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Abstract. This study focuses on structural systems which are particularly attractive for bridge
design. Specifically, it investigates the seismic performance of single-column bridges, which are
either conventionally designed, with the column monolithically connected with the ground (i.e.
fixed-base), or designed with the column-footing system able to uplift and exhibit planar rocking
motion during an earthquake. Conventionally designed bridges sustain considerable damage
at the column ends after severe earthquakes. Seismic damage often determines whether the
bridge remains functional after a seismic event. On the contrary, rocking design implies that a
structure under seismic loading performs rigid body rotation around pre-defined pivot points.
Thus, in principle, it relieves the structure from excessive deformations and damage. However,
rocking isolation is not often applied in bridge engineering practice, mainly due to the lack of
thorough understanding of its dynamic (seismic) performance and its potential post-earthquake
financial benefits. This paper redirects our attention to the main benefits of rocking design
over the conventional (fixed-base) design and conducts a comparative study between the two
design methodologies in terms of their seismic losses and resilience in the aftermath of severe
seismic hazard scenarios. The analysis reveals the mitigated seismic losses and the remarkable
resilience that rocking design offers compared to the conventional (fixed-base) design after all
the examined seismic hazard scenarios. The above findings reinforce the potential of the rocking
design as an alternative seismic design paradigm for future bridge engineering applications and
serve as the basis for a more rational and holistic seismic assessment of single-column rocking
bridges.
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1 INTRODUCTION

Conventional bridge seismic design implies the column remains fixed with its foundation,
and subsequently with the ground, offering the necessary strength and ductility to the structure
to withstand seismic forces and avoid collapse. After severe earthquakes though, such a de-
sign concept leads to sustainable seismic damage and, thus, residual displacements. Seismic
damage is an important measure of post-earthquake functionality that often dictates whether a
bridge remains operational following a seismic event. On the other hand, rocking design allows
the structure to uplift and pivot during an earthquake relieving the structure from stresses and
subsequently seismic damage. The seminal work of Housner [1] first revealed the benefits of
rocking design over the conventional (fixed-base) design after the Chilean earthquake in 1960,
and many studies have followed [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], among
others.

The structural configuration of Fig. 1(a), in which the column is monolithically connected
with the ground (i.e. fixed-base), is widely used for bridge design. On the contrary, the con-
figuration of Fig. 1(b) is designed in such a way that the column is monolithically connected
with the footing (or base) but the column-base system can detach from the (assumed rigid)
ground when subjected to a ground motion. Hence, the rocking structural system of Fig. 1(b) is
gaining momentum as an alternative bridge design paradigm, since it combines the benefits of
rocking isolation with the merits of the accelerated bridge construction method. To illustrate
its superior behavior, various studies have compared its seismic performance with the pertinent
performance of its fixed-base counterpart [18, 19, 20, 21, 22, 23, 24, 25], and references therein.

This work is motivated by the lack of analytical studies that thoroughly evaluate the post-
earthquake performance of the rocking system of Fig. 1. Hence, it extends the well-established
performance-based earthquake engineering framework to compare the post-earthquake perfor-
mance of the conventional design method with the rocking design in terms of: (i) the accumu-
lated seismic (repair) losses, and (ii) the resilience in the aftermath of severe seismic hazard
scenarios.

2 ANALYTICAL MODELLING

Fig. 1 illustrates the examined single-column structural systems. Fig. 1(a) shows the con-
ventional (fixed-base) design, while Fig. 1(b) illustrates the rocking column-base system that is
designed for bridges. Assuming rigid ground conditions and no sliding at the rocking interface
allow the structure of Fig. 1(b) to uplift and pivot during an earthquake exhibiting planar rock-
ing motion. When the rocking structure of Fig. 1(b) remains in full contact with the ground,
from a dynamics perspective, it behaves as a single degree-of-freedom system (i.e. similar to
the fixed-base structure of Fig. 1(a)). Thus, its motion is captured by the deformation of the
column u. After rocking commences, the motion of the rocking structure is captured by both
the deformation of the column u and the rocking rotation φ of the base [26, 27].

Consider the rocking oscillator of Fig. 1(b) with a concentrated mass m at height h. The
column has a total mass of mc and elastic stiffness of EI uniformly distributed along its
length. The rigid base has mass mb and width 2b, while its height is considered negligible
compared to its width. For simplicity, assume the lumped mass m creates no moment of
inertia, while the rigid base creates moment of inertia with respect to its center of mass equal to
Imb

= (1/3)mbb
2.

The equations of motion of the rocking oscillator of Fig. 1 can be derived using the general
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Figure 1: Single-column bridge: (a) designed conventionally with the column monolithically connected with the
ground (i.e. fixed-base); and (b) designed with the column-base system able to uplift and pivot during an earthquake

form of the Lagrange’s equation:
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where L = T − V , with T the kinetic energy, V the potential energy and Q the generalized
force, whose mathematical derivations are omitted herein for brevity (see [25] for more details).
While the structure of Fig. 1(b) exhibits planar rocking, the equations that describe its motion
are [25]: (
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whereas when it remains in full contact with the ground, the pertinent equation of motion be-
comes: (
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(
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(4)

where C is the damping coefficient responsible for the energy dissipation while the structure
vibrates. ü and φ̈ denote the flexural and angular acceleration, while üg and g are the ground
and gravitational acceleration, respectively.

Rocking initiates when the overturning moment due to the external forces exceeds the restor-
ing moment of the structural system. Therefore, uplift occurs when [25]:
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where the upper sign denotes clockwise (positive) rotations and the lower sign counter-clockwise
(negative) rotations.

When during rocking, impact occurs, φ = 0 and energy is lost. Following [28, 29, 25], this
work assumes that after impact the rocking structure remains in full contact with the ground and
uplifts when Eq. (5) is satisfied. Under this assumption and through conservation of angular
momentum, the post-impact flexural velocity u̇+ can be expressed as [25]:

u̇+ = u̇− +
Imb
−mbb

2 +mc

(
−b2 + 1

3
h2 + 33

140
u2
)

+m (−b2 + h2 + u2)(
m+ 11

40
mc

)
h

φ̇− (6)

where u̇− and φ̇− denote the pre-impact flexural and angular velocity, respectively.

3 RESILIENCE-BASED EARTHQUAKE ENGINEERING ASSESSMENT

To evaluate the seismic performance of a structural system, the Pacific Earthquake Engi-
neering Research (PEER) Center formulated the performance-based earthquake engineering
(PBEE) framework [30, 31]. The PBEE framework encompasses four steps: (i) hazard anal-
ysis, (ii) structural analysis, (iii) damage analysis, and (iv) loss analysis. On the other hand,
the resilience-based earthquake engineering (RBEE) framework illustrated in Fig. 2 appears to
be a more holistic approach and it is considered as an extension of the PBEE in the design
process. Specifically, the RBEE additionally incorporates the post-earthquake functionality and
resilience of the structure, which are also important indicators to evaluate its seismic perfor-
mance.

Figure 2: Resilience-based earthquake engineering framework
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Figure 3: Hazard curve (in logarithmic scale) for the area of focus after conducting probabilistic seismic hazard
analysis

3.1 Hazard Analysis

Assume that the examined structures of Fig. 1 are located in California laying on a strike-
slip fault. The minimum and maximum moment magnitudes Mw are taken as 5.5 and 8,
respectively, while the shear wave velocity averaged over the top 30 m Vs,30 is 480 m/s. The
Joyner-Boore distance RJB is 5 km. The IM considered herein is the peak ground velocity
(PGV ) [32, 33]. The PSHA provides a sample of 1,000,000 PGV values of ground excitations
that are probable to appear in the area of focus [34]. To connect the earthquake events that are
likely to appear in the examined area (i.e. California) with their annual frequency of exceedance,
the Gutenberg-Richter recurrence law is adopted: log10λM = 3.94− 0.89M , where λM is the
frequency of the earthquakes with magnitudes greater than M . Fig. 3 plots the hazard curve
(in logarithmic scale) that provides the mean annual frequency of exceedance λM of every
earthquake that is likely to occur in the area of focus characterized by the adopted PGV .

3.2 Structural Analysis

This section investigates the seismic response of the single-column structural systems of
Fig. 1. Each structure is considered to be part of a two-span box-girder bridge of total length L
= 60 m and width W = 10 m. Assume that the total mass of the column is mc = 0.25m, while
the total mass of the base is mb = 0.17m. The lumped mass m is located at height h = 8 m.
The rocking structure of Fig. 1(b) has base-width 2b = 4.6 m and slenderness α = 0.28 rad.
In addition, the examined structural systems have identical natural frequency ωn = 8p, where
p =

√
g/Rm is the frequency parameter of the rocking oscillator with Rm being the diagonal

distance of the lumped mass from the pivot point (Fig. 1(b)). The damping ratio ζ is taken
equal to 5% for the fixed-base oscillator of Fig. 1(a). For the rocking oscillator of Fig. 1(b),
this study follows [27, 28] and assumes a constant damping ratio of 5% during rocking and a
reduced damping ratio value during full contact (see [27] for further details).

To conduct the structural analysis, appropriate engineering demand parameters (EDPs) need
first to be defined. The two EDPs are: (i) the absolute peak flexural deformation |umax| normal-
ized with respect to the height h, and (ii) the absolute peak rocking rotation |φmax| normalized
with respect to the slenderness α.

EDP1 =
|umax|
h

EDP2 =
|φmax|
α

(7)
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Figure 4: Seismic response analysis of (a) the fixed-base bridge bent of Fig. 1(a), and (b) the rocking bridge bent
of Fig. 1(b)

Each of the structural systems of Fig. 1 is subjected to a series of strong ground motions
adopted from the Pacific Earthquake Engineering Research (PEER) Center database [35]. The
database covers a wide range of both pulse-type and nonpulse-type ground motions with mag-
nitudes 6 ≤ Mw ≤ 8 and distance from the fault Rrup ≤ 50 km. To induce higher levels of
demand, a scale factor of 1, 1.25 and 1.5 is, respectively, assigned to the accelerograms of
the adopted database. Therefore, 960 response-history analyses are conducted for each of the
examined structural systems of Fig. 1.

Fig. 4 illustrates the seismic response of both structural systems of Fig. 1. As a first approach,
Fig. 4 reveals that uplift considerably reduces the structural deformation |umax|/h and therefore
damage at the column. However, it makes the structure prone to excessive rocking rotations
|φmax|/α, and thus, overturning. Therefore, Fig. 4 reveals the importance of a proper design for
a rocking bridge bent to avoid overturning (or collapse) and at the same time minimize structural
damage at the column.

3.3 Damage Analysis

The seismic response of a structure is related to the damage occurred at the structure through
appropriate damage measures. When excessive damage occurs, the structure collapses (or over-
turns for the case of a rocking structure) and subsequently it needs to be reconstructed. This
work assumes that damage is occurred only at the column of the structure due to seismic forces.
To quantify the seismic damage on the fixed-base structure of Fig. 1(a), this section adopts
the damage limit states (or limit values of column damage) proposed by [37, 36], according to
which damage is categorized into four levels/states, i.e. slight, moderate, extensive and com-
plete. Table 1 presents the damage limits states of the fixed-base structure of Fig. 1(a).

On the other hand, the seismic response of the rocking structural system can be adequately
described by three damage limit states. This work adopts the damage limits states proposed in
[25], which proposed damage limit states for rocking bridge bents based on equivalence of their
flexural deformation (|umax| /h) with the pertinent deformation of their fixed-base counterparts.
Table 2 presents these damage limits states. In Table 2, ucr is the critical deformation of the
column when rocking initiates (i.e. when the condition of Eq. (5) is met), and φcr is the critical

6



Anastasios I. Giouvanidis and You Dong

0 1 2 3
0

0.5

1
fixed-base

0 1 2 3
0

0.5

1
rocking(a) (b)

Figure 5: Fragility curves of (a) the fixed-base bridge bent of Fig. 1(a), and (b) the rocking bridge bent of Fig. 1(b)
with respect to the adopted intensity measure

rotation for which the structure becomes dynamically unstable [27].
Based on Tables 1, 2, this section employs the the maximum likelihood estimation approach

[38] to estimate the probability of the examined structural systems to exceed the certain damage
limit states. Fig. 5 plots the fragility curves of the structures of Fig. 1. Note from Fig. 5
and Fig. 4 that, uplift mitigates both structural deformations and the structure’s probability to
excessive rocking rotations and thus overturning.

3.4 Loss Analysis

The structural damage of the examined structures of Fig. 1 accumulated in the aftermath of
a seismic event is connected with the seismic losses through decision variables such as: (i) the
seismic (repair) losses, (ii) downtime, i.e. the time that is required for the bridge to restore its
functionality, and (iii) resilience, i.e. the ability of the bridge to sustain a level of functionality

Damage
limit
state

Capacity limit
[36]

Damage description [37]

LS1 |umax|
h

= 0.005 Slight concrete cracking and spalling at the column. Onset of
yielding of the reinforcing bars. Column in operational condi-
tion (damage requires no more than cosmetic repair)

LS2 |umax|
h

= 0.010 Moderate concrete cracking and spalling at the column. Dam-
age to the exposed reinforcing bars. Minimal residual dis-
placements. Column is still operational (column is structurally
sound, damage is repairable)

LS3 |umax|
h

= 0.020 Extensive flexural damage at the column in the form of buckling
and/or fracture of the longitudinal reinforcing bars, transverse
steel loss, etc. Considerable residual displacements. Column is
not operational (column is structurally unsafe, damage is con-
siderable and repairs are immediate)

LS4 |umax|
h

= 0.025 Complete damage and collapse of the column (column and the
whole bridge need to be reconstructed)

Table 1: Damage limit states of the fixed-base bridge bent of Fig. 1(a).
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Damage
limit
state

Capacity limit [25] Response
mode

Damage description [37]

LS1 |umax|
h

= ucr
h

Rocking ini-
tiation

Slight concrete cracking and spalling at the
column. Onset of yielding of the reinforcing
bars. Column in operational condition (dam-
age requires no more than cosmetic repair)

LS2 |φmax|
α

= 0.35 Safe rocking Moderate concrete cracking and spalling at
the column. Damage to the exposed reinforc-
ing bars. Minimal residual displacements.
Column is still operational. Damage at the
pivot points and the abutments due to rocking
motion (column is structurally sound, dam-
age is repairable)

LS3 |φmax|
α

= 1.5
(
φcr
α

)
Rocking
overturning

Moderate concrete cracking and spalling at
the column. Damage to the exposed reinforc-
ing bars. Minimal residual displacements.
Column is still operational. Damage at the
pivot points and the abutments due to rocking
motion (column is structurally sound, dam-
age is repairable, the column-base system can
be reused after the applied repair methods,
the whole bridge needs to be reconstructed)

Table 2: Damage limit states of the rocking bridge bent of Fig. 1(b) [25].

for over a period of time.
Seismic losses are defined as the sum of the seismic consequences weighted with their prob-

ability of occurrence. Therefore, the expected seismic losses under a given IM can be expressed
as [39, 40]:

E (l) =
n∑
i=1

Ci · PLSi|IM (8)

where Ci represents the seismic consequences, e.g. the repair cost associated with the given
damage limit state i, and PLSi|IM is the conditional probability of the structure to be at the
given damage limit state (see Fig. 5). The seismic consequences associated with the given
damage limit states are assumed proportional to the reconstruction cost of the bridge [41, 39]:

Ci = RCRi · crec ·W · L (9)

where W and L are the bridge width and length, respectively. crec is the reconstruction
cost, which for the fixed-base structure of Fig. 1(a) is translated into 2,306 $/m2 in present
monetary values [42]. RCRi is the repair cost ratio that corresponds to each damage limit
state. The repair cost ratios are expressed as a percentage of the reconstruction cost of the
bridge, and differ from damage limit state to damage limit state — the more severe the damage,
the larger the repair cost ratio. Tables 3, 4 present the pertinent repair cost ratio values for each
damage limit state of the examined structures of Fig. 1.
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Damage
limit
state

Repair cost
ratio [37]

Repair methods description [43, 44]
Downtime
(days) [37]
Mean Standard

deviation
LS1 0.03 Repair slight concrete cracking/spalling at the

column (epoxy injection, patch with concrete,
etc.)

0.6 0.6

LS2 0.08 Repair moderate concrete cracking/spalling at the
column, repair damaged reiforcing bars (patch
with concrete, reinforce and recast, etc.)

2.5 2.7

LS3 0.25 Repair extensive concrete cracking/spalling at the
column, replace/repair longitudinal/transverse re-
inforcing bars (reinforce and recast, potential re-
placement of the column)

75 42

LS4 1 Demolition and reconstruction of the column and
the whole bridge

230 110

Table 3: Repair cost ratio and downtime values for each damage limit state of the fixed-base bridge bent of Fig. 1(a).

This study considers nine different seismic hazard scenarios with TR = 40, 72, 125, 225,
475, 975, 1,485, 2,475 and 4,975-year return period, which translate into a probability of 71%,
50%, 33%, 20%, 10%, 5%, 3%, 2% and 1%, respectively, that at least one such event will occur
in the next 50 years in the area of focus. The hazard curve of Fig. 3 provides the intensities in
terms of PGV values that correspond to the adopted seismic hazard scenarios, i.e. 0.37, 0.51,
0.65, 0.83, 1.08, 1.36, 1.53, 1.76 and 2.11 m/s, respectively. Fig. 6 presents a comparison
of the examined structural systems in terms of their expected seismic losses accumulated after
the considered seismic hazard scenarios. As a first approach, Fig. 6 shows that for all of the
examined seismic hazard scenarios, the rocking bridge bent of Fig. 1(b) provides a significant
post-earthquake financial benefit compared to its fixed-base counterpart. In particular, even
after a severe seismic event (i.e. with TR = 4,975-year return period), the rocking bridge bent
yields seismic losses which correspond to around 50% of the construction cost of the structure
— a considerable post-earthquake financial benefit.

fixed-base

rocking

Figure 6: Expected (seismic) losses of the examined bridge bents of Fig. 1 in the aftermath of various seismic
hazard scenarios
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Damage
limit
state

Repair cost
ratio [37]

Repair methods description

Downtime (days)
[37, 45]
Mean Standard

deviation
LS1 0.03 Repair slight concrete cracking/spalling at the

column (epoxy injection, patch with concrete,
etc.)

0.6 0.6

LS2 0.08 Repair moderate concrete cracking/spalling at the
column, repair damaged reiforcing bars (patch
with concrete, reinforce and recast, etc.). Repair
damage at the pivot points and the abutments

2.5 2.7

LS3 1 Repair moderate concrete cracking/spalling at the
column, repair damaged reiforcing bars (patch
with concrete, reinforce and recast, etc.). Re-
pair damage at the pivot points and the abut-
ments. Reuse the column-base system after the
applied repair methods. Reconstruction of the
whole bridge

46 22

Table 4: Repair cost ratio and downtime values for each damage limit state of the rocking bridge bent of Fig. 1
[25].

3.5 Resilience Quantification

Resilience, as a performance indicator, quantifies the recovery (or restoration) functions of a
structural system following a seismic event. These recovery functions depend on the associated
damage limit states. For instance, a bridge completely damaged needs more time to restore its
functionality compared to a slightly damaged bridge. The resilience of the structural systems of
Fig. 1 can be quantified under the investigated time-interval (e.g. ∆t = 365 days) as [46]:

R =
1

∆t

t0+∆t∫
t0

Q (t) dt (10)

where t0 indicates the time-instant the seismic event occurs, and Q (t) is time-variant func-
tionality which herein is expressed as [47]:

Q (t) =
n∑
i=1

FRi (t) · PLSi|IM (11)

where PLSi|IM is the conditional probability of the structure to be at the given damage limit
state, and FRi (t) denotes the functionality restoration process of the structure for each damage
limit state. This study models the functionality restoration process of the examined rocking
structure as a normal cumulative distribution function corresponding to each damage limit state
i [37]:

FRi (t) =
1

2

[
1 + erf

(
t− µdi√

2σdi

)]
(12)

where µdi and σdi represent the mean and standard deviation of the time during which the
bridge is under restoration (i.e. downtime). Table 3 presents values mean and standard deviation
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fixed-base

rocking

Figure 7: Resilience of the examined bridge bents of Fig. 1 in the aftermath of various seismic hazard scenarios
under the investigated time-interval of ∆t = 365 days

values of downtime (in days) for the fixed-base bridge bent of Fig. 1(a) proposed by HAZUS
[37]. To estimate the corresponding downtime values for a rocking bridge, Mantawy et al.
[45] experimentally compared the seismic performance of a rocking versus a conventionally
designed (fixed-base) bridge. That study revealed that the construction time of the rocking
bridge is, on average, 5 times lower than the construction time of the fixed-base bridge. In other
words, when the fixed-base and the rocking bridge bent of Fig. 1 need to be reconstructed (i.e.
when LS4 in Table 3 and LS3 in Table 4 are exceeded), the downtime of the rocking structure
is considered as 1/5 of the downtime of the fixed-base structure. Table 4 presents the pertinent
mean and standard deviation values of downtime for the rocking bridge bent of Fig. 1(b) [25].

Fig. 7 plots the resilience of each structural system and illustrates the dominance of the
rocking structure over the conventionally designed (fixed-base) structure after all the examined
seismic hazard scenarios. Note that the resilience of the rocking structure starts deteriorating
only when a maximum considered earthquake occurs (i.e. with TR = 2,475-year return period).
On the contrary, the resilience of the fixed-base structure is impaired even when a low intensity
earthquake occurs (i.e. with TR = 72-year return period).

In sum, Figs 6, 7 reveal the remarkable financial benefits (i.e. decreased seismic losses and
increased seismic resilience) that rocking design offers compared to the conventional fixed-base
design, illustrating its potential as a seismic-avoidance design paradigm for bridges.

4 CONCLUSIONS

This work evaluates the seismic performance of structural systems, which are particularly
attractive for bridge design. It focuses on single-column bridge bents either monolithically con-
nected with the ground (i.e. fixed-base) or able to uplift and exhibit planar rocking motion dur-
ing an earthquake. It extends the well-established performance-based earthquake engineering
framework to compare the examined structural systems in terms of their accumulated seismic
losses and resilience in the aftermath of severe seismic hazard scenarios.

The analysis reveals the considerably mitigated (seismic) losses of the examined rocking
structure compared to the pertinent losses of the fixed-base structure, illustrating its potential
as an economically feasible design solution. Further, results show that even under an extreme
seismic hazard event, i.e. with 1% probability of occurrence in the next 50 years (i.e. TR =
4,975-year return period), the rocking bridge bent yields financial losses equivalent to 50% of
the construction cost of the bridge — a considerable post-earthquake financial benefit. Fur-
ther, this paper also unveils the remarkable post-earthquake resilience of the examined rocking
structure after various seismic hazard scenarios. Importantly, the rocking bridge bent sustains
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its resilience at the highest level till a maximum considered earthquake occurs (i.e. with TR =
2,475-year return period and 2% probability of occurrence in the next 50 years). On the
contrary, the resilience of the fixed-base bridge bent is deteriorated even when a low intensity
earthquake occurs (i.e. with TR = 72-year return period and 50% probability of occurrence
in the next 50 years). The above findings redirect our attention to the main post-earthquake
benefits of rocking design when used as a seismic isolation technique for bridges and pave the
way for a more rational and holistic seismic assessment framework of single-column rocking
bridges.
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