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Abstract 

Static pricing is currently the most prevalent form of congestion pricing. Most existing methods for 
static pricing design use equilibrium-based indices as the optimization objective function. However, 
in reality, the equilibrium may not be reached within the toll planning horizon, and thus equilibrium-
based pricing schemes might be ineffective in alleviating traffic congestion. To address this issue, this 
paper proposes a new method for the optimal static congestion pricing design. Specifically, we propose 
a new measure called cumulative network performance (CNP) as the optimization objective function. 
The CNP measure explicitly considers the fluctuation in network performance over the toll planning 
horizon, instead of only focusing on the performance at the equilibrium state. To capture the effect of 
static congestion pricing on CNP, we introduce a day-to-day dynamic model with the Weibit-based 
route flow adjustment, which can overcome the drawbacks of the user equilibrium or Logit-based 
route-choice criterion that are used in most current day-to-day dynamic models. Numerical 
experiments are conducted to show the effectiveness and advantages of the toll scheme resulting from 
the proposed method.  
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1. Introduction 

1.1 Literature review  
Road congestion pricing has been long regarded as an efficient instrument to relieve traffic congestion. 
The concept of road congestion pricing can be traced back to Pigou (1920) and later researchers such 
as Walters (1961), Beckmann (1965), and Vickrey (1969). Since the successful implementation of 
congestion pricing in Singapore in 1975, many countries and cities, such as Norway, London, 
Stockholm, and Milan, have established and implemented their own road-congestion pricing policies. 
 
Previous approaches to road congestion pricing can be broadly classified in terms of the degree of time 
differentiation into two categories: static pricing and dynamic pricing (de Palma and Lindsey, 2011). 
In static congestion pricing, the toll scheme is usually predetermined and fixed over a certain long time 
period (also known as the toll planning horizon), such as 3 months in Singapore, after which the toll 
pattern can be adjusted. Note that time-of-day pricing, in which the toll varies by the time of day or 
day of the week, is also a form of static pricing, as it follows a predetermined toll schedule. In contrast, 
in the dynamic pricing, the tolls are changed based on a short time period (such as on a daily basis) 
according to the network conditions of the previous time period. Generally, two traffic assignment 
models are widely adopted in congestion pricing studies: static models and day-to-day dynamic 
models. According to the toll type (i.e., static or dynamic pricing) and model type (static or day-to-day 
dynamic models), we provide a summary of the existing studies of congestion pricing focusing on 
three categories of research: static pricing with static traffic model, dynamic pricing with day-to-day 
traffic model, and static pricing with day-to-day traffic model, as shown in Table 1. The assumptions 
of and remarks on pricing type, model type, as well as pricing and model type are summarized in Table 
2. 

 
Table 1 Summary of representative studies on congestion pricing by model type and pricing type 

Research 
category 

Pricing type Traffic model type References 

1 Static pricing Static traffic model 

Beckmann et al. (1956); Marchand (1968); 
Dafermos (1973); Smith (1979); Yang and 
Huang (1998, 2004, 2005); Yang (1999); 
Maher et al. (2005); Meng et al. (2012); Di et 
al. (2016) 

2 
Dynamic 
pricing 

Day-to-day dynamic traffic 
model 

Sandholm (2002); Friesz et al. (2004); Yang 
and Szeto (2006); Yang et al. (2007); Guo et 
al. (2013, 2016); Tan et al. (2015); Wang et al. 
(2015); Rambha and Boyles (2016); Han et al. 
(2017, 2021); Gehlot et al. (2020) 

3 Static pricing 
Day-to-day dynamic traffic 
model 

Liu et al. (2017); Ma et al. (2021);  
This paper 
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Table 2 Assumptions of and remarks on pricing type, model type, as well as pricing and model type 

Type Assumptions/ Rationale Remarks 

Pricing 
type 

Static pricing 
The toll structure is fixed and 
predetermined within a toll 
planning horizon 

Easier to implement for managers, and 
more understandable and acceptable for 
road users 

Dynamic pricing 
The toll structure is adjusted 
frequently, such as on a daily 
basis 

Difficult to implement for managers and 
confusing for road users, despite being 
flexible 

Model 
type 

Static traffic model 
Concern the final equilibrium 
state only 

Can only obtain the network 
performance at the final equilibrium 
state 

Day-to-day dynamic 
model 

Concern the day-to-day 
evolution of the network state 

Can obtain day-to-day network 
performance fluctuation 

Pricing 
and 
model 
type 

Static pricing with 
static traffic model 

The final equilibrium state 
can be reached 

Easy to implement and straightforward, 
but might be ineffective since it assumes 
the final equilibrium state can be 
reached, which may not be true in reality 

Dynamic pricing 
with day-to-day 
dynamic model 

The final equilibrium state 
can be reached 

More effective and flexible, but might be 
difficult to implement for managers and 
confusing for road users 

Static pricing with 
day-to-day dynamic 
model 

The final equilibrium state 
need not necessarily be 
reached 

Easy to implement and straightforward, 
and is also relatively effective 

 
The well-known method of first-best marginal pricing is a type of static pricing, which states that road 
users should pay the difference between the marginal social cost and the marginal private cost. With 
the marginal pricing, a transportation system can be driven to the system optimal (SO) with the 
minimum total travel time (TTT) (Beckmann et al., 1956) or the stochastic system optimal (SSO) with 
the minimum expected total travel time (ETTT) (Yang, 1999; Maher et al., 2005) at the equilibrium 
state. Static equilibrium models, including static User Equilibrium (UE) and Stochastic User 
Equilibrium (SUE) models, have been used. The marginal pricing has also been extended to consider 
multiclass, multicriteria, link flow interaction, and demand elasticity in transportation networks 
(Dafermos, 1973; Smith, 1979; Yang and Huang, 1998, 2004). In addition, some static second-best 
pricing approaches under physical and economic constraints have also been investigated, such as the 
cordon-based and distance-based pricing (e.g., Marchand, 1968; Yang and Huang, 2005; Meng et al., 
2012; Di et al., 2016).  
 
The abovementioned static pricing methods usually optimize an objective function based on the 
equilibrium state. This process is straightforward, but suffers from the following two drawbacks. First, 
it implicitly assumes that an equilibrium state can be reached, regardless of how long it may take. 
However, in reality, any new toll pattern will affect travelers’ route choice decisions. Thus, network 
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flows may take a long time to approach equilibrium, and this may be far longer than the toll planning 
horizon. For example, Cho and Hwang (2005) tested a small network and found that it took nearly 200 
days to reach equilibrium. Clearly, the time period needed to reach equilibrium in the network of a 
large city would be much longer. Second, only the network performance at the final equilibrium state 
is optimized. However, after the implementation of a (new) toll scheme, network performance 
fluctuates for a long time before approaching equilibrium, due to adjustments in travelers’ day-to-day 
route choices. Therefore, in designing static toll schemes, it is necessary to consider day-to-day flow 
dynamics, rather than only consider the final equilibrium states.   
 
On the other hand, day-to-day dynamic pricing has recently attracted extensive attention in the 
literature (Sandholm, 2002; Friesz et al., 2004; Yang and Szeto, 2006; Yang et al., 2007; Guo et al., 
2013, 2016; Tan et al., 2015; Wang et al., 2015; Rambha and Boyles, 2016; Han et al., 2017, 2021; 
Gehlot et al., 2020). They can overcome some drawbacks of static pricing using day-to-day dynamic 
models. However, daily varied pricing is difficult to implement from a manager’s perspective and is 
also confusing from a traveler’s perspective, despite the ubiquity of advanced communications 
technology. Thus, there has been little use of day-to-day dynamic pricing. Moreover, there are 
problems with the methods used in some current studies of day-to-day dynamic pricing. First, most of 
these studies assume that the toll scheme resulting from their methods can drive the given initial 
network state to a target equilibrium state or a steady state, regardless of the time required to achieve 
this. Second, most of these studies use either the user equilibrium (UE) or the Logit route choice 
criterion in their day-to-day dynamic models. It is well known that the UE model has the unrealistic 
perfect information assumption, while the Logit model cannot account for route overlapping and 
heterogeneous trip variance due to the independently and identically distributed (IID) perception error 
assumption. 
 
Very few of the current studies on static pricing design consider day-to-day dynamics. In a recent 
example, Liu et al. (2017) proposed a robust optimization approach for static distance-based pricing 
design considering day-to-day dynamics. Although the approach considers day-to-day network flow 
fluctuations, the robust optimization only considers the objective function in the worst case (day). In 
other words, the network performances on the other days are not explicitly considered in the objective 
function. In addition, travelers’ route adjustments are assumed to follow the Logit model, which suffers 
from the IID assumption. In another example, Ma et al. (2021) introduced a new day-to-day dynamic 
model that uses a bi-objective UE for pricing design. This method calculates an optimal toll pattern 
for each sub-time period to minimize the total system travel time within the entire investigated time 
period. This method also assumes that the equilibrium state can be reached, which would require 
thousands of days as illustrated in their example. 
 
1.2 Motivations 
The following observations and summaries can be made from the above literature review. Regarding 
the model type, static traffic model cannot account for network performance fluctuation while day-to-
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day dynamic model can capture day-to-day network performance fluctuation induced by travelers’ 
route choice adjustment on each day. Regarding the toll type, dynamic pricing is more difficult to 
implement for traffic managers and more confusing for road users compared to static pricing, although 
it seems more flexible. Thus, static pricing scheme considering day-to-day dynamics is a more ideal 
practice, but receives little attention in the literature. Of the only two studies (Liu et al., 2017; Ma et 
al., 2021) on static pricing scheme considering day-to-day dynamics, they both have their respective 
limitations mentioned above. Thus, in this study we attempt to fill the gap in the literature by proposing 
a new method for static pricing design considering day-to-day dynamics. 
 
1.3 Objectives and contributions 
Motivated by the above observations, we propose a new method for static pricing that explicitly 
accounts for network performance fluctuation over the toll planning horizon. Specifically, instead of 
focusing only on the performance at the equilibrium state as most static pricing methods do, we 
propose a new measure called cumulative network performance (CNP) as the optimization objective 
function. Besides, we introduce a day-to-day dynamic model with the Weibit-based route flow 
adjustment to calculate the CNP measure. The Weibit-based route choice criterion in the proposed 
day-to-day dynamic model can overcome the drawbacks of the widely-used UE or Logit-based route 
choice criterion that are used in most existing day-to-day dynamic models. We show the difference 
between the route flow evolution curves under the Weibit flow adjustment process and the Logit flow 
adjustment process, and how such a difference further influences the toll scheme design. Numerical 
examples are provided to show the effectiveness of the pricing scheme developed from the proposed 
method and to demonstrate its advantages over some existing static pricing schemes. 
 
The remainder of this paper is organized as follows. Section 2 presents the methodology, including the 
proposed day-to-day dynamic model with the Weibit-based route choice adjustment, the new network 
performance measure, and the bi-level programming model for deriving the optimal toll schemes as 
well as its solution algorithm. Section 3 uses numerical examples to show the advantages of the toll 
schemes derived from the proposed method over the marginal pricing scheme and the robust pricing 
scheme. Finally, conclusions and future research directions are summarized in Section 4. 
 

2. Methodology 

In this section, we first introduce the proposed day-to-day dynamic model. Then, we propose a new 
network performance measure as the optimization objective function. Finally, a bi-level model to 
derive the optimal static pricing scheme is established, together with its solution algorithm. The main 
notation used in this paper is summarized in Table 3.  
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Table 3 Notation and explanations 
Notation Explanation 

W The set of origin-destination (O-D) pairs 

𝑅𝑅𝑤𝑤  The set of paths between an O-D pair 𝑤𝑤 ∈ 𝑊𝑊 

Υ𝑟𝑟 The set of links comprising path r 

A The set of links 

D The toll planning horizon, i.e., the toll pattern is changed every D days 

d The dth day after the toll implementation, 𝑑𝑑 = 1,2, … ,𝐷𝐷 

𝑓𝑓𝑤𝑤,𝑟𝑟  The traffic flow on path 𝑟𝑟 ∈ 𝑅𝑅𝑤𝑤 between O-D pair 𝑤𝑤 ∈ 𝑊𝑊 

f The column vector of all of the path flows, 𝐟𝐟 =  (𝑓𝑓𝑤𝑤,𝑟𝑟 , 𝑟𝑟 ∈ 𝑅𝑅𝑤𝑤,𝑤𝑤 ∈ W)𝑇𝑇 

m The column vector of all of the target flows, 𝐦𝐦 = (𝑚𝑚𝑤𝑤,𝑟𝑟 , 𝑟𝑟 ∈ 𝑅𝑅𝑤𝑤,𝑤𝑤 ∈ W)𝑇𝑇 

𝛼𝛼𝑑𝑑 The flow adjustment ratio, which is assumed to be constant throughout D days 

𝑔𝑔𝑤𝑤,𝑟𝑟 The route travel cost of route r that connects O-D pair w 

𝜏𝜏𝑎𝑎 The link travel cost of link a  

𝐻𝐻𝑤𝑤,𝑟𝑟 The predicted path travel cost of route r that connects O-D pair w 

ℎ𝑤𝑤,𝑟𝑟 The mean of the predicted path travel cost of route r that connects O-D pair w 

𝛾𝛾 The weighting parameter of the actual path cost on the previous day 

𝑞𝑞𝑤𝑤  The travel demand between 𝑤𝑤 ∈ W 

q The column vector for all of the travel demands, 𝐪𝐪 = (𝑞𝑞𝑤𝑤,𝑤𝑤 ∈ 𝑊𝑊)𝑇𝑇 

𝑣𝑣𝑎𝑎 The flow on link 𝑎𝑎 ∈ 𝐴𝐴 

v The column vector of all of the link flows, 𝐯𝐯 = (𝑣𝑣𝑎𝑎, 𝑎𝑎 ∈ 𝐴𝐴)𝑇𝑇 

𝜏𝜏𝑎𝑎 The link travel cost of link a 

𝑡𝑡𝑎𝑎 The travel time function of link 𝑎𝑎 ∈ 𝐴𝐴 

t The column vector of the link travel time functions, 𝐭𝐭 = (𝑡𝑡𝑎𝑎,𝑎𝑎 ∈ 𝐴𝐴)𝑇𝑇 

𝛿𝛿𝑟𝑟𝑟𝑟𝑤𝑤  𝛿𝛿𝑟𝑟𝑟𝑟𝑤𝑤 = 1 if path 𝑟𝑟 ∈ 𝑅𝑅𝑤𝑤 contains link a, and 𝛿𝛿𝑟𝑟𝑟𝑟𝑤𝑤 = 0 otherwise 

y The column vector of the link toll pattern, 𝐲𝐲 = (𝑦𝑦𝑎𝑎,𝑎𝑎 ∈ 𝐴𝐴)𝑇𝑇 

𝛽𝛽𝑤𝑤 The shape parameter of O-D pair w in the Weibit model 

𝜔𝜔 The value of time 

 
2.1 A discrete day-to-day dynamic model incorporating a Weibit-based flow adjustment process 
As mentioned in the Introduction, it is necessary to consider the fluctuation of day-to-day network 
performance in static pricing design. Thus, an appropriate day-to-day dynamic model is needed to 
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capture day-to-day traffic dynamics. As we focus here on a day-to-day dynamic model that 
incorporates a Weibit-based flow adjustment process, we first introduce some basics of the Weibit 
model. 
 
2.1.1 Review of some basics of the Weibit model 

The Weibit-based route choice probability expression is given by: 

𝑝𝑝𝑤𝑤,𝑟𝑟 =
�𝑔𝑔𝑤𝑤,𝑟𝑟�

−𝛽𝛽𝑤𝑤

∑ �𝑔𝑔𝑤𝑤,𝑙𝑙�
−𝛽𝛽𝑤𝑤

𝑙𝑙∈𝑅𝑅𝑤𝑤
,  ∀𝑟𝑟 ∈ 𝑅𝑅𝑤𝑤,   𝑤𝑤 ∈ 𝑊𝑊 (1) 

where 𝑝𝑝𝑤𝑤,𝑟𝑟 is the probability of choosing route r connecting O-D pair w; 𝑔𝑔𝑤𝑤,𝑟𝑟 is the travel cost of 
route r that connects O-D pair w; and 𝛽𝛽𝑤𝑤  is the shape parameter in the Weibull random error 
distribution of O-D pair w, which can be calibrated following Kurauchi and Ido (2017). 
 
The Weibit model can capture travelers’ non-identical perception errors toward travel costs. Unlike 
the Logit model which requires IID distributed Gumbel variates, the Weibit model uses the Weibull 
variates, without the need of the identically distributed assumption (Castillo et al., 2008; 
Kitthamkesorn and Chen, 2013, 2014). As a result, the perception variance in the Weibit model is 
route-specific, whereas the perception variance in the Logit model is identical for all routes. More 

specifically, in the Logit model the trip variance is calculated by �𝜎𝜎𝑤𝑤,𝑟𝑟�
2

= 𝜋𝜋2 (6𝜑𝜑2)⁄ , where 𝜑𝜑 is 
the dispersion parameter in the Gumbel distribution. However, in the Weibit model, the perception 
variance of a route depends on its travel cost, i.e., 

�𝜎𝜎𝑤𝑤,𝑟𝑟�
2

= � 𝑔𝑔𝑤𝑤,𝑟𝑟

𝛤𝛤�1+ 1
𝛽𝛽𝑤𝑤�

�
2

�𝛤𝛤 �1 + 2
𝛽𝛽𝑤𝑤
� − 𝛤𝛤2 �1 + 1

𝛽𝛽𝑤𝑤
��,  ∀𝑟𝑟 ∈ 𝑅𝑅𝑤𝑤,   𝑤𝑤 ∈ 𝑊𝑊 (2) 

where �𝜎𝜎𝑤𝑤,𝑟𝑟�
2
 is the perception variance of route r connecting O-D pair w; and 𝛤𝛤(⋅) is the gamma 

function, i.e., 𝛤𝛤(𝑥𝑥) = ∫ 𝑡𝑡𝑥𝑥−1𝑒𝑒−𝑡𝑡+∞
0 𝑑𝑑𝑑𝑑. From Eq. (2), it can be seen that routes with different costs 

have different perception variances, despite the shape parameter 𝛽𝛽𝑤𝑤 is an O-D specific parameter. 
This heterogeneous perception variance in the Weibit model is more reasonable than the fixed and 
identical variance of all routes in the Logit model, because travelers on longer routes have larger 
perception variances than those on shorter routes in reality (Sheffi, 1985). Some recent empirical 
studies have verified the above advantage of the Weibit model over the Logit model in various travel 
choice problems (Kurauchi and Ido, 2017; Li et al., 2020; Tinessa et al., 2020).  
 
The following example is used to illustrate the advantage of the Weibit model over the Logit model in 
route choice problems. Note that similar examples have also been provided in some previous studies 
(e.g., Kitthamkesorn and Chen, 2013, 2014; Xu et al., 2015). Consider the two-route networks shown 
in Fig. 1. In both networks, the route cost of the upper route is 10 units larger than that of the lower 
route. Nevertheless, the route cost of the upper route is two times larger than the route cost of the lower 
route in the short network, while the route cost of the upper route is less than 10% larger than the route 
cost of the lower route in the long network. As expected, the Logit model produces the same route 
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choice probability for both the short and long networks, due to its identically distributed perception 
error assumption. In contrast, the Weibit model produces a smaller route choice probability for the 
lower route in the long network than in the short network, which is more consistent with the fact that 
travelers would have larger perception errors in the long network. The probability density functions 
(PDF) of the perceived travel cost of the four routes in the two networks are plotted in Fig. 2. It can be 
seen that the distributions of the four routes with different travel costs share the same variance in the 
Logit model. In contrast, the Weibit model leads to different variances for each of the four routes. 
Thus, the optimal pricing scheme to be investigated adopting the Weibit model as the route choice 
criterion is more plausible than those in the majority of current pricing studies using the UE or Logit 
model as the route choice criterion. 

  
(a) Short network (b) Long network 

Fig. 1 Logit and Weibit route choice probabilities in the two-route networks 

 

  
Fig. 2 Perceived travel cost distributions in the Logit and Weibit models 

 
2.1.2 The day-to-day dynamic model with a Weibit-based flow adjustment process 

In the literature, day-to-day dynamic models have received extensive attention. They can be classified 
according to various dimensions, including deterministic models versus stochastic models, discrete-
time models versus continuous-time models, and link-based models versus path-based models. For 
more comprehensive reviews of day-to-day dynamic models, interested readers may refer to Cantarella 
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and Watling (2016), Lou et al. (2017), Zhou et al. (2017), Mahmoodjanlou et al. (2019), Wang et al. 
(2021), and Xu et al. (2021). 
 
Various continuous day-to-day dynamic models have been used to investigate day-to-day dynamic 
pricing (Friesz et al., 2004; Tan et al., 2015; Guo et al., 2016). These continuous day-to-day dynamic 
models are formulated as ordinary differential equations, and possess good mathematical properties. 
However, real-life travelers’ route choices are repeated daily, and it is thus more appropriate to use 
discrete day-to-day dynamic models to characterize travelers’ behavior (Watling and Hazelton, 2003; 
Rambha and Boyles, 2016; Xiao et al., 2019; Ye et al., 2021). Therefore, we use a discrete day-to-day 
dynamic model.  
 
The generic flow adjustment process of a discrete day-to-day dynamic model is: 

𝐟𝐟𝑑𝑑+1 = (1 − 𝛼𝛼𝑑𝑑)𝐟𝐟𝑑𝑑 + 𝛼𝛼𝑑𝑑 ⋅ 𝐦𝐦𝑑𝑑     (3) 
where f is the vector form of route flows, i.e., f = {𝑓𝑓𝑤𝑤,𝑟𝑟 , 𝑟𝑟 ∈ 𝑅𝑅𝑤𝑤,𝑤𝑤 ∈ 𝑊𝑊}, and 𝑓𝑓𝑤𝑤,𝑟𝑟 is the traffic flow 
on route r connecting O-D pair w; 𝐟𝐟𝑑𝑑+1 and 𝐟𝐟𝑑𝑑 are the route flow patterns of day d + 1 and day d; 
𝒎𝒎𝑑𝑑 is the target route flow pattern on day d + 1 after travelers finish their travels on day d; and 𝛼𝛼𝑑𝑑 
is the route flow adjustment ratio on day d, denoting the percentage of road users that change routes 
on each day. The parameter 𝛼𝛼𝑑𝑑 ranges from 0 to 1, reflecting travelers’ inertia behavior, and can be 
calibrated following Ye et al. (2018) and Cheng et al. (2019). On any day d, the definitional constraint 
between path flow and link flow is given by: 

𝑣𝑣𝑎𝑎𝑑𝑑 = ∑
𝑤𝑤∈𝑊𝑊

∑
𝑟𝑟∈𝑅𝑅𝑤𝑤

𝑓𝑓𝑤𝑤,𝑟𝑟
𝑑𝑑 𝛿𝛿𝑟𝑟𝑟𝑟𝑤𝑤 , ∀𝑎𝑎 ∈ 𝐴𝐴 (4) 

where 𝑣𝑣𝑎𝑎𝑑𝑑 is the flow of link a on day d; and 𝛿𝛿𝑟𝑟𝑟𝑟𝑤𝑤  is the link-path incidence indicator: 𝛿𝛿𝑟𝑟𝑟𝑟𝑤𝑤 = 1 if 
link a is on route r between O-D pair w, and 𝛿𝛿𝑟𝑟𝑟𝑟𝑤𝑤 = 0 otherwise.  
 
Eq. (3) is a general framework of discrete day-to-day dynamic models. The differences among various 
discrete day-to-day dynamic models lie in their strategies of determining the target flow pattern and 
the adjustment ratio. The adjustment ratio is a positive constant that reflects travelers’ inertia or 
reluctance to change. We use a fixed constant for the adjustment ratio, as has been done in many studies 
of discrete day-to-day dynamic models (e.g., Bifulco et al., 2016; Cantarella and Watling, 2016; Liu 
et al., 2017; Cheng et al., 2019). Next, we introduce the target flow pattern determination strategy that 
follows the Weibit-based route choice criterion.  
 
The Weibit model has a multiplicative route cost structure, i.e., the travel cost of a route is the product 
of the cost of the links that comprise the route (Kitthamkesorn and Chen, 2013, 2014):  

𝑔𝑔𝑤𝑤,𝑟𝑟 = �𝜏𝜏𝑎𝑎
𝑎𝑎∈Υ𝑟𝑟

    ∀𝑟𝑟 ∈ 𝑅𝑅𝑤𝑤,𝑤𝑤 ∈ 𝑊𝑊 (5) 

where Υ𝑟𝑟 is the set of links on path r; and 𝜏𝜏𝑎𝑎 is the link travel cost, which is often specified as an 
exponential function of the link travel time 𝑡𝑡𝑎𝑎, e.g., 𝜏𝜏𝑎𝑎 = 𝑒𝑒0.075𝑡𝑡𝑎𝑎 (Kitthamkesorn and Chen, 2013, 
2014). The link cost function can be calibrated following Hensher and Truong (1985). Since 
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congestion pricing is involved in this study, we include the link toll into the link travel cost function 
by setting 𝜏𝜏𝑎𝑎 = 𝑒𝑒0.075(𝑡𝑡𝑎𝑎+𝑦𝑦𝑎𝑎/𝜔𝜔), where 𝑦𝑦𝑎𝑎 is the toll on link a, and 𝜔𝜔 is the value of time (VOT). 
By substituting 𝜏𝜏𝑎𝑎 = 𝑒𝑒0.075(𝑡𝑡𝑎𝑎+𝑦𝑦𝑎𝑎/𝜔𝜔) into Eq. (5), we have   

𝑔𝑔𝑤𝑤,𝑟𝑟 = 𝑒𝑒0.075∑ (𝑡𝑡𝑎𝑎+𝑦𝑦𝑎𝑎/𝜔𝜔)𝑎𝑎∈Υ𝑟𝑟     ∀𝑟𝑟 ∈ 𝑅𝑅𝑤𝑤,𝑤𝑤 ∈ 𝑊𝑊 (6) 
 
Next, we introduce a reasonable assumption about road users’ travel utility. 
 
Assumption 1. We assume that travelers’ route choice decisions on any day d are affected by the 
predicted path travel cost 𝐇𝐇𝑑𝑑. Some previous studies have also used this assumption (e.g., Cantarella 
and Watling, 2016; Liu et al., 2017; Cheng et al., 2019). The predicted path travel cost for the next day 
(𝐇𝐇𝑑𝑑+1) is a weighted combination of the current day’s predicted and actual travel costs (𝐇𝐇𝑑𝑑 and 𝐠𝐠𝑑𝑑). 
Instead of using the additive weighted arithmetic mean as used by Liu et al. (2017), we use the 
weighted geometric mean shown in Eq. (7), which is consistent with the multiplicative structure of the 
Weibit model. 

𝐇𝐇𝑑𝑑+1 = (𝐠𝐠𝑑𝑑)𝛾𝛾 × (𝐇𝐇𝑑𝑑)1−𝛾𝛾 (7) 
where 𝛾𝛾 is a weighting parameter 0 < 𝛾𝛾 ≤ 1, which reflects the tradeoff travelers make between the 
actual path cost on the previous day and the predicted path travel cost. This parameter can be calibrated 
following Ye et al. (2018). Note that the sign “×” is the Hadamard product, i.e., z = x × y ⇔ 𝑧𝑧𝑖𝑖 =
𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖, 𝑖𝑖 = 1,2, … , 𝐼𝐼, where I is the length of the vectors x and y. 
 
Eq. (7) can be further recursively expanded as follows: 

            𝐇𝐇𝑑𝑑+1 = (𝐠𝐠𝑑𝑑)𝛾𝛾 × (𝐇𝐇𝑑𝑑)1−𝛾𝛾 
= (𝐠𝐠𝑑𝑑)𝛾𝛾 × [(𝐠𝐠𝑑𝑑−1)𝛾𝛾 × (𝐇𝐇𝑑𝑑−1)1−𝛾𝛾]1−𝛾𝛾  
= (𝐠𝐠𝑑𝑑)𝛾𝛾 × (𝐠𝐠𝑑𝑑−1)𝛾𝛾(1−𝛾𝛾) × (𝐇𝐇𝑑𝑑−1)(1−𝛾𝛾)2  
= (𝐠𝐠𝑑𝑑)𝛾𝛾 × (𝐠𝐠𝑑𝑑−1)𝛾𝛾(1−𝛾𝛾) × [(𝐠𝐠𝑑𝑑−2)𝛾𝛾 × (𝐇𝐇𝑑𝑑−2)1−𝛾𝛾](1−𝛾𝛾)2 
= ⋯⋯  

= (𝐠𝐠𝑑𝑑)𝛾𝛾 × � (𝐠𝐠𝑑𝑑−𝑘𝑘+1)𝛾𝛾(1−𝛾𝛾)𝑘𝑘−1
𝑑𝑑−1

𝑘𝑘=2
× (𝐇𝐇2)(1−𝛾𝛾)𝑑𝑑−1 

(8) 

Eq. (8) only applies to cases where d ≥ 3.  
 
If d = 2, from Eq. (7), we have: 

              𝐇𝐇3 = (𝐠𝐠2)𝛾𝛾 × (𝐇𝐇2)1−𝛾𝛾 (9) 
 
If d = 1, we assume that  

 𝐇𝐇2 = 𝐠𝐠1 × 𝜺𝜺  (10) 
where 𝜺𝜺 = (𝜀𝜀𝑤𝑤,𝑟𝑟 ,∀𝑟𝑟 ∈ 𝑅𝑅𝑤𝑤,   𝑤𝑤 ∈ 𝑊𝑊)𝑇𝑇  is a vector of random variables that reflect commuters’ 
perception errors regarding the path travel cost. Thus, Eq. (8) becomes 

 𝐇𝐇𝑑𝑑+1 = (𝐠𝐠𝑑𝑑)𝛾𝛾 × �(𝐠𝐠𝑑𝑑−𝑘𝑘+1)𝛾𝛾(1−𝛾𝛾)𝑘𝑘−1
𝑑𝑑−1

𝑘𝑘=2

× (𝐠𝐠1)(1−𝛾𝛾)𝑑𝑑−1 × 𝜺𝜺(1−𝛾𝛾)𝑑𝑑−1 (11) 
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From Eqs (6) and (11), it can be seen that given the initial route flow and toll pattern, the predicted 
travel costs on any following day can be obtained. However, Eq. (11) implies that the predicted cost 
of a route on day d+1 depends on all the past travel costs of the route, which is often known as the 
infinite learning process (Cantarella and Watling, 2016). In reality, travelers have a finite memory 
length, and thus their route choice decisions are largely influenced by recent states (Cascetta, 1989; 
Cantarella and Watling, 2016; Liu et al., 2017). Given this, and consistent with previous studies, we 
further assume that:  
Assumption 2. Travelers’ route choice decisions are determined by the network states in the past m 
days, i.e.,  

𝐇𝐇𝑑𝑑+1 = (𝐠𝐠𝑑𝑑)𝛾𝛾 × �(𝐠𝐠𝑑𝑑−𝑘𝑘+1)𝛾𝛾(1−𝛾𝛾)𝑘𝑘−1
𝑚𝑚

𝑘𝑘=2

× (𝐠𝐠1)(1−𝛾𝛾)𝑑𝑑−1 × 𝜺𝜺(1−𝛾𝛾)𝑑𝑑−1 (12) 

Note that the exponents of 𝐠𝐠(⋅) on the right-hand side of Eq. (11) sum to 1, whereas the exponents of 
𝐠𝐠(⋅) on the right side of Eq. (12) do not sum to 1, due to the presence of the finite memory length m. 
Hence, we impose a scaling factor 1

1−(1−𝛾𝛾)𝑚𝑚
 on the right side of Eq. (12) to make the exponents sum 

to 1. Thus, Eq. (12) becomes: 

𝐇𝐇𝑑𝑑+1 = (𝐠𝐠𝑑𝑑)
𝛾𝛾

1−(1−𝛾𝛾)𝑚𝑚 × �(𝐠𝐠𝑑𝑑−𝑘𝑘+1)
𝛾𝛾(1−𝛾𝛾)𝑘𝑘−1

1−(1−𝛾𝛾)𝑚𝑚
𝑚𝑚

𝑘𝑘=2

× 𝜺𝜺
(1−𝛾𝛾)𝑑𝑑−1
1−(1−𝛾𝛾)𝑚𝑚  (13) 

It is easy to verify that 𝛾𝛾
1−(1−𝛾𝛾)𝑚𝑚

+ 𝛾𝛾
1−(1−𝛾𝛾)𝑚𝑚

⋅ ∑ (1 − 𝛾𝛾)𝑘𝑘−1𝑚𝑚
𝑘𝑘=2 = 1. 

 
From Eq. (13), the predicted path cost 𝐇𝐇 is a vector of random variables. In this study, we assume 

that 𝜀𝜀 follows the Weibull distribution, thus 𝜀𝜀
(1−𝛾𝛾)𝑑𝑑−1

1−(1−𝛾𝛾)𝑚𝑚  also follows the Weibull distribution. Then, 
each element of  𝐇𝐇, which is the product of a deterministic value and a Weibull variate, also follows 

the Weibull distribution. We denote 𝐡𝐡𝑑𝑑+1  as the mean of 𝐇𝐇𝑑𝑑+1  (i.e., 𝐡𝐡𝑑𝑑+1 = (𝐠𝐠𝑑𝑑)
𝛾𝛾

1−(1−𝛾𝛾)𝑚𝑚 ×

∏ (𝐠𝐠𝑑𝑑−𝑘𝑘+1)
𝛾𝛾(1−𝛾𝛾)𝑘𝑘−1

1−(1−𝛾𝛾)𝑚𝑚𝑚𝑚
𝑘𝑘=2 , which is the deterministic part of the right side of Eq. (13)). By replacing the 

travel cost 𝑔𝑔𝑤𝑤,𝑟𝑟 in Eq. (1) with the mean of predicted travel cost ℎ𝑤𝑤,𝑟𝑟, we then have 

𝑝𝑝𝑤𝑤,𝑟𝑟 =
�ℎ𝑤𝑤,𝑟𝑟�

−𝛽𝛽𝑤𝑤

∑ �ℎ𝑤𝑤,𝑙𝑙�
−𝛽𝛽𝑤𝑤

𝑙𝑙∈𝑅𝑅𝑤𝑤
,  ∀𝑟𝑟 ∈ 𝑅𝑅𝑤𝑤,   𝑤𝑤 ∈ 𝑊𝑊 (14) 

 
Finally, assuming that the travel demand q is fixed, the target route flow m is the multiplication of the 
O-D demand 𝐪𝐪 and the route choice probability 𝐩𝐩: 

𝐦𝐦 = 𝐪𝐪 × 𝐩𝐩 (15) 
At this point, we are able to calculate the target flow pattern 𝐦𝐦 used in Eq. (3).  
 
2.1.3 Summary of the proposed day-to-day dynamic model  

Fig. 3 provides a summary of the proposed day-to-day dynamic model.  
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 Fig. 3 Summary of the day-to-day dynamic model 

According to the day-to-day dynamic model introduced in this section, given a pricing scheme and 
initial flow pattern on day 1, the network flow and cost on each day within the toll planning horizon 
can be calculated. They will be used to evaluate the effectiveness of the toll scheme based on our 
proposed network performance measure, as presented in Section 2.2. 
 
2.1.4 Comparison between Weibit and Logit route adjustment criteria 

Now we compare the day-to-day route flow dynamics under the Weibit and Logit route adjustment 
criteria. We still use the two-route network shown in Section 2.1.1 but here we consider traffic 
congestion. The parameters are set following Xu et al. (2021): the free-flow travel time of the upper 
and lower routes are set to be 10 and 5 respectively; both links are set to have the same capacity of 
100; the O-D demand is set as 100; the initial flow pattern is (50, 50). The shape parameter of the 
Weibit model is set as 3.7; and the dispersion parameter of the Logit model is set as 0.85503 in order 
to keep the same coefficient of variation (CoV) with the Weibit model. Besides, we set the flow 
adjustment ratio 𝛼𝛼𝑑𝑑 = 0.5, memory length 𝑚𝑚 = 3, and weighting parameter 𝛾𝛾 = 0.4 for both day-
to-day dynamic models. 
 
Fig. 4 demonstrates the evolution curves of the route flows under two route adjustment criteria. At the 
equilibrium state, the Weibit model assigns more flow to the longer route (or less flow to the shorter 
route) than the Logit model. This is still because the Weibit model can consider the route-specific 
perception variances unlike the Logit model which assumes identical trip variances for two routes, and 
thus there is a larger probability for road users to make the “mistake” of choosing the longer route in 
the Weibit model. Besides, the parameters for the two day-to-day dynamic models (i.e., 𝛼𝛼𝑑𝑑, 𝑚𝑚, and 
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𝛾𝛾) are set to be the same as mentioned above, which means that the two day-to-day dynamic models 
may take similar days to reach the equilibrium. Thus, evolving from the same initial flow pattern to 
their respective equilibrium points within similar days, both flow evolution curves from the Weibit 
model are less steep than those from the Logit model.  

 
Fig. 4 Path flow evolution curves under the Logit and Weibit route adjustment processes 

 
2.2 A new network-wide performance measure  
As mentioned in the Introduction, most current static pricing methods use the indices based on the 
final equilibrium state as their optimization objective functions, which implicitly assume that the 
equilibrium state can be reached. However, in practice, the time period needed to reach the equilibrium 
can be much longer than the toll planning horizon. As a result, these methods may generate toll 
schemes that are ineffective in alleviating traffic congestion within the toll planning horizon. Therefore, 
it is necessary to develop a new optimization objective function for the static pricing design to 
explicitly account for the network performance fluctuation within the toll planning horizon, without 
the need to assume that the equilibrium could be reached as in the majority of existing studies on static 
pricing. In our study, the proposed toll scheme is based on the following assumption. 
 
Assumption 3. We assume that policymakers are more concerned about the smooth cross-day 
operation of a network rather than that on a particular day. Thus, the proposed toll scheme is based on 
the optimization of overall network performance throughout a toll planning horizon, which is rarely 
explored in the existing studies.  
 
To explicitly account for network performance fluctuations due to travelers’ route choice adjustment 
after the toll implementation within the toll planning horizon, we propose a new metric as the 
optimization objective function of the static pricing design, which is denoted cumulative network 
performance (CNP).  
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Fig. 5 illustrates the proposed CNP from day 1 to day D (i.e., the end of the toll planning horizon). 
Consider that a toll scheme is implemented on day 1, then the network-wide performance (NP) would 
change from day to day until day D. CNP is calculated by the area cycled by the network performance 
evolution curve derived by the proposed day-to-day dynamic model and the horizontal axis from day 
1 to day D. 
 
Mathematically, CNP is given by the following formulation: 

CNP = � NP𝑡𝑡
𝐷𝐷

1

𝑑𝑑𝑑𝑑 (16) 

where NP𝑡𝑡 is the network-wide performance on day t after toll implementation, which is derived from 
the proposed day-to-day dynamic model. NP𝑡𝑡 in Eq. (16) is not limited to a particular measure of 
network performance, and some typical measures pertaining to congestion toll-design problems can 
be used herein, such as total travel time (TTT), total social benefit, and expected total travel time under 
uncertainty.  
 
Note that Eq. (16) is continuous with regard to time 𝑡𝑡 , and thus seems more applicable to the 
continuous day-to-day dynamic model. However, Eq. (16) is also applicable to the discrete day-to-day 
dynamic model. That is, we can also obtain a continuous evolution curve by connecting the discrete 
points generated by the discrete day-to-day dynamic model one by one along the time dimension, and 
then calculate the measure according to Eq. (16). Note that in the case where a discrete day-to-day 
dynamic model is used, the curve in Fig. 5 is a piecewise linear function. To fit in the proposed discrete 

day-to-day dynamic model, Eq. (16) can also be discretized as 𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ NP𝑡𝑡+NP𝑡𝑡+1

2𝑡𝑡={1,2,…,𝐷𝐷−1} . 
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Fig. 5 Illustration of CNP 

 
The advantage of using CNP as the optimization objective function for the optimal static pricing design 
is that CNP explicitly considers the network performance on each day. This is distinct from the 



15 

objective function in Liu et al. (2017), which only optimizes the worst case within a toll planning 
horizon, or the metrics in most other static pricing methods (such as the TTT in marginal pricing), 
which only focus on the final equilibrium state. In addition, as the network performance on each day 
is explicitly incorporated into CNP, this new metric applies to both equilibrium and non-equilibrium 
cases, whereas most traditional static pricing metrics are only applicable to cases where the equilibrium 
can eventually be reached. Thus, CNP has wider real-life applications, as an equilibrium may not be 
reached within a given toll planning horizon, especially in large networks, as mentioned in the 
Introduction.   
 
After choosing the CNP as the optimization objective function, we now present an example to show 
how the Weibit and Logit route adjustment processes influence the effectiveness evaluation of 
congestion pricing schemes. We continue to use the two-route network with the same settings in 
Section 2.1.4. The two toll schemes to be compared (named as Toll A and Toll B, both in time units) 
are (0.015, 0.965) and (0.699, 0.502), respectively. The upper (longer) route is charged more in Toll 
B than in Toll A, and the lower (shorter) route is charged more in Toll A than in Toll B.  
 

Table 4 Comparison of two toll schemes from the Weibit and Logit adjustment processes 
Type of adjustment process CNP under Toll A CNP under Toll B Which is better? 
Weibit adjustment process 7398.25 7289.72 Toll B 
Logit adjustment process 11057.78 11082.96 Toll A 

Note: The CNP magnitude difference between the Weibit and Logit adjustment processes lies in their different 
expressions of the expected total travel time. 
 
From Table 4, the day-to-day dynamic model with the Weibit adjustment process suggests Toll B as 
the better toll scheme, while the day-to-day dynamic model with the Logit adjustment process suggests 
Toll A as the better. This is because the day-to-day dynamic model with the Weibit adjustment process 
assigns more flow to the longer (lower) route on each day, as can be shown in Fig. 4 in Section 2.1.4. 
Thus, the longer route contributes more to the CNP measure in the Weibit day-to-day dynamic model 
than in the Logit day-to-day dynamic model. Therefore, the Weibit day-to-day dynamic model would 
suggest the toll scheme with a higher toll on the longer route (Toll B) as the better, which is different 
from the Logit day-to-day dynamic model. From this analysis, we can readily deduce that the two route 
adjustment processes may lead to different optimal toll patterns: the Weibit day-to-day dynamic model 
leads to higher (lower) toll on the longer (shorter) route than the Logit day-to-day dynamic model. 
 
2.3 The bi-level programming model and the solution algorithm 
The optimal toll design can be obtained by minimizing the CNP: 

min
𝐲𝐲

 CNP (17) 

In Eq. (17), the CNP follows Eq. (16), where the required information can be calculated according to 
the day-to-day dynamic model in Section 2.1, and y = {𝑦𝑦𝑎𝑎, a ∈ 𝐴𝐴} is the link-based toll pattern. The 
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proposed method can also be easily extended to the design of other forms of toll schemes, such as 
distance-based pricing schemes.  
 
Under SUE, congestion pricing seeks to achieve an SSO (i.e., a minimum ETTT) rather than the SO 
(i.e., a minimum TTT) in the UE (Maher et al., 2005). Therefore, ETTT is used as the NP in Eq. (16).  
According to Maher et al. (2005), ETTT is the sum of the product of the travel demand and the 
satisfaction function of each O-D pair. Below we derive the ETTT corresponding to the Weibit model. 
 
Following the logarithmic satisfaction function of the Weibit-SUE model in Kitthamkesorn and Chen 
(2014), we have 

𝑆𝑆𝑤𝑤(ln𝐠𝐠𝑤𝑤) = −
1
𝛽𝛽𝑤𝑤

ln ��𝑔𝑔𝑤𝑤,𝑟𝑟�
−𝛽𝛽𝑤𝑤

𝑟𝑟∈𝑅𝑅𝑤𝑤
           

         = −
1
𝛽𝛽𝑤𝑤

ln �
�𝑔𝑔𝑤𝑤,𝑟𝑟�

−𝛽𝛽𝑤𝑤

𝑝𝑝𝑤𝑤,𝑟𝑟
� 

                         = −
1
𝛽𝛽𝑤𝑤

�ln�𝑔𝑔𝑤𝑤,𝑟𝑟�
−𝛽𝛽𝑤𝑤

− ln𝑝𝑝𝑤𝑤,𝑟𝑟� 

                           = −
1
𝛽𝛽𝑤𝑤

�−𝛽𝛽𝑤𝑤 ln�𝑔𝑔𝑤𝑤,𝑟𝑟� − ln𝑝𝑝𝑤𝑤,𝑟𝑟� 

           = ln�𝑔𝑔𝑤𝑤,𝑟𝑟� +
1
𝛽𝛽𝑤𝑤

 ln𝑝𝑝𝑤𝑤,𝑟𝑟 

(18) 

 
Then, we have  

𝑆𝑆𝑤𝑤(ln𝐠𝐠𝑤𝑤) = � 𝑝𝑝𝑤𝑤,𝑟𝑟𝑆𝑆𝑤𝑤(ln𝐠𝐠𝑤𝑤)
𝑟𝑟∈𝑅𝑅𝑤𝑤

= � 𝑝𝑝𝑤𝑤,𝑟𝑟(ln𝑔𝑔𝑤𝑤,𝑟𝑟 +
1
𝛽𝛽𝑤𝑤

ln𝑝𝑝𝑤𝑤,𝑟𝑟)
𝑟𝑟∈𝑅𝑅𝑤𝑤

 (19) 

 
Finally, the ETTT can be derived as follows: 

ETTT = � 𝑞𝑞𝑤𝑤𝑆𝑆(ln𝐠𝐠𝑤𝑤)
𝑤𝑤∈𝑊𝑊

 

            = � 𝑞𝑞𝑤𝑤 � 𝑝𝑝𝑤𝑤,𝑟𝑟 �ln𝑔𝑔𝑤𝑤,𝑟𝑟 +
1
𝛽𝛽𝑤𝑤

ln𝑝𝑝𝑤𝑤,𝑟𝑟�
𝑟𝑟∈𝑅𝑅𝑤𝑤𝑤𝑤∈𝑊𝑊

 

            = � � 𝑓𝑓𝑤𝑤,𝑟𝑟 �ln𝑔𝑔𝑤𝑤,𝑟𝑟 +
1
𝛽𝛽𝑤𝑤

ln𝑝𝑝𝑤𝑤,𝑟𝑟�
𝑟𝑟∈𝑅𝑅𝑤𝑤𝑤𝑤∈𝑊𝑊

 

            = � � 𝑓𝑓𝑤𝑤,𝑟𝑟 �ln𝑔𝑔𝑤𝑤,𝑟𝑟 +
1
𝛽𝛽𝑤𝑤

ln
𝑓𝑓𝑤𝑤,𝑟𝑟

𝑞𝑞𝑤𝑤
�

𝑟𝑟∈𝑅𝑅𝑤𝑤𝑤𝑤∈𝑊𝑊

 

     = � � 𝑓𝑓𝑤𝑤,𝑟𝑟ln𝑔𝑔𝑤𝑤,𝑟𝑟 + � �
1
𝛽𝛽𝑤𝑤

𝑓𝑓𝑤𝑤,𝑟𝑟ln𝑓𝑓𝑤𝑤,𝑟𝑟
𝑟𝑟∈𝑅𝑅𝑤𝑤𝑤𝑤∈𝑊𝑊𝑟𝑟∈𝑅𝑅𝑤𝑤𝑤𝑤∈𝑊𝑊

− �
1
𝛽𝛽𝑤𝑤

𝑞𝑞𝑤𝑤ln𝑞𝑞𝑤𝑤
𝑤𝑤∈𝑊𝑊

 

(20) 

 
By including the day index d, the expected total travel time on day d, denoted as ETTT𝑑𝑑, is: 
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 ETTT𝑑𝑑 = � � 𝑓𝑓𝑤𝑤,𝑟𝑟
𝑑𝑑 ln𝑔𝑔𝑤𝑤,𝑟𝑟

𝑑𝑑 + � �
1
𝛽𝛽𝑤𝑤

𝑓𝑓𝑤𝑤,𝑟𝑟
𝑑𝑑 ln𝑓𝑓𝑤𝑤,𝑟𝑟

𝑑𝑑

𝑟𝑟∈𝑅𝑅𝑤𝑤𝑤𝑤∈𝑊𝑊𝑟𝑟∈𝑅𝑅𝑤𝑤𝑤𝑤∈𝑊𝑊

− �
1
𝛽𝛽𝑤𝑤

𝑞𝑞𝑤𝑤ln𝑞𝑞𝑤𝑤
𝑤𝑤∈𝑊𝑊

 (21) 

As the travel demand qw is assumed to be fixed, we can eliminate the third term in Eq. (21) from the 
optimization model. 
 
The above model of solving the proposed toll scheme is a bi-level programming model.  
The upper-level program: 

min
𝐲𝐲

 � ETTT𝑡𝑡

𝐷𝐷

1

𝑑𝑑𝑑𝑑  

where  

ETTT𝑑𝑑 = � � 𝑓𝑓𝑤𝑤,𝑟𝑟
𝑑𝑑 ln𝑔𝑔𝑤𝑤,𝑟𝑟

𝑑𝑑 + � �
1
𝛽𝛽𝑤𝑤

𝑓𝑓𝑤𝑤,𝑟𝑟
𝑑𝑑 ln𝑓𝑓𝑤𝑤,𝑟𝑟

𝑑𝑑

𝑟𝑟∈𝑅𝑅𝑤𝑤𝑤𝑤∈𝑊𝑊𝑟𝑟∈𝑅𝑅𝑤𝑤𝑤𝑤∈𝑊𝑊

  

The lower-level program: 
𝐟𝐟𝑑𝑑+1 = (1 − 𝛼𝛼𝑑𝑑)𝐟𝐟𝑑𝑑 + 𝛼𝛼𝑑𝑑 ⋅ 𝐦𝐦𝑑𝑑      

𝑔𝑔𝑤𝑤,𝑟𝑟
𝑑𝑑 = 𝑒𝑒0.075∑ (𝑡𝑡𝑎𝑎𝑑𝑑+𝑦𝑦𝑎𝑎/𝜔𝜔)𝑎𝑎∈Υ𝑟𝑟 ,    ∀𝑟𝑟 ∈ 𝑅𝑅𝑤𝑤,𝑤𝑤 ∈ 𝑊𝑊  

where the determination of 𝐦𝐦𝑑𝑑 follows Eqs. (11)-(15). 
 
The upper-level subprogram is used to find the optimal toll pattern 𝐲𝐲, and the lower-level subprogram 
is used to obtain the day-to-day network flows and costs under toll pattern 𝐲𝐲 for calculating the CNP 
in the upper-level subprogram. We use the Artificial Bee Colony (ABC) algorithm to solve the bi-level 
programming model. As an advanced evolutionary algorithm, the ABC algorithm has a better local 
search mechanism to improve the solution quality compared with other evolutionary algorithms. 
Recently, the ABC algorithm has been adopted to solve some transportation-related problems (See, 
e.g., Szeto et al., 2011; Szeto and Jiang, 2012, 2014; Chen et al., 2015). For more details about the 
ABC algorithm, interested readers may refer to Szeto et al. (2011). 
 

3. Numerical Examples 

In this section, we conduct numerical experiments in two networks. In the first illustrative network, 
we show the advantages of the first-best link-based pricing scheme from the proposed method over 
the marginal pricing scheme and the robust pricing scheme, under different flow adjustment ratios. 
Sensitivity analyses are also conducted to examine the effects of different parameter settings. Then, 
we carry out a more detailed analysis in the larger Sioux Falls network, to show the effectiveness of 
the second-best link-based pricing scheme generated by the proposed method. The numerical 
experiments are coded in Python 3.8 running on a laptop with Inter(R) Core (TM) i7-10510U CPU @ 
1.80 GHz, 2.30 GHz and 12.00G RAM. 
 
In both networks, travelers’ memory length (m) is set as 3, the weighting parameter (𝛾𝛾) is set as 0.4, 
and the value of time (𝜔𝜔) is set to be ¥1 per time unit, following Liu et al. (2017). The currency form 
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of the toll patterns used in the following experiments is also in ¥. The shape parameter 𝛽𝛽𝑤𝑤 is set as 
3.7. The toll planning horizon D is set as 30. The standard Bureau of Public Roads (BPR) function is 
adopted to capture the relationship between the link travel time and link flow, i.e.,  

𝑡𝑡𝑎𝑎 = 𝑡𝑡𝑎𝑎0(1 + 0.15 ×
𝑣𝑣𝑎𝑎4

𝐶𝐶𝑎𝑎4
) (22) 

where 𝑡𝑡𝑎𝑎0 is the free-flow travel time of link a, and 𝐶𝐶𝑎𝑎 is the capacity of link a. 
 
The parameter settings in the ABC algorithm are as follows: colony size 𝑛𝑛𝑐𝑐 = 40 , number of 
employed bees 𝑛𝑛𝑒𝑒 = 40, number of onlookers 𝑛𝑛𝑜𝑜 = 20, maximum iteration value 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 500, and 
limit = 2. Readers may refer to Szeto et al. (2011) for the meanings of these parameters. 
 
3.1 Illustrative network 
3.1.1 Experimental setting 
The first numerical experiment is conducted using the network shown in Fig. 6, which is from Liu et 
al. (2017). This network consists of nine nodes and thirteen links. There are two O-D pairs, i.e., O-D 
pair 1-8 and 1-9, connected by four and seven routes, respectively. Both O-D pairs have the same 
travel demand of 8,000 units. We further assume that the travel demand of each O-D pair is evenly 
distributed onto the paths initially connecting the O-D pair. The assumption has also been adopted by 
previous studies such as Guo et al. (2013) and Xu et al. (2021). The link performance characteristics 
of this network are shown in Table 5.   

 
Fig. 6 Topology of the illustrative network 

 
In this network, we impose tolls on all links. The following three pricing schemes and the baseline 
scheme are compared: 
 Scheme 1: The first-best pricing scheme, which is generated by the proposed method. For clarity, 

we refer to Scheme 1 as the proposed toll scheme in the following text. 
 Scheme 2: The robust pricing scheme. Similar to Liu et al. (2017), the robust pricing scheme to 

be compared is a toll pattern 𝐲𝐲 that minimizes the maximum network performance within the 
given toll planning horizon. Specifically, the optimization objective function of the robust pricing 
scheme is given by: 
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min
𝐲𝐲

 max 
d

ETTT𝑑𝑑 (23) 

Although the robust pricing scheme considers the day-to-day dynamics, it only optimizes the 
ETTT under the worst-case conditions, and the ETTTs on other days are not explicitly considered. 

 Scheme 3: The marginal pricing scheme, which is based on the network flow from the static 
Weibit-SUE model. 

 Baseline scheme: No pricing scheme. 
We consider four values of 𝛼𝛼𝑑𝑑 = 0.3, 0.4, 0.5, and 0.6, corresponding to four levels of network 
performance fluctuation (from slight to large) resulting from different flow adjustment ratios. 
Sensitivity analyses on the initial flow pattern, the length of the toll planning horizon, and the memory 
length are provided in Appendix A. 

Table 5 Detailed network information 
Link ID Tail Head  Free-flow travel time Capacity 

1 1 2 2 6,000 
2 2 3 2 4,000 
3 2 5 8 6,000 
4 3 4 2 2,000 
5 3 5 4 2,000 
6 4 6 6 1,000 
7 5 6 2 4,000 
8 6 9 6 6,000 
9 5 7 3 4,000 
10 2 7 9 2,000 
11 1 8 26 3,000 
12 8 9 4 3,000 
13 7 8 5 3,000 

 
3.1.2 Results and analyses 
The optimal link-based pricing schemes generated by the proposed method under the four values of 
𝛼𝛼𝑑𝑑  are shown in Table 6. Fig. 7 demonstrates the evolution trajectories of ETTT under different 
pricing schemes and different values of 𝛼𝛼𝑑𝑑. As a comparison, we also calculate the marginal tolls. 

Specifically, by replacing the cost function 𝑡𝑡𝑎𝑎 with 𝑡𝑡𝑎𝑎 + 𝑣𝑣𝑎𝑎 ∙
𝑑𝑑𝑡𝑡𝑎𝑎
𝑑𝑑𝑣𝑣𝑎𝑎

, the equilibrium link flow pattern 

𝐯𝐯∗ can be obtained. Then, the marginal link tolls 𝒚𝒚𝑚𝑚 can be calculated by 𝐯𝐯∗ ∙ 𝑑𝑑𝐭𝐭
𝑑𝑑𝐯𝐯

, which results in 

𝒚𝒚𝑚𝑚  = (20.78, 1.27, 5.04, 0.27, 7.73, 12.82, 6.11, 8.25, 0.40, 6.74, 38.48, 0.00, 20.62). Note that 
marginal pricing under SUE can lead to SSO; this corresponds to the minimum ETTT at the 
equilibrium state (Maher et al., 2005), which is 69,562 in this experiment.  
 

Table 6 Optimal toll schemes generated by the proposed method under different values of 𝛼𝛼𝑑𝑑 
Link 

𝛼𝛼𝑑𝑑 1 2 3 4 5 6 7 8 9 10 11 12 13 

0.3 19.30  1.53  6.36  1.77  8.11  14.47  9.89  6.76  1.09  8.43  38.07  1.21  20.32  
0.4 18.80  4.55  5.94  0.51  4.62  10.24  7.31  5.43  2.01  8.35  38.69  0.38  18.49  
0.5 18.94  2.79  4.98  0.40  6.22  9.55  5.40  9.45  1.53  6.00  38.69  0.90  19.50  
0.6 20.58  3.18  7.10  0.45  8.12  14.79  5.54  7.94  1.28  8.78  37.82  3.37  19.16  
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(a) 𝛼𝛼𝑑𝑑 = 0.3 (b) 𝛼𝛼𝑑𝑑 = 0.4 

  
(c) 𝛼𝛼𝑑𝑑 = 0.5 (d) 𝛼𝛼𝑑𝑑 = 0.6 

Fig. 7 Evolution trajectories of expected total travel time under different pricing schemes and 
different values of 𝛼𝛼𝑑𝑑 

 
In the following section, we demonstrate the advantages of the proposed toll scheme by comparing its 
performance with those of the marginal pricing scheme and the robust pricing scheme. 
 
(1) The proposed toll scheme versus the marginal pricing scheme. 
 The case where the equilibrium can be reached within the toll planning horizon 
In a network in which the travelers are reluctant to alter their travel choices, it is likely that the 
equilibrium can be eventually reached within the toll planning horizon, particularly in the illustrative 
network herein, due to its simple structure. In the four investigated cases, the equilibrium state can be 
reached within 30 days when 𝛼𝛼𝑑𝑑 = 0.3 under both the proposed toll scheme and the marginal pricing 
scheme, as both schemes lead to only small fluctuations in network performance. From Table 7, despite 
the proposed toll scheme produces a slightly larger ETTT on day 30, it has a smaller CNP than the 
marginal pricing scheme. In this case, both schemes are similarly effective, as they give rise to similar 
lower CNPs (2.152 × 106 and 2.153 × 106) and ETTTs on day 30 (6.966 × 104 and 6.956 × 104) 
than the no pricing case (2.192 × 106 for CNP; 7.059 × 104 for ETTT on day 30).  
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Table 7 Comparison between the proposed toll scheme and the marginal pricing scheme 

𝛼𝛼𝑑𝑑 Pricing scheme CNP (× 106) ETTT on day D (× 104) 

0.3 
The proposed toll scheme* 2.152 6.966 

Marginal pricing scheme* 2.153 6.956 

0.4 
The proposed toll scheme 2.182  6.983 

Marginal pricing scheme 2.220 6.961 

0.5 
The proposed toll scheme 2.184 7.038 

Marginal pricing scheme 2.224 7.365 

0.6 
The proposed toll scheme 2.212 6.995 

Marginal pricing scheme 3.035 7.217 

Note: (1): The red bold number denotes the better performance  
(2): The asterisk means that in this case the equilibrium state can be reached within the toll planning horizon.  
(3): CNP = cumulative network performance; ETTT = expected total travel time. 

 
 Cases where the equilibrium cannot be reached within the toll planning horizon 
When travelers have a medium or strong willingness to adjust their route choices based on their past 
travel experience, the network flow state may fluctuate strongly, and thus the equilibrium may not be 
reached within the toll planning horizon. In this network, from Fig. 7(b), (c) and (d), the equilibrium 
cannot be reached under any of the three pricing schemes within D days in the cases of 𝛼𝛼𝑑𝑑 = 0.4, 0.5, 
and 0.6, which verifies that it could be unreasonable to use the ETTT at the equilibrium state as the 
optimization objective function for static pricing. From Table 7, it can be seen that the proposed toll 
scheme leads to a smaller CNP than the marginal pricing scheme under all three values of 𝛼𝛼𝑑𝑑. This 
superiority of the proposed scheme increases as 𝛼𝛼𝑑𝑑  increases. Specifically, the differences between 
the CNP of the marginal pricing scheme and the proposed pricing scheme are 3.8 × 104, 4 × 104, 
and 8.23 × 104 when 𝛼𝛼𝑑𝑑 = 0.4, 0.5 and 0.6, respectively. Surprisingly, the proposed toll scheme 
even produces a smaller ETTT on day D than the marginal pricing scheme when 𝛼𝛼𝑑𝑑 = 0.5 (7.038 × 
104 versus 7.365 × 104) and 0.6 (6.995 × 104 versus 7.217 × 104), despite giving a slightly worse 
result when 𝛼𝛼𝑑𝑑 = 0.4 (6.983 × 104 versus 6.961 × 104).   
 
Besides, it is notable that the patterns of the blue and purple curves (corresponding to the no pricing 
and marginal pricing cases) in Fig. 7 (d) are unstable, which are different from the stable blue and 
purple curves in Figs. 7 (a), (b), and (c). In contrast, the flow fluctuation can be largely alleviated by 
the proposed pricing scheme and robust pricing scheme. Note that such instability in a day-to-day 
dynamical system has also been found and investigated by some previous studies, such as Cantarella 
and Cascetta (1995), Zhou et al. (2017), and Ye et al. (2021). The reason for this phenomenon is mainly 
because 𝛼𝛼𝑑𝑑 = 0.6 is larger than a certain threshold, leading to an unstable traffic state. As a result, 
without a proper travel demand management, the initial disequilibrium network flow under 𝛼𝛼𝑑𝑑 = 0.6 
cannot be spontaneously mitigated as in Figs. 7 (a), (b), and (c), and might even get worse instead. 
More details about the stability of day-to-day dynamic models (i.e., how to find the threshold) can be 
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found in Ye et al. (2021). Note that this phenomenon also emphasizes the importance of considering 
day-to-day dynamics in the static pricing scheme. 
 
(2) The proposed toll scheme versus the robust pricing scheme 
From Table 8, one can see that the robust pricing scheme indeed produces a smaller maximum ETTT 
under all four values of 𝛼𝛼𝑑𝑑 than the other two pricing schemes. However, this advantage comes at 
the expense of inducing larger CNPs, as shown in Table 9. Specifically, the differences in the 
maximum ETTT between the robust pricing scheme and the proposed toll scheme are 0.92 × 103, 
16.82 × 103, 1.31 × 103, and 0.32 × 103 as 𝛼𝛼𝑑𝑑 increases from 0.3 to 0.6; while the differences in 
the CNP improvement (CNP improvement percentage) between the proposed toll scheme and the 
robust pricing scheme are respectively 6.1 × 104 (2.78%), 4.2 × 104 (1.88%), 2.5 × 104 (1.10%), 
and 6.4 × 104 (1.87%) when 𝛼𝛼𝑑𝑑= 0.3, 0.4, 0.5 and 0.6. The two schemes appear to be similar if only 
comparing the CNP improvement percentage in Table 9 (or the difference in CNP improvement 
percentage, indicated by the numbers in the parenthesis above), but this “small” percentage essentially 
corresponds to a nontrivial difference due to the large magnitude of CNP (i.e., 106). It is also interesting 
to note that the CNP improvement percentage between the two schemes gets close as 𝛼𝛼𝑑𝑑 increases 
(i.e., their difference evolves from 2.78% to 1.78%). This is largely because the worst-case network 
performance can be so significant that it becomes the key determinant of the CNP as 𝛼𝛼𝑑𝑑 increases. 
For example, when 𝛼𝛼𝑑𝑑 = 0.6, if no pricing is implemented the largest ETTT is 33.717 × 104, as 
shown in Fig. 7(d), which, however, could be reduced by more than 3 times under both the proposed 
toll scheme and the robust toll scheme. Hence, optimizing the worst-case performance could indeed 
lead to a small CNP when travelers actively make route choice alterations.  

Table 8 Comparison of the maximum ETTT within D days under three pricing schemes 

𝛼𝛼𝑑𝑑 Pricing scheme Maximum ETTT within the toll planning horizon (× 104) 

0.3 

The proposed toll scheme* 8.388 

Robust pricing scheme 8.296 

Marginal pricing scheme * 8.431 

0.4 

The proposed toll scheme 9.656 

Robust pricing scheme 7.974 

Marginal pricing scheme 9.791 

0.5 

The proposed toll scheme 8.396 

Robust pricing scheme 8.265 

Marginal pricing scheme 8.652 

0.6 

The proposed toll scheme 9.242 

Robust pricing scheme 9.210 

Marginal pricing scheme 24.562 

Note: (1) The red bold number denotes the best performance under the three schemes 
         (2) ETTT = expected total travel time 
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Table 9 Comparison between the proposed toll scheme and the robust pricing scheme in terms of 
cumulative network performance (CNP) 

𝛼𝛼𝑑𝑑 Pricing scheme 
CNP 

× 106) 
CNP improvement  
(× 106)* Percentage improvement in CNP ** 

0.3 
The proposed toll scheme 2.152 0.021 0.96% 

 
Robust pricing scheme 2.213 -0.04 -1.82% 

0.4 
The proposed toll scheme 2.182 0.05 2.24% 

 
Robust pricing scheme 2.224 0.008 0.36% 

0.5 
The proposed toll scheme 2.184 0.087 3.83% 

 
Robust pricing scheme 2.209 0.062 2.73% 

0.6 
The proposed toll scheme 2.212 1.411 38.95% 

 
Robust pricing scheme 2.276 1.347 37.18% 

*: CNP improvement denotes the difference in CNP between the no pricing scheme and the pricing scheme in 
question.  
**: Percentage improvement in CNP refers to the ratio of the CNP improvement in question to the CNP in the no 
pricing scheme 
 
On the other hand, since the robust pricing scheme merely optimizes the worst-case performance, it 
may lead to worse performance on the other days, as can be seen by comparing the black curves with 
the other curves in Fig. 7. Furthermore, the overall performance within the toll planning horizon may 
also be worsened. For example, when 𝛼𝛼𝑑𝑑 = 0.3, the ETTT evolution trajectory (black curve) lies 
above all of the other curves most of the time, even the curve of the no pricing scheme case (i.e., the 
blue curve), as shown Fig. 7(a). As a result, the CNP under the robust pricing scheme is also larger 
than the CNPs under the other three schemes (2.213 × 106 vs. 2.152 × 106, 2.153 × 106, and 2.192 
× 106). This means that the robust pricing scheme may worsen the overall transportation system 
performance within the toll planning horizon.   
 
3.1.3 Summary 
These numerical results demonstrate the necessity of using the new metric CNP as the optimization 
objective function for static pricing design. This is because CNP is a more comprehensive metric that 
explicitly incorporates the network performances on all days, and also because the equilibrium may 
not be reached within a toll planning horizon, such as when 𝛼𝛼𝑑𝑑 = 0.4, 0.5, and 0.6. In addition, 
regardless of whether the equilibrium could be reached or not, the proposed toll scheme not only 
achieves the best performance in terms of optimizing the overall network performance, but also leads 
to moderate performance in terms of ETTT on day D or the maximum ETTT within D days compared 
to the other two pricing schemes. 
 
It is also noticeable that different flow adjustment ratios lead to different optimal toll patterns: that is, 
the optimal toll pattern for one case may not be effective in reducing congestion for another. Hence, 
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for policymakers who would like to design their pricing strategies based on the proposed method, it is 
necessary to determine the flow adjustment ratio using real traffic data for a given transportation 
network before calculating the toll scheme (e.g., Ye et al., 2018; Cheng et al., 2019).  
 
3.2 Sioux Falls network 
The second numerical experiment is conducted using the Sioux Falls network. This network consists 
of 24 nodes, 76 links, and 550 O-D pairs. A pre-generated route set with 3,441 acyclic routes from 
Bekhor et al. (2007) is used, which was generated by using a combination of the link elimination 
method of Azevedo et al. (1993) and the penalty method of de la Barra et al. (1993) with a penalty of 
5% on travel times on the shortest route links. We again assume that the travel demand of each O-D 
pair is evenly distributed onto the paths initially connecting the O-D pair. We consider that congestion 
pricing is imposed on 10 links (i.e., links 25, 26, 27, 28, 29, 30, 32, 43, 48, and 51) in the central area, 
as shown in Fig. 8. The flow adjustment ratio 𝛼𝛼𝑑𝑑 is set as 0.35. 

 
Fig. 8 Sioux Falls network and the tolled links 

 
According to the proposed method in Section 2, the optimal toll scheme 𝐲𝐲∗ is (1.82, 2.04, 3.34, 2.76, 
8.44, 7.43, 4.60, 2.22, 9.57, 6.20). As to the computational time of the ABC algorithm, executing one 
iteration requires 31 seconds in the Sioux Falls network. 
 
 Network-level performance 



25 

First, we examine the effectiveness of the proposed toll scheme in optimizing the network-level 
performance of this larger network. The evolution trajectories of ETTT under the proposed toll scheme 
and no pricing scheme are plotted in Fig. 9. It can be seen that the ETTT fluctuation within 30 days 
under the proposed toll scheme is smaller than that under the no pricing scheme. The CNP and ETTT 
on day D under the proposed toll scheme are 30,788 and 464, which are 8.0% and 6.6% lower 
respectively than those under the no pricing scheme (33,471 and 497). Moreover, under the proposed 
toll scheme, the network state is near equilibrium on day 30, as can be observed from the green curve 
in Fig. 9. The maximum rates of change of ETTT between two consecutive days in the last 10 days 
are 4% and 34% under the proposed pricing scheme and no pricing scheme, respectively. Thus, the 
effectiveness of the second-best link-based pricing scheme generated by the proposed method in 
optimizing the network performance over the entire toll-planning horizon is further validated. 
 

  
Fig. 9 Expected total travel time evolution trajectories under the proposed toll scheme and no 

pricing scheme 
 
 O-D-level performance 
Next, we use the O-D cost (ODC) to explore the effectiveness of the proposed toll scheme in improving 
users’ travel experience at the O-D level. According to Kitthamkesorn and Chen (2014), the O-D cost 
of the O-D pair w on day d in the Weibit model is: 

ODC𝑤𝑤𝑑𝑑 = −
1
𝛽𝛽𝑤𝑤

ln ��𝑔𝑔𝑤𝑤,𝑟𝑟
𝑑𝑑 �

−𝛽𝛽𝑤𝑤

𝑟𝑟∈𝑅𝑅𝑤𝑤
   (24) 

 
We compare the percentage improvement in the ODC of each O-D pair on the last day of the toll 
planning horizon (i.e., d = 30), where this improvement is defined as the ratio of the difference in the 
ODC𝑤𝑤30 between no pricing scheme and the proposed toll scheme to the ODC𝑤𝑤30 under the no pricing 
scheme. The cumulative distribution function (CDF) of the percentage improvement in the ODC on 
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day D is shown in Fig. 10. Out of the total of 550 O-D pairs, 354 (i.e., 64.4%) O-D pairs have a lower 
ODC𝑤𝑤30 under the proposed toll scheme than under the no pricing scheme. The largest improvement is 
56.28%, and the average improvement is 6.76%. Hence, the proposed toll scheme is capable of 
improving the travel experience of the majority of commuters in this network. Nevertheless, similar to 
the traditional pricing methods, the proposed toll scheme would also lead to an increase in O-D cost 
for the other users. To overcome this problem, an equity constraint can be incorporated into the model 
to achieve a balance between network-wide efficiency and users’ travel costs (Meng and Yang, 2002).  
 

Fig. 10 Cumulative distribution function (CDF) of the percentage improvement of O-D cost on day 
30 

 
 Path-level and link-level performance 
We further investigate how a pricing scheme influences the evolution of path flows. The O-D pair 5-
8, which is connected by four paths, is selected for the analysis. Specifically, path 649 (links 12-16) 
and path 650 (links 13-24) do not traverse the tolled links, while path 651 (links 13-25-29-47) and path 
652 (links 11-10-32-29-47) traverse two tolled links (indicated in bold). The flow evolution trajectories 
of the four paths are presented in Fig. 11. Over the toll planning horizon, both paths that traverse the 
tolled links (paths 651 and 652) have lower flows under the proposed pricing scheme than under the 
no pricing scheme, as shown in Fig. 11(b). These reduced flows are directed to path 650, which does 
not traverse the tolled links, and this path thus has a flow increase of 9.4% (i.e., from 0.576 to 0.630) 
on day 30. Fig. 12 shows the travel time evolution trajectories of the four paths. From Fig. 12 (b), it 
can be seen that the toll scheme leads to a significant reduction in the travel time of paths 651 and 652. 
Specifically, their travel times on day 30 are more than 10 times less than those on day 1. Thus, the 
proposed pricing scheme effectively decreases the number of users originally traveling through the 
tolled links, and thereby further reduces congestion (travel time) in the pricing area within the toll 
planning horizon. 
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(a) Paths 649 and 650 (not traversing tolled links) 

 

(b) Paths 651 and 652 (traversing some tolled links) 
Fig. 11 Flow evolution trajectories of the four paths that connect O-D pair 5-8 

 

  

(a) Paths 649 and 650 (not traversing tolled links) 

  

(b) Paths 651 and 652 (traversing some tolled links) 
Fig. 12 Travel time evolution trajectories of the four paths that connect O-D pair 5-8 

 
Finally, we examine the effectiveness of the proposed pricing scheme in reducing the traffic flow at 
the 10 tolled links. The flow evolution trajectories at the tolled links under the pricing scheme and 
under the no pricing scheme are shown in Fig. 13. Further, the evolution trajectories of the sums of 
flows at the tolled links under the two schemes are plotted in Fig. 14. Fig. 13(a) shows that links 27, 
32, and 48 experience large flow fluctuations under the no pricing scheme. In contrast, the flow at each 
of the ten links almost converges under the proposed toll scheme, as can be seen in Fig. 13(b). 
Moreover, Fig. 13 demonstrates that the proposed toll scheme could lead to a lower sum of flows at 
the tolled links than that under the no pricing scheme on every day. At the end of the toll planning 
horizon, each of the 10 tolled links has a lower flow than it does under the no pricing scheme, with the 
percentage of link flow reduction ranging from 4.5% to 18%. Hence, the proposed toll scheme can 
effectively alleviate traffic congestion at the tolled links.  
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(a) Under the no pricing scheme 

 
(b) Under the proposed toll scheme 

Fig. 13 Flow evolution trajectories at the 10 tolled links 
 



29 

 
Fig. 14 Evolution trajectories of the sums of flows at the tolled links under the proposed toll scheme 

and under the no pricing scheme 
 

4. Conclusions 

Static pricing is a dominant form of congestion pricing in practice. Most current methods for static 
pricing design assume that an equilibrium can be eventually reached. However, in reality, the 
equilibrium may not be reached within the toll planning horizon, and thus the equilibrium-based 
pricing schemes may be ineffective in alleviating traffic congestion. To address this problem, this study 
proposes a new method for static congestion pricing design in a bi-level modeling framework. In 
particular, we propose a new measure called CNP as the optimization objective function explicitly 
accounting for the network performances on each day within the toll planning horizon, rather than only 
focusing on the performance at the equilibrium state, as is done by most existing static pricing methods. 
In addition, we introduce a day-to-day dynamic model with the Weibit-based route flow adjustment to 
calculate the CNP measure. The Weibit-based route choice criterion in the proposed day-to-day 
dynamic model can overcome the drawbacks of the widely-used UE or Logit-based route choice 
criterion in most existing day-to-day dynamic models. Overall, the proposed method provides a new 
perspective in static pricing design for decision makers by optimizing the cumulative network 
performance within the toll planning horizon and considering the day-to-day dynamics with the 
Weibit-based adjustment process. 
 
The results from a series of numerical examples demonstrate the necessity of using the CNP measure 
as the optimization objective function for static pricing design, as the equilibrium state may not be 
reached within the toll planning horizon in some cases. The optimal toll scheme from the proposed 
method has a lower cumulative ETTT (network performance over the entire toll planning period) than 
the other two pricing schemes (i.e., marginal pricing and robust pricing) under various flow adjustment 
ratios. In addition, the proposed toll scheme generates moderate outcomes in terms of ETTT on day D 
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(i.e., the network performance on the last day of the toll planning horizon) and the worst-case ETTT 
within the toll period. Apart from the network-level performance improvement, we also examine the 
effectiveness of the proposed toll scheme at the O-D level, path-level, and link-level.  
 
When applying the proposed toll scheme design method, it is necessary to calibrate the model 
parameters from the real-world data in advance, including the flow adjustment ratio, the shape 
parameter in the Weibit model, the memory length, the weighting parameter, the link travel cost 
function, and the value of time. Naturally, the accuracy of the parameters can influence the 
effectiveness of the toll scheme. Besides, determining an optimal length of the toll planning horizon is 
also critical for policymakers. A too-long toll planning horizon may be ineffective while a too-short 
toll planning horizon might be confusing to road users and difficult to implement for traffic managers. 
 
Finally, a few directions are worthy of further investigation. (1) Although this study investigates the 
link-based toll scheme, the proposed framework can be extended to the design of other types of pricing 
schemes, such as distance-based pricing. (2) Empirical analyses are needed to validate the proposed 
day-to-day dynamic model. (3) Although the Weibit model used in this study is free from the 
identically distributed perception error assumption, it cannot cope with the route overlapping problem 
due to the independent perception error assumption. We can overcome this drawback by introducing 
a path-size factor. (4) To be more consistent with reality, the flow adjustment ratio should be calibrated 
from real traffic data, such as Global Positioning System (GPS) data (Cheng et al., 2019), which may 
vary from one day to another (Zhou et al., 2017; Ye et al., 2018). (5) The initial path flow settings in 
this paper are hypothetical. To get an efficient toll scheme, it is necessary to input an accurate initial 
path flow pattern obtained from real-world data. 
 
Appendix A: Sensitivity analysis in the illustrative network 
In the following, we conduct sensitivity analyses on the setting of the initial flow pattern, the length of 
the toll planning horizon, and the memory length in the illustrative network used in Section 3.1. All 
the following experiments are conducted with the flow adjustment ratio 𝛼𝛼𝑑𝑑 = 0.5. 
 
(1) The setting of the initial flow pattern 
Below we compare a different initial path flow pattern with the previously used evenly distributed path 
flow pattern. The new initial path flow pattern (3034.42, 1741.97, 3034.42, 189.19, 1522.23, 2651.64, 
873.87, 1522.23, 501.67, 873.87, 54.49) is obtained by performing the Weibit loading with link free-
flow times. We plot the evolution curves of the expected total travel time under the no pricing scheme 
and under the proposed optimal toll schemes corresponding to the two initial path flow patterns. 
 
As shown in Fig A.1, the proposed pricing schemes under both settings of initial flow pattern can 
effectively alleviate the network performance fluctuation and drive the network flow states to similar 
near-equilibrium states within 30 days. This well demonstrates the effectiveness and robustness of our 
proposed method. 
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Fig A. 1 The evolution curves of expected total travel time under the no pricing scheme and under 

the proposed optimal toll schemes corresponding to the two initial flow patterns 
 
(2) The length of the toll planning horizon 
Below we compare four settings of toll planning horizon: D = 20, 30, 40 and 50. We plot the evolution 
curves of the expected total travel time under the optimal toll schemes corresponding to the four values 
of D in Fig A.2. Since we only focus on one toll horizon, the former three curves are truncated before 
50 days. The evolution curve of the expected total travel time under the no pricing scheme within 50 
days is also plotted for comparison.  
 

 
Fig A. 2 the evolution curves of expected total travel time under the optimal toll schemes 

corresponding to the four values of D 
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From Fig A.2, all the four pricing schemes can effectively mitigate the network performance 
fluctuation regardless of the length of toll planning horizon. Additionally, the ETTT at the end of the 
toll horizon tends to increase with the length of toll planning horizon. For example, the ETTT of day 
50 on the blue curve is larger than that of day 40 on the red curve. This implies the benefit of updating 
the toll pattern more frequently (i.e., setting a shorter toll planning horizon) according to the previous 
network condition. The results indicate that there is a tradeoff for planners to determine the length of 
the toll horizon, such that not only the tolling effectiveness can be guaranteed but also the road users 
would not get confused due to a short toll horizon. 
 
(3) The memory length 
Below we compare the infinite memory length with the previous used finite memory length (i.e., m = 
3). In the case of infinite memory length, Eqs. (7) - (10) are adopted to calculate the predicted travel 
cost on each day instead. The evolution trajectories of the expected total travel time under the two 
assumptions of memory length without pricing are plotted in Fig. A.3.  

 
Fig A. 3 The evolution trajectories of the expected total travel time under the two assumptions of 

memory length without pricing 
 
From Fig A.3, we can observe that adopting the infinite memory length assumption in the day-to-day 
dynamic model may underestimate the network flow fluctuation. This assumption may further lead to 
a less effective toll scheme since travelers’ memories are finite in reality. It is thus necessary to 
consider travelers’ memory length in modelling day-to-day dynamics as in many existing studies (e.g., 
Cascetta, 1989; Cantarella and Watling, 2016; Liu et al., 2017).  
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