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ANALYSIS OF A MULTIPLICATIVE HYBRID ROUTE CHOICE MODEL IN

STOCHASTIC ASSIGNMENT PARADOX  

Zhanhong Cheng1, Jia Yao1, 2*, Anthony Chen3, Shi An1 

ABSTRACT 

In recent years, a multiplicative hybrid (MH) route choice model was proposed to overcome the drawbacks of 
the multinomial logit (MNL) model and the multinomial weibit (MNW) model. This paper compares the 
conditions for the stochastic traffic assignment paradox of the three models. We analyze the condition when 
improving a link in an uncongested network counterintuitively increases total travel costs. Using three typical 
flow-independent networks (two links, 𝑛𝑛 independent links, and 𝑛𝑛 routes with 𝑚𝑚 overlapping links), we 
reveal the strong relationships in the paradox conditions of the three models. We further study the paradoxical 
features of the three models in the Sioux-Falls network, where the model parameters are estimated from 
simulated route sets. The case study shows that 1) the MH model fits the data the best, 2) using the MNL or 
the MNW model to identify paradox links exhibits intrinsic tendencies that are consistent with the theoretical 
analysis, and 3) the paradox links identified by the MH model is a compromise of the other two models. This 
paper delves into the relationships of the three models in the stochastic assignment paradox and provides 
suggestions and caveats to the application of the three models. 
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1. Introduction 

The history of the traffic paradox can be traced back to 1968 when Braess discovered that adding a new link 
to a congested network may increase overall travel costs (Braess, 1968; Braess et al., 2005). The occurrence of 
this phenomenon owes to the discrepancy between user equilibrium condition (Wardrop, 1952) and system 
optimal flow assignment. 

The traffic paradox has received considerable attention for its both theoretical and practical significance. In 
traffic network planning, it is particularly hard to evaluate the effect of a plan beforehand. From a personal 
level, travelers often fail to unite as a whole to maximize the network’s utility. Sometimes, a well-intentioned 
improvement may aggravate network-wide congestion. In the literature, the Braess paradox has been studied 
under different circumstances, including Braess paradox under elastic demand assignment (Hallefjord et al., 
1994; Yang, 1997), dynamic assignment (Arnott et al., 1993; Akamatsu, 2000; Zhang et al., 2008; Lin and Lo, 
2009), stochastic equilibrium (Prashker and Bekhor, 2000; Zhao et al., 2014), combined distribution and 
assignment (Zhou et al., 2009; Yang and Chen, 2009), boundedly rational user equilibrium (Di et al., 2014). 
Methods are developed to detect the “paradox roads” in the real network (Sun et al., 2015; Bagloee et al., 
2017; Ma et al., 2018), and the Braess paradox has even been observed in air networks (Ma et al., 2019). On 
the other hand, other paradoxes have been studied, such as Downs-Thomson paradox (Downs, 1962; Thomson, 
1978; Wang et al., 2017), stochastic assignment paradox (Sheffi and Daganzo, 1978; Yao and Chen, 2014), 
capacity paradox (Yang and Bell, 1998), emission paradox (Nagurney, 2000; Szeto et al., 2008), reliability 
paradox (Szeto, 2011), transit assignment (Szeto and Jiang, 2014), exclusive bus lanes’ setting paradox (Yao 
et al., 2015), traffic noise paradox (Wang and Szeto, 2017), and information Braess paradox (Acemoglu et al., 
2018; Yao et al., 2019a). 

This paper focuses on the stochastic assignment paradox (Sheffi and Daganzo, 1978) in uncongested networks 
where “too many” travelers shift to an improved facility even though it is still an inferior alternative. The 
stochastic assignment paradox is caused by travelers’ perception error, and it performs differently under 
different stochastic route choice models (Henn and Ottomanelli, 2006). The most widely used route choice 
model is the multinomial logit (MNL) model, which is developed early and has a closed-form probability 
expression. Castillo et al. (2008) proposed another closed-form route choice model, the multinomial weibit 
(MNW) model. Although with the closed forms, both the MNL and MNW models have obvious drawbacks. 
Because of the assumption that random error terms are independently and identically distributed (IID) Gumbel 
variates, the MNL model can account for neither overlapping (or correlation) among routes nor perception 
variance with respect to trips of different lengths (Sheffi, 1985). For the MNW model, the identically 
distributed assumption is not required, and the random error term is subject to an independently Weibull 
distribution. Although MNW model can identify different trip lengths by different perception variances 
(Castillo et al., 2008), it also has its limitation of not being able to identify any arbitrary multiplier on the route 
cost (Kitthamkesorn and Chen, 2014). Therefore, Xu et al. (2015) proposed a multiplicative hybrid (MH) 
model that alleviates the drawbacks of both MNL and MNW models. The hybrid model keeps the closed-form 
probability expression and is very suitable for practical applications. For example, Liu et al. (2017) proposed a 
select link analysis method based on the MH model. 

It is very important to understanding the conditions that produce traffic paradoxes (Yao and Chen, 2014; Yao 
et al., 2019b; Kitahara and Hayakawa, 2019). The conditions of the stochastic assignment paradox for the 
MNL model and the MNW model were analyzed by Yao and Chen (2014); results showed the stochastic 
assignment paradox depends on how the cost difference is considered in the route choice model. Based on 
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their study, this paper tries to connect the MH model with the original two models (i.e., MNL and MNW) by 
investigating their stochastic assignment paradox when an inferior travel alternative is marginally improved. 
Based on the theoretical analysis, we further demonstrate some intrinsic tendencies when using the three 
models in identifying paradox links in the Sioux-Falls Network. This paper reveals some theoretical properties 
of using the three models for stochastic assignment paradox identification and therefore could better support 
decision making. 

The remainder of this paper is organized as follows. Section 2 briefly introduces the MH model and its 
alleviation in the drawbacks of the MNL and MNW models. In Section 3, paradoxical features of the MH 
model are analyzed in three typical networks: (1) a two-link network; (2) a single O-D pair’s network with 𝑛𝑛 
independent links; (3) a 𝑛𝑛 route single O-D pair’s network with 𝑚𝑚 overlapping links. Section 4 compares 
the stochastic paradox of the three models when using the estimated parameters. Conclusions and further 
research are summarized in the last section. 

2. A brief review of the hybrid model 

The multiplicative hybrid (MH) model proposed by Xu et al. (2015) combines the MNL model and the MNW 
model. For the MH model, the route choice probability of route 𝑘𝑘 in O-D pair 𝑖𝑖 is 

 𝑝𝑝𝑘𝑘𝑖𝑖 =
exp�−𝜃𝜃𝑐𝑐𝑘𝑘

𝑖𝑖 �𝑐𝑐𝑘𝑘
𝑖𝑖 −𝛽𝛽

∑ exp�−𝜃𝜃𝑐𝑐𝑙𝑙
𝑖𝑖�𝑐𝑐𝑙𝑙

𝑖𝑖−𝛽𝛽
𝑙𝑙∈𝐾𝐾𝑖𝑖

= 1

∑ exp�−𝜃𝜃�𝑐𝑐𝑙𝑙
𝑖𝑖−𝑐𝑐𝑘𝑘

𝑖𝑖 �� �
𝑐𝑐𝑙𝑙
𝑖𝑖

𝑐𝑐𝑘𝑘
𝑖𝑖 �

−𝛽𝛽

𝑙𝑙∈𝐾𝐾𝑖𝑖

;  ∀ 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼 .  (1) 

where 𝐼𝐼 is the set of O-D pairs, 𝐾𝐾𝑖𝑖 is the route set within the O–D pair 𝑖𝑖, 𝑐𝑐𝑘𝑘𝑖𝑖  is the cost of route 𝑘𝑘 of O-D 
pair 𝑖𝑖, 𝜃𝜃 is the dispersion parameter of Gumbel random error distribution, and 𝛽𝛽 is the shape parameter of 
the Weibull random error distribution. Like in the original MNL and MNW models, 𝜃𝜃 and 𝛽𝛽 are related to 
the variance of the stochastic perceived error. The larger the 𝜃𝜃 and the 𝛽𝛽, the smaller the perception error, 
and the smaller the probability to choose non-shortest paths. Note that Eq. (1) contains both absolute cost 
difference (i.e., 𝑐𝑐𝑙𝑙𝑖𝑖 − 𝑐𝑐𝑘𝑘𝑖𝑖 ) and relative cost difference (i.e., 𝑐𝑐𝑙𝑙𝑖𝑖 𝑐𝑐𝑘𝑘𝑖𝑖� ); this alleviates the drawbacks of both the 
MNL and MNW models. 

A two-link network shown in Fig. 1 is used to demonstrate the superiority of the MH model. In Fig. 1, 𝑐𝑐1 is 
the travel cost of the upper route (route 1) and 𝑐𝑐2 is the travel cost of the lower route (route 2). 

1 2

c1

c2

 

Fig. 1. Network I: Single O-D pair’s network with two links. 

Let 𝜃𝜃 = 0.1, 𝛽𝛽 = 3. When 𝑐𝑐2 = 𝑐𝑐1 + 5 (constant absolute difference), the probabilities of the three models 
to choose route 1 with different 𝑐𝑐1 are shown in Fig. 2 (a). Correspondingly, the probabilities when 𝑐𝑐2 =
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 2𝑐𝑐1 (constant relative difference) are shown in Fig. 2 (b). Fig. 2 (a) shows that 𝑝𝑝1 of the MNL model is 
unchanged with different 𝑐𝑐1 under constant absolute route costs difference; Fig. 2 (b) shows that 𝑝𝑝1 of the 
MNW model is unchanged with different 𝑐𝑐1 under constant relative difference. The MNL/MNW model fails 
to distinguish the situations with constant absolute/relative costs difference. Both are counter intuitive. The 
MH model, however, overcomes the drawback of the original two models and is sensitive to both absolute and 
relative differences. 

  
(a) 𝑐𝑐2 =  𝑐𝑐1 + 5 (b) 𝑐𝑐2 = 2𝑐𝑐1 

Fig. 2. Different route choice features of the three route choice models. 

Look at the MH model from another perspective, Eq. (1) can be transformed to 

 𝑝𝑝𝑘𝑘𝑖𝑖 =
exp�−𝜃𝜃𝑐𝑐𝑘𝑘

𝑖𝑖  −𝛽𝛽 ln 𝑐𝑐𝑘𝑘
𝑖𝑖 �

∑ exp�−𝜃𝜃𝑐𝑐𝑙𝑙
𝑖𝑖 −𝛽𝛽 ln 𝑐𝑐𝑙𝑙

𝑖𝑖 �𝑙𝑙∈𝐾𝐾𝑖𝑖
;  ∀ 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼.  (2) 

Eq. (2) is similar to the MNL model but with a different utility term. The utility of a route should not increase 
with the increase of its costs, which suggests that 𝜃𝜃 ≥ 0 and 𝛽𝛽 ≥ 0 must hold in the MNL model and the 
MNW model. For the MH model, there should be 

 
∂�−𝜃𝜃𝑐𝑐𝑘𝑘

𝑖𝑖 −𝛽𝛽 ln 𝑐𝑐𝑘𝑘
𝑖𝑖 �

∂𝑐𝑐𝑘𝑘
𝑖𝑖 = −𝜃𝜃 − 𝛽𝛽

𝑐𝑐𝑘𝑘
𝑖𝑖 ≤ 0; ∀ 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼.  (3) 

Theoretically, the cost of a route 𝑐𝑐𝑘𝑘𝑖𝑖  can be any positive real number. Therefore, 𝜃𝜃 and 𝛽𝛽 should be 
non-negative to guarantee the Eq. (3) always holds.  

3. Stochastic assignment paradox of the hybrid model 

In a stochastic traffic assignment paradox, we focus on the condition when marginally improving a link (i.e., 
reducing the link cost) increases the total network travel cost. The “marginal” means the reduction of the 
link’s cost approaches zero. In other words, the total network travel cost, in the vicinity, is a decreasing 
function of the link cost. In this section, the stochastic assignment paradox of the MH model is studied under 
three representative cases: (1) the two-link network shown in Fig. 1; (2) a single O-D pair’s network with 𝑛𝑛 
independent links; (2) a single O-D pair’s network with one overlapping link. 

3.1. Two-link network 

For the two-link network shown in Fig. 1, the total travel cost of the MH model is: 
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 𝐶𝐶𝑀𝑀𝑀𝑀 = 𝑄𝑄(𝑐𝑐1𝑝𝑝1 + 𝑐𝑐2𝑝𝑝2) = 𝑄𝑄 �𝑐𝑐1 exp(−𝜃𝜃𝑐𝑐1)𝑐𝑐1−𝛽𝛽+𝑐𝑐2 exp(−𝜃𝜃𝑐𝑐2)𝑐𝑐2−𝛽𝛽

exp(−𝜃𝜃𝑐𝑐1)𝑐𝑐1−𝛽𝛽+exp(−𝜃𝜃𝑐𝑐2)𝑐𝑐2−𝛽𝛽
�,  (4) 

where 𝑄𝑄 is the O-D demand. To analyze the effect of the marginal improvement of route 1 on the total travel 
cost 𝐶𝐶𝑀𝑀𝑀𝑀, the partial derivative of 𝐶𝐶𝑀𝑀𝑀𝑀 with respect to 𝑐𝑐1 is derived as follows: 

 𝜕𝜕𝐶𝐶𝑀𝑀𝑀𝑀

𝜕𝜕𝑐𝑐1
= 𝑄𝑄 𝑀𝑀𝑀𝑀(𝑐𝑐1,𝑐𝑐2)

exp�𝜃𝜃(𝑐𝑐1+𝑐𝑐2)�(𝑐𝑐1𝑐𝑐2)𝛽𝛽�exp(−𝜃𝜃𝑐𝑐1)𝑐𝑐1−𝛽𝛽+exp(−𝜃𝜃𝑐𝑐2)𝑐𝑐2−𝛽𝛽�
2, (5) 

where  

 𝑀𝑀𝑀𝑀(𝑐𝑐1, 𝑐𝑐2) = exp�𝜃𝜃(𝑐𝑐2 − 𝑐𝑐1)� �𝑐𝑐2
𝑐𝑐1
�
𝛽𝛽

+ 𝛽𝛽 �𝑐𝑐2
𝑐𝑐1
� + 𝜃𝜃(𝑐𝑐2 − 𝑐𝑐1) + 1 − 𝛽𝛽. (6) 

𝜕𝜕𝐶𝐶𝑀𝑀𝑀𝑀 𝜕𝜕𝑐𝑐1⁄ < 0 describes a circumstance where the marginal decrease in the cost of route 1 results in an 
increase in the total travel cost, which means the traffic paradox occurs. And 𝜕𝜕𝐶𝐶𝑀𝑀𝑀𝑀 𝜕𝜕𝑐𝑐1⁄ > 0 indicates 
paradox does not occur. For convenience, the circumstance where 𝜕𝜕𝐶𝐶𝑀𝑀𝑀𝑀 𝜕𝜕𝑐𝑐1⁄ = 0 is referred to as the 
paradox boundary. Clearly, the sign of 𝜕𝜕𝐶𝐶𝑀𝑀𝑀𝑀 𝜕𝜕𝑐𝑐1⁄  is only determined by 𝑀𝑀𝑀𝑀(𝑐𝑐1, 𝑐𝑐2). 

It is hard to analytically derive the expression of the paradox boundary of the MH model because of the 
complex expression of 𝑀𝑀𝑀𝑀(𝑐𝑐1, 𝑐𝑐2). However, it is possible to analyze the relations between the paradox 
boundary of the MH model and the original two models. The partial derivative of the total travel cost with 
respect to 𝑐𝑐1 in the MNL model and the MNW model are 

 𝜕𝜕𝐶𝐶𝐿𝐿

𝜕𝜕𝑐𝑐1
= 𝑄𝑄 𝐿𝐿(𝑐𝑐1,𝑐𝑐2)

exp�𝜃𝜃(𝑐𝑐2+𝑐𝑐1)�(exp(−𝜃𝜃𝑐𝑐1)+exp(−𝜃𝜃𝑐𝑐2))2  (7) 

and 

 𝜕𝜕𝐶𝐶𝑊𝑊

𝜕𝜕𝑐𝑐1
= 𝑄𝑄 𝑊𝑊(𝑐𝑐1,𝑐𝑐2)

(𝑐𝑐1𝑐𝑐2)𝛽𝛽�𝑐𝑐1−𝛽𝛽+𝑐𝑐2−𝛽𝛽�
2  (8) 

respectively, where  

 𝐿𝐿(𝑐𝑐1, 𝑐𝑐2) = exp(𝜃𝜃(𝑐𝑐2 − 𝑐𝑐1)) + 𝜃𝜃(𝑐𝑐2 − 𝑐𝑐1) + 1   (9) 

and 

 𝑊𝑊(𝑐𝑐1, 𝑐𝑐2) = (𝑐𝑐2 𝑐𝑐1⁄ )𝛽𝛽 + 𝛽𝛽(𝑐𝑐2 𝑐𝑐1⁄ ) + 1 − 𝛽𝛽.   (10) 

Clearly, the signs of 𝜕𝜕𝐶𝐶𝐿𝐿 𝜕𝜕𝑐𝑐1⁄  and 𝜕𝜕𝐶𝐶𝑊𝑊 𝜕𝜕𝑐𝑐1⁄  are determined by 𝐿𝐿(𝑐𝑐1, 𝑐𝑐2) and 𝑊𝑊(𝑐𝑐1, 𝑐𝑐2). As discussed by 
Yao and Chen (2014), the paradox boundaries of the MNL model and the MNW model exhibit a linear trend. 
The paradox boundary of the MNL model is related to the absolute cost difference of the two routes, satisfying 
𝑐𝑐1 = 𝑐𝑐2 + 1.28 𝜃𝜃⁄ . The paradox boundary of the MNW model is related to the relative cost difference of the 
two routes, satisfying 𝑐𝑐1 = 𝑐𝑐2 𝑥𝑥0(𝛽𝛽)⁄ , where 𝑥𝑥0(𝛽𝛽) ∈ (0,1) is the root of the function 𝑊𝑊(𝑥𝑥|𝛽𝛽) = 𝑥𝑥𝛽𝛽 +
𝛽𝛽𝛽𝛽 + 1 − 𝛽𝛽 (refer to Yao and Chen (2014) for details). 

Note that the paradox of the MNW model does not exist in the two-link network when 0 < 𝛽𝛽 ≤ 1. And we 
will discuss the paradox boundary of the MH model under two circumstances: 1) when 𝛽𝛽 > 1 and 2) when 
0 < 𝛽𝛽 ≤ 1. 
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3.1.1. When 𝛽𝛽 > 1 

We first visually examine the three models’ paradox boundaries under 𝜃𝜃 = 0.1 and 𝛽𝛽 = 3. Given a fixed 𝑐𝑐2, 
the corresponding 𝑐𝑐1 on a paradox boundary can be numerically solved by finding the root when the 
derivative is zero (i.e., when Eq. (6), Eq. (9), or Eq. (10) equals zero). Given a sequence of 𝑐𝑐2, the paradox 
boundaries of the three models, in two different coordinate systems, are obtained numerically and shown in 
Fig. 3 (Note that the axes of 𝑐𝑐1 and 𝑐𝑐2 in Fig. 3 (a) are exchanged compared with the work of Yao and Chen 
(2014) for the consistency with section 3.2). The paradox boundary of each model distinguishes the area 
whether marginally improving 𝑐𝑐1 brings a paradox. 

  

(a) 𝑐𝑐2 and 𝑐𝑐1 coordinate system (b) 𝑐𝑐2/𝑐𝑐1 and 𝑐𝑐2 − 𝑐𝑐1 coordinate system 

Fig. 3 Paradox area of the MNL, MNW and MH models when 𝜃𝜃 = 0.1 and 𝛽𝛽 = 3 

For the MH model, note that: 

 𝜕𝜕𝑀𝑀𝑀𝑀(𝑐𝑐1,𝑐𝑐2)
𝜕𝜕𝑐𝑐1

= −�exp�𝜃𝜃(𝑐𝑐2 − 𝑐𝑐1)� �𝑐𝑐2
𝑐𝑐1
�
𝛽𝛽
�𝜃𝜃 + 𝛽𝛽

𝑐𝑐1
� + 𝜃𝜃 + 𝛽𝛽𝑐𝑐2

𝑐𝑐12
� < 0.  (11) 

Therefore, 𝑀𝑀𝑀𝑀(𝑐𝑐1, 𝑐𝑐2) is a monotonically decreasing function with respect to 𝑐𝑐1. And the area above the 
paradox boundary in Fig. 3 (a) satisfies 𝑀𝑀𝑀𝑀(𝑐𝑐1, 𝑐𝑐2) < 0, which represents the paradox area of the MH model. 
Further, the following observations of the MH model can be obtained from Fig. 3. 

1. Intuitively, the paradox boundary of the MH model in Fig. 3 (a) is not linear. It starts from the origin, and 
when 𝑐𝑐2 → 0+, the MH model has a same paradox feature with the MNW model. 

2. In Fig. 3 (a), when 𝑐𝑐2 gets bigger, there is a trend that the paradox boundary of the MH model will 
approximate to the paradox boundary of the MNL model. 

3. The MH model has a larger paradox area than the other two models and the paradox boundary of the MH 
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model in Fig. 3 (a) is lower than both the curves of the MNL and MNW models. 

The observations listed above show the key paradoxical features of the MH model as well as its connections 
with the two original models. Moreover, these features can be formally written into propositions and 
rigorously proved. Propositions and proofs are displayed as follows in the order of its corresponding 
observations listed above. 

Proposition 1. For any 𝜃𝜃 ∈ (0, +∞), 𝛽𝛽 ∈ (1, +∞), when 𝑐𝑐2 → 0+, the root of 𝑀𝑀𝑀𝑀(𝑐𝑐1, 𝑐𝑐2) = 0 approaches 
to the root of 𝑊𝑊(𝑐𝑐1, 𝑐𝑐2) = 0. 

Proof. When 𝑊𝑊(𝑐𝑐1, 𝑐𝑐2) = 0, there is 𝑐𝑐1 = 𝑐𝑐2/𝑥𝑥0(𝛽𝛽); 𝑥𝑥0(𝛽𝛽) ∈ (0,1). 

When 𝑐𝑐2 → 0+,  

 𝑐𝑐2 − 𝑐𝑐1 = 𝑐𝑐2�1− 1/ 𝑥𝑥0(𝛽𝛽)� → 0,  (12) 

Thus, 

 𝑀𝑀𝑀𝑀(𝑐𝑐1, 𝑐𝑐2) → �𝑐𝑐2
𝑐𝑐1
�
𝛽𝛽

+ 𝛽𝛽 �𝑐𝑐2
𝑐𝑐1
� + 1 − 𝛽𝛽 = W(𝑐𝑐1, 𝑐𝑐2).  (13) 

Therefore, when 𝑐𝑐1 → 0+, the root of 𝑀𝑀𝑀𝑀(𝑐𝑐1, 𝑐𝑐2) = 0 approaches to the root of 𝑊𝑊(𝑐𝑐1, 𝑐𝑐2) = 0. □ 

Proposition 2. For any 𝜃𝜃 ∈ (0, +∞) , 𝛽𝛽 ∈ (1, +∞) , when 𝑐𝑐2 → +∞ , the root of 𝑀𝑀𝑀𝑀(𝑐𝑐1, 𝑐𝑐2) = 0 
approaches to the root of 𝐿𝐿(𝑐𝑐1, 𝑐𝑐2) = 0. 

Proof. When 𝐿𝐿(𝑐𝑐1, 𝑐𝑐2) = 0, there is 𝑐𝑐1 = 𝑐𝑐2 + 1.28/𝜃𝜃. 

When 𝑐𝑐2 → +∞, 

 𝑐𝑐2
𝑐𝑐1

= 𝑐𝑐2
𝑐𝑐2+

1.28
𝜃𝜃

= 1
1+1.28

𝑐𝑐2𝜃𝜃
→ 1  (14) 

Thus, 

 𝑀𝑀𝑀𝑀(𝑐𝑐1, 𝑐𝑐2) → 𝑒𝑒𝜃𝜃(𝑐𝑐2−𝑐𝑐1) + 𝜃𝜃(𝑐𝑐2 − 𝑐𝑐1) + 1 = 𝐿𝐿(𝑐𝑐1, 𝑐𝑐2).  (15) 

Therefore, When 𝑐𝑐2 → +∞, the root of 𝑀𝑀𝑀𝑀(𝑐𝑐1, 𝑐𝑐2) = 0 approaches to the root of 𝐿𝐿(𝑐𝑐1, 𝑐𝑐2) = 0. □ 

Proposition 3. For any 𝜃𝜃 ∈ (0, +∞), 𝛽𝛽 ∈ (1, +∞), the paradox boundary of the MH model is always below 
the paradox boundary of the MNW model in Fig. 3(a). 

Proof.  

For any given 𝑐𝑐2 > 0, 𝜃𝜃 ∈ (0, +∞) and 𝛽𝛽 ∈ (1, +∞), let the solution of 𝑀𝑀𝑀𝑀(𝑐𝑐1, 𝑐𝑐2) = 0 to be 𝑐𝑐1 =
𝑚𝑚ℎ(𝑐𝑐2) and the solution of 𝑊𝑊(𝑐𝑐1, 𝑐𝑐2) = 0 to be 𝑐𝑐1 = 𝑤𝑤(𝑐𝑐2). Then, 

 𝑀𝑀𝑀𝑀(𝑤𝑤(𝑐𝑐2), 𝑐𝑐2) = 𝑀𝑀𝑀𝑀(𝑤𝑤(𝑐𝑐2), 𝑐𝑐2) −𝑊𝑊(𝑤𝑤(𝑐𝑐2), 𝑐𝑐2) 

              = �𝑒𝑒𝜃𝜃(𝑐𝑐2−𝑤𝑤(𝑐𝑐2)) − 1� � 𝑐𝑐2
𝑤𝑤(𝑐𝑐2)

�
𝛽𝛽

+ 𝜃𝜃(𝑐𝑐2 − 𝑤𝑤(𝑐𝑐2)).  (16) 
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Since 𝑤𝑤(𝑐𝑐2) = 𝑐𝑐2 𝑥𝑥0(𝛽𝛽)⁄ , Eq.(16) can be rewritten as 

 𝑀𝑀𝑀𝑀(𝑤𝑤(𝑐𝑐2), 𝑐𝑐2) = �𝑒𝑒𝜃𝜃𝑐𝑐2�1−1/𝑥𝑥0(𝛽𝛽)� − 1�𝑥𝑥0(𝛽𝛽)𝛽𝛽 + 𝜃𝜃𝑐𝑐2�1− 1/𝑥𝑥0(𝛽𝛽)�.  (17) 

For any 𝑥𝑥0(𝛽𝛽) ∈ (0,1) , 1 − 1 𝑥𝑥0(𝛽𝛽)⁄ < 0 , then 𝑒𝑒𝜃𝜃𝑐𝑐2(1−1 𝑥𝑥0(𝛽𝛽)⁄ ) < 1 , thus 𝑀𝑀𝑀𝑀(𝑤𝑤(𝑐𝑐2), 𝑐𝑐2) < 0 . Then, 
𝑀𝑀𝑀𝑀(ℎ𝑚𝑚(𝑐𝑐2), 𝑐𝑐2) −𝑀𝑀𝑀𝑀(𝑤𝑤(𝑐𝑐2), 𝑐𝑐2) > 0. According to Eq. (11), 𝑀𝑀𝑀𝑀(𝑐𝑐1, 𝑐𝑐2) is a monotonically decreasing 
function with respect to 𝑐𝑐1. Thus 𝑚𝑚ℎ(𝑐𝑐2) < 𝑤𝑤(𝑐𝑐2), which means the paradox boundary of the MH model is 
always below the paradox boundary of the MNW model in Fig. 3(a) for any 𝜃𝜃 ∈ (0, +∞), 𝛽𝛽 ∈ (1, +∞). □ 

Proposition 4. For any 𝜃𝜃 ∈ (0, +∞), 𝛽𝛽 ∈ (1, +∞), the paradox boundary of the MH model is always below 
the paradox boundary of the MNL model in Fig. 3(a). 

Proof.  

For any given 𝑐𝑐2 > 0, 𝜃𝜃 ∈ (0, +∞) and 𝛽𝛽 ∈ (1, +∞), let the solution of 𝑀𝑀𝑀𝑀(𝑐𝑐1, 𝑐𝑐2) = 0 to be 𝑐𝑐1 =
𝑚𝑚ℎ(𝑐𝑐2) and the solution of 𝐿𝐿(𝑐𝑐1, 𝑐𝑐2) = 0 to be 𝑐𝑐1 = 𝑙𝑙(𝑐𝑐2). Then, 

 𝑀𝑀𝑀𝑀(𝑙𝑙(𝑐𝑐2), 𝑐𝑐2) = 𝑀𝑀𝑀𝑀(𝑙𝑙(𝑐𝑐2), 𝑐𝑐2) − 𝐿𝐿(𝑙𝑙(𝑐𝑐2), 𝑐𝑐2) 

             = 𝑒𝑒𝜃𝜃(𝑐𝑐2−𝑙𝑙(𝑐𝑐2)) � 𝑐𝑐2
𝑙𝑙(𝑐𝑐2)

𝛽𝛽
− 1� + 𝛽𝛽 � 𝑐𝑐2

𝑙𝑙(𝑐𝑐2)
− 1�.  (18) 

Since 𝑙𝑙(𝑐𝑐2) = 𝑐𝑐2 + 1.28/𝜃𝜃, Eq.(18) can be rewritten as 

 𝑀𝑀𝑀𝑀(𝑙𝑙(𝑐𝑐2), 𝑐𝑐2) = 𝑒𝑒𝜃𝜃(−1.28/𝜃𝜃) � 𝑐𝑐2
𝑐𝑐2+1.28/𝜃𝜃

𝛽𝛽
− 1� + 𝛽𝛽 � 𝑐𝑐2

𝑐𝑐2+1.28/𝜃𝜃
− 1�.  (19) 

When 𝜃𝜃 ∈ (0, +∞) , 𝛽𝛽 ∈ (1, +∞) , 𝑐𝑐2
𝑐𝑐2+1.28/𝜃𝜃

𝛽𝛽
< 1  and 𝑐𝑐2

𝑐𝑐2+1.28/𝜃𝜃
< 1 , thus 𝑀𝑀𝑀𝑀(𝑙𝑙(𝑐𝑐2), 𝑐𝑐2) < 0 . Then, 

𝑀𝑀𝑀𝑀(ℎ𝑚𝑚(𝑐𝑐2), 𝑐𝑐2) −𝑀𝑀𝑀𝑀(𝑙𝑙(𝑐𝑐2), 𝑐𝑐2) > 0. According to Eq. (11), 𝑀𝑀𝑀𝑀(𝑐𝑐1, 𝑐𝑐2) is a monotonically decreasing 
function with respect to 𝑐𝑐1. Thus 𝑚𝑚ℎ(𝑐𝑐2) < 𝑙𝑙(𝑐𝑐2), which means that the paradox boundary of the MH model 
is always below the paradox boundary of the MNL model in Fig. 3(a) for any 𝜃𝜃 ∈ (0, +∞), 𝛽𝛽 ∈ (1, +∞). □ 

3.1.2. When 0 < 𝛽𝛽 ≤ 1 

When 0 < 𝛽𝛽 ≤ 1, it is not hard to find that the Proposition 2 is still true. The paradox boundary of the MH 
model still approaches to the paradox boundary of the MNL model when 𝑐𝑐2 → +∞. However, Proposition 1 
is not true as there is no paradox for the MNW model under this condition. When 0 < 𝛽𝛽 ≤ 1 and 𝑐𝑐2 → 0+, 
let 𝑐𝑐1 = (1 − 𝛽𝛽)/𝜃𝜃, there is 

 𝑀𝑀𝐻𝐻(𝑐𝑐1, 𝑐𝑐2) → exp�𝜃𝜃(𝑐𝑐2 − 𝑐𝑐1)� × 0𝛽𝛽 + 𝛽𝛽 × 0 + 𝜃𝜃 �0 − 1−𝛽𝛽
𝜃𝜃
� + 1 − 𝛽𝛽 = 0. (20) 

Therefore, the paradox boundary when 𝑐𝑐2 → 0+ approaches to (1 − 𝛽𝛽)/𝜃𝜃. Note that when 𝛽𝛽 = 1 and 
𝑐𝑐2 → 0+, then 𝑐𝑐1 → (1 − 𝛽𝛽)/𝜃𝜃 = 0. This relates to the paradox boundary when 𝛽𝛽 → 1+. Therefore, the 
paradox boundary of the MH changes continuously from 𝛽𝛽 = 1 to 𝛽𝛽 = 1+. 

However, the paradox boundary of the MH model does not change continuously from 𝛽𝛽 → 0+ to 𝛽𝛽 = 0. In 
fact, when 𝛽𝛽 → 0+ and 𝑐𝑐2 → 0+, the paradox boundary of the MH model is undeterminable. Because 
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lim
𝑐𝑐2→0+,𝛽𝛽→0+

�𝑐𝑐2
𝑐𝑐1
�
𝛽𝛽

 is equivalent to lim
𝑥𝑥→0+

𝑥𝑥𝑥𝑥, and this is mathematically undeterminable. While the MH model 

is equivalent to the MNL model when 𝛽𝛽 = 0, there is a jump from 𝛽𝛽 → 0+ to 𝛽𝛽 = 0 

3.1.3. Discussions about the parameters 

According to the analysis above, for any fixed 𝜃𝜃 > 0 and 𝛽𝛽 > 1, the MH model always has a bigger paradox 
area than the MNL model and the MNW model. However, it does not mean that the MH model is more likely 
to encounter a paradox when applied in practice. When real data is used to estimate the value of 𝛽𝛽 and 𝜃𝜃, the 
estimated 𝜃𝜃� and 𝛽̂𝛽 in the MH model may be different from which in the MNL and MNW models. This 
section focuses on how the paradox boundary of the MH model changes if the MH model has different 
parameters with the MNL model and the MNW model, and the relations of the estimated parameters of the 
three models will be discussed in section 4.3. 

Fig. 4 shows how the parameters’ change affects the paradox area of the MH model. The original paradox 
boundary is shown in the solid line, and the dashed line represents the paradox boundary after the change. For 
comparison, three models are represented in different colors. 

 

Fig. 4. Changes in paradox area of the MH model with respect to 𝜃𝜃 and 𝛽𝛽. 

As is shown in Fig. 4(a), when 𝛽𝛽0 decreases to 𝛽𝛽1, the paradox boundary of the MNW model will move up 
and give a smaller paradox area. According to Proposition 1, in the near to zero area, the MH model’s 
boundary will also shift up since it is dominated by MNW model. However, the up-shift of the curve of the 
MH model is limited by 𝜃𝜃0, Proposition 4 indicates that the paradox boundary of the MH model is always 
under the paradox boundary of the MNL model under the same 𝜃𝜃. Therefore, the changed boundary of the 
MH model is still under the original MNL boundary; specifically, under the intersection point of the original 
boundaries of the MNL and MNW models (Point P). 

Similarly, when only decreases 𝜃𝜃, the new paradox boundaries of the MNL and MH models will shift up, but 
the up-shift of the curve of the MH model is limited by 𝛽𝛽0, so the changed curve of the MH model is still 
under the original boundary of the MNL model as shown in Fig. 4(b). 

When 𝛽𝛽 and 𝜃𝜃 are decreased simultaneously, the changed MH model could be considered as a compromise 
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of the original MNL and MNW models as shown in Fig. 4(c). 

3.2. Single O-D pair’s network with 𝒏𝒏 independent links 

In the remaining part of section 3, the discussion is confined on the cases when 𝜃𝜃 > 0 and 𝛽𝛽 > 1 as there is 
no paradox for either the MNL model or the MNW model otherwise. This subsection demonstrates how the 
conclusions found in the two-link network are extended to the 𝑛𝑛 independent links/ routes network shown in 
Fig. 5.  

1 2

c1

cn

c2

...
 

Fig. 5. Network II: Single O-D pair’s network with 𝑛𝑛 independent links. 

For the MNL model, the partial derivative of the total travel cost 𝐶𝐶𝐿𝐿 with respect to 𝑐𝑐1 in Network II are as 
follows: 

 𝜕𝜕𝐶𝐶𝐿𝐿

𝜕𝜕𝑐𝑐1
= 𝑄𝑄 ∑ exp�−𝜃𝜃(𝑐𝑐𝑖𝑖−𝑐𝑐1)��1+𝜃𝜃(𝑐𝑐𝑖𝑖−𝑐𝑐1)�𝑛𝑛

𝑖𝑖=1

exp(2𝜃𝜃𝑐𝑐1)�∑ exp(−𝜃𝜃𝑐𝑐𝑖𝑖)𝑛𝑛
𝑖𝑖=1 �

2 .  (21) 

For the MNL, whether the paradox occurs in a single O-D pair’s network with 𝑛𝑛 independent links is 
determined by absolute cost differences. Denote 𝑎𝑎𝑖𝑖 = 𝑐𝑐𝑖𝑖 − 𝑐𝑐1 to be the absolute cost difference between 
route 𝑖𝑖 and route 1. Let [0,𝑎𝑎2∗ ,⋯𝑎𝑎𝑛𝑛∗ ]𝑇𝑇 represents a feasible basic solution of 𝜕𝜕𝐶𝐶𝐿𝐿 𝜕𝜕𝑐𝑐1⁄ = 0 in the real 
number range without considering link travel costs’ positive constraints, and then the general solutions 
considering link travel costs’ positive constraints can be written as: 

 �

𝑐𝑐1
𝑐𝑐2
⋮
𝑐𝑐𝑛𝑛

� = �

0
𝑎𝑎2∗
⋮
𝑎𝑎𝑛𝑛∗
� − �

min{0,𝑎𝑎2∗ ,⋯𝑎𝑎𝑛𝑛∗ }
min{0,𝑎𝑎2∗ ,⋯𝑎𝑎𝑛𝑛∗ }

⋮
min{0,𝑎𝑎2∗ ,⋯𝑎𝑎𝑛𝑛∗ }

�+ 𝑘𝑘 �

1
1
⋮
1

� ;  𝑘𝑘 ∈ 𝑅𝑅+.  (22) 

To intuitively describe the characteristics of the paradox boundary, the paradox boundary of the MNL model 
for 𝑛𝑛 = 3 and 𝜃𝜃 = 0.1 case was numerically solved and illustrated in Fig. 6 for a deeper understanding to 
Eq.(22). 

In Fig. 6, it can be seen that the paradox boundary of the MNL model is a curved surface spanned by a series 
of vectors, each of the vectors passes a specific point [0,𝑎𝑎2∗ ,⋯𝑎𝑎𝑛𝑛∗ ]𝑇𝑇 and with the direction [1,⋯1]1×𝑛𝑛

𝑇𝑇  
(satisfies Eq.(22)). The upper side of the surface is the paradox area, the lower side is the no paradox area. 
Although Fig. 6 is only a case for 𝑛𝑛 = 3, the basic characteristics are illustrated for general cases. 
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Fig. 6. Paradox boundary of the MNL model in one O-D three links network when 𝜃𝜃 = 0.1. 

Similarly, for the MNW model, the partial derivative of the total travel cost 𝐶𝐶𝑊𝑊 with respect to 𝑐𝑐1 in 
Network II are as follows: 

 𝜕𝜕𝐶𝐶𝑊𝑊

𝜕𝜕𝑐𝑐1
= 𝑄𝑄

∑ �𝑐𝑐𝑖𝑖𝑐𝑐1
�
−𝛽𝛽
�𝛽𝛽�𝑐𝑐𝑖𝑖𝑐𝑐1

�+1−𝛽𝛽�𝑛𝑛
𝑖𝑖=1

𝑐𝑐1
2𝛽𝛽�∑ 𝑐𝑐𝑖𝑖

−𝛽𝛽𝑛𝑛
𝑖𝑖=1  �

2 .  (23) 

For the MNW model, whether the paradox occurs in a single O-D pair’s network with 𝑛𝑛 independent links is 
determined by the relative cost differences. Denote 𝑟𝑟𝑖𝑖 = 𝑐𝑐𝑖𝑖/𝑐𝑐1 to be the relative cost difference between route 
𝑖𝑖 and route 1. Let [1, 𝑟𝑟2∗,⋯𝑟𝑟𝑛𝑛∗]𝑇𝑇 represents a feasible basic positive solution of 𝜕𝜕𝐶𝐶𝑊𝑊 𝜕𝜕𝑐𝑐1⁄ = 0, then the 
general solutions based on this feasible basic positive solution can be written as: 

 �

𝑐𝑐1
𝑐𝑐2
⋮
𝑐𝑐𝑛𝑛

� = 𝑘𝑘 �

1
𝑟𝑟2∗
⋮
𝑟𝑟𝑛𝑛∗
� ;  𝑘𝑘 ∈ 𝑅𝑅+.  (24) 

Also, the paradox boundary of the MNW model when 𝑛𝑛 = 3 and 𝛽𝛽 = 3 was numerically solved and 
illustrated in Fig. 7. From Fig. 7, it is clear that the paradox boundary of the MNW model is a curved surface 
spanned by a series of vectors, each of the vector starts in origin and with the direction [1, 𝑟𝑟2∗,⋯𝑟𝑟𝑛𝑛∗]𝑇𝑇 
(satisfies Eq.(24)). The upper side of the surface is the paradox area, and the lower side is the no paradox area. 
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Fig. 7. Paradox boundary of the MNW model in one O-D three links network when 𝛽𝛽 = 3. 

For the MH model, the partial derivative of the total travel cost 𝐶𝐶𝑀𝑀𝑀𝑀 with respect to 𝑐𝑐1 in Network II are: 

 𝜕𝜕𝐶𝐶𝑀𝑀𝐻𝐻

𝜕𝜕𝑐𝑐1
= 𝑄𝑄

∑ 𝑒𝑒−𝜃𝜃�𝑐𝑐𝑖𝑖−𝑐𝑐1��𝑐𝑐𝑖𝑖𝑐𝑐1
�
−𝛽𝛽
�𝛽𝛽�𝑐𝑐𝑖𝑖𝑐𝑐1

�+𝜃𝜃(𝑐𝑐𝑖𝑖−𝑐𝑐1)+1−𝛽𝛽�𝑛𝑛
𝑖𝑖=1

𝑒𝑒2𝜃𝜃𝑐𝑐1𝑐𝑐1
2𝛽𝛽�∑ 𝑒𝑒−𝜃𝜃𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖

−𝛽𝛽𝑛𝑛
𝑖𝑖=1  �

2 .  (25) 

The paradox boundary of the MH model cannot be decided only by the relative/absolute cost differences. 
Thus the paradox boundary are numerical solved, and the paradoxical features of the MH model can be easily 
observed when putting three models together as shown in Fig. 8. It shows that the relationships among the 
three models in 𝑛𝑛 = 3 case are similar to the 𝑛𝑛 = 2 case (compare with Fig. 3). 

  

(a) When 𝜃𝜃 = 0.1, 𝛽𝛽 = 3, and 𝜆𝜆 = 0.5. (b) 𝜃𝜃 = 0.2, 𝛽𝛽 = 4, and 𝜆𝜆 = 0.5. 
Fig. 8. Paradox boundaries of the three models when 𝑛𝑛 = 3.  
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To make the conclusions more convincing, we use two set of different parameters in Fig. 8. From Fig. 8, when 
the MH model has the same 𝜃𝜃 and 𝛽𝛽 as the MNL model and the MNW model, the following observations 
can be found, which correspond to the three observations of Fig. 3: 

1. When 𝑐𝑐2 or 𝑐𝑐3 approximates to zero, the paradox boundary of the MH model approximates to the 
paradox boundary of the MNW model. 

2. When both 𝑐𝑐2 and 𝑐𝑐3 approximates to a large positive value, the paradox boundary of the MH model 
approximates to the paradox boundary of the MNL model.  

3. The MH model has the biggest paradox area, and its paradox boundary is on the lower side of which of 
the MNL and MNW models. 

4. The above three observations are consistent in Fig 8 (a) and (b). 

A qualitative conclusion can be seen from the discussions and the figures above. The no paradox area lies in 
where the cost of the marginally improved link 𝑐𝑐1 is relatively small compared with other links. When the 
marginal improved link is very poor compared with other links, 𝜕𝜕𝐶𝐶 𝜕𝜕𝑐𝑐1⁄ < 0 is always true and the overall 
travel cost will increase, although the increase is very slight when 𝑐𝑐1 becomes exceedingly large.  

In the real world, however, improving a very poor link may not always increase the total travel cost. Firstly, 
extremely long routes may never be chosen (at least not as sensitive as the theory) even if the existence of the 
theoretical possibility. Travelers find their routes within a route set with relatively short and close travel costs. 
Secondly, congestions are common on the real roads, which make networks in reality far more complicated 
than the simple cases of this paper. Finally, if the improvement is significant, which decreases the cost of the 
inferior link from paradox area to no paradox area (steps over the peak with highest total travel cost), the 
“marginal improved paradox” may be avoided. 

3.3. Overlapping effect 

This section discusses the stochastic assignment paradox when an overlapping link is marginally improved.  

Considering a single O-D network with 𝑛𝑛 routes, there is a small improvement in an overlapping link shared 
by 𝑚𝑚 (𝑚𝑚 ≤ 𝑛𝑛) different routes. In convenience, travel costs of the routes with the overlapping link are set to 
𝑐𝑐1 ⋯𝑐𝑐𝑚𝑚, the remaining routes’ costs are set to 𝑐𝑐𝑚𝑚+1⋯𝑐𝑐𝑛𝑛, the cost of the overlapping link is 𝑥𝑥 (𝑥𝑥 <
min(𝑐𝑐1 ⋯𝑐𝑐𝑚𝑚)). Then, the marginal effect of a small improvement in the overlapping link can be derived as 
follows: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∑ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐𝑖𝑖

𝜕𝜕𝑐𝑐𝑖𝑖
𝜕𝜕𝜕𝜕

𝑚𝑚
𝑖𝑖=1 = ∑ 𝜕𝜕𝜕𝜕

𝜕𝜕𝑐𝑐𝑖𝑖
𝑚𝑚
𝑖𝑖=1 ,  (26) 

where, 𝐶𝐶 is the total travel cost. Eq. (26) shows that improving an overlapping link is equivalent to improve 
those 𝑚𝑚 routes simultaneously in a route-independent network. 

We use a network shown in Fig. 9 with 𝑛𝑛 = 3 and 𝑚𝑚 = 2 to further illustrate the stochastic assignment 
paradox when improving an overlapping link. In the example network, routes are numbered 1, 2, 3 from top to 
bottom with travel cost of 𝑐𝑐1, 𝑐𝑐2 and 𝑐𝑐3, the name and the cost of each link are shown in the figure. We 
investigate the stochastic paradox when route 1 is improved. When the improvement occurs in link 𝑏𝑏, the 



14 

 

effect is the same as the three independent links’ case, we compare it with the case when link 𝑎𝑎 gets 
improved (improving an overlapping link). 

 
Fig. 9. Network III: Single O-D pair’s network with one overlapping link. 

The MNL model is used as an example to show the changes of paradox boundary (area) when the 
improvement on the non-overlapping link moved to the overlapping link. For easy comparison, 𝑐𝑐3 is fixed to 
30, let 𝜃𝜃 = 0.1, and 𝛽𝛽 = 3, results are shown in Fig. 10 (a). The solid line in Fig. 10 (a) is the paradox 
boundary when the non-overlapping link 𝑏𝑏 is improved, it is obtained by solving 𝜕𝜕𝐶𝐶𝐿𝐿 𝜕𝜕𝑐𝑐1⁄ = 0 using 
Eq.(21). Readers may find this line can also be deemed as a slice of the MNL model’s boundary surface in Fig. 
8 when 𝑐𝑐3 = 30. We use the dash line to represent the paradox boundary when the overlapping link 𝑎𝑎 gets a 
marginal decrease, it can be gained by numerically solving 𝜕𝜕𝐶𝐶𝐿𝐿 𝜕𝜕𝑥𝑥⁄ = 0. 

  

(a) The MNL model (b) All the three models 

Fig. 10. Comparison of the paradox boundaries when link 𝑎𝑎 or link 𝑏𝑏 get improved 
(𝑐𝑐3 = 30, solid line for improving link 𝑏𝑏, dash line for improving link 𝑎𝑎). 

Main observations of Fig. 10 (a) are as follows: 

1. The two boundary lines intersect at a point where 𝑐𝑐1 = 𝑐𝑐2. It is easy to understand since when 𝑐𝑐1~𝑐𝑐𝑚𝑚 

are equal, ∂C
∂𝑐𝑐1

~ 𝜕𝜕𝐶𝐶
𝜕𝜕𝑐𝑐𝑚𝑚

 equal to zeros, then 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∑ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐𝑖𝑖

𝑚𝑚
𝑖𝑖=1 = 0. 

2. When 𝑐𝑐1 > 𝑐𝑐2 , there is an area where paradox only takes place for improving link 𝑏𝑏 . After the 

  

2 

3 1 
𝑐𝑐2 − 𝑥𝑥 

𝑎𝑎 𝑏𝑏 

𝑐𝑐 

𝑑𝑑 

𝑥𝑥 𝑐𝑐1 − 𝑥𝑥 

𝑐𝑐3 
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improvement shifted to link 𝑎𝑎, not only route 1, but also route 2 whose cost is smaller than route 1 is 
improved which leads to the paradox disappear. It means that the benefit from improving route 2 offsets 
the paradox generated by improving route 1. 

3. When 𝑐𝑐1 < 𝑐𝑐2, there is an area where initially no paradox for improving link 𝑏𝑏. After the improvement 
shifted to link 𝑎𝑎, not only route 1, but also route 2 which has a larger cost gets improved which lead to the 
paradox occur. It means the benefit from improving route 1 offset the paradox generated by improving 
route 2. 

4. With 𝑐𝑐2 getting larger, the paradox boundary for improving link 𝑎𝑎 approaches to the boundary for 
improving link 𝑏𝑏, and the paradox area only for improving link 𝑎𝑎 narrows down. It can be explained by 
the paradox effect is very slight when the cost of the improved route becomes very big compared with 
other routes, therefore when 𝑐𝑐2 gets very big, the paradox boundary is dominated by 𝑐𝑐1 and the curves 
of the two cases become very close.  

A small improvement in a superior route tends to save the total travel cost, whereas marginally improving an 
inferior route is more likely to bring a paradox, the final effect of improving an overlapping link is a 
combination of the effects of improving the routes that share the overlapping link. Fig. 10 (b) compares the 
paradox boundaries when improving an overlapping or non-overlapping link for all the three models; 
observations are the same as the MNL model. 

Next, we use Fig. 11 to illustrate the relationships between the paradox boundaries of the three models when 
improving an overlapping link. 

  
(a) 𝑐𝑐3 = 0.1 (b) 𝑐𝑐3 = 100 
Fig. 11. Paradox boundaries of the three models when improving  

the overlapping link 𝑎𝑎 when 𝜃𝜃 = 0.1 and 𝛽𝛽 = 3 

Fig. 11 (a) is used to represent the case when the cost of the non-improved route approaches to zeros. We can 
find that the paradox boundary of the MH model almost overlaps with the boundary curve of the MNW model. 
Besides, for the paradox boundaries of the MNW and MH models, at least one of the improved routes’ costs 
approach to zeros. Fig. 11 (b) shows when the travel cost of the non-improved route is relatively large, the 
paradox boundary of the MH model is dominated by the MNL model. Also, the MH model has the biggest 
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paradox area in both cases. All these observations are consistent with previous sections when improving a 
non-overlapping link. Therefore we can infer that previous conclusions are still valid when 𝑛𝑛 and 𝑚𝑚 
become bigger. 

Finally, a brief discussion for the multi-O-D network. Based on the premise that road costs are flow 
independent, the travel cost of each O-D pair can be calculated separately without co-relationship with other 
O-D pairs. Therefore, for a network with 𝑁𝑁 O-D pairs, when marginally improving a link with cost 𝑥𝑥, the 
partial derivative of the total travel cost 𝐶𝐶 with respect to 𝑥𝑥 can be derived as follows: 

 𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥

= 𝜕𝜕∑ 𝐶𝐶𝑖𝑖𝑁𝑁
𝑖𝑖=1
𝜕𝜕𝜕𝜕

= ∑ 𝜕𝜕𝐶𝐶𝑖𝑖

𝜕𝜕𝜕𝜕
𝑁𝑁
𝑖𝑖=1 ,  (27) 

where 𝐶𝐶𝑖𝑖 is the travel cost of O-D pair 𝑖𝑖. We have discussed the paradox under the single O-D case, Eq. (27) 
shows whether a paradox occurs in the overall network level is the sum of the paradox effect from each O-D 
pair. 

4. The paradox when using estimated parameters 

The preceding sections compare the stochastic traffic paradox boundary of the MH model with the MNL 
model and the MNW model under the same parameters. However, as discussed in section 3.1.3, parameters of 
different models are not necessarily the same in practice. This section uses the Multinomial Probit model 
(MNP) (Daganzo and Sheffi, 1977) to generate simulated route sample data. We will next estimate the 
parameters for the three route choice models from the sample data to study 1) the relation of the estimated 
parameters in different models and 2) the stochastic traffic paradox of the three models under the estimated 
parameters. 

4.1. Generate simulated sample data 

We use the Sioux-Falls Network (Transportation Networks, 2018), which has been extensively used in 
transportation literature (e.g., Wang et al., 2019), to carry out the study. We only consider flow-independent 
case with free-flow travel time; the link IDs are shown in Fig. 12. The route samples are generated through 
two steps: 1) generating route choice sets and 2) extracting samples from the generated route sets. The MNP 
model duly addresses the correlations between routes and the heteroscedastic variance; it has been widely 
applied to generate route set. Therefore, the route samples are generated by a simulation approach using the 
MNP model. 

For a link with cost 𝑐𝑐𝑖𝑖, the MNP model assumes the perceived cost of the link satisfies Normal distribution 
𝑁𝑁(𝑐𝑐𝑖𝑖 , (𝑐𝑐𝑖𝑖 × 𝑝𝑝)2), where 𝑝𝑝 is a factor controls the magnitude of the perceived error. Using the Monte Carlo 
technique, link costs are randomly generated in each iteration. The shortest route of each iteration will be 
added into the route choice set. Here we choose 𝑝𝑝 = 0.2 and the number of iterations is 1000. For stability, 
only the routes occur more than 5 (1000×5‰) times are added into route set. Twelve O-D pairs representing 
various route lengths are selected to generate route sets, they are O-D (1, 20), (1, 18), (13, 2), (13, 7), (2, 23), 
(4, 22), (4, 19), (12, 21), (5, 18), (14, 20), (10, 19), and (3, 11). On average, 4.1 routes were generated for each 
O-D pair, the maximum number of routes for an O-D pair was 8. The stochastic user equilibrium performed in 
the Sioux-Falls network with such route choice set size could achieve a reasonable equilibrium level. 

When choosing a sample from a route choice set, we use the MNP model to randomly generate link costs, the 
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chosen sample is the shortest route among the route choice set. In each sampling, we take 50 samples from 
each route choice set and collectively obtain 50×12=600 route samples.  

 

Fig. 12 The Sioux-Falls Network 

4.2. Relation of the estimated parameters 

Models’ parameters are obtained by the Maximum Likelihood Estimate (MLE). Repeat the sampling and the 
parameter estimation process for 1000 times, 1000 groups of parameters are obtained.  

The average log-likelihood of the MNL model, the MNW model, and the MH model in the 1000 groups of 
estimations are – 473.59, – 483.02, and – 472.56, respectively. To compare the fitness of the MH model with 
the other two models, the relative differences between the log-likelihood of the MH model and the other two 
models are calculated (e.g., (logℒMH − logℒMNL)/|logℒMNL| is the relative difference between the MH 
model and the MNL model). The estimation results are shown in Fig. 13. It can be found that the MH model 
has larger log-likelihood than the other two models and fits the samples better. This is understandable, because 
the MNL model and the MNW model are special cases of the MH model, the estimation of the MH model will 
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be no worse than the other two models. 

 
Fig. 13 The comparison of the log-likelihood of the three models 

For the MH model, the 1000 groups of parameters are visualized in a scatter plot. Combining with the 
histograms, the relations between the estimated parameters of the three models are clearly shown in Fig. 14. 
From the histograms, it can be found the estimation of each parameter nearly satisfies normal distribution. 
Under the same samples, the estimated 𝜃𝜃 in the MH model has a smaller mean value and a larger standard 
deviation compared with the MNL model; the estimated 𝛽𝛽 in the MH model has a smaller mean value and a 
larger standard deviation compared with the MH model.  

Fig. 14 shows the estimation of 𝛽𝛽 has some negative values for the MH model. As discussed in section 2, 𝜃𝜃 
and 𝛽𝛽 should be non-negative to guarantee the utility term to be a non-increasing function with regard to all 
positive real route costs. However, the estimated parameters only guarantee Eq. (3) to hold for all samples 
(rather than all positive real values), which leads to a few negative estimations. Note that the mean of the 
estimated 𝛽𝛽 for the MH model is still positive. 

When the estimation of 𝛽𝛽 in the MH model closes to zero, the corresponding estimated 𝜃𝜃 is around the 
mean value of the estimated 𝜃𝜃 of the MNL model. Because the MH model is equivalent to the MNL model 
when 𝛽𝛽 = 0. When the estimation of 𝜃𝜃 in the MH model closes to zero, the corresponding estimated 𝛽𝛽 is 
around the mean value of the estimated 𝛽𝛽 of the MNW model. Because the MH model is equivalent to the 
MNW model when 𝜃𝜃 = 0.    
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Fig. 14 The relations between the estimated parameters in the three model 

The orange triangle represents when the estimation of the MNL model is better than the estimation of the 
MNW model (i.e., the log-likelihood function of the MNL model logℒMNL is larger than which of the MNW 
model logℒMNW), and the blue dot represents when the MNW model has a better estimation compared with 
the MNL model. It can be found that when the MNL model has a better estimation, the estimation of the MH 
model tends to be determined by the MNL model (i.e., a bigger 𝜃𝜃 and a smaller 𝛽𝛽). Accordingly, the MNW 
model part dominates the MH model (i.e., a smaller 𝜃𝜃 and a bigger 𝛽𝛽) when the MNW model has a better 
estimation. By leaning to the model with better estimation, the MH model has a better (at least equivalent) 
estimation than the original models. 

4.3. Identifying paradox links using estimated parameters 

When marginally reducing the travel cost of a link 𝑎𝑎 increases the total travel costs of an O-D pair 𝑂𝑂, we 
refer to the link 𝑎𝑎 as a paradox link for this O-D pair. The objective of this section is to compare the 
differences in identifying paradox links using the estimated parameters of different models. Recall that section 
3.1 to section 3.3 have emphasized the difference of the paradoxical feature of the three models between 0+ 
and +∞ link costs, this section correspondingly inspects a short O-D pair (10, 19) and a long O-D pair (1, 
20). 
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If a model indicates that a link is a paradox link, we call it a “positive result” of a paradox link. For the short 
O-D pair, the number of positive results for links in O-D (10, 19) under 1000 groups of estimated parameters 
is shown in Tab. 1. For the long O-D pair, the results are shown in Tab. 2. Note that the two tables only 
include links that belong to the route choice sets of these O-D pairs. The “All” column in the tables means the 
number of links that are paradox links in all three models. 

Tab. 1 The number of positive results for links in O-D (10, 19) 
under 1000 groups of estimated parameters 

link ID MNL MNW MH All 
45 0 1000 57 0 
49 0 0 0 0 
53 0 0 0 0 
28 0 1000 57 0 
29 0 0 0 0 
30 1000 1000 995 995 

 

Tab. 2 The number of positive results for links in O-D (1,20)  
under 1000 groups of estimated parameters 

link ID MNL MNW MH All 
1 0 0 0 0 
2 1000 557 998 557 
4 0 0 0 0 
6 1000 977 1000 977 
7 1000 342 998 342 
9 1000 977 1000 977 
12 1000 977 1000 977 
16 0 0 0 0 
18 0 0 0 0 
20 0 0 0 0 
22 1000 1000 1000 1000 
37 1000 342 998 342 
39 1000 342 998 342 
49 1000 1000 1000 1000 
53 1000 1000 1000 1000 
56 0 0 0 0 
59 1000 1000 1000 1000 
64 946 0 701 0 
65 1000 977 1000 977 
68 1000 999 1000 999 
72 1000 1000 1000 1000 
75 1000 33 984 33 
76 1000 1000 1000 1000 
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Although the general results of the three models in Tab. 1 and Tab. 2 are similar, the results for some links 
show significant inconsistency. There are three main observations: 

1. For the short O-D (10, 19), the number of potential paradox links identified by the MNL model is 
generally less than which of the MNW model and the MH model. 

2. For the long O-D (1, 20), links are more likely to be identified as paradox links in the MNL model 
compared with the other two models. 

3. For the MH model, the number of positive results is between the MNL model and the MNW model (with 
only two exceptions for the link 30 in O-D (10, 19) and the link 64 in O-D (1, 20)). 

As discussed in section 3, the paradox boundaries of the MNW model and the MH model (𝛽𝛽 > 1) when any 
of the non-improved route’ cost approaches to zero are on the “lower” side of which of the MNL model. 
Therefore, the MNW model and the MH model have a larger paradox area than the MNL model when routes’ 
costs are small, which corresponds to the first observation. Similarly, the second observation can be explained 
by the paradox boundary of the MNL model is on the “lower” side (larger paradox area) of which of the 
MNW model and the MH model when the non-improved routes’ costs are very large (ideally, approach to the 
+∞).   

If the MH model uses the same parameter as the MNL model and the MNW model, it is expected that the MH 
model identifies more paradox links than the other two models for both the long and the short O-D pairs. As 
discussed in section 3.1.3, only when using smaller 𝛽𝛽 and 𝜃𝜃 simultaneously in the MH model can the 
paradox boundary of the MH model be a compromise of the MNL and MNW models. The relations of the 
estimated parameters in section 4.2 show that the estimated 𝜃𝜃 and 𝛽𝛽 of the MH model are averagely smaller 
than which in the MNL model and the MNW model. This results in observation 3, the number of positive 
results of paradox links in the MH model is generally between the number of the MNL model and the MNW 
model. 

In summary, using the simulated data, the identification of paradox links when using the estimated parameters 
in the three model shows intrinsic tendencies, which can be explained by the paradoxical features of the three 
models. Compared with two original models, the MH model fits data the best, and the prediction of paradox 
links in the MH model is more moderate. 

5. Concluding remarks 

This paper compared the traffic paradox features of three stochastic route choice models (MNL, MNW, and 
MH) when an inferior travel alternative is marginally improved under uncongested networks (cost of links are 
independent of the flow). On the one hand, the relationships between the paradox conditions (paradox 
boundary) in the three models are studied when the MH model has the same parameters as the MNL and the 
MNW model. We find consistent paradoxical features for all three typical small networks studied (two links, n 
independent links, and three routes with an overlapping link): 1) The stochastic assignment paradox of the 
MH model is dominated by the MNW model when any of the non-improved links approaches to zero, 2) it is 
controlled by the MNL model when all of the non-improved links approaches to infinity, and 3) the MH 
model has a larger paradox area than the MNL and MNW models. On the other hand, the stochastic 
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assignment paradoxes of the three models are also compared when using estimated parameters. The results 
show that 1) the MH model fits the route samples the best, 2) the MNW tends to identify more links to be 
paradox links in short O-D pairs, 3) the MNL model tends to identify more links to be paradox links in long 
O-D pairs, and 4) the identification result of the MH model is a compromise of other two models. 

The findings of this work also provide suggestions and caveats to the application of the three models. One 
should understand the paradoxical feature of the three models when diagnosing the stochastic paradox, and 
special attention should be paid to extremely long or short O-D pairs. We should aware that the MNW and the 
MNL model tend to overestimate the stochastic paradox for long and short O-D pairs, respectively. The MH 
model is a better model in the sense of the fitness to data and the moderateness in paradox detection.  

This paper also has some limitations. Firstly, congestion is very common in real networks and assuming 
flow-independent travel times is too idealistic. Secondly, all the three route choice models of this paper 
assume that random error terms are independent, none of them can capture overlapping features properly due 
to this assumption. Therefore, further research should be conducted in the following aspects. Firstly, 
paradoxical features should be examined under congested road networks using the stochastic user equilibrium 
(SUE) model (Yao et al., 2019a; Zhou et al., 2014; Yu et al.). Secondly, overlapping effect should be studied 
under route choice models which consider the correlations between routes, such as Probit model (Daganzo 
and Sheffi, 1977), C-logit model (Cascetta et al.,1996; Zhou et al., 2012), Nested Logit (NL) model 
(McFadden, 1978), path-size logit (PSL) model (Chen et al., 2012). Adapting fast path-based algorithms for 
traffic assignment to these route choice model is also interesting (Chen et al., 2001; Perederieieva et al., 2018; 
Du et al., 2020). Finally, various route choice models and their paradoxical features should be applied to a 
broader range of problems, such as network design (Cantarella et al., 2006; Hosseininasab et al., 2018), 
network evaluation (Han et al., 2008), combined modal split and traffic assignment problem (Xu et al., 2008; 
Ryu et al., 2017). 
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