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Abstract

Connected and automated vehicles (CAVs) and regular human-piloted vehicles (RVs) will coexist in the
near future. Research has indicated the feasibility of using CAVs to stabilize the traffic flow and eliminate
stop-and-go waves. In light of this, we develop nonlinear distributed control schemes to stabilize a mixed
vehicular platoon by using a CAV as the leading vehicle. We address several practical challenges such as:
the limited information perception capabilities of RVs (e.g., the potential unavailability of the acceleration
information of the preceding vehicle for the following vehicle), the uncertainty of the actuators via human
drivers or unmodeled dynamics, and external disturbances (e.g., the unavailability of time-varying control
input of the leading CAV). Only local information from the preceding vehicle, which can be obtained from
commercially implemented adaptive cruise control systems, is known by a following RV, and is thus used
in the control design. Platoon control schemes based on the constant space headway policy and constant
time headway policy are synthesized. In particular, input-to-state string stability (ISSS) is adopted to aid
the control design. Modifications of the ISSS concept are established to cope with the uncertainty and
disturbance characteristics while conditions for stability are derived. The proposed control schemes can
effectively attenuate or reject the effect of disturbances while maintaining the ISSS property. The relation-
ships between ISSS and other state-of-the-art string stability concepts are clarified. The ISSS concept can
include several string stability concepts as special cases. Finally, numerical experiments are conducted to
validate the computational feasibility and the effectiveness of the proposed platoon control schemes.
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1. Introduction

With the rapid development of connected and automated vehicles (CAVs), vehicular platoon control (or
cooperative adaptive cruise control (CACC)) for CAVs has become a hot topic since it can simultaneously
enhance highway safety and improve traffic efficiency, which are often seen as two contradictory objectives
in conventional traffic engineering (Talebpour and Mahmassani, 2016; Besselink and Johansson, 2017; Li
et al., 2018; Chen et al., 2019; Khalifa et al., 2020; Pan et al., 2020). The success of CACC relies on
the abundance of sensors and machine intelligence equipped by the CAVs and the amount of dedicated
short-range communication (DSRC) units, e.g., the vehicle-to-vehicle communication (V2V) and vehicle-
to-infrastructure (V2I) communication. Jia and Ngoduy (2016) used the last available state of the leading
vehicle to estimate its current state, and designed a consensus-based controller for cooperative driving while
considering the impact of intervehicular communication delay and packet loss. Santini et al. (2018) pro-
posed a consensus-based longitudinal controller based on the leader’s information obtained from the V2V
and V2I communications. Wang et al. (2020a) proposed a CACC strategy for CAVs by incorporating
communication-related constraints. Comprehensive reviews on the CACC schemes for CAVs can be found
in Feng et al. (2019); Wang et al. (2020); Eskandarian et al. (2019).

However, it is expected that traffic will still be dominated by regular human-piloted vehicles (RVs) in
the near future. Compared with CAVs, RVs possess limited information perception capability and permit
actuator uncertainty from human drivers. The design of CACC for traffic with a mix of RVs and CAVs
remains a major challenge that is critical for the development and deployment of CAVs. Zhang and Orosz
(2017) studied the consensus and disturbance attenuation for CACC strategies in a mixed vehicular platoon.
Monteil et al. (2019) linearized several car-following models and applied frequency domain stability anal-
ysis to derive the string stability of a mixed platoon. Zhou et al. (2020) used multiple CAVs to stabilize a
mixed vehicular platoon by using a new definition of “head-to-tail” string stability in the frequency domain.
Stern et al. (2018) demonstrated the feasibility of using a CAV to stabilize a mixed traffic flow with RVs
and eliminate stop-and-go waves on a ring track. CAVs are usually randomly distributed in the mixed traffic
stream in the literature on transportation (see e.g., Xie et al. (2018), Pan et al. (2019), Pan et al. (2020),
Zhou et al. (2020)). Jia et al. (2019) found that the order of vehicle types in a heterogeneous platoon of
mixed traffic impacts platoon dynamics. It was also found that the scenario of all RVs following the CAVs
in the platoon outperforms all other scenarios. On the other hand, adaptive cruise control (ACC) systems
are now widely available as standard features for RVs (Gunter et al., 2020). With ACC systems, RVs can
detect the relative positions and velocities of the preceding vehicles (Eskandarian et al., 2019). In this paper,
ACC systems are considered to be mounted by all RVs. Therefore, it is wise to use a CAV as the leading
vehicle of a platoon to control the motions of the following RVs using only the local information that can
be accessed by commercially implemented ACC systems. Meanwhile, the trajectory of the CAV can be
optimized by the traffic management center (TMC). Several practical challenges must be addressed for the
vehicular platoon control of mixed traffic: a) the limited sensing/communication capabilities of RVs (e.g.,
the acceleration information of the preceding vehicle may not be available to the following vehicle), which
means that only local information that can be obtained from commercially implemented ACC systems, such
as the relative positions and velocities, should be used in the control schemes; b) the actuator uncertainty
due to human drivers and the unmodeled dynamics during the linearization process of the car-following
dynamics; and c) external disturbances (e.g., variation in the velocity of the leading vehicle of a platoon and
the time-varying control input from the TMC to the leading CAV is unavailable for the following RVs).

A primary objective of vehicular platoon control is string stability. String stability implies that small
perturbations will be dissipated (or attenuated) as they propagate along the vehicles in the platoon (Zhou
et al., 2019). Otherwise, the platoon is considered string unstable. Platoon string instability can cause the
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emergence of traffic jams, such as “stop and go”, and it can even cause traffic accidents. The string stability
involved in the platoon controller design is interpreted as a performance criterion rather than a stability
property in the literature. Therefore, a wide range of notions of string stability have been introduced over
the years that are rather ambiguous. Several approaches such as the Lyapunov analysis, spatially invariant
linear systems, and the frequency domain criteria have been developed in the literature for analyzing the
string stability of a vehicular platoon. In particular, string stability in the literature usually considers a one-
vehicle lookahead topology in a homogeneous vehicle platoon of CAVs wherein the response to an initial
condition perturbation of a single vehicle in the platoon is considered. This approach ignores the initial
condition perturbations of other vehicles and external disturbances. A comprehensive review of these string
stability notions can be found in Feng et al. (2019), wherein their relationships are also discussed.

In the field of control theory, the cooperative control problem of vehicles can be modeled as a multi-
agent system (MAS) control problem (Cao et al., 2010; Wang et al., 2020b,c). Vehicles that are capable of
self-navigation can be viewed as leader agents (the leading vehicles), while other vehicles can be viewed as
follower agents (the following vehicles). The desired offset between agents (i.e., formation geometry) that
describes the desired distance between any two successive vehicles is another important design criterion in
a vehicular platoon control application. Two major policies of formation geometry for vehicular platoons
are used in the literature: a) the constant space headway (CSH) policy (Konduri et al., 2017), in which the
desired intervehicular distance between two consecutive vehicles is a constant and is independent of the
vehicle velocities; and b) the constant time headway (CTH) policy (Bian et al., 2019), wherein the desired
intervehicular distance between two consecutive vehicles varies with their vehicle velocities difference. The
advantage of the CTH policy is that it can regulate the headway of vehicles according to real-time traffic
conditions, e.g., the speed or density of traffic flow. This makes time headway of vehicles more consistent
with the reaction time of human drivers. Peng et al. (2014) considered the cooperative tracking of linear
multiagent systems with a dynamic leader whose input information is unavailable to any followers. Li et al.
(2012) studied the distributed tracking control problem of multiagent systems with general linear dynamics
and a leader whose control input is nonzero and not available to any followers. However, these studies did
not consider the practical desired distance between neighboring vehicles. To fill this gap, we analyze the
CSH policy and CTH policy in the synthesis of the proposed platoon control scheme design. Conditions for
stability are provided.

This paper devises vehicular platoon control schemes by using a CAV as the leader to guide the RVs in
the platoon. The motion (trajectory, acceleration, or deceleration) of the CAV is planned by the TMC. The
time-varying control input to the CAV (from the TMC) is not available to the following RVs. Naturally,
the time-varying control input to the CAV is regarded as a bounded disturbance to the vehicular platoon.
Each RV adjusts its acceleration and velocity according to the relative motion state of its preceding vehicle.
The imperfect actuation of human drivers is considered. Nonlinear platoon control schemes are designed to
attenuate the uncertainty and disturbances satisfying certain assumptions. Only local information from the
preceding vehicle is known for a following vehicle, i.e., the relative position and velocity, and thus only this
limited information is used in the control design. The main contributions of this paper are summarized as
follows.

• Vehicular platoon control schemes are proposed for mixed traffic composed of CAVs and RVs con-
sidering both the constant space headway (CSH) policy and the constant time headway (CTH) policy.

• The proposed platoon control schemes address several practical challenges regarding the RVs, e.g.,
the limited sensing/communication capabilities of RVs; the uncertainty of the actuators via human
drivers and the unmodeled dynamics during the linearization process of the car following dynamics;
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and external disturbances.
• Due to the abovementioned challenges induced by RVs, the concept of input-to-state string stability

(ISSS) is introduced for analyzing the string stability of the platoon system. ISSS describes the impact
of time-varying unknown bounded external disturbances to the platoon. Assuming the uncertainty is
bounded as most existing studies do, the system state is proven to be bounded regardless of the actual
uncertainty via the ISSS concept. The relationships between ISSS and other state-of-the-art string
stability concepts are clarified. The ISSS concept can include several string stability concepts as
special cases.

The rest of this paper is organized as follows. Section 2 formulates the vehicular platoon control prob-
lem. Section 3 devises the distributed platoon control schemes with respect to different formation geometry
policies. Section 4 analyzes the stability of the proposed control schemes under both the CSH policy and the
CTH policy. Section 5 presents numerical experiments. Section 6 concludes the paper. Some preliminaries,
useful lemmas and nomenclature are presented in the Appendix.

2. Problem formulation for vehicular platoon control

As summarized by Li et al. (2015), a platoon control system mainly consists of four components: 1)
node dynamics; 2) information flow topology; 3) distributed control schemes, and 4) formation geometry.
In practical traffic management, managers always need to adjust the real-time velocity and the desired inter-
vehicular distance of the platoon. However, the lack of the V2I communication prevents RVs from receiving
real-time control commands. To solve this problem, the CAV is used as the leading vehicle to guide the RVs
in the platoon. The leading CAV receives input signals from the TMC through the V2I communication and
executes the control commands. The following RVs adjust their accelerations to maintain the same veloci-
ties as that of the leading CAV and the desired intervehicular distance by following the distributed platoon
control schemes.

2.1. Node dynamics

Consider a platoon of RVs as N following vehicles, indexed by i = 1, 2, ...,N, guided by a leading CAV,
indexed by i = 0, as shown in Fig. 1. UseV = {1, 2, · · · ,N} and V̄ = {0, 1, 2, · · · ,N} to represent the set of
the following vehicles and all vehicles, respectively.

…
RV CAV Sensor sensing

Input of Leader
𝑢0(𝑡)

Disturbances
𝜔1(𝑡)

Disturbances
𝜔2(𝑡)

Disturbances
𝜔𝑁−1(𝑡)

Disturbances
𝜔𝑁(𝑡)

Fig. 1. Platoon of RVs following the leading CAV

Let n denote the dimension of research objects, pi(t) ∈ Rn and vi(t) ∈ Rn represent the positions and
velocities of vehicles respectively. Then di(t) = pi(t)− pi−1(t) denote the position difference between vehicle
i and vehicle i − 1.

4



In the platoon control problem, the formation geometry, which describes the desired distance between
any two successive vehicles, is another important design criterion. The control objective is to regulate the
motions of RVs, such that all RVs can drive with a desired intervehicular distance while maintaining the
same velocity as that of the leading CAV.

Two major policies of formation geometry for vehicular platoons are used in the literature: a) the CSH
policy (Konduri et al., 2017), and b) the CTH policy (Bian et al., 2019). Using d∗i,i−1(t) ∈ Rn to represent
the desired intervehicular distance between two consecutive vehicles. For the CSH policy, the desired
intervehicular distance between two consecutive vehicles is independent of the vehicle velocities. The CSH
policy can be formulated as

d∗i,i−1(t) = si (1)

where si ∈ Rn is a constant vector that represents the desired standstill distance between vehicle i and
vehicle i − 1.

For the CTH policy, the desired intervehicular distance between two consecutive vehicles varies with
their velocity differences ∆vi(t). For the sake of simplicity, the values of the desired time headway τi are
assumed to be the same for all vehicles, i.e., τi = τ for all i ∈ V. The CTH policy can be formulated as:

d∗i,i−1(t) = τ∆vi(t) + si (2)

where τ = diag{τ1, τ2, · · · , τn} ∈ Rn×n is a diagonal matrix that represents the desired time headway of
vehicles, and si ∈ Rn possess the same meaning as in the CSH policy (1).

Then the position deviation ∆di(t) from d∗i,i−1(t) and the speed difference ∆vi(t) with respect to the
preceding vehicle can be defined as:

∆di(t) = pi(t) + d∗i,i−1(t) − pi−1(t) = d∗i,i−1(t) + di(t) (3)

∆vi(t) = vi(t) − vi−1(t) (4)

Node dynamics describes the behavior of each involved vehicle. For RVs equipped with ACC systems,
the control commands can be executed by the control unit of the ACC system. However, due to the actuator
uncertainty from human drivers and the unmodeled dynamics during the linearization process of the car
following dynamics, disturbances should be considered. By using disturbance ωi(t) to model the inaccurate
actuation by human drivers, a linear second-order model (Li et al., 2018; Zegers et al., 2017; Li et al., 2011;
Liu and Su, 2019) can be used to describe the vehicular dynamics (for i ∈ V̄):

ṗi(t) = vi(t),

v̇i(t) = ui(t) + ωi(t) (5)

where ui(t) ∈ Rn (i ∈ V) represents the control input of vehicle i. ωi(t) ∈ Rn represents the disturbances
acting on the dynamics of the following vehicle i (ω0(t) = 0), which are induced by the uncertainty present
in the actuator dynamics (inaccurate operation by human drivers) and the unmodeled RV car-following
dynamics (induced by the linearization process of the dynamics).

It should be noted u0(t) is the reference input control signal of the leading CAV obtained from the TMC,
which is unknown to the following RVs. This signal is thus regarded as an external disturbance to the
platoon system. And the design of u0(t) for the leading CAV is not a considered topic, instead, the design
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of the control schemes ui(t) (i ∈ V) for the following RVs is the interest of this paper.
For the CTH policy, the objective of platoon control is to regulate

∆ḋi(t) = ∆vi(t) + τ(ui(t) + ωi(t) − ui−1(t) − ωi−1(t)),

∆v̇i(t) = ui(t) + ωi(t) − ui−1(t) − ωi−1(t) (6)

Define xi(t) = [∆di(t),∆vi(t)]T ∈ R2n as the tracking deviation between vehicle i and vehicle i − 1, the
dynamics of the leading CAV and the following RVs can be formulated in a state-space form as follows (for
i ∈ V = {1, 2, ...,N}):

ẋi(t) = Axi(t) + (B + E)[ui(t) + ωi(t)] − (B + E)[ui−1(t) + ωi−1(t)] (7)

A =

 0 1

0 0

 ⊗ In, B =

 0

1

 ⊗ In, E =

 τ0
.

It should be noted that the CSH policy (1) can be viewed as a special case of the CTH policy by letting
τ = 0 in (2). Thus the remained paper mainly analyses the CTH policy, and the CSH policy can be analysed
as the CTH policy by letting τ = 0, i.e., E = 0, in (7).

Note that the dimension n means that the discussed controller can be applied in different dimensions
of space. For example, the conventional vehicular platoon control in the longitudinal dimension can be
described by letting n = 1 (i.e., 1-dimensional case) in (5).

Besides, in many applications, such as the platoon control of vehicles along a curved road or across an
intersection, the coordinated control of a group of mobile robots and the formation control of unmanned
aerial vehicles, multiple dimensional motions must be regulated. A similar analysis of the higher dimen-
sional case of (5) can be performed by using the Kronecker product. For example, in some scenarios
we need to control the vehicular dynamics in both longitudinal and lateral dimension, i.e., n = 2, the 2-
dimensional case. Vehicular platoon control on a curved road and passing through an intersection belong to
this case. For the 2-dimensional case, while disturbance ωi(t) is induced by the actuator uncertainty from
human drivers, the dynamics of the leading CAV and following RVs can be described as (i ∈ V̄):

ṗxi(t) = vxi(t),

ṗyi(t) = vyi(t),

v̇xi(t) = uxi(t) + ωxi(t),

v̇yi(t) = uyi(t) + ωyi(t) (8)

The dynamics (8) can also be reformulated in a state-space form as in (7) by defining the corresponding
state xi(t) = [∆dT

i (t),∆vT
i (t)]T = [∆dxi(t),∆dyi(t),∆vxi(t),∆vyi(t)]T , where ∆dxi(t) and ∆dyi(t) represent the

longitudinal and lateral position deviations of vehicle i, respectively, ∆vxi(t) and ∆vyi(t) are the longitudinal
and lateral velocities of vehicle i, respectively. The control input ui(t) = [uxi(t), uyi(t)]T , the disturbance

ωi(t) = [ωxi(t), ωyi(t)]T , matrix A =

 0 1

0 0

 ⊗ I2, and B =

 0

1

 ⊗ I2, and τ = diag{τ1, τ2} represent the

the longitudinal and lateral desired time headway of vehicles. In Example 5.2, we simulate the vehicular
platoon control for a curved road case via the proposed control schemes.

Remark 2.1. It should be noted that (5), (7) and (8) represent the single platoon control case. Multiplatoon
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control can be achieved by applying our control schemes in every platoon, while the cooperation between
the leading CAV of the platoons can be achieved by refining the network communication. A multiplatoon
control case is simulated in Example 5.3 as an important application of our control schemes.

Assumption 2.1. The reference input control signal u0(t) of the leading CAV in (7) is bounded, i.e., ‖u0(t)‖ ≤
r1, where r1 is the control input bound of the leading CAV. The disturbances ωi(t) are bounded for all fol-
lowing RVs, i.e., ‖ωi(t)‖ ≤ r2 for all .

In particular, the reference input control signal of the leading CAV obtained from the TMC and the
disturbances acting on the dynamics of the following RVs in practical scenarios are always bounded due to
the mechanical characteristics. Thus, Assumption 2.1 is reasonable.

2.2. Information flow topology

Information flow topology defines how vehicles exchange information with each other and thus de-
scribes the information that can be used by local control schemes. In this paper, RVs are assumed to be
equipped with commercially implemented ACC systems, which is consistent with the tendencies of the
automotive industry (Gunter et al., 2020). There are no V2V and V2I communications for RVs. Thus,
the accelerations of all vehicles and all information about other vehicles beyond those in the neighborhood
cannot be obtained. Each RV can only receive the relative position and velocity from its preceding vehicle
by the microwave radar of the ACC system.

A network of systems consisting of N following vehicles, indexed by i ∈ V = {1, 2, · · · ,N} is con-
sidered. Each following vehicle is considered as a node. Then the neighboring relationship among the
following vehicles can be described by a graph G = {V,E,A}, whose edge set is E ⊆ V × V and where
an element (i, j) describes the communication from a following vehicle i to another following vehicle j.
The neighbor vehicle set of vehicle i is denoted by Ai = { j | ( j, i) ∈ E}. A =

[
ai j

]N

i, j=1
∈ RN×N is used to

denote the adjacent matrix of graph G, where ai j is the weight of edge ( j, i) with ai j = 1 if (i, j) ∈ E (i.e.,
if a following vehicle i can obtain information from a following vehicle j) and ai j = 0 otherwise. A degree
matrix is defined as a diagonal matrixD = diag{d1, d2, · · · , dN} ∈ RN×N with di =

∑
j∈Ai ai j for node i. The

Laplacian matrix associated with the graph G is defined asL = D−A. Based on the sensing characteristics
of the ACC system, information flow topology is equivalent to predecessor following (PF) topology (Xiao
and Gao, 2011). According to the sensing topology described in Fig. 1, the neighborhood matrix for the
following RVs and the corresponding Laplace matrix can be written as:

A =



0 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


L =



0 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · −1 1


(9)

where L represents the link between the following RVs.
To represent the link between the following vehicles and the leading vehicle, a leader adjacency matrix

is defined as A0 = diag{a10, a20, · · · , aN0}, where ai0 = 1 if and only if a following vehicle i can access
information about the leading vehicle; otherwise, ai0 = 0. In the platoon system of this paper, only the RV
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following directly behind the leading CAV, i.e., the following vehicle i = 1, can obtain the relative position
and velocity of the leading CAV, thusA0 = diag{1, 0, 0, · · · , 0}. Let H = L +A0 represent the relationship
between the following vehicles and other following vehicles as well as the leading vehicle, then:

H =



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · −1 1


(10)

3. Control scheme design

It is assumed that all RVs are equipped with commercially implemented ACC systems. Based on the
ACC systems, the available information for control schemes for RVs is analyzed in Subsection 3.1, and the
control schemes are designed in Subsection 3.2 according to the available information.

3.1. Available information for the control schemes

This subsection analyzes the available information for the control schemes of the platoon system in this
paper. As described in Section 2, characteristics for the designs of the control schemes can be stated as
follows:

• RVs can only obtain local relative information, i.e., the relative positions and velocities of the preced-
ing vehicle, from the microwave radars of their commercially implemented ACC systems.

• RVs do not possess the ability to communicate by V2V or V2I communication, and only the RV
following directly behind the leading CAV can obtain the relative position and velocity of the leading
CAV.

• The time-varying control input of the leading CAV and the disturbances acting on the following RVs
are unavailable to any of the RVs.

Based on the available information, the control schemes can be designed as described in the next sub-
section.

3.2. Control scheme design according to the available information

To make the control schemes practical for application, for vehicle i, the relative positions ∆di(t) and
relative velocities ∆vi(t) of the preceding vehicle as well as its own information can be used. The state
deviation with respect to the preceding vehicle xi(t) = [∆di(t),∆vi(t)]T ∈ R2n can be considered to use in
the control schemes.

Based on the relative position and velocity of the preceding vehicle, inspired by the results in Peng et al.
(2014) and Li et al. (2012), the following control schemes (for i ∈ V) can be proposed for each following
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RV:

ui(t) = c1Kxi(t) + c2g (xi(t)) (11)

where c1 > 0 and c2 > 0 are constant gains and K is feedback gain matrix. g(·) is a nonlinear function
that is used to eliminate the impact of the time-varying reference input signal u0(t) on the dynamics of the
following RVs. g(·) is defined as follows:

g(xi(t)) =


Kxi(t)
‖Kxi(t)‖

, i f Kxi(t) , 0

0, i f Kxi(t) = 0
(12)

Remark 3.1. It should be noted that the control schemes (11) of the following RVs only utilize the relative
positions and velocities of the preceding vehicle and the state information (positions and velocities) of the
specific RV itself. Usually, RVs can obtain these information by using the radar of the ACC system, GPS
and velocity sensors. Thus, (11) is fully distributed and practically applicable for RVs.

4. Stability analysis of the closed-loop system

This section first recalls commonly used definitions of string stability in the platoon control problem.
To cope with the time-varying unknown bounded external input u0(t) and disturbance ωi(t) acting on the
dynamics of the following RVs, ISSS recommended by Feng et al. (2019) is adopted to aid the control
scheme design. After the clarification of the relationships between ISSS and other state-of-the-art string
stability concepts, the ISSS concept can be concluded to include several string stability concepts as special
cases. Then, stability conditions for platoon control schemes that synthesize the CSH policy and CTH
policy are derived.

4.1. Various platoon stability definitions and their relations

The tracking deviation (for i ∈ V) from the desired state with respect to the leading CAV, i.e., the
tracking deviation between vehicle i and the leading CAV, ηi(t) ∈ R2n is defined as:

ηi(t) =


pi(t) +

i∑
j=1

d∗j, j−1(t) − p0(t)

vi(t) − v0(t)

 (13)

For heterogeneous platoon, Jia and Ngoduy (2016) and Jia et al. (2019) proposed the following platoon
stability concept from consensus perspective as follows:

Definition 4.1. (Jia and Ngoduy, 2016; Jia et al., 2019) (Platoon stability). Given the system in (7), if the
state of any following vehicle i ∈ V within the same platoon satisfies:

lim
t→∞
‖ηi(t)‖ ≤ C0, (14)

where C0 is the upper bound of the constant positive state deviation, then the platoon is said to reach the
platoon stability.
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Lp string stability (LPSS) was proposed by Ploeg et al. (2013) to explicitly handle the external input for
the leading vehicle. For the following cascaded state-space system:

ẋ0 = fr(x0, u0)

ẋi = fi(xi, xi−1)

yi = h(xi) (15)

where u0 is the external input of the leading vehicle, xi is the state for i ∈ V̄, and yi is the output signal.

Definition 4.2. (Ploeg et al., 2013; Feng et al., 2019) (LPSS) The equilibrium point xi = 0, i ∈ V̄ of
system (15) is LPSS if there exist class K functions α and β such that, for any initial state x(0), where
x = (x0, · · · , xN) is the state vector, any external input for the leading vehicle u0, satisfies:

sup
i
‖yi(t)‖Lp

≤ α
(
‖u0(t)‖Lp

)
+ β

(
‖x(0)‖p

)
(16)

The concept of disturbance string stability (DSS) was proposed by Besselink and Johansson (2017) to
extend these definitions to systems with external disturbances for all vehicles with zero initial condition
perturbations.

Definition 4.3. (Besselink and Johansson, 2017) (DSS) The equilibrium point xi = 0, i ∈ V̄ of a system is
DSS if there exist a class K function α, a class KL function γ, and constants k1, k2 ∈ R

+, such that for any
initial condition xi(0) and additive disturbance ωi(t), i ∈ V̄, satisfying

sup
i
|xi(0)| < k1, sup

i
‖ωi(t)‖∞ < k2 (17)

the solution xi(t), i ∈ V̄, exists for all t ≥ 0 and satisfies

sup
i
|xi(t)| ≤ γ

(
sup

i
|xi(0)| , t

)
+ α

(
sup

i
‖ωi‖

[0,t]
∞

)
(18)

ISSS was recommended by Feng et al. (2019) as the formal definition of vehicle platoon string stability.
ISSS characterizes the boundedness of state fluctuations and the convergence of state fluctuations caused by
initial condition deviations, where boundedness and convergence hold for any platoon length. ISSS means
that bounded inputs (external disturbances) generate bounded states.

Definition 4.4. (Feng et al., 2019) (ISSS) The platoon system (7) is said to be ISSS if there exist a class K
function α and a classKL function γ such that, for each initial condition deviation x(0) and each input u(t),
satisfying:

‖x(0)‖p < k1, ‖u‖
[0,t]
L∞

< k2 (19)

there exists:

‖x(t)‖p ≤ γ(‖x(0)‖p, t) + α(‖u‖[0,t]
L∞

)

∀t ≥ 0 (20)
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Input-to-state stability (ISS) proposed in the field of control theory is a formal mathematical tool for
analyzing the ISSS. Details of ISS can be found in (Sontag and Wang, 1995; Sontag, 2008).

Definition 4.5. (Sontag and Wang, 1995; Sontag, 2008) A smooth function V : Rρ → R is called an
ISS-Lyapunov function for the system (7) if there exist class K∞ functions α1, α2, α3, α4, such that:

α1(‖x‖) ≤ V(x) ≤ α2(‖x‖) (21)

for any x ∈ Rρ and

V̇(x) ≤ −α3(‖x‖) + α4(‖u‖) (22)

for any x ∈ Rρ and any u ∈ Rm.

Lemma 4.1. (Sontag and Wang, 1995; Sontag, 2008) A system is ISS if and only if it results in a smooth
ISS-Lyapunov function.

According to Definition 4.5 and Lemma 4.1 for ISS, a platoon system is ISSS if and only if there exists
a smooth ISS-Lyapunov function.

According to the definition above of string stability, the following equivalences hold:

(1) IS S S =⇒ LPS S

(2) IS S S
p=∞
=⇒ DS S

(3) IS S S
p=2
=⇒ platoon stability (23)

where the proofs of (1) and (2) were given by Feng et al. (2019), and the proof of (3) is given as follows:
Proof: ISSS =⇒ platoon stability: If a system is ISSS, letting p = 2, we obtain

‖x(t)‖ ≤ γ(‖x(0)‖, t) + α(‖u‖∞) (24)

Thus,

lim
t→∞
‖x(t)‖ = α(‖u‖∞) ≤ α(k2) (25)

According to (13), it should be noted that:

xi(t) = ηi(t) − ηi−1(t) (26)

By letting η(t) = [ηT
1 (t), ηT

2 (t), · · · , ηT
N(t)]T , and x(t) = [xT

1 (t), xT
2 (t), · · · , xT

N(t)]T , (26) can be rewritten
in a compact form as:

x(t) = (H ⊗ I2n) η(t) (27)

where the tracking deviations of the leading CAV η0 and x0 are defined as η0 = 0 and x0 = 0. Therefore,
we obtain:

lim
t→∞
‖η(t)‖ ≤

∥∥∥(H ⊗ I2n)−1
∥∥∥α(k2) (28)
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Thus the conclusion follows.
As concluded above, ISSS can describe the impact of time-varying unknown bounded external dis-

turbances on the platoon, and ISSS can include the platoon stability concepts described in Definition 4.1,
Definition 4.2, and Definition 4.3 as special cases. Therefore, ISSS is adopted to aid the control scheme
design and analyze the string stability of the platoon system in this paper.

4.2. Stability analysis with the CTH policy and the CSH policy

This subsection analyzes the stability of the platoon control scheme based on the CTH policy and the
CSH policy. As the CSH policy is a special case of CTH policy, the subsection only gives the proof of the
CTH policy Theorem 4.1, and the proof of the CSH policy can be obtained by letting τ = 0 (i.e.,E = 0).

According to (7) and the control schemes proposed in (11), we obtain the closed-loop dynamics of the
tracking deviations as (i = 2, 3, · · · ,N):

ẋi (t) =Axi(t) + c1 (B + E) K [xi(t) − xi−1(t)]

+ c2 (B + E)
[
g(xi(t)) − g(xi−1(t))

]
+ (B + E) [ωi(t) − ωi−1(t)] (29)

For vehicle i = 1, the closed-loop network dynamics of the tracking deviations can be written as:

ẋ1 (t) =Ax1(t) + c1 (B + E) Kx1(t) + c2 (B + E) g(x1(t))

+ (B + E)ω1(t) − (B + E) u0(t) (30)

Then, (29) and (30) can be rewritten in a compact form as:

ẋ (t) = (IN ⊗ A + c1H ⊗ (B + E)K] x(t)

+ c2 [H ⊗ (B + E)] G(x) + H ⊗ (B + E)ω(t)

− [A01 ⊗ (B + E)] u0(t) (31)

where ω(t) = [ωT
1 (t), ωT

2 (t), · · · , ωT
N(t)]T , G(x) = [gT (x1(t)), gT (x2(t)), · · · , gT (xN(t))]T .

Then, Theorem 4.1 holds for the CTH policy as follows:

Theorem 4.1. Under the CTH policy, the ISSS of the platoon system is achieved when the parameters of
the platoon control schemes (11) are designed with the requirements that c2 ≥ 0, K = −(B + E)T P, while c1
and the positive definite matrix P are the solutions to the following matrix inequality:

AT P + PA + 2P(B + E)(B + E)T P − c1λmin(Σ)P(B + E)(B + E)T P < 0 (32)

where λmin(Σ) is the minimum eigenvalue of Σ = HT + H.
When c2 ≥ r1, the impact of the time-varying external disturbance u0(t) can be fully eliminated, and

(32) can be reduced to:

AT P + PA + P(B + E)(B + E)T P − c1λmin(Σ)P(B + E)(B + E)T P < 0 (33)

Proof 4.1. Consider the Lyapunov function candidate (34) (Lyashevskiy and Meyer, 1995) to analyze the
stability of the system under the CTH policy:

12



V = xT (t)(IN ⊗ P)x(t) (34)

P is positive definite, thus V is positive definite. Let K = −(B + E)T P, the time derivative of V along
the trajectory of (31) is given by:

V̇ =ẋT (t)(IN ⊗ P)x(t) + xT (t)(IN ⊗ P)ẋ(t)

=xT (t)
[
IN ⊗ (AT P + PA) − c1Σ ⊗ P(B + E)(B + E)T P

]
x(t)

+ 2c2xT (t)[H ⊗ PT (B + E)]G(x) − 2xT (t)
[
A01 ⊗ PT (B + E)

]
u0(t)

+ 2xT (t)[H ⊗ PT (B + E)]ω(t) (35)

where Σ = HT + H is positive definite.
By usingA0 = diag{a10, a20, · · · , aN0}, we obtain:

− 2xT (t)
[
A01 ⊗ PT (B + E)

]
u0(t)

= − 2
N∑

i=1

xT
i PT (B + E)ai0u0(t)

≤2
N∑

i=1

ai0‖(B + E)T Pxi‖‖u0(t)‖∞

≤2r1

N∑
i=1

ai0‖(B + E)T Pxi‖ (36)

From Young’s Inequality:

2xT (t)[H ⊗ PT (B + E)]ω(t)

≤xT (t)
(
IN ⊗ P(B + E)(B + E)T P

)
x(t) + λ2(H)max‖ω(t)‖2 (37)

Noting that:

xT
i PT (B + E)g (xi) = −

∥∥∥(B + E)T Pxi
∥∥∥

− xT
i PT (B + E)g

(
x j

)
≤

∥∥∥xT
i PT (B + E)

∥∥∥ ∥∥∥∥g
(
x j

)∥∥∥∥ ≤ ∥∥∥(B + E)T Pxi
∥∥∥ (38)
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Thus xT
i PT (B + E)[g (xi) − g(x j)] ≤ −

∥∥∥(B + E)T Pxi
∥∥∥ +

∥∥∥(B + E)T Pxi
∥∥∥ = 0. Then:

2c2xT (t)
[
H ⊗ PT (B + E)

]
G(x)

=2c2

N∑
i=1

xT
i PT (B + E)

N∑
j=0

ai j
(
g (xi) − g

(
x j

))
=2c2

N∑
i=1

xT
i PT (B + E)

[
ai0 (g (xi) − g (x0)) + ai1 (g (xi) − g (x1)) + · · · + aiN (g (xi) − g (xN))

]
≤ − 2c2

N∑
i=1

ai0
∥∥∥(B + E)T Pxi

∥∥∥ (39)

When c2 ≥ r1, choose c1 and a positive definite matrix P such that AT P + PA + P(B + E)(B + E)T P −
c1λmin(Σ)P(B + E)(B + E)T P = −Q < 0, where Q is positive definite. Let M be a unitary matrix such that
MT ΣM = diag{σ1, σ2, · · · , σN}, where σi is the eigenvalue of Σ. Let λmin(Σ) denote the minimum eigen-
value of Σ. We introduce a state transformation ε(t) = (MT ⊗ I2n)x(t) with ε(t) = [εT

1 (t), εT
2 (t), · · · , εT

N(t)]T .
Thus:

V̇ ≤xT (t)
[
IN ⊗ (AT P + PA) − c1Σ ⊗ P(B + E)(B + E)T P

]
x(t) + 2(r1 − c2)

N∑
i=1

ai0‖(B + E)T Pxi‖

+ xT (t)
(
IN ⊗ P(B + E)(B + E)T P

)
x(t) + λ2

max(H)‖ω(t)‖2

≤xT (t)
[
IN ⊗ (AT P + PA) − c1Σ ⊗ P(B + E)(B + E)T P + IN ⊗ P(B + E)(B + E)T P

]
x(t)

+ λ2
max(H)‖ω(t)‖2

≤

N∑
i=1

εT
i

[
AT P + PA + P(B + E)(B + E)T P − c1σiP(B + E)(B + E)T P

]
εi + λ2

max(H)‖ω(t)‖2

≤

N∑
i=1

εT
i

[
AT P + PA + P(B + E)(B + E)T P − c1λmin(Σ)P(B + E)(B + E)T P

]
εi

+ λ2
max(H)‖ω(t)‖2

= −

N∑
i=1

εT
i Qεi + λ2

max(H)‖ω(t)‖2

≤ − λmin(Q)‖x(t)‖2 + λ2
max(H)‖ω(t)‖2 (40)

For the case in which c2 ≥ r1, the impact of the time-varying input (external disturbance) u0(t) can be
fully eliminated by (12). According to Definition 4.5, it is clear that (34) is an ISS-Lyapunov function, and
thus, the vehicular platoon system with the CTH policy is ISSS according to Lemma 4.1.

When 0 < c2 < r1, the existence of c2 can weaken, rather than fully eliminate, the impact of the time-
varying input (external disturbance) u0(t). Assume that c2 = κ1r1 and ‖u0(t)‖ = κ2(t)r1, where κ1 ∈ (0, 1)
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and κ2(t) ∈ (0, 1]. Let κ(t) = 1 − κ1
κ2(t) < 1. Then:

‖u0(t)‖ − c2 =‖u0(t)‖ −
κ1

κ2(t)
‖u0(t)‖

=κ(t)‖u0(t)‖ (41)

Choose c1 and a positive definite matrix P such that AT P + PA + 2P(B + E)(B + E)T P− c1λmin(Σ)P(B +

E)(B + E)T P = −Q < 0, where Q is positive definite. Similar to the analysis in (40), using (41), we obtain:

V̇ ≤xT (t)
[
IN ⊗ (AT P + PA) − c1Σ ⊗ P(B + E)(B + E)T P

]
x(t)

+ 2(r1 − c2)
N∑

i=1

ai0‖(B + E)T Pxi‖ + xT (t)(IN ⊗ P(B + E)(B + E)T P)x(t) + λ2
max(H)‖ω(t)‖2

≤xT (t)
[
IN ⊗ (AT P + PA) − c1Σ ⊗ P(B + E)(B + E)T P + IN ⊗ (P(B + E)(B + E)T P)

]
x(t)

+ 2κ(t)‖u0(t)‖
N∑

i=1

ai0‖(B + E)T Pxi‖ + λ2
max(H)‖ω(t)‖2

≤xT (t)
[
IN ⊗ (AT P + PA) − c1Σ ⊗ P(B + E)(B + E)T P + IN ⊗ (P(B + E)(B + E)T P)

]
x(t)

+

N∑
i=1

‖(B + E)T Pξi‖
2 + κ2(t)‖u0(t)‖2 + λ2

max(H)‖ω(t)‖2

≤

N∑
i=1

εT
i

[
AT P + PA + 2P(B + E)(B + E)T P − c1σiP(B + E)(B + E)T P

]
εi

+ κ2(t)‖u0(t)‖2 + λ2
max(H)‖ω(t)‖2

= −

N∑
i=1

εT
i Qεi + κ2(t)‖u0(t)‖2 + λ2

max(H)‖ω(t)‖2

≤ − λmin(Q)‖x(t)‖2 + κ2(t)‖u0(t)‖2 + λ2
max(H)‖ω(t)‖2 (42)

According to Definition 4.5, it is clear that (34) is an ISS-Lyapunov function where:

α1(‖x‖) = λmin(IN ⊗ P)‖x‖2

α2(‖x‖) = λmax(IN ⊗ P)‖x‖2

α3(‖x‖) = λmin(Q)‖x‖2

α4(‖u‖) = κ2(t)‖u0(t)‖2 + λ2
max(H)‖ω(t)‖2 (43)

Thus, the vehicular platoon system is ISSS according to Lemma 4.1. Platoon stability Definition 4.1,
and other vehicle platoon string stability Definition 4.2, and Definition 4.3 are achieved naturally.

Similarly, by letting E = 0, ISSS conditions of the CSH policy can be shown as follows.

Theorem 4.2. Under the CSH policy, the ISSS of the vehicular platoon system is achieved when the pa-
rameters of the platoon control schemes (11) are designed with the requirements that c2 ≥ 0, K = −BT P,

15



while c1 and the positive definite matrix P are the solutions to the following matrix inequality:

AT P + PA + 2PBBT P − c1λmin(Σ)PBBT P < 0 (44)

where λmin(Σ) is the minimum eigenvalue of Σ = HT + H.
When c2 ≥ r1, the impact of the time-varying external disturbance u0(t) can be fully eliminated, and

(44) can be reduced to:

AT P + PA + PBBT P − c1λmin(Σ)PBBT P < 0 (45)

Remark 4.1. When c2 ≥ r1, the impact of the time-varying external disturbance u0(t) can be fully elimi-
nated. That means no matter what acceleration or deceleration operations the leading CAV performs, the
following vehicles can track the trajectory of the leading CAV. However, from the view of practical applica-
tions, c2 contains practical physical meaning, a larger value of c2 indicates a larger maximum acceleration
of the following RVs. Currently, most CAVs are electric vehicles, while RVs are usually fuel vehicles with
less sensing capability, RVs are less reactive than CAVs. Thus, the control parameter c2 ≥ r1 is not useful
in some practical platoon systems. And in this case, ISSS shows its advantage of being able to describe the
existence of bounded state under the bounded disturbance. From a more practical view, under the constraint
0 < c2 < r1, ISSS has been proven to hold under Theorem 4.1 and Theorem 4.2 for the proposed control
schemes in (11) under the CTH policy and CSH policy, respectively.

5. Numerical examples

This section verifies the effectiveness of the control schemes in (11) via numerical simulations under
various scenarios. As mentioned, under the heterogeneous mixed traffic with CAVs and RVs, the leading
vehicles (i.e., the CAVs) are used to guide the following vehicles (i.e., the RVs) while ensuring that the
following RVs maintain the trajectories of the leading CAVs.

The dynamics of the vehicles are described by (5). Consider a single group of vehicles composed of one
leading CAV and six following RVs in Example 5.1 and Example 5.2, and multiple groups of vehicles in
Example 5.3. The leading vehicles are CAVs that are capable of self-navigation by following the trajectory
optimized by the TMC. Because the CSH policy can be viewed as a special case of the CTH policy by
letting τ = 0 for all following RVs, this section focuses on the validation of Theorem 4.1. The control
schemes in (11) are used to regulate the longitudinal motions and lateral motions of the following RVs,
and the parameters of the proposed control schemes (11) c1, c2 and K are designed by solving the ISSS
conditions (32) in Theorem 4.1.

Example 5.1. Straight road case for longitudinal control of a single platoon

Example 5.1 (a 1-dimensional straight road case for longitudinal control of a single platoon) is per-
formed to validate the efficiency of the proposed vehicle platoon control scheme (11) while using CTH
policy for a single platoon. In this example, all vehicles are assumed to be driving on a straight road, and
the platoon control objective is to regulate the longitudinal positions and velocities of the following RVs
such that the following RVs can track the longitudinal motion of the leading CAV.

The leading CAV receives information from the TMC through the V2I communication and executes the
control commands. btc is a downward rounding function which rounds each element of the duration array
t to the nearest number of seconds less than or equal to that element. In Example 5.1, the disturbance ωi(t)
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is assumed to performed on 3th following RV (the middle of the platoon) by ω3(t) = 3 × (−1)btc. In this
example, the leading CAV is assumed to accelerate by the following three profiles:

• (a) The leading CAV drives by step-function signal, i.e., u0(t) = 3 × (−1)bt/2c.
• (b) The leading CAV drives by sinusoidal function signal, i.e, u0(t) = 3sin(2t).
• (c) The leading CAV drives by the following cruise mode:

u0(t) =


3 0 ≤ t < 5 s,

0 5 ≤ t < 10 s,

− 3 10 ≤ t < 15 s,

0 15 ≤ t < 20 s,

(46)

Let A =

 0 1

0 0

, and B =

 0

1

. Then, (32) in Theorem 4.1 can be solved with appropriate value by

c1 = 7, c2 = 3, and P =

 1 0

0 2

, K = −(B + E)T P =

[
−1 −2

]
. Then, the control scheme (11) can be

applied to regulate the motion of the following RVs.
The desired longitudinal time headway of vehicle i is set to τ = 1 s, and the desired intervehicular

longitudinal standstill distance between two consecutive vehicles is assumed to be the same for all vehicles,
i.e., si = 5 m for i = 1, 2, · · · ,N. The initial states of the vehicles are stated as Table 1.

Table 1: The Initial States of Platoon in Example 1

Platoon Index Position (m) Velocity (m/s)

String 1

the leading CAV 290 15

the following RV 1 270 16

the following RV 2 257 16

the following RV 3 242 14

the following RV 4 231 15

the following RV 5 223 14

the following RV 6 214 16

The simulation is performed under the control scheme in (11). Fig. 2 depicts the simulation results of
Example 5.1. The longitudinal state trajectories of the leading CAV and the following RVs of three drive
profiles are shown in Fig. 2(a),(c),(e), respectively. The longitudinal state trajectories of the following RVs
converge to the longitudinal state of the leading CAV as demonstrated in Fig. 2(a),(c),(e).

And the norm of the state-tracking deviations of the following RVs of three drive profiles is shown in
Fig. 2(b),(d),(f), respectively. According to the result of Fig. 2(b), (d), (f), the norm of the tracking deviations
xi(t) between vehicle i and i−1 decrease along with the vehicle platoon, i.e., the perturbations are dissipated
as they propagate along with the vehicles in the platoon. And Fig. 2(b), (d), (f) depicts the good performance
of the state-tracking deviations of all following RVs that the norm of the state-tracking deviations remains
bounded regardless of the existence of the unknown external control input of the leading CAV (u0(t)) and
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(a) State trajectories of the leading CAV and following RVs
under step-function signal in Example 5.1
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(b) Norm of the tracking deviations of the following RVs
under step-function signal in Example 5.1
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(c) State trajectories of the leading CAV and following RVs
under sinusoidal function signal in Example 5.1
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(d) Norm of the tracking deviations of the following RVs
under sinusoidal function signal in Example 5.1

0 2 4 6 8 10 12 14 16 18 20

t(s)

200

400

600

800

P
os

iti
on

 (
m

)

i=0
i=1
i=2
i=3

i=4
i=5
i=6

0 2 4 6 8 10 12 14 16 18 20

t(s)

10

15

20

25

30

35

V
el

oc
ity

 (
m

/s
)

(e) State trajectories of the leading CAV and following RVs
under cruise mode in Example 5.1
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(f) Norm of the tracking deviations of the following RVs
under cruise mode in Example 5.1

Fig. 2. Simulation results of Example 5.1
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disturbances ωi(t) (the uncertainty of the actuator via human drivers). Although the disturbances ωi(t) are
performed in the middle of the platoon, the performance of the platoon is still stable enough. From Fig. 2,
we can see that once the platoon converges to be stable, the whole platoon will keep consensus, no matter
how the leading CAV accelerates or decelerates with a bounded value.
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(a) Tracking deviations norm while r2 = 5
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(b) Tracking deviations norm while r2 = 10
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(c) Tracking deviations norm while r2 = 15
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(d) Tracking deviations norm while r2 = 20

Fig. 3. Simulation results under different values of the disturbance ωi(t)

To analyze the influence of the value and position of the disturbance ωi(t), sensitivity analysis of distur-
bance ωi(t) is conducted. The disturbance ωi(t) is assumed to performed on 3th following RV (the middle
of the platoon) by ω3(t) = r2 × (−1)btc, where r2 = 5, 10, 15, 20 respectively. From the result of the simula-
tion, as shown in Fig. 3, the amplitude of the fluctuations increases with the increase of the upper bound of
disturbance ωi(t). However, the fluctuations are small on the whole and bounded even under unrealistically
mild conditions (the external disturbance usually does not exceed 10).

To analyse the influence of the disturbance ωi(t), the disturbance is set to perform on different vehicles,
and the disturbance ω2(t) = 3 × (−1)btc, ω3(t) = 3 × (−1)bt/2c, ω4(t) = 3 × (−1)bt/4c, ω5(t) = 3 × (−1)bt/5c

are set to be active under corresponding scenarios. The result of the simulation is showed in Fig. 4. From
Fig. 4, the influence of the position of disturbance is very tiny, the overall performance of the platoon does
not decline much.

Thus, the objective is achieved by utilizing the proposed control schemes to bind the state deviations of
the following RVs under bounded external disturbances and follow the leading CAV, i.e., the ISSS of the
vehicle platoon is ensured. By using our proposed control schemes, the leading CAV can guide the travel
of the following RVs to pass through the straight road according to Example 5.1.

Example 5.2. Curved road case for lateral and longitudinal control of a single platoon

As extensions of this practical application, Example 5.2 is performed to validate the efficiency of the
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(a) Tracking deviations norm while the disturbance
performed on vehicle 2
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(b) Tracking deviations norm while the distur-
bance performed on vehicle 2 and 3

0 5 10 15 20

t(s)

0

5

10

15

N
or

m
 o

f t
he

 tr
ac

ki
ng

 d
ev

ia
tio

ns
be

tw
ee

n 
ve

hi
cl

e 
i a

nd
 i-

1 i=1
i=2
i=3

i=4
i=5
i=6

(c) Tracking deviations norm while the disturbance
performed on vehicle 2, 3 and 4
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(d) Tracking deviations norm while the distur-
bance performed on vehicle 2, 3, 4 and 5

Fig. 4. Simulation results under different positions of the disturbance ωi(t)

proposed control schemes (11) for a single platoon (2-dimensional curved road case for longitudinal and
lateral control). In this example, it is assumed that the leading CAV is driving with a time-varying velocity
on a curved road, and the longitudinal and lateral positions and velocities of the following RVs need to be
regulated. The initial states of the vehicles are stated as Table 2.

Table 2: The Initial States for Platoon in Example 5.2

Platoon Index Position (m) Velocity (m/s)

String 1

the leading CAV (310,0) (15,0)

the following RV 1 (286,-1) (16,0.5)

the following RV 2 (264,1) (16,-0.5)

the following RV 3 (247,-1) (14,0.5)

the following RV 4 (224,1) (15,-0.5)

the following RV 5 (206,-1) (14,0.5)

the following RV 6 (181,1) (16,-0.5)

Accordingly, for Example 5.2, the corresponding state xi(t) = [pxi(t), pyi(t), vxi(t), vyi(t)]T , where pxi(t)
and pyi(t) represent the longitudinal and lateral positions of vehicle i, respectively, and vxi(t), vyi(t) are the
longitudinal and lateral velocities of vehicle i, respectively.

And the leading CAV is driven by accelerating to pass through the curved road, after accepting the
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optimized trajectory planned by the TMC:

ux0(t) = uy0(t) =


3 0 ≤ t < 5 s,

0 5 ≤ t < 10 s,

− 3 10 ≤ t < 15 s,

0 15 ≤ t < 20 s,

(47)

The control input ui(t) = [uxi(t), uyi(t)]T , the disturbance ωi(t) = [ωxi(t), ωyi(t)]T , A =

 0 1

0 0

 ⊗ I2,

B = D =

 0

1

 ⊗ I2, the disturbance is assumed to performed on the longitudinal and lateral dynamics of

3th following RV (the middle of the platoon) by ωx3(t) = ωy3(t) = 3 × −1btc.
The simulation is performed under the control scheme in (11). The parameter of the proposed control

schemes (11) can be calculated by solve the (32) in Theorem 4.1. Similarly to Example 5.1, we can get

c1 = 7, c2 = 3, and K = −BT P =

[
−1 −2

]
⊗ I2. Let τ =

 1

0

 s, i.e., the longitudinal and lateral

desired time headway of vehicles is 1 s and 0 s, respectively. Let si =

 5

0

 m, i.e., the longitudinal

and lateral desired intervehicular standstill distance between two consecutive vehicles is 5 m and 0 m,
respectively. And the values of the other parameters are the same as in Example 5.1
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(a) State trajectories of the leading CAV and following RVs
for the curved road in Example 5.2
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(b) Norm of the tracking deviations of the following RVs for
the curved road in Example 5.2

Fig. 5. Simulation results of Example 5.2

Then, we obtain the state trajectories of the leading CAV and following RVs shown in Fig. 5(a), and
the norm of the tracking deviations shown in Fig. 5(b). The bounded unknown external control input of the
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CAV (i.e., u0(t) that is regarded as disturbance) and bounded disturbances ωi(t) generate bounded tracking
deviations of vehicles. The state trajectories of the following RVs converge to the state of the leading CAV
as demonstrated in Fig. 5(a), though there is some fluctuation under the influence of ωi(t).

As u0(t) converges to zero, the norm of the tracking deviations of the following RVs converges to
zero, as shown in Fig. 5(b). And all following RVs can drive with the desired inter-vehicular distance
while maintaining the same velocities as those of the leading CAV when the leading CAV travels by a
curved trajectory. As shown in Fig. 5(a), Fig. 5(b), the platoon is driven to form a stable formation under
the external disturbances by utilizing our proposed control schemes, and the ISSS of the vehicle platoon
is ensured. The leading CAV can guide the route of the following RVs to pass through the curved road
according to Example 5.2.

Example 5.3. Straight road case for control of multiple platoons

In this example, as stated in Remark 2.1, the efficiency of (11) for multiple platoon control is validated.
Three platoons (indexed by platoon k = 1, 2, 3, where platoon 1 is assumed to be the leading platoon), where
each platoon is composed of 1 leading CAV and 6 following RVs, are considered in this simulation. It is
assumed that 3 leading CAVs are driving with a time-varying velocity on a straight road and the following
RVs follow the leading CAV of each platoon, all leading CAVs cooperate and drive in a constant formation.
The optimized control demands of the leading CAVs of the leading platoon are transmitted from the TMC
by the wireless network or planned by itself.

The cooperation of leading CAVs can also be considered as a platoon control mechanism, where the
leading CAVs of other platoons are forced to follow the motion of the leading CAV of the leading platoon
(platoon 1) while maintaining the desired state deviations. Use ∆dk

0(t) and ∆vk
0(t) to represent the position

deviation and speed difference of the leading CAV of platoon k corresponding to the leading CAV of the
leading platoon, respectively. Similar control schemes can be used to regulate the longitudinal and lateral
motions of leading CAVs like in (11), i.e., the longitudinal control schemes and lateral control schemes for
the leading CAVs in string k (k = 1, 2, 3) are designed as follows:

uk
0(t) = c1Kxk

0(t) + c2g
(
xk

0(t)
)

(48)

where uk
0(t) represents the control input of the leading CAV of platoon k and xk

0(t) = [∆dk
0(t),∆vk

0(t)]T

represents the state-tracking deviations of the leading CAV of platoon k corresponding to the leading CAV
of the leading platoon.

Use ∆dk
i (t) and ∆vk

i (t) to represent the position deviation and speed difference of the following RV i of
platoon k corresponding to the following RV i − 1 of platoon k, respectively. Then, the extension of (11) to
the multiple platoons control scenario is used to regulate the following RVs:

uk
i (t) = c1Kxk

i (t) + c2g
(
xk

i (t)
)

(49)

where uk
i (t) represents the control input of a following RV i of platoon k and xk

i (t) = [∆dk
i (t),∆vk

i (t)]T

represents the state-tracking deviations of the following RV i of platoon k corresponding to the following
RV i− 1 of platoon k. It can be seen from (49) that the control scheme of the following RVs of each platoon
is the same as the single platoon control scheme (11). The initial states of the vehicles are stated as Table 3.
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The leading CAV of string 1 is assumed to drive by:

u1
x0(t) =


3 0 ≤ t < 5 s,

0 5 ≤ t < 10 s,

− 3 10 ≤ t < 15 s,

0 15 ≤ t < 20 s,

u1
y0(t) = 0 (50)

The other settings are the same as in Example 5.2. Then, the position and velocity trajectories on the
longitudinal and lateral dynamics of the leading CAVs and the following RVs of string 1, string 2, and
string 3 are shown in Fig. 6(a), Fig. 6(b) andFig. 6(c), which show the trajectories of the following RVs
converge to the trajectories of the leading CAV of the corresponding string, respectively. The norms of the
state-tracking deviations of string 1, string 2, and string 3 can be obtained as shown in Fig. 6(d). As shown
in Fig. 6(d), it is clear that the norms of the state-tracking deviations of all following RVs of string 1, string
2, and string 3 are bounded under external disturbances, and converge to zero at a very fast convergence
rate.

From Fig. 6, we can see that the fluctuations occur in the lateral position and velocity profiles, this
is the natural result of the disturbance ωi(t), which is set to perform on 3th following RV (the middle of
the platoon) of every platoon. It should be noted that the amplitude of the fluctuations is small, and the
convergence rate is very fast. Especially, the vehicles can keep consensus even under the disturbance. The
vehicles behind 3th following RV can keep the agreement with 3th following RV, and they all track the
trajectory of the leading CAV, though fluctuations exist because of the influence of external disturbance.

The lateral positions and longitudinal positions of the leading CAVs and following RVs of the three
platoons are shown in Fig. 7, where the red and black boxes represent the leading CAVs and the following
RVs, respectively, and the set of colorful lines represent the trajectories of the leading CAVs and following
RVs. The trajectory of all following RVs converge to the trajectory of the leading CAVs of the corresponding
platoon, and the trajectory of the leading CAVs of string 2 and string 3 converge to the trajectory of the
leading CAV of string 1 while maintaining the desired position deviations. Thus, the leading CAVs of string
1, string 2, and string 3 can guide the route of the following RVs to pass through the straight road according
to Example 5.3. As shown in Fig. 6 and Fig. 7, all vehicles are driven to form a stable platoon formation
even under the mild external disturbances by utilizing our proposed control schemes, and the ISSS of the
vehicle platoon is ensured.

23



Table 3: The Initial States for Platoons in Example 5.3

Index Position (m) Velocity (m/s) Desired gap (m)

String 1

the leading CAV (310,0) (15,0)

leading platoon

the following RV 1 (286,-1) (16,0.5)

the following RV 2 (264,1) (16,-0.5)

the following RV 3 (247,-1) (14,0.5)

the following RV 4 (224,1) (15,-0.5)

the following RV 5 (206,-1) (14,0.5)

the following RV 6 (181,1) (16,-0.5)

String 2

the leading CAV (310,-10) (15,0)

(0,10,0,0)

the following RV 1 (286,-11) (16,0.5)

the following RV 2 (264,-9) (16,-0.5)

the following RV 3 (247,-11) (14,0.5)

the following RV 4 (224,-9) (15,-0.5)

the following RV 5 (206,-11) (14,0.5)

the following RV 6 (181,-9) (16,-0.5)

String 3

the leading CAV (310,10) (15,0)

(0,-10,0,0)

the following RV 1 (286,9) (16,0.5)

the following RV 2 (264,11) (16,-0.5)

the following RV 3 (247,9) (14,0.5)

the following RV 4 (224,11) (15,-0.5)

the following RV 5 (206,9) (14,0.5)

the following RV 6 (181,11) (16,-0.5)
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(a) Position and velocity trajectories on the longitudinal and lateral dynamics trajectories of string 1
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(b) Position and velocity trajectories on the longitudinal and lateral dynamics trajectories of string 2

0 10 20
t(s)

200

400

600

800

Lo
ng

itu
di

na
l P

os
iti

on
 (

m
)

i=0

i=1

i=2

i=3

i=4

i=5

i=6

0 10 20
t(s)

9

9.5

10

10.5

11

La
te

ra
l P

os
iti

on
 (

m
)

0 10 20
t(s)

10

20

30

40

50

Lo
ng

itu
di

na
l V

el
oc

ity
 (

m
/s

)

0 10 20
t(s)

-0.4

-0.2

0

0.2

0.4

0.6

La
te

ra
l V

el
oc

ity
 (

m
/s

)

(c) Position and velocity trajectories on the longitudinal and lateral dynamics trajectories of string 3
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(d) Norm of the tracking deviations of string 1, 2 and 3

Fig. 6. Simulation results of strings 1, 2 and 3 in Example 5.3
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Fig. 7. Lateral positions and longitudinal positions of the leading CAV and following RVs of string 1, 2 and 3 in
Example 5.3

6. Conclusions

In this paper, vehicular platoon control schemes stabilizing the mixed traffic flow of connected and
automated vehicles (CAVs) and regular vehicles (RVs) were devised by using a CAV as the leading vehicle
to guide the RVs in the platoon. Several practical challenges, such as the limited information perception
capabilities of RVs, the uncertainty of actuators via human drivers, and external disturbances or unmodeled
dynamics, were considered. Vehicular platoon control schemes under the constant space headway policy
and constant time headway policy were synthesized through the lens of input-to-state-string stability (ISSS)
while uncertainty and disturbance characteristics were considered. The control design utilized only the
relative positions and velocities from the directly preceding vehicle, which could be sensed by the on-board
sensors of commercially implemented adaptive cruise control (ACC) systems. Conditions for ISSS were
derived while physical interpretations of these conditions were discussed. Furthermore, the relationships
between ISSS and other state-of-the-art string stability concepts were clarified. It was concluded that the
ISSS concept can include several state-of-the-art string stability concepts as special cases.

Corresponding to the longitudinal and lateral control schemes for a single platoon and multiple platoons,
numerical experiments were performed. The norms of the tracking deviations and state trajectories of
vehicles were plotted for the different examples, and all results showed that the platoon can effectively
attenuate or reject the effect of disturbances while maintaining the ISSS property, the following RVs can
adjust their accelerations to maintain the same velocities as those of the leading CAVs and the desired
intervehicle distance by following the proposed platoon control schemes. Therefore, the leading CAVs can
guide the motions of the following RVs. The results from numerical experiments validate the effectiveness
and computational feasibility of the platoon control schemes.
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Appendix: preliminaries, useful lemmas and nomenclature

For a symmetric matrix A, λmin(A) and λmax(A) denote, respectively, its minimum and maximum eigen-
values. A ⊗ B denotes the Kronecker product of matrices A and B. A > 0 means that A is a positive definite
matrix, and A < 0 means that A is a negative definite matrix.

We recall that a function α : [0, a) → [0,∞), a ∈ R+ is a class K function if it is continuous, strictly
increasing and α(0) = 0. If a class K function α also satisfies α(s) → ∞ as s → ∞, then it is a class K∞
function. A continuous function γ : [0, a) × [0,∞)→ [0,∞) is a class KL function if for each fixed t, the
function γ(·, t) is a class K function, and for each fixed s, γ(s, ·) is decreasing and satisfies γ(s, t) → 0 as
t → ∞.

For a vector x ∈ Rn, ‖x‖ denote its 2-norm, and ‖x‖p denote its p-norm:

‖x‖p =

 n∑
i=1

‖xi‖
p

1/p

, p ∈ [1,∞) (51)

‖x‖∞ = max
i
‖xi‖ (52)

Given a Lebesgue measurable signal x(t) : I → Rn, ‖x‖I∞ denotes its L∞ norm defined as ‖x‖I
L∞

=

supt∈I ‖x‖∞, where the shorthand notation ‖x‖∞ = ‖x‖[0,∞)
∞ is used when I = [0,∞), and Lp norm of x(t) is

given as:

‖x‖I
Lp

=

(∫
I
‖x(t)‖ppdt

)1/p

< ∞, p ∈ [1,∞) (53)

Lemma 7.1. (Young’s Inequality) (Bernstein, 2009) If a and b are nonnegative real numbers and θ and q
are positive real numbers such that 1

θ + 1
q = 1, then ab ≤ aθ

θ + bq

q .
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Table 4: Nomenclature

Notation Type Description Notation Type Description

xi(t) vector state of the ith vehicle A/B matrix system matrices

ui(t) vector control input of the ith vehicle ωi(t) vector external disturbance of the ith ve-
hicle

u0(t) vector control input of the leading CAV
from the TMC

r1 vector the acceleration bound of the lead-
ing CAV

vi(t) vector the velocity of the ith vehicle pi(t) vector the position of the ith vehicle

V set the set of the following vehicles V̄ set the set of the leading vehicle and
the following vehicles

L matrix the corresponding Laplace matrix
of the sensing topology network

H matrix the link between the following ve-
hicles and other following vehi-
cles and the leading vehicle

A matrix the adjacent matrix of graph of the
following vehicles

A0 matrix link between the following vehi-
cles and leading vehicle

Σ matrix constructed positive definite ma-
trix

P matrix positive definite solution to the
matrix inequality

d∗i,i−1(t) vector the desired intervehicular distance
between two consecutive vehicles

g(·) vector designed nonlinear function to
eliminate the impact of u0(t)

ηi(t) vector the tracking deviation from the de-
sired state of vehicle i with respect
to the leading CAV

η(t) vector the tracking deviation from the de-
sired state of all vehicles with re-
spect to the leading CAV

c1/c2 constant designed constant gains of the pla-
toon control schemes

u vector control input and disturbance vec-
tor of all vehicles

K matrix designed feedback gain matrix of
the platoon control schemes

M matrix unitary matrix to transform Σ to
diagonal matrix

si vector the desired standstill distance be-
tween vehicle i and vehicle i − 1

τ matrix diagonal matrix that represents the
desired time headway of vehicles

λmin(A)/
λmax(A) operator the minimum and maximum

eigenvalues of a symmetric
matrix A

A ⊗ B operator the Kronecker product of matrices
A and B

n constant the dimension of position pi(t)
and velocity vi(t)

R/N set real number set and natural num-
ber set

28



References

Bernstein, D. S., 2009. Matrix mathematics: theory, facts, and formulas. Princeton university press.
Besselink, B. and Johansson, K. H., 2017. String stability and a delay-based spacing policy for vehicle platoons subject to distur-

bances. IEEE Trans. Autom. Control, 62(9):4376–4391.
Bian, Y., Zheng, Y., Ren, W., Li, S. E., Wang, J., and Li, K., 2019. Reducing time headway for platooning of connected vehicles

via v2v communication. Transp. Res. Part C, 102:87–105.
Cao, Y., Stuart, D., Ren, W., and Meng, Z., 2010. Distributed containment control for multiple autonomous vehicles with double-

integrator dynamics: algorithms and experiments. IEEE Transactions on Control Systems Technology, 19(4):929–938.
Chen, D., Srivastava, A., Ahn, S., and Li, T., 2019. Traffic dynamics under speed disturbance in mixed traffic with automated and

non-automated vehicles. Transp. Res. Part C, 133:293–313.
Eskandarian, A., Wu, C., and Sun, C., 2019. Research advances and challenges of autonomous and connected ground vehicles.

IEEE Trans. Intell. Transp. Syst., pages 1–29.
Feng, S., Zhang, Y., Li, S. E., Cao, Z., Liu, H. X., and Li, L., 2019. String stability for vehicular platoon control: Definitions and

analysis methods. Annu. Rev. Control, 47:81–97.
Gunter, G., Gloudemans, D., Stern, R. E., McQuade, S., Bhadani, R., Bunting, M., Monache, M. L. D., Lysecky, R., Seibold, B.,

Sprinkle, J., Piccoli, B., and Work, D. B., 2020. Are commercially implemented adaptive cruise control systems string stable?
IEEE Trans. Intell. Transp. Syst., pages 1–12.

Jia, D. and Ngoduy, D., 2016. Platoon based cooperative driving model with consideration of realistic inter-vehicle communication.
Transp. Res. Part C, 68:245–264.

Jia, D., Ngoduy, D., and Vu, H. L., 2019. A multiclass microscopic model for heterogeneous platoon with vehicle-to-vehicle
communication. Transp. Res. Part B, 7(1):311–335.

Khalifa, A., Kermorgant, O., Dominguez, S., and Martinet, P., 2020. Platooning of car-like vehicles in urban environments: An
observer-based approach considering actuator dynamics and time delays. IEEE Trans. Intell. Transp. Syst., pages 1–13.

Konduri, S., Pagilla, P., and Darbha, S., 2017. Vehicle platooning with multiple vehicle look-ahead information. IFAC-
PapersOnLine, 50(1):5768–5773.

Li, J., Ren, W., and Xu, S., 2011. Distributed containment control with multiple dynamic leaders for double-integrator dynamics
using only position measurements. IEEE Trans. Autom. Control, 57(6):1553–1559.

Li, S. E., Zheng, Y., Li, K., and Wang, J., 2015. An overview of vehicular platoon control under the four-component framework.
In 2015 IEEE Intelligent Vehicles Symposium (IV), pages 286–291. IEEE.

Li, Y., Tang, C., Li, K., He, X., Peeta, S., and Wang, Y., 2018. Consensus-based cooperative control for multi-platoon under the
connected vehicles environment. IEEE Trans. Intell. Transp. Syst., 20(6):2220–2229.

Li, Z., Liu, X., Ren, W., and Xie, L., 2012. Distributed tracking control for linear multiagent systems with a leader of bounded
unknown input. IEEE Trans. Autom. Control, 58(2):518–523.

Liu, Y. and Su, H., 2019. Containment control of second-order multi-agent systems via intermittent sampled position data commu-
nication. Appl. Math. Comput., 362:124522.

Lyashevskiy, S. and Meyer, A. U., 1995. Control system analysis and design upon the lyapunov method. In Proceedings of 1995
American Control Conference-ACC’95, 5:3219–3223. IEEE.

Monteil, J., Bouroche, M., and Leith, D. J., 2019. L2 and L∞ stability analysis of heterogeneous traffic with application to
parameter optimization for the control of automated vehicles. IEEE Trans Control Syst Technol, 27(3):934–949.

Pan, T., Lam, W. H., Sumalee, A., and Zhong, R., 2019. Multiclass multilane model for freeway traffic mixed with connected
automated vehicles and regular human-piloted vehicles. Transportmetrica A, pages 1–29.

Pan, T., Guo, R., Lam, W. H., Zhong, R., Wang, W., and He, B., 2020. Integrated optimal control strategies for freeway traffic
mixed with connected automated vehicles: A model-based reinforcement learning approach. preprint.

Peng, Z., Wang, D., Wang, H., and Wei, W., 2014. Cooperative iterative learning control of linear multi-agent systems with a
dynamic leader under directed topologies. Acta Automatica Sinica, 40(11):2595–2601.

Ploeg, J., Van De Wouw, N., and Nijmeijer, H., 2013. Lp string stability of cascaded systems: Application to vehicle platooning.
IEEE Trans. Control Syst. Technol., 22(2):786–793.
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