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ABSTRACT 

This study investigates the impacts of the least perceived travel cost on the stochastic user equilibrium (SUE) 

problem. The Weibit SUE models are considered since they have a location parameter that naturally capture 

the least perceived travel cost. Considering a positive location parameter enhances the behavioral reality by 

attaching a positive lower-bound to the perceived travel cost distributions. It reduces the perception 

variances route-specifically and causes route-specific coefficients of variation (CVs). The CVs reduce 

proportionally slower for shorter routes, thus contributing to resolving the scale insensitivity issue in the 

Weibit SUE models. In the meantime, the route-specific CVs cause better discrimination between short and 

long routes in terms of relative variability; more travelers shift to the shortest route between each origin-

destination pair. Numerical results confirm the analytical results regarding the effects of the least perceived 

travel costs and demonstrate the efficiency and robustness of the proposed solution algorithm. 

 

 

Keywords: Stochastic user equilibrium; least perceived travel cost; weibit model; location parameter; 

relative variability 
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1 INTRODUCTION 

Characterization of the perceived travel cost distribution lays the foundation for modeling the stochastic 

user equilibrium (SUE) problem. To properly portray the perceived travel cost distributions, transportation 

modelers trade-off among different aspects, such as behavioral reality, modeling flexibility, analytical 

tractability/ computational efficiency, and extendibility, etc. In the pursuit of computational efficiency, 

analytical tractability, and consistency with the random utility maximization (RUM) principle, researchers 

assume independently and identically distributed (i.i.d.) Gumbel perception error terms; then, we have the 

multinomial logit (MNL) route choice model (e.g., Luce, 1959; McFadden, 1974). To account for the 

overlapping routes, some researchers assume generalized extreme value (GEV) distributed perception error 

terms; the resultant route choice models include the cross nested logit (Vovsha, 1997), paired combinatorial 

logit (Chu, 1989), and generalized nested logit (GNL, Wen and Koppleman, 2001), etc. Some also turn to 

modifying existing models by adding route-specific penalty terms (e.g., Commonality-Logit (C-logit), 

Cascetta et al., 1996; Path-Size-Logit (PSL), Ben-Akiva and Bierlaire, 1999) or scaled variances (Chen et 

al., 2012) to handle the overlapping routes. Recently, to acquire a closed-form choice probability and to 

capture the varied perception variances with different trip lengths, Castillo et al. (2008) assumed 

independently distributed Weibull perception errors among routes and proposed the multinomial Weibit 

(MNW) route choice model. To achieve better modeling flexibility by permitting different random error 

distributions, Natarajan et al. (2009), Ahipaşaoğlu et al. (2016) proposed the marginal distribution model 

(MDM) as a convex optimization problem. MDM gives the route choice probability expressions of some 

classic models as special cases, including the MNL, PSL, C-logit, MNW, and PSW (path-size Weibit, 

Kitthamkesorn and Chen, 2013). The optimal solutions of the MDM are equal to those of some specific 

robust optimization problems. On the other hand, some researchers pursue the traveler behavioral richness 

and modeling flexibility, at the cost of a closed-form choice probability expression (i.e., tractability) and 

perhaps computational efficiency. They adopt the multivariate normal distribution to simultaneously handle 

the equal variance and the overlapping routes, then obtain the multinomial probit (MNP, Daganzo and 

Sheffi, 1977) route choice model; or allow traveler-specific random parameters to consider the taste 

heterogeneity in the mixed logit model (Ben-Akiva and Lerman, 1985; McFadden and Train, 2000). Besides, 

others consider bounded rationality in the travel choice decisions, including the prospect maximization (Xu 

et al., 2011, Wang et al., 2013), regret minimization (Loomes and Sugden, 1982; Li and Huang, 2017), 

rank-dependent multi-attribute optimization (Wang et al., 2014), and budget-based risk hedging behaviors 

(Lo et al., 2006; Chen and Zhou, 2010; Xu et al., 2013). Interested readers are referred to Kitthamkesorn 

and Chen (2013), Fosgerau and Bielier (2009), and Jensen (2016) for more literature. 

In most above studies, the perceived travel cost distributions are either unbounded with possible negative 

values (e.g., normal distribution, Gumbel distribution) or bounded below by zeros (e.g., lognormal 
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distribution). However, due to the physical distances between OD pairs, the corresponding physical travel 

times (often being viewed as a core component, if not the whole, of the travel cost for a trip) are supposed 

to be larger than zeros. Therefore, it is reasonable to claim that the perceived travel cost distributions are 

bounded below by some positive values. Moreover, these positive values could form the travelers’ least 

perceived travel costs before a trip. The information or knowledge of these values may come from a 

traveler’s previous trip experiences, communications with other travelers, or electronic route guidance 

systems. Noticing this, we decide to consider the least perceived travel costs in the SUE models. 

Viewing that the Weibull probability has a parameter (i.e., the location parameter) that can naturally 

capture the least perceived travel cost between an OD pair, we will adopt the Weibit SUE models to consider 

a positive location parameter. Castillo et al. (2008) showed that independently distributed Weibull travel 

costs would produce a closed-form choice probability expression. Inspired by this observation, 

Kitthamkesorn and Chen (2013) proposed the multinomial Weibit (MNW)-SUE model and further adopted 

the path-size factor to handle the overlapping routes (PSW-SUE). They enforced zero-valued location 

parameters for all routes to obtain a decomposable route travel cost at the link level, thereby formulating 

the PSW-SUE model as a constrained entropy-based mathematical programming (MP) problem. The zero-

valued location parameters imply that the travelers’ least perceived travel costs between each OD pair are 

zeros, which do not conform with the general expectations. Besides, the zero-valued location parameters 

cause the MNW(/PSW)-SUE model an undesirable property, namely, the Weibit route choice probabilities 

will not change before and after multiplying the route travel costs by a positive number (scale insensitivity 

for short). This issue is rooted in the multiplicative route travel disutility of the Weibit choice probabilities. 

It also exists in the unconstrained Weibit SUE model with zero-valued location parameters (Kitthamkesorn 

and Chen, 2014). Efforts have been paid to resolve the scale insensitivity issue (Yao et al., 2014; Xu et al., 

2015; Ahipaşaoğlu et al., 2016). 

However, except for the MDM SUE models that permit a positive location parameter, the other models 

presuppose zero-valued location parameters to build up equivalent MP formulations. Little is known about 

how the least perceived travel costs (i.e., the positive location parameters) affect the perceived travel cost 

distributions and the corresponding SUEs. In this study, we use a positive location parameter to characterize 

a traveler’s least perceived travel cost between an OD pair, and take the Weibit SUE models to unveil the 

impacts of the least perceived travel cost on the perceived travel cost distributions and the corresponding 

SUEs. The study contributes to the literature in the following aspects: 

(1) consider the travelers’ least perceived travel cost in the SUE problem. 

(2) theoretically analyses the impacts of the least perceived travel cost (i.e., a positive location parameter) 

on the perception variances, coefficients of variation of the Weibull route travel costs, and on the resultant 

route choice probabilities. 
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(3) unveil the mechanism for resolving the scale insensitivity issue by considering a positive location 

parameter in the Weibit models. 

(4) provide extensive numerical examples to demonstrate the impacts of the least perceived travel cost 

(i.e., a positive location parameter) on the network equilibrium states. 

2 LITERATURE REVIEW 

The importance of a location parameter has been widely recognized in different probability distributions 

and applications. Termed also as a shift, a threshold, or an origin in the literature, a location parameter is 

often used to depict the natural lower bound of a given distribution. For example, it may represent the 

minimum time headway (Zhang et al., 2007; Ha et al., 2012); the minimum travel time on a link or a route 

(Carey and Kwieciński, 1995; Castillo et al., 2008; Srinivasan et al., 2014); the minimum train schedule 

deviation (Corman et al., 2017); the minimum flight travel demand for a fare class for a flight leg (Kenan 

et al., 2018); the minimum lead time of supply from a vendor (Tyworth, 2018; Chiang and Benton, 1994); 

the minimum response time toward information/signals (Anders et al., 2016); the minimum time to 

deterioration for a product (Chakraborty et al., 2018; Yang, 2012); the base functioning duration (Bain and 

Englehardt, 1991; Zeng et al., 2016); or the minimum precipitation level (Baran and Nemoda, 2016). 

Recently, Watling et al. (2018) proposed a bounded SUE model, in which they used an exogenously-

defined bound to distinguish the routes as unused according to the utility differences relative to a reference 

route. The bound can be either fixed or proportional to the minimum travel cost in each OD pair, it specifies 

the least acceptable utility (or maximum utility difference relative to the reference route) that makes a route 

an effective candidate. More reviews are referred to Johnson et al. (1995), Pham (2006), and Li and Chen 

(2017). Table 1 gives a summary. 

Table 1. Applications of a location parameter in different topics 

Reference Application topic Distribution type 

Zhang et al. (2007) Time headway Shifted lognormal  

Ha et al. (2012) Time headway Shifted hyper-Lognormal  

Carey and Kwieciński (1995) Link travel time Shifted negative exponential 

Srinivasan et al. (2014) Link and route travel time  Shifted lognormal  

Castillo et al. (2008) Route travel time Shifted Weibull 

Watling et al. (2018) Difference in route travel utilities I.I.D. Gumbel 

Corman et al. (2017) Train schedule deviation Shifted Weibull  

Kenan et al. (2018) Flight travel demand for a fare class Truncated normal 

Tyworth (2018) Supply lead-time Truncated normal 

Chiang and Benton (1994) Supply lead-time Shifted exponential 
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Chakraborty et al. (2018); Yang 

(2012) 

Goods deterioration rate Shifted Weibull  

Anders et al. (2016) Response time Shifted Wald  

Bain and Englehardt (1991) Lifetime reliability Shifted Weibull 

Zeng et al. (2016) Lifetime reliability Perks5†; Perks4 

Baran and Nemoda (2016) Precipitation Shifted gamma  
† Perks5 refers to a 5-parameter probability distribution derived from the Perks’ (1932) hazard rate 

function. The cumulative density function and probability density function of the Perks5 hazard rate 

distribution are respectively defined by ( ) 1F t = − ( )0
exp ( )

t
h t dt−∫  and ( )0

( ) ( ) exp ( )
t

f t h t h t dt= × −∫ , 

where ( )h t = 1 2 3

2 4 2 5

exp( )
1 exp( ) exp( )

k k t k
k t k k t k
+ +

− − + + +
 is the Perks hazard rate function, ( 1,2, ,5)ik i =   are the 5 

parameters satisfying 1 2 3 4 5, 0; , ,k k k k k> −∞ < < +∞ . Perks4 is a special case of Perks5 by dropping 

2 5exp( )k t k+  in ( )h t  via setting 5k → −∞ . More information about the Perks5 or Perks4 distribution is 

referred to Perks (1932), Zeng et al. (2016) and the references therein. 

In these applications, a location parameter represents the prior knowledge or information of the attributes 

under investigation. Take the example of the Weibull travel time distribution, a location parameter 

represents a traveler’s perception/ knowledge of the minimum probabilistic travel time between an OD pair 

(Castillo et al., 2008). Considering this knowledge enhances the behavioral reality of the Weibit models 

and contributes to resolving the scale insensitivity property. By considering a positive location parameter, 

we can restate the travel disutility on a route as a function of the average route travel cost and the 

corresponding coefficient of variation (CV). The CVs, being route-specific with route-specifically reduced 

perception variances, change variously on different routes when the average route travel costs are multiplied 

by a scale (i.e., a positive number). Hence, the route travel disutilities are subject to unproportionate changes 

when scaling the average route travel costs, i.e., the scale insensitivity property being resolved. We 

formulate the Weibit SUE models as a probability-based equivalent variational inequality (VI) problem at 

the route level, then develop a route-based self-adaptive gradient projection (SAGP) algorithm. Numerical 

examples are provided to demonstrate the impacts of a positive location parameter on the perceived travel 

cost distributions and the corresponding network equilibria. 

The study proceeds as follows. In Section 3, we briefly review the Weibit route choice models, then 

theoretically investigate the impacts of a positive location parameter on the perceived Weibull travel cost 

distributions and corresponding route choice probabilities. Section 4 provides an equivalent VI formulation 

for the Weibit SUE problems, a convex optimization formulation for the MDM SUE model, and develops 
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the SAGP algorithm for solving the VI formulation. Two numerical examples are given in Section 5 to 

show the impacts of a positive location parameter and the efficiency and robustness of the algorithm. The 

study concludes with a short discussion in Section 6. 

3 BACKGROUND 

Before introducing the Weibit route choice models, a complete list of notations used in the study is 

presented in Table 2. 

Table 2. Notations 
Sets 
IJ Set of OD pairs 

ijR  Set of routes connecting OD pair ij IJ∈  
A Set of links 

Ω  Set of feasible flow defined by { }| |
= =( ) | , 0, ,ij ij

ij

ij ij ij ij ij
r r rR r R

f f q f r R ij IJ
∈

Ω = ≥ ∀ ∈ ∈∑ ∑f  

Indices  
a Index of link a A∈  
r Index of route ijr R∈   
ij Index of OD pair ij IJ∈  
Decision Variables 

f   Vector of route flow defined by ( )
| |

= ij
ij

ij
r R

f
∑

f  where || is the cardinality operator 

ij
rf  Total flow on route ijr R∈  between OD pair ij IJ∈  
av  Total flow on link a A∈  

Intermediate Variables 
( )a avτ  Average travel cost on link a A∈  as a function of the total link flow av  

ij
rg  Average travel cost on route ijr R∈  between OD pair ij IJ∈  
ij
rG  Random travel cost on route ijr R∈  between OD pair ij IJ∈  

ij
rG

ψ  Probability distribution of random route travel cost ij
rG  on route ijr R∈  between OD pair 

ij IJ∈  
ij
rU  Random travel disutility on route ijr R∈  between OD pair ij IJ∈  

ij
rε  Random error term of the travel disutility on route ijr R∈  between OD pair ij IJ∈  
ij
rσ  Standard perception variance of the travel cost on route ijr R∈  between OD pair ij IJ∈  
ij
rϑ  Coefficient of variation of the travel cost on route ijr R∈  between OD pair ij IJ∈  

Γ() Gamma function 
ij

rP  Choice probability of route ijr R∈  between OD pair ij IJ∈  
F(f) General mapping function from the feasible flow set Ω  to Rn at point f 
Parameters 
la Length of link a A∈  

ij
rL  Length of route ijr R∈  between OD pair ij IJ∈  

Ca Capacity of link a A∈  
ijq   Travel demand between OD pair ij IJ∈  
ijθ  Dispersion parameter of the MNL route choice model for OD pair ij IJ∈  
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, ,ij ij ij
r r rϕ β ζ  Scale, shape, and location parameters of the Weibull-type travel cost ij

rG  on route ijr R∈  
between OD pair ij IJ∈ ; ij

rζ  also refers to the least perceived travel cost on a route 
κ, η Scale parameters of the route travel cost and the location parameter, respectively 

ij
rϖ  Path-size factor of route ijr R∈  between OD pair ij IJ∈  
ij
arδ  Link-route incidence parameter, ij

arδ  equals 1 if route ijr R∈  between OD pair ij IJ∈  
uses link a A∈  and 0 otherwise 

ρa, ϕa Parameters of the Bureau of Public Road average link travel time function  
α, u, γ, ξ Parameters of the self-adaptive gradient projection (SAGP) algorithm 

To relax the assumption of identical perception variances in the MNL model, Castillo et al. (2008) 

assumed a Weibull-type route travel cost ij
rG  with a probability density function ij

rG
ψ  defined by 

( )
1

exp ,
; , , =

0,

ij ij
r r

ij
r

ij ij ij
ijr r r
rij ij ijij ij ij

r r rr r rG

ij
r

t t t
t

t

β β
β ζ ζ ζ
ϕ ϕ ϕψ ϕ β ζ

ζ

−     − −  − ≥          
 <

,  ,ijr R ij IJ∀ ∈ ∈  (1) 

where ( )0,ij
rϕ ∈ ∞ , ( )0,ij

rβ ∈ ∞  and )0,ij ij
r rGζ ∈   are the scale, shape, and location parameters for route r 

between OD pair ij, respectively. The average route travel cost ij
rg  is specified by 

( )= 1 1ij ij ij ij
r r r rg ζ ϕ β+ Γ + ,  ,ijr R ij IJ∀ ∈ ∈  (2) 

where Γ() is the gamma function. In the Weibull-type route travel cost distributions, we have route-specific 

perception variances 2( )ij
rσ  defined as a function of the average route travel cost ij

rg , shape parameter ij
rβ

, and location parameter ij
rζ , 

( ) ( ) ( )( )222( ) = 1 2 1 1 1ij ij ij ij ij
r r r r rgσ ζ β β − Γ + Γ + −  

,  ,ijr R ij IJ∀ ∈ ∈ . (3) 

Based on Eqs. (2) and (3), the route coefficient of variation (CV) ij
rϑ  can be computed as 

( ) ( )( )2
= 1 2 1 1 1

ij ij
ij ij ijr r
r r rij

r

g
g

ζϑ β β−
Γ + Γ + − ,  ,ijr R ij IJ∀ ∈ ∈ . (4) 

3.1 MNW and PSW Models 

Castillo et al. (2008) developed a closed-form route choice probability by assuming independently 

distributed Weibull-type travel costs ij
rG
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disutility as a multiplicative function of the observable (i.e., average) route travel cost and the unobservable 

random error term ij
rε  (Fosgerau and Bierlaire, 2009), 

( )
ij

ij ij ij ij
r r rU g

β
ζ ε= − ⋅ ,  ,ijr R ij IJ∀ ∈ ∈ , (5) 

where { }= min ,ij ij ij
r r Rζ ζ ∈  is the lower bound of the perceived travel cost distributions between OD pair 

ij. Hence, we have ij ij ij
r rgζ ζ≤ ≤ , ,ijr R ij IJ∀ ∈ ∈ . In the meantime, the shape parameter are assumed to be 

identical for the routes between the same OD pair, i.e., , ,ij ij ij
r r R ij IJβ β= ∀ ∈ ∈ . Based on the route travel 

disutility in Eq. (5), we have the MNW route choice probability as follows, 

( )
( )

ij

ij

ij

ij ij
rij

r
ij ij
k

k R

g
P

g

β

β

ζ

ζ

−

−

∈

−
=

−∑
,  ,ijr R ij IJ∀ ∈ ∈ . (6) 

The MNW model relaxes the assumption of identical perception variances but holds the assumption of 

independent route travel disutilities. We can use a path-size factor ij
rϖ  to handle the overlapping routes 

(Ben-Akiva and Bierlaire, 1999), 

1

r
ij

ij a
r ij ij

a A r ak
k R

l
L

ϖ
δ∈

∈

= ∑ ∑
,  ,ijr R ij IJ∀ ∈ ∈ , (7) 

where la and ij
rL  are the lengths of link a and route r, respectively. rA  is the set of links comprising route 

r, ij
akδ  is the link-route incidence indicator that equals 1 when route k uses link a and 0 otherwise. A small 

ij
rϖ  indicates a strong overlap between route r and other routes in OD pair ij. By including the path-size 

factor, we can rewrite the route travel disutility in Eq. (5) as 

( )
ij

ij ij
rij ij

r rij
r

g
U

β
ζ

ε
ϖ

−
= ,  ,ijr R ij IJ∀ ∈ ∈ . (8) 

Based on Eq. (8), we have the PSW route choice probability as follows: 

( )
( )

ij

ij

ij

ij ij ij
r rij

r
ij ij ij
k k

k R

g
P

g

β

β

ϖ ζ

ϖ ζ

−

−

∈

−
=

−∑
,  ,ijr R ij IJ∀ ∈ ∈ . (9) 

3.2 Impacts of a positive location parameter on the perceived travel cost distributions 

To build an entropy-based MP formulation with a decomposable travel cost at the link level, Kitthamkesorn 

and Chen (2013, 2014) assumed zero-valued location parameters ijζ ij IJ∀ ∈
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( ) ( )( )2
1 2 1 1 1ij ij ijβ β∆ = Γ + Γ + −  and restate the 

PSW route choice probability in Eq. (9) as a function of the average route travel cost ij
rg , CV ij

rϑ , path-

size factor ij
rϖ , and shape parameter ijβ , 

( )
( )

ij

ij

ij

ij ij ij ij
r r rij

r
ij ij ij ij
k k k

k R

g
P

g

β

β

ϖ ϑ

ϖ ϑ

−

−

∈

∆
=

∆∑
,  ,ijr R ij IJ∀ ∈ ∈ , (10) 

where ij ij ij ij ij
r r rg gζ ϑ− = ∆  is derived from Eqs. (3) and (4), ij∆  is constant given the shape parameter ijβ

. The reformulation provides a perspective to unveil the impacts of CV ij
rϑ  on the route choice probabilities. 

When =0ijζ , we have route-specific perception variances ( )22( ) =ij ij ij
r rgσ ⋅ ∆  and an identical CV 

=ij ij
rϑ ∆  between each OD pair. The route choice probability in Eq. (10) degenerates into a function of ij

rg , 

( )
( )

( )
( )

= =

ij ij

ij ij

ij ij

ij ij ij ij ij ij
r r r rij

r
ij ij ij ij ij ij
k k k k

k R k R

g g
P

g g

β β

β β

ϖ ϖ

ϖ ϖ

− −

− −

∈ ∈

∆ ∆

∆ ∆∑ ∑
, ,ijr R ij IJ∀ ∈ ∈ . (11) 

It is easy to tell that the route choice probability in Eq. (11) is insensitive to the arbitrarily scaled route 

travel costs via κ: 

( )
( )

( )
( )

( )
( )

( )=

ij ij ij
ij

ij ij ij
ij

ij ij ij

ij ij ij ij ij ij
r r r r r rij

r
ij ij ij ij ij ij
k k k k k k

k R k R k R

g g g
P

g g g

β β ββ

β β ββ

ϖ ϖ ϖ

ϖ

κ

ϖ

κ

κ κ ϖ
κ

− − −−

− − −−

∈ ∈ ∈

⋅
= =

⋅∑ ∑ ∑
, ,ijr R ij IJ∀ ∈ ∈ . (12) 

Comparatively, when ijζ >0, the route travel cost is specified by the average route travel cost ij
rg  and 

CV ij
rϑ ; the route choice probability is then affected by both values of ij

rg  and ij
rϑ . 

Proposition 1. For the Weibull route travel cost distributions, given 0 ij ij
r sg g< ≤ , 1 20 ij ij ij

rgζ ζ≤ ≤ < , and 

the parameters 0ij
rϕ >  and 0ijβ > , the following conditions hold: 

(1) 1 2

1 2

2 2
| |

| |

( ) ( )
, ,

ij ij

ij ij

ij ij
r r

ijij ij
r r

r R ij IJ
ζ ζ

ζ ζ

σ σ

ϑ ϑ

 ≥ ∀ ∈ ∈
≥

； 
(13) 

(14) 
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(2) 1 2 1 2

1 2 1 2

2 2 2 2
| | | |

| | | |

( ) ( ) ( ) ( )
,

ij ij ij ij

ij ij ij ij

ij ij ij ij
r r s s

ij ij ij ij
r r s s

ζ ζ ζ ζ

ζ ζ ζ ζ

σ σ σ σ

ϑ ϑ ϑ ϑ

 − ≤ −


− ≥ −
 , ,ijr s R ij IJ∀ ∈ ∈ ; 

(15) 

(16) 

(3) 

1 2 1 2

1 1

1 2 1 2

1 1

2 2 2 2
| | | |

2 2
| |

| | | |

| |

( ) ( ) ( ) ( )

( ) ( )
,

ij ij ij ij

ij ij

ij ij ij ij

ij ij

ij ij ij ij
r r s s

ij ij
r s

ij ij ij ij
r r s s

ij ij
r s

ζ ζ ζ ζ

ζ ζ

ζ ζ ζ ζ

ζ ζ

σ σ σ σ

σ σ

ϑ ϑ ϑ ϑ

ϑ ϑ

 − −
 ≥



− −
≥



 , ,ijr s R ij IJ∀ ∈ ∈ , 

(17) 

(18) 

Proof. Refer to Appendix A.1. 

Remark 1. Proposition 1 depicts the changing features of the route perception variances 2( )ij
rσ  and CV 

ij
rϑ  from different perspectives. Eqs. (13) and (14) state that 2( )ij

rσ and ij
rϑ  decrease with an increasing 

location parameter. Eqs. (15) and (16) show that while the absolute change of 2( )ij
rσ  is smaller for a shorter 

route, that of ij
rϑ  is larger. Comparatively, Eqs. (17) and (18) demonstrate that either 2( )ij

rσ  or ij
rϑ  

decreases proportionally (or relatively) faster for a shorter route. In fact, the results in Eqs. (13) and (14) 

can be explained from the behavioral perspective: A location parameter indicates the lower bound of the 

perceived travel cost distributions between an OD pair, considering this lower bound helps to better 

characterize the travelers’ perception of the travel cost distributions, i.e., the travelers will naturally filter 

out the implausible smaller-than-the-lower-bound travel cost distributions, thus a larger location 

parameter leads to smaller 2( )ij
rσ  and ij

rϑ . 

Remark 2. Restate Eqs. (15) to (18), we have  

1 1 2 2

1 1 2 2

2 2 2 2
| | | |

| | | |

( ) ( ) ( ) ( ) 0
,

0

ij ij ij ij

ij ij ij ij

ij ij ij ij
s r s r

ij ij ij ij
s r s r

ζ ζ ζ ζ

ζ ζ ζ ζ

σ σ σ σ

ϑ ϑ ϑ ϑ

 − ≥ − ≥


≤ − ≤ −
 , ,ijr s R ij IJ∀ ∈ ∈ . 

(19) 

(20) 

1 1 2 2

1 2

1 1 2 2

1 2

2 2 2 2
| | | |

2 2
| |

| | | |

| |

( ) ( ) ( ) ( )

( ) ( )
,

ij ij ij ij

ij ij

ij ij ij ij

ij ij

ij ij ij ij
s r s r

ij ij
r r

ij ij ij ij
s r s r

ij ij
r r

ζ ζ ζ ζ

ζ ζ

ζ ζ ζ ζ

ζ ζ

σ σ σ σ

σ σ

ϑ ϑ ϑ ϑ

ϑ ϑ

 − −
 ≤



− −
≤



 , ,ijr s R ij IJ∀ ∈ ∈ . 

(21) 

(22) 

As indicated by Eqs. (19) and (20), while the absolute differences of 2( )ij
rσ  between routes decrease with 

an increasing location parameter, those of ij
rϑ  between routes tend to increase. Eqs. (21) and (22) display 

that the relative differences of both 2( )ij
rσ  and ij

rϑ  decrease with an increasing location parameter. 
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Based on the special case of Proposition 1 where 1 =0ijζ  and 2 0ijζ > , we can derive that considering a 

positive location parameter leads to smaller perception variances and CVs. Particularly, while the absolute 

decrease of perception variances is smaller for a shorter route, that of CV is larger. In the meantime, the 

proportional decrease of perception variance and that of CV are larger for a shorter route. As a result, both 

the perception variances and the CVs are route-specific after considering a positive location parameter. In 

the following, we will show that the route-specific CVs contribute to resolving the scale insensitivity issue 

in the Weibit models. 

Lemma 1. Given that two ratio series { }0 ia a  and { }0 ib b  ( )i I∈  satisfy 0 00
i i

a b
a b

< ≤  ( )i I∀ ∈  with

0 0a >  and 0 0b > , we have 0 0

i i
i I i I

a b
a b

∈ ∈

≤
∑ ∑

. 

It is easy to reach Lemma 1: inverting 0 00
i i

a b
a b

< ≤  ( )i I∀ ∈  gives 
0 0

0i ia b
a b

≥ >  ( )i I∀ ∈ ; adding up the 

two inverted ratio series leads to 
0 0

0
i i

i I i I
a b

a b
∈ ∈≥ >
∑ ∑

; taking the inverse of both sides brings about Lemma 1. 

Corollary 1. Routes with the lowest average travel cost in each OD pair will attract more flow after 

considering a positive location parameter, i.e., 
2 1| |

( , )ij ij
ij ij ij

r r
P P r R ij IJ

ζ ζ
> ∀ ∈ ∈  when ij ij

r sg g≤  

( , )ijs R ij IJ∀ ∈ ∈  and 1 20 ( , )ij ij ij ij
rg r R ij IJζ ζ≤ ≤ < ∀ ∈ ∈ . 

Proof. Refer to Appendix A.2. 

Corollary 2. Considering a positive location parameter can alleviate the scale insensitivity issue in the 

Weibit models. 

Proof. Refer to Appendix A.3. 

Remark 3. For the Weibull route travel cost distribution, considering a positive location parameter leads 

to route-specific CVs. The CVs increase with the average route travel costs; at the same time, the CV ratio 

( ) ( )ij ij
r sϑ κ ϑ κ  increases with the scale κ when ij ij

r sg g≤  ( , ,ijr s R ij IJ∀ ∈ ∈ ). As a result, the CVs increase 

faster for shorter routes when scaling up the average route travel costs (κ >1), leading to larger choice 

probabilities for the routes with the lowest average travel cost between each OD pair. In other words, 

considering a positive location parameter resolves the scale insensitivity issue in the Weibit models. 
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3.3 An Illustrative Numerical Example 

In the following, we use a simple network in Fig. 1 to illustrate the impacts of the least perceived travel 

cost (i.e., a positive location parameter) on the perceived travel cost distributions. We consider three 

indexes, including the route perception variances, coefficients of variation, and the resultant route choice 

probabilities. The network consists of two OD pairs. In the short OD pair (O, A), the average travel costs 

for Routes R1 and R2 are set to 4 and 2 minutes, respectively; in the long OD pair (O, B), those for Routes 

R3 and R4 are scaled two times, being equal to 8 and 4 minutes, respectively. In the meantime, the shape 

parameter ijβ  is set to 1.2 and the location parameter is set to 1.5 minutes for both OD pairs. 

As shown in Fig. 2, the perceived travel costs of the lower routes originate from zero when =0ijζ  

minutes and from 1.5 minutes when =1.5ijζ  minutes. The cumulative probabilities of the travel cost 

interval [0, 1.5 minutes] are positive for the lower routes, being as large as 0.4821 and 0.2490 for the short 

and long OD pairs, respectively. Hence, assuming zero-valued location parameters may cause an 

undesirable consequence that travelers have perceptions of smaller-than-the-lower-bound trip times. 

Comparatively, by assuming a positive location parameter between each OD pair (e.g., =1.5ijζ  minutes), 

the perceived travel cost distributions shift rightward and are bounded below by the positive value. The 

adjusted distributions have higher peak and lower perception variances 2( )ij
rσ . In the meanwhile, the CVs 

ij
rϑ  decrease, in a route-specific manner, faster for the lower routes. As a result, we have route-specific CVs 

ij
rϑ  between each OD pair; moreover, a smaller CV for route R2 than that for route R4, as stated in 

Proposition 1. 

Given that the location parameter is positive, the route travel cost can be specified by both ij
rg  and ij

rϑ ; 

at the same time, the perceived CVs ij
rϑ  change at route-specific speeds when scaling the route travel costs. 

Then, we have different route choice probabilities in the long OD pair from those in the short OD pair, i.e., 

resolving the scale insensitivity issue in the Weibit models (see the last row of the two tables in Fig. 2), 

which confirms Corollary 2. 

O B

R3

R4
A

R1

R2

Short OD pair Long OD pair

 

Fig. 1 A small network 
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Fig. 2 Weibull travel cost distributions on the lower routes 

4 WEIBIT-SUE MODEL WITH A LOCATION PARAMETER 

In this section, we provide two different formulations of the Weibit SUE problems that are capable to handle 

the least perceived travel cost (i.e., a positive location parameter), including a variational inequality (VI) 

formulation and a marginal distribution model (MDM) formulation. 

4.1 Model Formulation 

After considering a positive location parameter, it becomes challenging to decompose the route-based travel 

costs in Eq. (8) at the link level or to build the entropy-based MP formulations for the Weibit SUE problems. 

In this section, we provide an equivalent VI formulation for the Weibit SUE models with a positive location 

parameter (i.e., the MNWl(/PSWl)-SUE problem). Following Nagurney (1999) and Zhou et al. (2012), the 

general VI formulation is presented as: 

( )* T *

| |
( ) ( ) 0, = ij

ij

ij
r R

F f− ≥ ∀ ∈Ω
∑

f f f f , (23) 

where f* is the optimal flow pattern, F(f) is a general mapping from the feasible flow set Ω  to Rn at point 

f; the feasible flow set is defined by { }| |
= =( ) | , 0, ,ij ij

ij

ij ij ij ij ij
r r rR r R

f f q f r R ij IJ
∈

Ω = ≥ ∀ ∈ ∈∑ ∑f  where | | is 

the cardinality operator. The general mapping F(f) can take different forms according to the interpretations 

of SUE conditions. For example, based on the SUE conditions related to the perceived travel costs: No user 
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believes she can lower her travel cost by unilaterally changing routes (e.g., Daganzo and Sheffi, 1977), we 

can define F(f) as the generalized perceived travel cost. The corresponding solution will guarantee an equal 

and minimum generalized perceived travel cost on the used routes in each OD pair. When interpreting from 

the SUE conditions related to the flow assignments (e.g., Sheffi, 1985), 
ij ij ij

r rf P q= ⋅ , ,ijr R ij IJ∀ ∈ ∈ , (24) 

we can define F(f) as a gap function between the current and the auxiliary flow patterns, i.e., 
T( ) ( )F P= − ⋅f f q f , (25) 

where T ( )P⋅q f  is the auxiliary flow pattern, P(f) is the route choice probability under current flow pattern 

f, and q is the vector of OD demands. Then, we have the VI formulation for the MNWl(/PSWl)-SUE 

problem as: 
* T * T *( ( )) ( ) 0,P− ⋅ − ≥ ∀ ∈Ωf q f f f f . (26) 

The VI formulation in Eq. (26) states an equivalent complementary condition * * T *0 ( ( ))P≤ ⊥ − ⋅f f q f  

(e.g., Lo et al., 1999, Zhou et al., 2012); the corresponding solution will ensure a zero gap between the 

current flow pattern and the auxiliary one, i.e., the SUE conditions defined in Eq. (24). 

Remark 4. Apart from the gap function defined in Eq. (25), we can also define F(f) as the generalized 

perceived travel cost ( ) ( ) ( )T T( ) ln ln lnF ϖ= − + ⋅ − ⋅f g ζ 1 β f 1 β , where ∈Ωf  is the equilibrium flow 

pattern, | | | |( )ij
r IJ Rϖ ϖ ×=  is the vector of route path-size factors, and ζ and β are the vectors of location and 

shape parameters, respectively. Then, we can construct the PSWl-SUE model as 

( ) ( ) ( )( )T T* * *ln ln ln ( ) 0ϖ− + ⋅ − ⋅ − ≥g ζ 1 β f 1 β f f , ∀ ∈Ωf . When setting the path-size factor ij
rϖ  to one 

for every route, the PSWl-SUE model degenerates to the MNWl-SUE model. 

Besides, according to Aghassi et al. (2006), each VI formulation has its convex optimization 

equivalent(s). Hence, we may transform the VI formulation in Eq. (26) into an equivalent programming 

problem. 

4.2 Qualitative Properties 

In the following, we give out some qualitative properties of the MNWl(/PSWl)-SUE model concerning the 

solution equivalence and existence. Two assumptions are made as follows: 

Assumption 1. The average link travel cost aτ  is a monotonically increasing function of the total link 

flow av . 
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Assumption 2. The average route travel cost ij
rg  is continuous with respect to (w.r.t.) the route flow 

pattern f . 

Based on Assumptions 1 and 2, we have the following propositions: 

Proposition 2. f* is a solution to the MNWl(/PSWl)-SUE model if and only if it is a solution to the VI 

problem in Eq. (26). 

Proof. Refer to Appendix A.4. 

Proposition 3. The VI problem in Eq. (26) admits at least one solution. 

Proof. Refer to Appendix A.5. 

Note that the uniqueness of the solution to the VI formulation in Eq. (26) relies on the properties of F(f). 

A strongly monotone F(f) will ensure a unique solution (Nagurney, 1999). Due to the nonlinearities of the 

average link travel cost function and the route choice probability function, the monotonicity of the mapping 

function in Eq. (25) may not be established. Thus, the uniqueness of the solution to the VI formulation in 

Eq. (26) might not be guaranteed at the route level. 

4.3 MDM SUE Model 

The marginal distribution model (MDM) by Ahipaşaoğlu et al. (2016) is another model that could handle 

the least perceived travel costs (i.e., positive location parameters) in the Weibit SUE problems. Being 

constructed as a convex optimization problem, MDM gives the MNW or PSW choice probabilities by 

assuming a multiplicative disutility function (e.g., Eq. (5)) and uniform marginal random error terms. The 

corresponding MDM-SUE flow pattern can be identified as a solution to a robust optimization problem that 

minimizes the worst-case objective over the cost variables; whereas the worst-case objective “maximizes 

over the probability distributions of the random utilities with given marginal uniform distributions” 

(Ahipaşaoğlu et al., 2016). The formulation of the MDM-SUE problem is given as follows: 

1
,0,

min ( ) ( )
ijij

rr

ij

Pij ij
r r ijP ij IJ r R

Z g F v dvβ

λ
ζ −

∈ ∈

= −∑ ∑ ∫ , (27) 

. . 1,
ij

ij
r

r R

s t P ij IJ
∈

= ∀ ∈∑ , (28) 

( )= ( / ( ) )
ijij ij ij ij ij ij ij

r r r rP F g βλ λ ζ= Φ − , (29) 

0, ,ij ij
rP r R ij IJ≥ ∀ ∈ ∈ , (30) 

0,ij ij IJλ ≥ ∀ ∈ , (31) 

where | | 1
( ) ij

ij

ij
r R

P P
×

= ∑ | | 1=( )ij
IJλ λ ×  is a vector of OD-specific 

variables, ( )ij
rF t  and ( )ij

r tΦ ij
rε  
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ij
rG  for route r between OD pair ij, respectively. Given uniform marginal 

perception error terms ~ U[0, ]ij ij
r rBε  ( , )ijr R ij IJ∀ ∈ ∈  and the multiplicative disutility function in Eq. (5), 

i.e., ( )
ij

ij ij ij ij
r r rU g

β
ζ ε= − ⋅  ( ,ijr R ij IJ∀ ∈ ∈ ), we have the uniform route travel disutilities 

( )~ U[0, ]
ij

ij ij ij ij
r r rU B g

β
ζ−  ( , )ijr R ij IJ∀ ∈ ∈ , where ij

rB  is a route-specific parameter, ij
rg , ijζ , and ijβ  

are input parameters being numerically equal to the Weibull-type average route travel costs, OD-specific 

location parameters, and shape parameters, respectively. Constraints (28) and (30) ensure that the sum of 

nonnegative route choice probabilities is equal to 1 for each OD pair, constraints (29) and (31) guarantee 

that the route choice probabilities are assigned in a regulated manner.  

By varying the settings of ij
rB  and ijζ , the MDM-SUE formulation admits different Weibit network 

equilibria. The MDM-SUE model admits the MNW-SUE (denoted by MWM-SUE) when setting 1ij
rB =  

and 0ijζ =  ( , )ijr R ij IJ∀ ∈ ∈ , or the PSW-SUE (denoted by PSWM-SUE) when setting 1( )ij ij
r rB ϖ −=  and 

0ijζ =  ( , )ijr R ij IJ∀ ∈ ∈  where ij
rϖ  is the path-size factor defined by Eq. (7). Furthermore, by setting 

0ijζ >  ( )ij IJ∀ ∈  for the MWM-SUE model and the PSWM-SUE model, we have the MWMl-SUE model 

and the PSWMl-SUE model, respectively. The corresponding perception variances 2
,( )ij

rσ  and CVs ij
rϑ  for 

the four MDM SUE models are presented in Table3. 

Table 3. Characteristics of the perceived travel costs for the MDM SUE models 

Model Travel cost distribution Average travel cost 2
,( )ij

rσ  ij
rϑ  

MWM-
SUE ( )~ U 0

ij
ij ij
r rG g

β 
  
，  ( )

2

ij
ij
rg

β

 ( )
21

12

ij
ij
rg

β 
  

 
3 0.57

3
≈  

PSWM-
SUE ( ) ( )1

~ U 0
ij

ij ij ij
r r rG g

β
ϖ

− 
  
，  ( ) ( )1

2

ij
ij ij
r rg

β
ϖ

−

 
( ) ( )

2
1

12

ij
ij ij
r rg

β
ϖ

− 
    

3 0.57
3

≈  

MWMl-
SUE ( )~ U 0

ij
ij ij ij
r rG g

β
ζ −  

，  ( )
2

ij
ij ij
rg

β
ζ−

 
( )

2

12

ij
ij ij
rg

β
ζ −    

3 0.57
3

≈  

PSWMl-
SUE ( ) ( )1

~ U 0
ij

ij ij ij ij
r r rG g

β
ϖ ζ

− −  
，  ( ) ( )1

2

ij
ij ij ij
r rg

β
ϖ ζ

−
−

 
( ) ( )

2
1

12

ij
ij ij ij
r rg

β
ϖ ζ

− −    
3 0.57

3
≈  



18 
 

From Table 3, we can expect that, given the same settings of ij
rg , ij

rϖ , ijβ , ijζ  ( ,ijr R ij IJ∀ ∈ ∈ ), the 

perception variances 2
,( )ij

rσ  of the MDM SUE models are much larger than those of the Weibit SUE models. 

In the meantime, the perception variances 2
,( )ij

rσ  of the MWM-SUE model and the PSWM-SUE model are 

larger than those of the MWMl-SUE model and the PSWMl-SUE model, respectively. 

4.4 Solution Algorithm 

The VI formulation in Eq. (26) belongs to a class of nonadditive traffic equilibrium problems (NaTEP). It 

has route-based perceived travel costs; hence, the link-based loading algorithms may not work out in this 

context. In the following, we provide a route-based gradient projection algorithm with a self-adaptive step-

size (SAGP) for solving the VI problem. 

The SAGP algorithm was proposed by Chen et al. (2012) as an integration of an ingenious gradient 

projection method and a self-adaptive step-size scheme. The gradient projection operation is equivalent to 

solving a quadratic programming problem when the feasible set Ω is a general polyhedron set, or even more 

complicated when Ω is a general convex set. To avoid these situations and make it easier for 

implementation, Jayakrishnan et al. (1994) embedded the flow conservation constraints in the projection 

operations by exempting the shortest paths from the general mapping operation in Eq. (25). Merely simple 

projections on a nonnegative orthant are required (Chen et al., 2002, 2012). We redefine the projection 

direction as the differences of the general mappings in Eq. (25) between the non-shortest routes and the 

shortest route in each OD pair. 

On the other side, the self-adaptive step-size scheme determines the step-size automatically by utilizing 

the convergence information on previous iterations. It automatically guarantees the Lipschitz condition and 

the strong monotonicity assumption without solving the time-consuming quadratic programs (refer to Chen 

et al. (2012) for detailed proofs). Besides, it allows non-monotone step-size sequences; hence, the step-size 

may increase or decrease. Fig. 3 presents the procedure of the SAGP algorithm. 
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Fig. 3. Flow chart of the self-adaptive gradient projection (SAGP) algorithm 

Note that, since the SAGP algorithm is route-based, a route set generation procedure might be required 

for real-world implementations. Then, we may incorporate a greedy heuristic algorithm or a column 

generation procedure (Dantzig, 1963) for generating an effective route set. 
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5 NUMERICAL RESULTS 

In this section, we provide two numerical examples, of which the first one shows the impacts of the least 

perceived travel cost (i.e., a positive location parameter) on the network equilibria, on the perception 

variances, and on the coefficients of variation; the second one displays the robustness and applicability of 

the solution algorithm for resolving real-network problems. 

5.1 Numerical Example I: A Simple Network 

In the first numerical example, we use a small network with 10 routes (see Fig. 4) to show the equilibrium 

state in each model. Table 4 presents the network settings. Particularly, we adopt the MNP-SUE model as 

a benchmark and take the MNL-SUE model for reference. The MNP-SUE model is chosen because it can 

flexibly handle any valid correlation matrix among routes and permit varied perception variances, and the 

assumption of multivariate normal link/route flow and travel cost distributions are justifiable according to 

the Central Limit Theorem (Castillo et al., 2014; Watling, 2006). We investigate the Weibit SUE models 

based on whether the positive location parameters and/or the overlapping routes are considered. Combining 

the two conditions comes to four cases of the Weibit SUE models, namely, the MNW-SUE model, the 

MNWl-SUE model, the PSW-SUE model, and the PSWl-SUE model. Besides, we take four MDM SUE 

models for comparison, including the MWM-SUE model, the MWMl-SUE model, the PSWM-SUE model, 

and the PSWMl-SUE model.  

For the VI formulation in Eq. (26), both additive (Castillo et al., 2008; Fosgerau and Bierlaire, 2009) and 

multiplicative (Kitthamkesorn and Chen, 2013) route travel cost functions are applicable. In this study, we 

adopt the commonly accepted additive route travel cost function 

r

ij
r a

a A
g τ

∈

= ∑ ,  ,ijr R ij IJ∀ ∈ ∈ , (32) 

where τa is the average travel cost (/time) of link a, defined by the Bureau of Public Road (BPR) function 

( ),0 1 ,a

a a a a av C a Aφτ τ ρ = + ∀ ∈  . (33) 

The parameters ρa and ϕa are set to 0.15 and 4.0 for all the links, respectively. The link travel cost is assumed 

to equal the link travel time. As for the other parameters, we set the CV parameter ij
rϑ

,freeflow
ij
rϑ =0.26. Specifically, we set the dispersion parameter ij

rϑ  to 0.5 for the MNL-SUE model, 

the shape parameter ijβ

ijζ  as a linear function of the minimum free-flow travel cost 
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between each OD pair, i.e., ,freeflowmin{ }
ij

ij ij
r

r R
gζ η

∈
= ⋅ , where ,freeflow0 min{ } min{ }

ij ij

ij ij
r s

r R s R
g gη

∈ ∈
≤ <  is a scale to 

capture the public familiarity with the transportation network. In practical implementations, the location 

parameters can be roughly set as the minimum travel time (cost) between each OD pair, or be estimated 

indirectly by calibrating the scale η. 

5

6

3

4

1

2

9

7

84

65
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31

 
Fig. 4. A testing network 

Table 4. Link parameter setting 

Link# 
Capacity 

(veh/min) 
Length 

(km) 
Free-flow speed 

(km/min) Link# 
Capacity 

(veh/min) 
Length 

(km) 
Free-flow speed 

(km/min) 
1 200 3.5 0.5 6 300 4.5 0.9 
2 300 2.0 0.8 7 250 8.4 1.2 
3 300 4.0 1.0 8 300 6.6 0.6 
4 350 1.8 1.2 9 300 11.4 0.6 
5 300 2.5 1.0     

5.1.1 Comparison of the equilibrium state in each model  

We consider three indexes at equilibrium, including the flow assignment pattern, the perception variances 
2( )ij

rσ , and the corresponding CVs ij
rϑ . 

Table 5 presents the equilibrium flow assignments in each model. Comparing with the MNP-SUE 

model, the MNL-SUE model assigns more flow onto the heavily overlapped routes (e.g., routes 2, 4, 7, and 

9) by assuming independence among routes. Comparatively, the MNW-SUE model, assuming length-based 

perception variances, assigns more flow to longer routes than the MNL-SUE model. In the meantime, the 

PSW-SUE model, considering the overlapping routes, assigns less flow to the heavily overlapped routes 

(e.g., routes 2, 3, 8, and 9) than the MNW-SUE model. Furthermore, after considering the least perceived 

travel cost (i.e., a positive location parameter), the MNWl-SUE model and the PSWl-SUE model distribute 

more flow to the shortest route between each OD pair (e.g., routes 1, 4, 6, and 10). This phenomenon can 

be explained by Proposition 1 and Corollary 2. Given positive location parameters, we can restate the route 

choice probability as a function of the average route travel cost and the associated CV; the CV, in the 

meanwhile, reduces route-specifically and proportionally faster for shorter routes. Hence, the shortest route 

between each OD pair has smaller travel disutility and accordingly a larger choice probability. As for the 
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four MDM SUE models, they produce the same Weibit SUEs under the given network settings. Phenomena 

like those of the Weibit SUE models are observed. Note that, it is worth remarking that the PSWl-SUE, the 

MNWl-SUE and the corresponding MDM SUEs (i.e., PSWMl-SUE and MWMl-SUE) show the smallest 

mean square errors (MSEs, the last row in Table 5) relative to the MNP-SUE; namely, they present the best 

approximations of the MNP-SUE. Therefore, we may infer that considering the travelers’ least perceived 

travel cost between each OD pair would enhance the capability of the Weibit models in picturing the 

individuals’ travel choice decisions. 

In Table 6, we take OD pair 1 for instance to analyze the features of 2
,( )ij

rσ  in each model. In the MNP-

SUE model, by assuming a constant ij
rϑ , we have larger route-specific 2

,( )ij
rσ  for longer routes. In contrast, 

we have a uniform 2
,( )ij

rσ  in the MNL-SUE model. In the meantime, the MDM SUE models demonstrate a 

different picture. All the MDM SUE models have route-specific 2
,( )ij

rσ . Among them, the PSWM-SUE 

model has larger 2( )ij
rσ  than the MWM-SUE model; so does the PSWMl-SUE model relative to the 

MWMl-SUE model. The reason is obvious: after considering the overlapping routes, the upper bounds of 

the uniform perceived travel costs in the PSWM-SUE model and the PSWMl-SUE model are larger than 

those in the MWM-SUE and MWMl-SUE models, i.e., ( ) ( ) ( )1 ij ij
ij ij ij
r r rg g

β β
ϖ

−
≥  and ( ) ( )1 ij

ij ij ij
r rg

β
ϖ ζ

−
−

( )
ij

ij ij
rg

β
ζ≥ − . Moreover, the perception variances 2

,( )ij
rσ  of the MWMl-SUE model and the PSWMl-SUE 

model decrease sharply due to the decreased upper bounds of the uniformly distributed perceived travel 

costs, i.e., ( ) ( )
ij ij

ij ij ij
r rg g

β β
ζ− <  and ( ) ( )1 ij

ij ij ij
r rg

β
ϖ ζ

−
− ( ) ( )1 ij

ij ij
r rg

β
ϖ

−
< . For the Weibit SUE models, the 

MNW-SUE model and the PSW-SUE model have route-specific 2
,( )ij

rσ  that are larger for longer routes. 

By considering a positive location parameter, the route-specific 2
,( )ij

rσ  decrease sharply for the MNWl-

SUE model and the PSWl-SUE model, however, being larger for longer routes. 
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Table 5. Equilibrium flow assignments (βij=4.3 for the Weibit-related models) 

OD# 
(Origin, 

Destination) 

OD 
Demand 

Route 
# 

Link 
seq. 

Route 
FFTT PSF* 

MNP-
SUE 

( ij
rϑ =0.26) 

MNL-
SUE 

(θ=0.5) 

MWM-
SUE†  
(η=0) 

MWMl-
SUE 

(η=0.6) 

PSWM-
SUE 

(η=0) 

PSWMl-
SUE 

(η=0.6) 

MNW-
SUE 

(η=0) 

MNWl-
SUE 

(η=0.6) 

PSW-
SUE 

(η=0) 

PSWl-
SUE 

(η=0.6) 
1 

(1, 2) 
 1 1 7 1.00  149.50 121.97 123.32 134.58 132.64 140.86 123.32  134.58  132.91  141.04  

300 2 2-4-5 6.5 0.80  51.67 80.10 79.51 67.11 75.17 64.29 79.51  67.11  75.29  64.37  
 3 3-5 6.5 0.81  98.83 97.94 97.17 98.31 92.19 94.85 97.17  98.31  91.80  94.58  

           
2 

(1, 6) 
 4 2-4-6 9 0.73  65.08 89.98 93.54 89.41 93.20 88.89 93.54  89.41  93.58  89.23  

200 5 3-6 9 0.74  134.92 110.02 106.46 110.59 106.80 111.11 106.46  110.59  106.42  110.77  
           
3 

(5, 2) 
 6 7-4-5 11 0.90  134.15 123.25 119.75 128.06 121.78 129.74 119.75  128.06  122.14  130.14  

200 7 8-5 13.5 0.86  65.85 76.75 80.25 71.94 78.22 70.26 80.25  71.94  77.86  69.86  
          

4 
(5, 6) 

 8 7-4-6 13.5 0.85  157.47 134.48 122.64 130.33 120.79 129.24 122.64  130.33  120.18  128.65  
300 9 8-6 16 0.80  64.80 83.75 90.26 86.44 83.67 80.81 90.26  86.44  84.35  81.46  

 10 9 19 1.00  77.73 81.77 87.10 83.24 95.53 89.95 87.10  83.24  95.46  89.89  
MSE‡ - 394.86  544.70 295.46  478.64  262.51  544.70  295.46  488.26  270.55  

* Route path-size factor, defined by Eq. (7) as an indicator to show the correlation or overlapping index among routes between an OD pair. 
† The MWM-SUE model is solved via the MDM-MSA algorithm by Ahipaşaoğlu et al. (2016), so do the MWMl-SUE model, the PSWM-SUE 

model, and the PSWMl-SUE model. The source codes are available at request. 

‡ We take the MNP-SUE model as a benchmark and calculate the MSEs of other SUE flow assignments relative to the MNP-SUE. 
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Fig. 5 demonstrates the coefficients of variation ij
rϑ  in each model. The MNP-SUE model presumes a 

common ij
rϑ  for all routes; the MNL-SUE model has route-specific ij

rϑ  that is smaller for routes with a 

larger average travel cost, meaning smaller relative variabilities for longer routes. Comparatively, all the 

MDM SUE models have the same and constant ij
rϑ  that is significantly larger than those of the other SUE 

models. The results are expectable given that the uniform perceived travel costs are bounded below by zeros 

in the MDM SUE models, i.e., the second column in Table 3. Meanwhile, the MNW-SUE model and the 

PSW-SUE model have the same ij
rϑ  for all routes, inferring the same relative variability for all routes. 

Different from the MDM SUE models, the MNWl-SUE model and the PSWl-SUE model have smaller and 

route-specific ij
rϑ  after considering the least perceived travel cost (i.e., a positive location parameter), and 

present consistent change patterns with the perception variances 2
,( )ij

rσ . Table 7 summarizes the change 

characteristics of 2
,( )ij

rσ  and ij
rϑ  in the 10 SUE models. 

Table 6. Route perception variances between OD pair 1 (ζ 
1=3.9 minutes) 

SUE Models 
Perception Variances 

SUE Models 
Perception Variances 

Route 1 Route 2 Route 3 Route 1 Route 2 Route 3 

MNP-SUE 3.63 3.93 3.72 PSWMl-SUE 2.79E+3 1.34E+4 6.27E+3 

MNL-SUE 6.58 6.58 6.58 MNW-SUE 3.53 4.33 3.95 

MWM-SUE 1.86E+6 4.47E+6 2.99E+6 MNWl-SUE 0.76 1.05 0.88 

MWMl-SUE 2.50E+3 1.00E+4 4.68E+3 PSW-SUE 3.58 4.21 3.84 

PSWM-SUE 1.97E+6 6.17E+6 4.17E+6 PSWl-SUE 0.78 1.01 0.85 

 
Fig. 5. Route coefficients of variation between OD pair 1 (ζ 

1=3.9 minutes) 
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Table 7. Change characteristics of the perception variances and coefficient of variation in each model 

 Perception variance  
(Absolute perceived variability) 

Coefficient of variation  
(Relative perceived variability) 

MNP-SUE • Route-specific 
• Increase with the average route travel cost 

• Pre-assumed or other specified 

MNL-SUE • Identical within each OD pair 
• Determined by the dispersion parameter 

• Route-specific 
• Decrease with the average route travel 
cost 

MWM 

(/PSWM)-SUE 
• Route-specific 
• Increase with the average route travel cost 

• Identical within each OD pair 

MWMl 

(/PSWMl)-SUE 

(η>0) 

• Route-specific 
• Increase with the average route travel cost 
• Decrease with the location parameter 

• Identical within each OD pair 

MNW 

(/PSW)-SUE 
• Route-specific 
• Increase with the average route travel cost 

• Identical within each OD pair 
• Determined by the shape parameter 

MNWl 
(/PSWl)-SUE 

(η>0) 

• Route-specific 
• Increase with the average route travel cost 
• Decrease with the location parameter 

• Route-specific 
• Increase with the average route travel 
cost 
• Decrease with the location parameter 

5.1.2 Sensitivity analysis 

In this section, we adopt two Weibit SUE models (i.e., MNWl-SUE and PSWl-SUE) to examine the impacts 

of the least perceived travel cost ijζ  on two variability indexes, namely the absolute perceived variability 

2( )ij
rσ  and the relative perceived variability ij

rϑ . Particularly, we consider the values of both indexes on 

routes 1 and 2, and the differences of each index between the two routes, i.e., 1 2 1 2
2 1( ) ( )σ σ−  and 1 1

2 1ϑ ϑ− . 

As shown in Fig. 6, the perception variances 2( )ij
rσ  decrease with η for both routes in both models. 

Particularly, the value of 2( )ij
rσ  on the long route (i.e., route 2) decreases faster than that on the short one 

(i.e., route 1). As a result, 1 2 1 2
2 1( ) ( )σ σ−  decrease with η (Fig. 7), which confirms Eq. (19). In the meantime, 

the perceived CVs ij
rϑ  decrease with η (Fig. 8), however, slower on route 2 than on route 1. The resultant 

differences in ij
rϑ  between the two routes (i.e., 1 1

2 1ϑ ϑ− ) increase with η, leading to a larger ij
rϑ  for route 2 

(Fig. 9). The results confirm Eq. (20).  

To sum up, by increasing the location parameter ζij (/η) between an OD pair, shorter routes experience 

slower decreases in 2( )ij
rσ , however, faster decreases in ij

rϑ . These changes enlarge the proportional 
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differences of 2( )ij
rσ  (or the absolute differences of ij

rϑ ) between routes. The synthetic behavioral effects 

are that travelers can better differentiate the routes in terms of 2( )ij
rσ  and ij

rϑ , and place more probabilities 

on taking the shorter routes (e.g., route 1 in Fig. 10). As a result, both the average travel time on the shortest 

route between an OD pair (e.g., route 1 in Fig. 11) and the network total travel times (Fig. 12) increase with 

η. These observations conform to Proposition 1. 

   

Fig. 6. Perception variances 2( )ij
rσ  with η  (β ij=4.3)      Fig. 7. Differences in 2( )ij

rσ  with η  (β ij=4.3) 

   
Fig. 8. Perceived CVs ij

rϑ  with η  (β ij=4.3) Fig. 9. Differences in ij
rϑ  with η  (β ij=4.3) 
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Fig. 10. Route flow with η  (β ij=4.3) Fig. 11. Route travel time with η  (β ij=4.3) 

 
Fig. 12. Total travel time with η  (β ij=4.3) 

5.2. Numerical Example II: The Winnipeg Network 

In the second numerical example, we use the Winnipeg network to show the effects of the least perceived 

travel cost ζij on the convergence of the solution algorithm and the equilibrium flow assignments. The 

Winnipeg network consists of 154 zones, 1,067 nodes, 2,535 links, and 4,345 OD pairs. The network 

structure, OD demands, and link performance parameters are borrowed from the Emme/2 software (INRO 

Consultants, 1999). We set the SAGP algorithm parameters δ and u to 0.5 and 0.9, respectively. In this 

study, we use the working route-set from Bekhor et al. (2008), which consists of 174,491 routes with an 

average of 40.16 routes per OD pair. This behavioral route-set has been adopted in Chen et al. (2012), 

Kitthamkesorn and Chen (2013, 2014), and Bekhor et al. (2008) to name a few, to analyze the route choice 
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convergence criterion: ( )21 ( 1) ( )
| | ij

ij ij
r rij

ij IJ r R
ij IJ

RMSE f k f k
R ∈ ∈

∈

= + −∑ ∑∑
 where | |ij

ij IJ
R

∈
∑  is the number of 

routes between all the OD pairs. 

5.2.1 Sensitivity of the algorithm convergence speed to the scale of the least perceived travel cost 

We take the PSWl-SUE model for instance to examine the effects of the scale of the least perceived travel 

costs on the convergence speed of the algorithm. We set the shape parameters ijβ  to 4.3 for all OD pairs, 

and vary η from 0.1 to 0.9 at an interval of 0.2 to examine the number of iterations required to reach different 

convergence accuracies (denoted as the logarithm to base 10 of the accuracies). 

As presented in Fig. 13, while the iterations required to reach each accuracy level increase with η, the 

iterations between two consecutive accuracy levels remain almost the same under each η. In the meantime, 

the iterations between two consecutive accuracy levels increase as η gets larger. For example, it requires 

210 (or 211) iterations to reach the accuracy level 1E-4 from 1E-3 (or 1E-7 from 1E-6) when η =0.1, or 286 

or 287 iterations to reach the accuracy level 1E-5 from 1E-4 (or from 1E-8 from 1E-7) when η =0.7. The 

results demonstrate the robustness and efficiency of the SAGP algorithm. 

 
Fig. 13. Number of iterations required for each accuracy level under each η 
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model and the PSWl-SUE ( =0.6η ) model versus the PSW-SUE model. The shape parameters ijβ  are set 

to 4.3 for all OD pairs. 

Fig. 14 displays the link flow differences in the two model pairs. Most link flow differences fall in the 

interval of [-50, 50]; some even are larger than 100 or smaller than -100. Fig. 15 summarizes the distribution 

of the link flow differences in the two model pairs. After considering the least perceived travel cost between 

each OD pair, about 70 percent (1789/2535) of links attract less flow in the MNWl-SUE model than in the 

MNW-SUE model. Similar situations happen to about 66 percent (1688/2535) of links in the PSWl-SUE 

model versus in the PSW-SUE model.  

Correspondingly, the lowest V/C ratio interval [0, 0.60) embraces more links in the MNWl-SUE model 

and the PSWl-SUE model (Table 8); the network average link V/C ratio decreases from 0.43 in the MNW-

SUE model to 0.40 in the MNWl-SUE model and from 0.46 in the PSW-SUE model to 0.43 in the PSWl-

SUE model. The decreased network average link V/C ratios indicate mitigated congestion situations. We 

may explain the results by referring to the physical meaning of a location parameter. A location parameter 

represents the individuals’ experience and knowledge of the least potential travel cost (i.e., the certain part) 

between an OD pair. Eliminating the certain part adds to more advantages of shorter routes in terms of 

absolute and relative variability, i.e., shorter routes have smaller perception variances and CVs. More 

travelers shift to the shortest route between each OD pair, somehow alleviate the network congestion 

situation under the given network settings. However, attention should be paid that considering the least 

perceived travel cost does not necessarily mitigate the congestion situation at the network level. Numerical 

example I has posed a counter-example (see Fig. 12): the network TTT increases for the MNWl-SUE model 

and the PSWl-SUE model when the location parameters increase from 0s to above. 

 
(1) Link flow differences between the MNWl-SUE 
( =0.6η ) model and the MNW-SUE model 

(2) Link flow differences between the PSWl-SUE (
=0.6η ) model and the PSW-SUE model 

Fig. 14. Link flow differences between different models 



30 
 

 
Fig. 15. Distribution of link flow differences 

Table 8. Link V/C ratio distribution in each model 

Link V/C Ratio Interval MNW-SUE MNWl (η=0.6)-SUE PSW-SUE PSWl (η=0.6)-SUE 

[0,0.6) 1762 1824 1700 1767 

[0.6,1.0) 480 446 524 480 

[1.0,1.5) 245 222 261 248 

[1.5, +∞) 48 43 51 41 

Mean V/C 0.43 0.40 0.46 0.43 

6 CONCLUSIONS 

In this study, we investigate the impacts of a special kind of travelers’ pre-trip information or knowledge, 

i.e., the least perceived travel cost between each OD pair, on the network SUE problems. Particularly, we 

conduct the investigation with the Weibit SUE models, since they have a location parameter that can 

naturally characterize the least perceived travel cost between each OD pair. The impact patterns and 

mechanisms are analyzed. By considering a positive location parameter, 

(1) the Weibull-type perception variances decrease, in a route-specific manner, faster (however 

proportionally slower) for longer routes; 

(2) the varied changes of the perception variances lead to route-specific coefficients of variations (CVs); 

(3) the route travel cost can be specified as a function of both the average travel cost and the route-

specific CV, thus resolving the scale insensitivity issue of the weibit-based SUE models; as a result, 

(4) travelers can better distinguish the routes in terms of absolute and relative variability; more travelers 

shift to the routes with the lowest average travel cost between each OD pair. 

Numerical examples are provided to show the impacts of the least perceived travel cost on the Weibit route 

choice probabilities and the network SUEs, and also to show the efficiency and robustness of the proposed 

solution algorithm. 
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We consider the Weibit SUE models in this study; for the other SUE models that do not have a location 

parameter to naturally capture the least perceived travel cost, we may apply a simulation-based approach 

to carry out the investigation. We may take the least perceived travel cost as a lower bound to reframe (e.g., 

to truncate or right shift) the perceived travel cost distributions, and observe the resultant route choice 

distributions to unveil the impacts of the least perceived travel cost on the general SUE problems. 
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APPENDIX 

A.1. Proof of Proposition 1 

Proof. The proof includes three parts. The first part is equivalent to proving that 2( )ij
rσ  and ij

rϑ  are 

decreasing with the location parameter ζij. Because 1 20 ij ijζ ζ≤ ≤ , we have  

( ) ( ) ( ) ( )
( ) ( )

2 1

2 1

2 2 2 22 2
2 1| |

2 1| |

( ) = - =( )
, ,

= 1 1 =

ij ij

ij ij

ij ij ij ij ij ij ij ij
r rr r ij

ij ij ij ij ij ij ij ij
r rr r

g g
r R ij IJ

g g

ζ ζ

ζ ζ

σ ζ ζ σ

ϑ ζ ζ ϑ

 − ∆ ≤ ∆ ∀ ∈ ∈
− ∆ ≤ − ∆

. 

The strict inequalities hold when 1 2
ij ijζ ζ< . 

For the second part, given ij ij
r sg g≤  and 1 20 ij ij ij

rgζ ζ≤ ≤ < , we have  

1 2 2 1 1 2 2 1

2 2 2 2
1 1 2 2

2 2 2 2
1 1 2 2

1

( ) ( ) ( ) ( ) ( ) ( )

( ) 2 ( ) ( ) 2 ( )

( ) 2 ( ) ( ) 2 ( )

(

ij ij ij ij ij ij ij ij ij ij ij ij
r r s s

ij ij ij ij ij ij ij ij
r r r r

ij ij ij ij ij ij ij ij
s s s s

ij ij
r

g g g g

g g g g

g g g g

g

ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ

ζ ζ ζ ζ

ζ

   − + − − ≤ − + − −   
 ⇒ − + − − + 

 ≤ − + − − + 
⇒ − 2 2 2 2

2 1 2) ( ) ( ) ( ) , , , .ij ij ij ij ij ij ij
r s sg g g r s R ij IJζ ζ ζ− − ≤ − − − ∀ ∈ ∈

 (A.1) 

Multiplying each side by 2( )ij∆  gives 
1 2 1 2

2 2 2 2
| | | |

( ) ( ) ( ) ( )ij ij ij ij
ij ij ij ij
r r s sζ ζ ζ ζ

σ σ σ σ− ≥ − ， , ,ijr s R ij IJ∀ ∈ ∈ . 

Similarly, given 1 20 ij ijζ ζ≤ ≤ , computing the CV difference between routes in the same OD pair gives 
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1 2

1 2 2 1
| |

(1 ) (1 )ij ij

ij ij ij ij
ij ij ij ij ij

ij ij ijr r
r r rg g gζ ζ

ζ ζ ζ ζϑ ϑ −
− = − ∆ − − ∆ = ∆ , , ,ijr s R ij IJ∀ ∈ ∈ , (A.2) 

which is decreasing with the average route travel cost ij
rg . Then we have 

1 2 1 2| | | |ij ij ij ij
ij ij ij ij
r r s sζ ζ ζ ζ

ϑ ϑ ϑ ϑ− ≥ −  when 

ij ij
r sg g≤ . 

As for the third part, given ij ij
r sg g≤  and 1 20 ij ij ij

rgζ ζ≤ ≤ < , with simple manipulations we have  

22

22 1 2 1 2
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Strict inequality holds when either ij ij
r sg g<  or 1 2

ij ijζ ζ<  establishes. 

Similarly, from Eq. (A.4) and the relationship between 2( )ij
rσ  and ij

rϑ , we have 
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This completes the proof. □ 

A.2. Proof of Corollary 1 

Proof. Arrange the average route travel costs ij
rg  in an ascending order ij ij

r sg g≤ ⋅⋅ ⋅ ≤ ≤ ⋅ ⋅ ⋅ , 

, ,ijs r s R ij IJ∀ ≠ ∈ ∈ , then, restating Eq. (A.7) gives 
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Multiplying each side by 
ij ij
r
ij ij
s

g
g

∆
∆

, we have  
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From Lemma 1, we have 
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This finishes the proof. □ 

A.3. Proof of Corollary 2 

Proof. The proof is equivalent to showing that, given an ascending sequence {= ,ij ij
r sg g≤ ⋅⋅ ⋅ ≤ ≤ ⋅ ⋅ ⋅g

}, ,ijs r s R ij IJ∀ ≠ ∈ ∈  and the OD-specific positive location parameters ijζ , imposing different scales 

κ(≠1) onto g would produce different route choice probabilities, i.e., there exists at least one route satisfying 

1 2( ) ( )ij ij
r rP Pκ κ≠  when 1 2κ κ≠ . 

When ijζ >0, the scaled route choice probability in Eq. (10) reduces to  
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Considering the critical role of ( )ij
rϑ κ  in shaping the PSW route choice probability, we take the ratios of 

( )ij
rϑ κ  between route r and the other routes, i.e., ( ) ( )ij ij

r sϑ κ ϑ κ , ,ijs R ij IJ∀ ∈ ∈ . 

Take the derivative of ( ) ( )ij ij
r sϑ κ ϑ κ  w.r.t. κ, we have 
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Eq. (A.14) shows that the CV ratio ( ) ( )ij ij
r sϑ κ ϑ κ  ( ,ijs R ij IJ∀ ∈ ∈ ) is an increasing function of the scale κ. 

Then, we have  
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( ) ( )
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r r
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≤ , ,ijs R ij IJ∀ ∈ ∈  (A.15) 

when 1 2κ κ≤ . After some manipulations, we can transform Eq. (A.15) into 
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From Lemma 1, we have 
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i.e., 1 2( ) ( )ij ij
r rP Pκ κ≤ . The strict inequality establishes when ij ij

r sg g<  for at least one route ,ijs R ij IJ∈ ∈ . 

This completes the proof. □ 

A.4. Proof of Proposition 2 

Proof. Firstly, given that f* is a solution to the PSWl-SUE problem, the SUE conditions in Eq. (24) will 

naturally ensure Eq. (26). That is, any solution to the PSWl-SUE model is also a solution to the VI problem 

in Eq. (26).  

Secondly, suppose f* is a solution to the VI problem in Eq. (26), f is a feasible flow that differs from f*, 

i.e., for some route ,ijr R ij IJ∈ ∈ , *ij ij
r rf f≠ . Substituting f and f* into the VI formulation in Eq. (26) gives 

* * T *( ( )) ( ) 0ij ij ij ij ij
r r r rf q P f f− ⋅ − ≥f . Since * 0ij ij

r rf f− ≠ can be either positive or negative, we have 

* *( ) 0ij ij ij
r rf q P− ⋅ =f , i.e., the SUE condition in Eq. (24) is satisfied. Hence, a solution to the VI problem in 

Eq. (26) is also a solution to the PSWl-SUE problem.  

This completes the proof. □ 

A.5. Proof of Proposition 3 

Proof. Based on the assumption of continuity, the general mapping F(f)=f- qT P(f) is continuous w.r.t. 

∈Ωf . Since Ω is a nonempty, convex, and compact set, a solution is guaranteed for the VI formulation in 

Eq. (26) (e.g., Theorem 1.4, Nagurney, 1999). 
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