances of even medium size. To produce good solutions, we presented a two-

stage MIP-based heuristic, which is based on the second formulation. In the first stage, the column

generation procedure is executed to enumerate a subset of cycles for given resources. In the second

stage, feasible integer solutions are created from the optimal solution of the linear relaxation of the

restricted master problem. We introduced four heuristic strategies to produce feasible solutions:

variables conversion, fixing cycles, fixing single-paths, and simultaneously fixing cycles and paths.

The underlying idea is to first define a small MIP model for the SPSNDRC, based on the optimal

solution of the L-RMP, and then solve it using MIP solvers. We demonstrated the effectiveness of

the proposed approach by comparing the quality of the solutions it produced with those produced

by CPLEX with a time limit of 10 hours. The experimental results show that our four heuristic

strategies could find better-quality solutions than the pure CPLEX strategy. More importantly, our

approach took much less time, e.g., less than 1.5 hours for each instance. Further, we found that

the other three heuristic strategies, on average, outperformed the first strategy. The strategy of

fixing cycles obtained the best performance, in terms of the frequency of finding feasible solutions,

and the solution quality. The results also show that the approach did benefit from simultaneously

fixing cycles and paths, although this strategy declined the number of instances where we can

produce feasible solutions.

In the future work, we will introduce heterogeneous resource constraints in this problem. In the

aspect of solution approach, we will try to develop a branch-and-price approach and demonstrate

its performance.
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Appendix. Detailed Results
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Table 11 Results of Heuristic Strategy H2

Instance UB CPLEX
$ = 5 $ = 10 $ = 15

UB GAP+(%) UB GAP+(%) UB GAP+(%)
1 69160 + + 69160 0.00 69160 0.00
2 83558 88558 5.98 83558 0.00 83558 0.00
3 93968 93968 0.00 93968 0.00 93968 0.00
4 273548 263548 -3.66 263548 -3.66 268548 -1.83
5 444460 439460 -1.12 439460 -1.12 439460 -1.12
6 1030299 975299 -5.34 970299 -5.82 975299 -5.34
7 311340 256340 -17.67 256340 -17.67 256340 -17.67
8 1167580 1087580 -6.85 1087580 -6.85 1087580 -6.85
9 1160318 + + 1095318 -5.60 1100318 -5.17
10 934210 899210 -3.75 904210 -3.21 899210 -3.75
11 * 941335 - 936335 - 941335 -
12 361837 211837 -41.46 211837 -41.46 216837 -40.07
13 * 880041 - 865041 - 865041 -
14 * 808346 - 808346 - 808346 -
15 * 856967 - 861967 - 866967 -
16 * 2460945 - 2455945 - 2455945 -
17 * 2729712 - 2734712 - 2734712 -
18 777461 617461 -20.58 617461 -20.58 617461 -20.58
19 * 1188217 - 1193217 - 1193217 -
20 * 2396418 - 2401418 - 2396418 -
21 * 424131 - 424131 - 434131 -
22 * 819823 - 814823 - 819823 -
23 * 1786825 - 1771825 - 1786825 -
24 * 1714229 - 1704229 - 1704229 -
25 894492 829492 -7.27 834492 -6.71 834492 -6.71
26 * 1896005 - 1926005 - 1896005 -
27 * 953909 - 948909 - 953909 -
28 * 959887 - 964887 - 964887 -
29 * 2096664 - + + 2111664 -
30 * 1982123 - 1982123 - 1982123 -
31 * 482640 - 477640 - 477640 -
32 * 1017790 - 1022790 - 1017790 -
33 369290 254290 -31.14 289290 -21.66 274290 -25.73
34 * 260682 - 285682 - 255682 -
35 * 260346 - 280346 - 270346 -
36 * 230902 - 230902 - 230902 -
37 * 244440 - 244440 - 239440 -
38 * 136710 - 141710 - 136710 -
39 * 436289 - 431289 - 431289 -
40 * 424491 - 429491 - 424491 -

*: CPLEX could not return a feasible solution within 10 hours. +: No feasible solution is found by strategy H2.

Table 12 Results of Heuristic Strategy H2 (Cont’d)

Instance UB CPLEX
$ = 20 $ = 30 $ = 40

UB GAP+(%) UB GAP+(%) UB GAP+(%)
1 69160 69160 0.00 69160 0.00 69160 0.00
2 83558 83558 0.00 83558 0.00 83558 0.00
3 93968 93968 0.00 93968 0.00 93968 0.00
4 273548 268548 -1.83 268548 -1.83 268548 -1.83
5 444460 444460 0.00 439460 -1.12 439460 -1.12
6 1030299 970299 -5.82 975299 -5.34 975299 -5.34
7 311340 256340 -17.67 256340 -17.67 256340 -17.67
8 1167580 1087580 -6.85 1087580 -6.85 1087580 -6.85
9 1160318 1095318 -5.60 1095318 -5.60 1105318 -4.74
10 934210 904210 -3.21 904210 -3.21 904210 -3.21
11 * 936335 - 946335 - 946335 -
12 361837 211837 -41.46 221837 -38.69 216837 -40.07
13 * 870041 - 880041 - 880041 -
14 * 813346 - 808346 - 818346 -
15 * 861967 - 856967 - 871967 -
16 * 2455945 - 2465945 - 2540945 -
17 * 2734712 - 2734712 - 2779712 -
18 777461 617461 -20.58 622461 -19.94 622461 -19.94
19 * 1193217 - 1188217 - 1193217 -
20 * 2396418 - 2401418 - 2431418 -
21 * 424131 - 439131 - 464131 -
22 * 814823 - 834823 - 859823 -
23 * 1771825 - 1806825 - 1811825 -
24 * 1709229 - 1729229 - 1729229 -
25 894492 834492 -6.71 859492 -3.91 894492 0.00
26 * 1906005 - + + + +
27 * 948909 - 958909 - 958909 -
28 * 964887 - 974887 - + +
29 * + + + + + +
30 * 1977123 - 1987123 - 1987123 -
31 * 477640 - 502640 - 497640 -
32 * 1032790 - 1097790 - 1097790 -
33 369290 264290 -28.43 264290 -28.43 284290 -23.02
34 * 270682 - 265682 - 290682 -
35 * 280346 - 280346 - 270346 -
36 * 230902 - 240902 - 245902 -
37 * 249440 - 254440 - 259440 -
38 * 141710 - 146710 - 146710 -
39 * 431289 - 446289 - 451289 -
40 * 429491 - 444491 - 434491 -

*: CPLEX could not return a feasible solution within 10 hours. +: No feasible solution is found by strategy H2.
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Table 13 Results of Heuristic Strategy H3

Instance UB CPLEX
η = 1

10
η = 1

5
η = 1

4
UB GAP+(%) UB GAP+(%) UB GAP+(%)

1 69160 69160 0.00 69160 0.00 69160 0.00
2 83558 83558 0.00 83558 0.00 83558 0.00
3 93968 93968 0.00 93968 0.00 93968 0.00
4 273548 263548 -3.66 268548 -1.83 268548 -1.83
5 444460 434460 -2.25 + + + +
6 1030299 + + 980299 -4.85 970299 -5.82
7 311340 271340 -12.85 266340 -14.45 281340 -9.64
8 1167580 1122580 -3.85 1102580 -5.57 1097580 -6.00
9 1160318 1115318 -3.88 1100318 -5.17 1100318 -5.17
10 934210 914210 -2.14 924210 -1.07 914210 -2.14
11 * 961335 - 951335 - 951335 -
12 361837 216837 -40.07 236837 -34.55 226837 -37.31
13 * 895041 - 890041 - 885041 -
14 * + + 828346 - 833346 -
15 * 891967 - 871967 - 861967 -
16 * 2460945 - 2470945 - 2505945 -
17 * + + 2859712 - + +
18 777461 652461 -16.08 + + + +
19 * 1268217 - 1198217 - + +
20 * + + + + + +
21 * 429131 - 469131 - 484131 -
22 * 824823 - 824823 - 829823 -
23 * 1791825 - 1816825 - 1781825 -
24 * 1764229 - 1724229 - 1709229 -
25 894492 + + 844492 -5.59 864492 -3.35
26 * 1991005 - + + + +
27 * 998909 - 1038909 - + +
28 * 974887 - 1014887 - + +
29 * + + + + + +
30 * 2002123 - + + + +
31 * 512640 - 497640 - 497640 -
32 * + + 1097790 - 1097790 -
33 369290 309290 -16.25 319290 -13.54 304290 -17.60
34 * 290682 - 300682 - 280682 -
35 * 295346 - 290346 - 310346 -
36 * 265902 - 265902 - 270902 -
37 * 289440 - 299440 - 299440 -
38 * 236710 - 206710 - 216710 -
39 * 466289 - 456289 - 451289 -
40 * 459491 - 464491 - 464491 -

*: CPLEX could not return a feasible solution within 10 hours. +: No feasible solution is found by strategy H3.

Table 14 Results of Heuristic Strategy H3 (Cont’d)

Instance UB CPLEX
η = 1

3
η = 1

2
η = 100%

UB GAP+(%) UB GAP+(%) UB GAP+(%)
1 69160 69160 0.00 69160 0.00 74160 7.23
2 83558 83558 0.00 + + + +
3 93968 93968 0.00 93968 0.00 93968 0.00
4 273548 273548 0.00 278548 1.83 + +
5 444460 + + + + + +
6 1030299 980299 -4.85 + + + +
7 311340 281340 -9.64 291340 -6.42 + +
8 1167580 1092580 -6.42 1102580 -5.57 + +
9 1160318 1105318 -4.74 + + + +
10 934210 904210 -3.21 909210 -2.68 939210 0.54
11 * 951335 - 921335 - 951335 -
12 361837 236837 -34.55 231837 -35.93 326837 -9.67
13 * + + 855041 - + +
14 * 818346 - 803346 - 833346 -
15 * 876967 - 861967 - + +
16 * 2510945 - + + + +
17 * 2849712 - + + + +
18 777461 + + + + + +
19 * + + + + + +
20 * 2396418 - + + + +
21 * 539131 - + + + +
22 * 849823 - + + + +
23 * 1811825 - 1826825 - + +
24 * 1724229 - 1774229 - + +
25 894492 + + + + + +
26 * 2021005 - 1996005 - 1906005 -
27 * + + 1028909 - 1018909 -
28 * 1009887 - 1019887 - + +
29 * + + 2156664 - 2186664 -
30 * + + 2117123 - 2052123 -
31 * 497640 - 507640 - 502640 -
32 * + + 1097790 - 1072790 -
33 369290 279290 -24.37 279290 -24.37 279290 -24.37
34 * 275682 - 270682 - 285682 -
35 * 280346 - 280346 - 295346 -
36 * 270902 - 270902 - 275902 -
37 * 264440 - 309440 - 279440 -
38 * 231710 - 216710 - 171710 -
39 * 471289 - 461289 - 456289 -
40 * 499491 - 464491 - 464491 -

*: CPLEX could not return a feasible solution within 10 hours. +: No feasible solution is found by strategy H3.
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Table 15 Results of Heuristic Strategy H4

Instance UB CPLEX
η = 1

10
,$ = 10 η = 1

10
,$= 20 η = 1

10
,$= 30

UB GAP+(%) UB GAP+(%) UB GAP+(%)
1 69160 74160 7.23 69160 0.00 69160 0.00
2 83558 88558 5.98 83558 0.00 83558 0.00
3 93968 93968 0.00 93968 0.00 93968 0.00
4 273548 268548 -1.83 268548 -1.83 268548 -1.83
5 444460 444460 0.00 444460 0.00 444460 0.00
6 1030299 965299 -6.31 980299 -4.85 + +
7 311340 + + 266340 -14.45 261340 -16.06
8 1167580 1087580 -6.85 1087580 -6.85 1087580 -6.85
9 1160318 1090318 -6.03 + + 1100318 -5.17
10 934210 904210 -3.21 904210 -3.21 909210 -2.68
11 * 941335 - 941335 - 941335 -
12 361837 221837 -38.69 211837 -41.46 226837 -37.31
13 * 875041 - 880041 - 875041 -
14 * 803346 - 813346 - 818346 -
15 * 856967 - + + 861967 -
16 * + + + + + +
17 * + + + + + +
18 777461 + + + + + +
19 * + + 1188217 - + +
20 * + + + + + +
21 * + + + + + +
22 * + + + + + +
23 * + + + + 1796825 -
24 * + + 1714229 - 1714229 -
25 894492 + + 824492 -7.83 + +
26 * 1916005 - 1901005 - + +
27 * 948909 - 948909 - 958909 -
28 * 974887 - 959887 - 964887 -
29 * 2091664 - + + + +
30 * 1987123 - 1977123 - 1982123 -
31 * 497640 - 497640 - 517640 -
32 * 1022790 - 1097790 - 1097790 -
33 369290 264290 -28.43 274290 -25.73 264290 -28.43
34 * 265682 - 260682 - 260682 -
35 * 260346 - 270346 - 260346 -
36 * 230902 - 240902 - 245902 -
37 * 254440 - 259440 - 264440 -
38 * 141710 - 136710 - 146710 -
39 * 436289 - 446289 - 446289 -
40 * 439491 - 439491 - 439491 -

*: CPLEX could not return a feasible solution within 10 hours. +: No feasible solution is found by strategy H4.

Table 16 Results of Heuristic Strategy H4 (Cont’d)

Instance UB CPLEX
η = 1

5
,$ = 10 η = 1

5
,$ = 20 η = 1

5
,$= 30

UB GAP+(%) UB GAP+(%) UB GAP+(%)
1 69160 74160 7.23 69160 0.00 69160 0.00
2 83558 88558 5.98 88558 5.98 88558 5.98
3 93968 93968 0.00 93968 0.00 93968 0.00
4 273548 268548 -1.83 268548 -1.83 268548 -1.83
5 444460 444460 0.00 444460 0.00 444460 0.00
6 1030299 + + + + + +
7 311340 + + + + 271340 -12.85
8 1167580 1087580 -6.85 1087580 -6.85 1087580 -6.85
9 1160318 1100318 -5.17 1095318 -5.60 1095318 -5.60
10 934210 + + 904210 -3.21 904210 -3.21
11 * 936335 - 941335 - 946335 -
12 361837 221837 -38.69 231837 -35.93 + +
13 * 870041 - 875041 - 880041 -
14 * 803346 - + + 803346 -
15 * + + 856967 - 856967 -
16 * + + + + + +
17 * + + + + + +
18 777461 + + + + + +
19 * + + + + + +
20 * + + + + + +
21 * + + + + + +
22 * + + + + + +
23 * + + + + + +
24 * + + 1714229 - + +
25 894492 + + + + + +
26 * 1891005 - 1916005 - + +
27 * + + + + + +
28 * + + + + + +
29 * 2096664 - 2106664 - 2106664 -
30 * + + + + + +
31 * + + 487640 - 492640 -
32 * 1032790 - 1042790 - 1057790 -
33 369290 + + + + 264290 -28.43
34 * + + 260682 - 260682 -
35 * 255346 - + + 275346 -
36 * 230902 - 235902 - 235902 -
37 * 254440 - 264440 - 254440 -
38 * 136710 - 141710 - 146710 -
39 * 441289 - 446289 - 441289 -
40 * 439491 - 439491 - 444491 -

*: CPLEX could not return a feasible solution within 10 hours. +: No feasible solution is found by strategy H4.



37

Table 17 Results of Heuristic Strategy H4 (Cont’d)

Instance UB CPLEX
η = 1

2
,$= 10 η = 1

2
,$= 20 η = 1

2
,$ = 30

UB GAP+(%) UB GAP+(%) UB GAP+(%)
1 69160 + + 69160 0.00 69160 0.00
2 83558 + + + + + +
3 93968 93968 0.00 93968 0.00 93968 0.00
4 273548 + + + + + +
5 444460 + + + + + +
6 1030299 + + + + + +
7 311340 + + + + + +
8 1167580 + + 1092580 -6.42 + +
9 1160318 + + + + + +
10 934210 + + 909210 -2.68 + +
11 * + + 946335 - 946335 -
12 361837 + + + + + +
13 * + + + + + +
14 * 808346 - 803346 - + +
15 * + + + + + +
16 * + + + + + +
17 * + + + + + +
18 777461 + + + + + +
19 * + + + + + +
20 * + + + + + +
21 * + + + + + +
22 * + + + + + +
23 * + + + + + +
24 * + + + + + +
25 894492 + + + + + +
26 * + + + + + +
27 * + + + + + +
28 * + + + + + +
29 * + + + + + +
30 * + + + + + +
31 * + + + + + +
32 * + + + + 1052790 -
33 369290 + + 274290 -25.73 + +
34 * + + + + 265682 -
35 * + + + + 270346 -
36 * 230902 - 235902 - 245902 -
37 * 254440 - 259440 - 264440 -
38 * 131710 - 141710 - 141710 -
39 * 436289 - 441289 - 441289 -
40 * + + 434491 - 434491 -

*: CPLEX could not return a feasible solution within 10 hours. +: No feasible solution is found by strategy H4.

Table 18 Comparison Results of Four Heuristic Strategies

Instance
H1 H2 ($ = 5) H3 (η = 1

5
) H4 (η = 1

10
,$ = 20)

UB UB GAP+(%) UB GAP+(%) UB GAP+(%)
1 69160 + + 69160 0.00 69160 0.00
2 83558 88558.00 5.98 83558 0.00 83558 0.00
3 93968 93968.00 0.00 93968 0.00 93968 0.00
4 268548 263548.00 -1.86 268548 0.00 268548 0.00
5 439460 439460.00 0.00 + + 444460 1.14
6 980299 975299.00 -0.51 980299 0.00 980299 0.00
7 271340 256340.00 -5.53 266340 -1.84 266340 -1.84
8 1157580 1087580.00 -6.05 1102580 -4.75 1087580 -6.05
9 1135318 + + 1100318 -3.08 + +
10 909210 899210.00 -1.10 924210 1.65 904210 -0.55
11 961335 941335.00 -2.08 951335 -1.04 941335 -2.08
12 286837 211837.00 -26.15 236837 -17.43 211837 -26.15
13 935041 880041.00 -5.88 890041 -4.81 880041 -5.88
14 863346 808346.00 -6.37 828346 -4.05 813346 -5.79
15 891967 856967.00 -3.92 871967 -2.24 + +
16 2485945 2460945.00 -1.01 2470945 -0.60 + +
17 2844712 2729712.00 -4.04 2859712 0.53 + +
18 697461 617461.00 -11.47 + + + +
19 1318217 1188217.00 -9.86 1198217 -9.10 1188217 -9.86
20 2556418 2396418.00 -6.26 + + + +
21 599131 424131.00 -29.21 469131 -21.70 + +
22 954823 819823.00 -14.14 824823 -13.62 + +
23 1851825 1786825.00 -3.51 1816825 -1.89 + +
24 1814229 1714229.00 -5.51 1724229 -4.96 1714229 -5.51
25 894492 829492.00 -7.27 844492 -5.59 824492 -7.83
26 * 1896005.00 - + + 1901005 -
27 1013909 953909.00 -5.92 1038909 2.47 948909 -6.41
28 1019887 959887.00 -5.88 1014887 -0.49 959887 -5.88
29 * 2096664.00 - + + + +
30 2167123 1982123.00 -8.54 + + 1977123 -8.77
31 632640 482640.00 -23.71 497640 -21.34 497640 -21.34
32 1097790 1017790.00 -7.29 1097790 0.00 1097790 0.00
33 359290 254290.00 -29.22 319290 -11.13 274290 -23.66
34 380682 260682.00 -31.52 300682 -21.01 260682 -31.52
35 380346 260346.00 -31.55 290346 -23.66 270346 -28.92
36 260902 230902.00 -11.50 265902 1.92 240902 -7.67
37 294440 244440.00 -16.98 299440 1.70 259440 -11.89
38 211710 136710.00 -35.43 206710 -2.36 136710 -35.43
39 476289 436289.00 -8.40 456289 -4.20 446289 -6.30
40 464491 424491.00 -8.61 464491 0.00 439491 -5.38

*: Heuristic strategy H1 could not return a feasible solution. +: No feasible solution is found by heuristic strategy.




