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Abstract 7 

During the past three decades, harmful algal blooms (HAB) events have been frequently 8 

observed in marine waters around many coastal cities in the world including Hong Kong. The 9 

increasing occurrence of HAB has caused acute influences and damages on water environment 10 

and marine aquaculture with millions of monetary losses. For example, the Tolo Harbour is one 11 

of the most affected areas in Hong Kong, where more than 30% HAB occurred. In order to 12 

forewarn the potential HAB incidents, the machine learning (ML) methods have been 13 

increasingly resorted in modelling and forecasting water quality issues. In this study, two 14 

different ML methods – artificial neural networks (ANN) and support vector machine (SVM) 15 

– are implemented and improved by introducing different hybrid learning algorithms for the 16 

simulations and comparative analysis of more than 30-year measured data, so as to accurately 17 

forecast algal growth and eutrophication in Tolo Harbour in Hong Kong. The application results 18 

show the good applicability and accuracy of these two ML methods for the predictions of both 19 

trend and magnitude of the algal growth. Specifically, the results reveal that ANN is preferable 20 

to achieve satisfactory results with quick response, while the SVM is suitable to accurately 21 

identify the optimal model but taking longer training time. Moreover, it is demonstrated that 22 
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the used ML methods could ensure robustness to learn complicated relationship between algal 23 

dynamics and different coastal environmental variables and thereby to identify significant 24 

variables accurately. The results analysis and discussion of this study also indicate the 25 

potentials and advantages of the applied ML models to provide useful information and 26 

implications for understanding the mechanism and process of HAB outbreak and evolution that 27 

is helpful to improving the water quality prediction for coastal hydro-environment management. 28 

Keywords: water quality; harmful algal blooms (HAB); machine learning (ML); coastal hydro-29 

environment; marine environment 30 

1. Introduction 31 

With the increasing population growth and intensive agricultural and industrial activities 32 

since the last century, the eutrophic wastewaters discharged into coastal water bodies have 33 

greatly deteriorated the water quality as being a worldwide crisis on marine environment (Gill 34 

et al. 2018). Globally 415 regions were reported to have different forms of eutrophic symptoms 35 

according to an investigation conducted in 2008 (Selman et al. 2008). For example, the longest-36 

lasting algal blooming (18 months) in the Eastern Florida Bay in 2005 (Glibert et al. 2009) and 37 

the largest water blooming from central California to Alaska in 2015 (McCabe et al. 2016; 38 

Michalak 2016). Meanwhile, the HAB have also been a major problem within the marginal sea 39 

between Asia continent and Pacific Ocean since the beginning of last century (Kim 1998; Li et 40 

al. 2004; Richlen et al. 2010; Al-Azri et al. 2014; Park et al. 2015). In particular, the annually 41 

recurrent HAB events last from early May to late June every year may affect up to 10,000 km2 42 

water area of the East China Sea (Yu et al. 2018). 43 
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 44 

Figure 1: Typical HAB incidents in Hong Kong: (a) & (b) Water discoloration by HAB; (c) 45 

Recreational beach closed; (d) Fish kills (Sources: newspapers and government websites) 46 

 47 

In Hong Kong, water quality degradation issues have been considered as one of the most 48 

serious threats on the coastal water ecosystem since 1980s, as typical examples shown in Figure 49 

1. Hong Kong is a typical coastal city with the sea on its three sides where the marine water 50 

ecology may have significant impacts on the residential and environmental as well as economic 51 

development in that city. During the past decades, harmful algal blooms (HAB) events have 52 

frequently occurred in waters around Hong Kong. For example, in April 1998, the worst fish 53 

kills event in Hong Kong’s history was attributed to the devastating algal growth with more 54 

than 3,000 tons fish death and over $ 40 million USD direct economic losses, which caused 55 

acute damages to both water ecology and aquaculture (Lee et al. 2003; Lu and Hodgkiss 2004; 56 

Muttil and Chau 2006; Selman et al. 2008).  57 

In order to mitigate these potential damages and to improve the water quality condition, 58 

it is imperative to develop a usable model that can effectively predict the growth and evolution 59 
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process of the algal (including HAB), so as to allow the authority/administrator issue the early 60 

alert. Since 1980s, extensive process-based studies on predicting algal blooms have been 61 

carried out (Lu and Hodgkiss 2004; Lee et al. 2005; Yang et al. 2008; Xu et al. 2010; Yang et, 62 

al. 2019), in order to capture a deterministic relationship between growth dynamics of algal 63 

population and external environment variables. However, modelling dynamics of algal growth 64 

and evolution in a coastal water ecosystem remains challenging because the physical, chemical 65 

and biological processes involved are extremely complicated and more importantly, so that 66 

current theories and practice have not yet been well established by far (Xie et al. 2012; Yang 67 

et, al. 2019; de Oliveira et al. 2020).  68 

Machine learning (ML) models can be important and useful complements and alternatives 69 

in HAB modelling and water quality prediction (Chau 2006). In principle, the ML models focus 70 

mainly on the relationship mapping between inputs and outputs of a system rather than complex 71 

process mechanisms. By learning from a large mass of historical data which has included the 72 

dynamic evolution process (e.g., coastal water and HAB growth), the highly nonlinear 73 

relationships can be accurately approximated with or without prior knowledge for the studied 74 

system. In this regard, there are different ML techniques have been successfully developed for 75 

algal prediction, including artificial neural networks (ANN) (Recknagel et al. 1997; Lee et al. 76 

2003; Muttil and Chau 2007; Sivapragasam et al. 2010; Chang et al. 2017; Tian et al. 2017), 77 

genetic programming (GP) (Muttil and Chau 2006; Sivapragasam et al. 2010; Daghighi 2017), 78 

support vector machine (SVM) (Liu et al. 2009; Xie et al. 2012; Dai et, al. 2016; Mamun et al. 79 

2020) and Random Forest (RF) (Segura et al. 2017; Zeng et al. 2017).  80 
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Amongst those ML techniques, ANN with error back-propagation (BP) algorithm is one 81 

of the widely used paradigms in water and environment field due to the rapid response and 82 

satisfactory modelling accuracy. However, one main defect of this gradient descent is attributed 83 

to the randomness of the initialization of parameters, which usually makes the model converge 84 

at a relatively slow speed or even trapped into a local optimum. In order to overcome such 85 

drawback, relevant optimization algorithms have been proposed and implemented in the ANN 86 

method in the literature, such as gradient descent method (GDM) (Rumelhart et al. 1985; Qian 87 

1999; Lee et al. 2003; Muttil and Chau 2006), Levenberg-Marquardt algorithm (LM) 88 

(Levenberg 1944; Hagan and Menhaj 1994; Lourakis 2005; Gavin 2019), Genetic algorithm 89 

(GA) (Recknagel et al. 2002; Chau 2006; Ding et al. 2011; Mulia et al. 2013) and Particle 90 

Swarm Optimization (PSO) scheme (Kennedy and Eberhart 1995; Chau 2005a; Qi et al. 2018).  91 

The SVM is another effective ML technique for non-linear classification and regression. 92 

Differently from the ANN, the SVM adopts the concept of structural risk minimization in which 93 

the learning strategy is aimed to minimize the regularized loss function. With the SVM, the 94 

generalization ability can be enhanced and the probability of overfitting can be reduced. The 95 

main tenet of SVM is to implicitly map a nonlinear problem from the original feature space 96 

into a higher or infinite dimensional space via the use of kernel functions where the original 97 

problem can be linearly described. From this perspective, the SVM is a promising forecasting 98 

paradigm that has been widely employed in many freshwater ecosystems.  99 

Despite that many studies have been focused on the ML methods in different fields, there 100 

are so far very few researches on implementing and applying these ML methods (e.g., ANN 101 
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and SVM) for effective algal modelling and water quality prediction in marine systems (Li et 102 

al. 2014; Park et al. 2015). In this connection, this paper presents a further study on the coastal 103 

water quality prediction by using these two different ML methods (ANN and SVM), in order 104 

to establish a dynamic evolution relationship between the water quality consequence and 105 

various coastal system conditions and environmental factors. The marine water system of Tolo 106 

Harbour in Hong Kong is taken as example for the illustration and application of the developed 107 

method framework. Through the case study, the performances of these two different ML 108 

methods (ANN and SVM) are compared and discussed for coastal water quality prediction in 109 

terms of accuracy and efficiency. Furthermore, based on the developed models and obtained 110 

prediction relationships, the water quality results are analyzed and discussed for the influence 111 

and significance of different factors in the studied coastal system. 112 

2. Study Area and Total Environment Conditions 113 

Hong Kong is one of the worst regions suffered from HAB in the world (Lu and Hodgkiss 114 

2004). Since records began in 1975, a total of 956 HAB incidents have been reported by 2019. 115 

Of these, 34.6% HAB events of Hong Kong occurred at Tolo Harbour and it is deemed as the 116 

most affected area in Hong Kong (AFCD, 2019). In this study, we select the field-measured 117 

water quality data over 30 years in Tolo Harbour for training both the ANN and SVM models. 118 

2.1. Geographical Pattern of Tolo Harbour 119 

Tolo Harbour, located between 22°24’N, 114°11’E and 22°31’N, 114°20’E, is an almost 120 

landlocked harbour of New Territories district, situated in the north-east of Hong Kong, 121 

connecting with open sea through the sole outlet Tolo channel (see Figure 2). The whole surface 122 
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area of Tolo Harbour was measured as 50 km2 and average depth was about 12 m. The length 123 

from the inner harbour area to the only narrow exit to Mirs Bay as long as 16 km, which lead 124 

to a long water retention time. In addition, mixed semidiurnal tides of small height varied from 125 

0.8 m to 2 m flushes this area with relatively slow velocity (Lee et al. 2003). Owing to its 126 

hydrological pattern, water movements of inner harbour zone influenced by tides are even more 127 

limited and the water column is often stratified. Thus, the water circulation of this area almost 128 

remains static or moves with a very slow pace, which impede the export of pollutants from 129 

inner zone and weaken the limited self-purification ability of Tolo Harbour. Due to the weak 130 

water circulation there, the harbingers of eutrophication were observed even before the 131 

commencements of modern exploitation (Chau 2007). 132 

 133 

Figure 2: The map of Tolo Habour and sampling station location 134 

 135 
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2.2. Hydrosphere and Anthroposphere 136 

Since 1970s, the heavy exploitations of Tolo Harbour started with the constructions of the 137 

Plover Cove reservoir. The new built reservoir cut off streams that directly flowed into Tolo 138 

Harbour before, resulting a significant reduction of freshwater runoff and great decrease of 139 

watershed area of Tolo Harbour (Xu et al. 2004a). Meanwhile, two new waterfront towns of 140 

Tai Po and Shatin were urbanized and industrialized. These excessive exploitations increased 141 

burden on the ecosystem of Tolo Harbour. In addition, a nearly doubled amount of population 142 

(from 0.5 million in 1986 to 0.9 million in 2001) in this area also caused a rise of wastewater 143 

discharge produced from both municipal and industrial activities (Xu et al. 2004b). Abundant 144 

nutrient elements such as nitrogen and phosphorus contained in sewage, especially nitrogen, 145 

phosphorus and other substances, were discharged into harbour zone, resulting in serious 146 

nutrient enrichment of Tolo Harbour. The waters in Tolo Harbour was thereby heavily 147 

eutrophicated and the deterioration was aggravated with years. In turn, the excessive pollutant 148 

load induced undesirable damages on the productive activities such as aquacultural fish deaths 149 

and harbour closures due to rapid phytoplankton accumulations. As water eutrophication led to 150 

successive HAB incidents, the aquatic ecology as well as aquaculture industry in Tolo Harbour 151 

hence suffered serious damages.  152 

In order to control the pollution, the Hong Kong government scheduled Tolo Harbour as 153 

the first set of Water Control Zone (WCZ) in Hong Kong in 1982. Hereafter, two schemes 154 

namely the Tolo Harbour Action Plan (THAP) and Tolo Harbour Effluent Export Scheme 155 

(THEES) were also implemented in 1987 and 1995 respectively. After continuous efforts over 156 
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decades, the water environment in Tolo Harbour has been noticeably improved. At present, 157 

Tolo Harbour WCZ still maintains biweekly/monthly regular measurement of water quality, 158 

providing abundant historical data for water quality modelling researches. 159 

3. Machine Learning Methods  160 

In general, the procedure of machine learning modelling for prediction is composed of 161 

several key steps as follows. Firstly, the available data set will be split into training set, 162 

validation set and testing set respectively. After initial data preprocessing, a specific ML model 163 

is then selected, which will be trained and validated based on training set and validation set. 164 

Before to be tested with untrained data, the related hyper parameters will be tuned repeatedly 165 

until the preset training goal (precision) is met. Eventually, the testing set will be used to test 166 

the trained model and to evaluate the performance. For clarity, a flow chart of the ML modelling 167 

and application procedure is given in Figure 3. 168 

In this study, to enhance the effectiveness of water quality (e.g., HAB) prediction for the 169 

studied case, two commonly used ML methods are improved, implemented and applied for this 170 

investigation, which are elaborated as follows. To be specific, all the algorithms and models 171 

involved in this study were implemented by in-house coding on the platform of MATLAB 172 

2018a. 173 

 174 
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 175 

Figure 3 The flow chart of general procedure for machine learning modelling 176 

3.1. ANN Framework and Improvement 177 

ANN is a self-adaptive computational model that efficiently works on finding a mapping 178 

between input information and the desired output response. The principle of the classic ANN 179 

is shown in Figure 4. Due to the immediate modelling response, good fault tolerance and 180 

universality, ANN has been widely applied in non-linear simulations. Notwithstanding, there 181 

are several types of network structure in ANN, as mentioned, the BP network is the most used 182 
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ANN model so far and has successfully solved many problems in a number of fields. Typically, 183 

BP network is usually divided into three parts including the input layer, the output layer and 184 

one or more hidden layers. Each layer comprises numerous computing neurons which are 185 

highly interconnected with every neuron in the following layer and each neuron is a computing 186 

unit that conducts a nonlinear transfer operation following a linear summation.  187 

 188 

Figure 4: The framework and principle of classic ANN 189 

 190 

The feedforward computational process can be described as Eq. (1): 191 

 aj
H+1 = fH+1(bj

H+1 + ∑ wji
H+1ai

Hn
i=1 ) (1) 192 

 for 1 ≤ H ≤ L, ai
1 = xI, ak

L+1 = ŷk 193 

where the superscript H represents the number of layer, wji denotes the connecting weights 194 

between ith  neuron of Hth  layer and jth  neuron of (H + 1)th  layer, which is usually 195 

expressed as a matrix form, ai
H is the input of Hth layer and also the output of (H + 1)th, 196 

xI and ŷk respectively denote the initial input and predicted output of the entire network, n, 197 

b and f are the dimension of input vectors, the bias term and the nonlinear transfer function 198 
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that can be either sigmoid function, hyperbolic tangent function or rectified linear unit (ReLU) 199 

function. 200 

After feedforward prediction, the mean squared error Ep (also called empirical error) is 201 

usually calculated to evaluate the performance of the network, which can be written as Eq. (2): 202 

 Ep =
1

2m
∑ (ŷk

i − yo
i )
2m

i=1  (2) 203 

where yo is the desired output response and m is the size of training batch.  204 

In practice, the modelling performance of ANN is largely dependent on both the learning 205 

algorithm and the initial weights (Sutskever et al. 2013). Gradient descent Eq. (3) is the most 206 

used algorithm that updates the randomly initialized weights incrementally towards the 207 

direction that Ep descents until certain conditions are met (e.g. the maximum iteration epoch, 208 

target accuracy or no significant changes between two iterations, etc.). Once training is 209 

completed, the weight matrix is fixed and the model can be used to predict untrained data. 210 

 wji(t + 1) = wji(t) − α
∂Ep

∂wji(t)
 (3) 211 

where t denotes the epoch number, α is the learning rate to be preset. 212 

However, the basic gradient descent algorithm is usually not fully ideal in nonlinear 213 

problem solving since it converges at a low speed, produces unstable results and is easily 214 

trapped into the local optimum etc. Aimed at these deficiencies, a number of optimized learning 215 

algorithms are proposed. The following optimized algorithms are implemented in the ANN 216 

framework so as to enhance the prediction effectiveness in this study:  217 

(1) Gradient Descent with Momentum (GDM): GDM introduces the concept of inertia (a 218 

momentum term) in weight update process which considers both current gradient and 219 
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gradient change of previous steps (Qian 1999). It is the simplest way to avoid 220 

oscillations especially near local minimums and speed up convergence rate.  221 

(2) Levenberg-Marquardt algorithm (LM): It combines Gradient Descent with Gauss-222 

Newton algorithm by introducing a damping term (Gavin 2019). LM remarkably 223 

accelerates the convergence speed since it considers both first-order derivatives 224 

(gradient) and second derivatives (Hessian matrix).  225 

(3) Genetic Algorithm (GA): Unlike gradient-based optimizations above, GA is a 226 

population-based optimization that determines the optimal weight matrix (solution) 227 

by promoting explorations. (Ghaffari et al. 2006). GA searches the global optimal 228 

solution by a group of potential solutions and their offspring. The evolutionary 229 

manipulations such as reproduction, selection, crossover and mutation will iterate 230 

repeatedly until the optimal one is found (Recknagel et al. 2002; Chau 2006). Actually, 231 

GA can be described as a global optimization algorithm that does not dependent on 232 

the initial values and gradient information (Mirzazadeh et al. 2008). 233 

(4) Particle Swarm Optimization (PSO): PSO is another promising populated 234 

evolutionary algorithm that mimics the social behaviors of gregarious animals to 235 

search the optimal solution by cooperation and competition (Chau 2005a). In PSO, 236 

each potential solution flies to the current optimum based on both the swarm best 237 

position and individual best position (Chau 2005b). Since the complex evolutionary 238 

operators such as crossover and mutation in GA are not involved, the computational 239 

cost of PSO is much inexpensive and still can accomplished satisfactory results in 240 
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many cases. 241 

To sum up, gradient-based optimizations (i.e. GDM and LM) are good at local 242 

convergence but they are prone to find a local optimum while population-based optimizations 243 

(i.e. GA and PSO) are robust to search for best region in the whole solution space but are 244 

inefficient in fine-tuning local search especially within the near-optima region (Ghaffari et al. 245 

2006). Some scholars have proposed a hybrid ANN models integrating different population-246 

based and gradient-based algorithms to make full use of advantages on them and obtained 247 

better performances than using either one exclusively (Chau 2005b). These integrated models 248 

are adopted in Section 4 with four candidate models developed.  249 

3.2. SVM Framework and Implementation  250 

SVM is another promising machine learning algorithm (as depicted in Figure 5), which 251 

has been successfully applied to classification as well as regression problems. The preliminary 252 

goal of SVM is to determine the optimal nonlinear relation f(x) between input and output by 253 

mapping feature vectors from original space to a high dimensional space where the relation can 254 

be linearly described. Assuming the training data set is Eq. (4): 255 

 (x1, y1), (x2, y2), … , (xm, ym) (4) 256 

The input vectors mapped to high dimensional space are described as Eq. (5): 257 

 Φ(x) = (Φ(x1),Φ(x2),… ,Φ(xm)) (5) 258 

Therefore, the high dimensional target function can be written as Eq. (6): 259 

 f(x) = ωT ⋅ Φ(x) + b (6) 260 

where Φ(x) denotes the high dimensional mapping on input vector from the original space x. 261 



 

15 

ω and b are parameters to be estimated by learning. Ym is the label of mth input vector. 262 

 263 

Figure 5: The framework and principle of the SVM algorithm 264 

 265 

Based on the principle of structural risk minimization, the learning strategy of SVM is to 266 

minimize the upper limit of structural error rather than empirical error adopted by other 267 

machine learning techniques like ANN. Mathematically, the objective function of SVM for 268 

regression (SVR) can be expressed as Eq. (7): 269 

 

min
ω,b,ξI,ξ̂i

1

2
‖ω‖2 + C∑ (ξi + ξ̂i)

m
i=1

s. t. {

f(xi) − yi ≤ ϵ + ξi
yi − f(xi) ≤ ϵ + ξ̂i

ξi ≥ 0, ξ̂i ≥ 0, i = 1,2, … ,m

 (7) 270 

where ‖ω‖  is a regularized penalty term which assures the flatness of function; In SVM 271 

model, an ϵ-insensitive zone is introduced which ignores the errors less than ϵ; ξI and ξ̂I are 272 

nonnegative slackness variables which measure the deviation between actual value and the 273 

boundary of the insensitive zone; C is a constant trade-off the empirical error and the flatness. 274 

Obviously, the original problem of SVR Eq. (7) is a convex quadratic optimization 275 
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problem that assures the solution unique and global optimal (Hsu et al. 2003; Xie et al. 2012; 276 

Lou et al. 2017). By introducing the Lagrange multipliers, Eq. (7) can be equivalently 277 

transformed as the its dual expression Eq. (8): 278 

max
α,α̂

∑ yi(α̂i − αi) − ϵ(α̂i + αi) −
1

2
∑ ∑ (α̂i − αi)(α̂j − αj)Φ(xi)Φ(xj)

m
j=1

m
i=1

m
i=1

s. t {
∑ (α̂i − αi) = 0m
i=1

0 ≤ αi, α̂i ≤ C

 (8) 279 

where αI, α̂I are Lagrange multipliers; Φ(xi)
TΦ(xj) involves the inner product of high 280 

dimensional vectors which may lead to geometrically increase of computational complexity. In 281 

order to simplify the computational complexity, the kernel tricks are usually adopted. The 282 

kernel tricks Φ(xi)
TΦ(xj) = κ(xI, xj) are normally used to represent the inner product of two 283 

high-dimensional vectors by inner product of two low-dimensional vectors. Finally, the high 284 

dimensional decision function with kernel functions can be expressed as Eq. (9): 285 

 f(x) = ∑ (α̂i − αi)
m
i=1 κ(xI, x) + b (9) 286 

By using kernel functions, all calculations in SVM can be implemented in the original 287 

input domain without complex high dimensional computations. The commonly used kernel 288 

functions are as Eq. (10):  289 

 κ(xI, xj) =

{
 
 

 
 (xi

T ⋅ xj + 1)
d
                               Polynomial

exp (−γ‖xi − xj‖
2
)                      Gaussian

tanh(γxi
T ⋅ xj + r)                         Sigmoidal

 (10) 290 

Different kernel functions map the input vectors into a higher dimensional space in 291 

different ways. The choice of kernel function in SVM directly affects the number of parameters 292 

as well as the computational complexity. Moreover, parameters in SVM such as γ, C and ϵ 293 

should also be selected carefully because the predictive performances of models vary 294 
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significantly under different combinations of preset parameters (Hsu et al. 2003). Therefore, 295 

the selection of appropriate kernel function and associated parameters is a critical procedure in 296 

building efficient SVM models. 297 

3.3 Interpretative Methods of Important Variables 298 

In order to understand the underlying mechanism of algal growth dynamics, identifying 299 

and interpreting the important environment variables is an essential step after the modeling and 300 

prediction. A number of explanatory methods to interpret the importance of environmental 301 

variables in ecological machine learning models have been proposed and discussed by many 302 

researchers (Gevrey et al. 2003; Olden et al. 2004). Amongst them, the ‘weight’ methods that 303 

explain the factor importance by looking at the magnitude of connecting weights and the 304 

‘stepwise’ methods that rank the importance by continuously adding or deleting individual 305 

variable changing the model error largest are commonly used. Moreover, these methods are 306 

considered as effective sensitivity analysis techniques for machine learning methods that are 307 

conducive to interpret the relative importance of input variables (Gevrey et al. 2003; Lee et al. 308 

2003; Chau et al. 2007; Foo et al. 2016). In this study, the forward stepwise method and the 309 

simplified ‘weight’ method suggested by Gevrey et al. (2003) are adopted to rank the 310 

contributions and quantify the relative importance of each environmental variable.  311 

In the first step of forward stepwise process, each out of the eight variables is trained as 312 

input by individual model, so that the respective variable of smallest RMSE is ranked the most 313 

significant. Then this determined variable is combined with each of the other seven variables 314 

respectively to form seven models results. This process is repeated, and each step ranked one 315 
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of the remaining variable, until all variables are achieved. As a result, the order of integration 316 

of the input variables in the network is the order of the importance of their contributions 317 

(Gevrey et al. 2003; Olden et al. 2004).  318 

In the ‘weight’ method, the connecting weights between the input layer and hidden layer 319 

represent the importance of each input. The variable with a higher RI is supposed to have more 320 

contribution (that is, more important). This indicator can be defined by Eq. (11): 321 

 Qih =
|wih|

∑ |wih|
ni
i=1

, RI(%)i =
∑ Qih
nh
h=1

∑ ∑ Qih
ni
i=1

nh
h=1

× 100 (11) 322 

where wih  is the weight connecting input and hidden neuron; ni  and nh  are number of 323 

input and hidden neuron.  324 

4. Application Procedure for Water Quality Prediction 325 

4.1. Data Preparation 326 

4.1.1 Dataset Selection and Division 327 

The water quality data in Tolo Harbour is biweekly/monthly monitored by the 328 

Environment Protection Department (EPD) of Hong Kong. The weakest flushed monitoring 329 

station TM3 at 22°27’N, 114°12’E (Figure 2) is selected as the sampling point so that the 330 

hydrodynamic effects can be separated (Lee et al. 2003). In this study, the 30-year water quality 331 

data from 1988 to 2018 are used for modelling. Since the raw data are measured biweekly or 332 

monthly, we applied linear interpolation to obtain daily values. Therefore, totally 11293 333 

interpolated daily samples are obtained where the first 9000 samples (from 1988 to 2012) are 334 

selected as training set and the remaining 2293 untrained data (from 2012 to 2018) are used as 335 



 

19 

testing set. The training set is originally fed into both ANN and SVM for model training, while 336 

the retained testing set is used to test the capability of the model to predict the output for those 337 

new samples that were not contained in the training set, which is also termed as generalization 338 

performance (Xie et al. 2012). Given that the 5-fold cross validation method is adopted for 339 

model validation in this study, the folded validation set is randomly partitioned from training 340 

set into 5 equal sized subsets and then used for model validation before the testing stage. 341 

4.1.2 Input Variables and Time Lags 342 

Similar to previous modelling and filed studies in Tolo Harbour (Lee et al. 2003; Muttil 343 

and Chau 2007; Li et al. 2014), the following water quality indicators are taken as model inputs, 344 

including total inorganic nitrogen (TIN, mg/L), phosphorus (PO4, mg/L ), Chlorophyll-a (Chl-345 

a, μg/L), dissolved oxygen (DO, mg/L ), water temperature (℃), and the secchi-disc depth 346 

(SDD, m) which measures the light intensity. In addition, some studies also suggest that 5-day 347 

biological oxygen demand (BOD5, which measures the organic pollutants) and acid-base 348 

conditions (pH) of water are directly influence to algal growth but usually were ignored in 349 

previous researches on HAB issues of Tolo Harbour. As complement, we also take the variables 350 

of BOD5 (mg/L) and pH as consideration in this study. All the field measured data are measured 351 

at surface, middle and bottom of water column and then depth-averaged for analysis. The 352 

modelling output should be an indicator that represents the magnitude of algal reasonably. 353 

Chlorophyll-a is one of the important components of algal cells which is a commonly used 354 

estimator to reflect the algal abundance in HAB studies (Li et al. 2004; de Oliveira et al. 2020). 355 

Therefore, the concentration of Chl-a at time t is selected as model output. 356 



 

20 

In this present study, a 1-week prediction of the algal blooms in Tolo Harbour is set as the 357 

modelling target based on the consideration of the ecological process and sampling frequency 358 

(Lee et al. 2003). However, the reoccurrence of algal blooms explosion in Tolo Harbour has 359 

been observed with a periodic cycle of 1-2 week. Lee et al. (2003) confirmed this phenomenon 360 

with the observation based on the continuous telemetric techniques, which suggested a 361 

significant self-correlation of algal dynamics up to time lag of around 2 weeks. To this end, the 362 

lag times of 7-13 days are introduced for lead-time prediction to identify the significant input 363 

variables (Muttil and Chau 2006). In other word, 8 environmental variables with 7 lag times 364 

(i.e. t-13, t-12 …, t-7) are chosen as 56 input variables of model (t denotes the time to predict).  365 

4.1.3 Normalization 366 

Considering that the values of the eight environmental variables are not of the same 367 

magnitude, all variables are normalized as Eq. (12) to ensure that the data used for modeling is 368 

homogeneous so that models converge effectively.  369 

 x′ =
x−xmin

xmax−xmin 
 (12) 370 

where x  and x′  denote the original and normalized value respectively; xmax  and  xmax 371 

denote the respective maximum and minimum value of each variable. 372 

4.2. Model Determinations 373 

The modelling performance of ANN is directly affected by network structure hence an 374 

important procedure in ANN model construction is to select the network structure and its 375 

configuration which makes the model reach the optimal performance. Since a single hidden 376 

layered model is well enough to approximate any continuous function at an arbitrary precision 377 
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(Cybenko 1989), in this study, the frame of the BP neural network with an input layer, a hidden 378 

layer and an output layer is selected.  379 

In input layer, there should be 56 input nodes, corresponding to 56 variables determined 380 

in the previous subsection, while the output layer should have only one node which produces 381 

the predicted Chl-a concentration. However, there is no deterministic principle for selecting the 382 

number of hidden nodes. The trial and error method is conducted to determine the optimal 383 

hidden nodes. By building 11 networks and varying the number of hidden neurons between 3 384 

to 13, the best performed network model is found with 5 hidden nodes. The sigmoidal function 385 

Eq. (13) is used as transfer function between input layer and hidden layer as well as the transfer 386 

function between hidden layer and output layer to assure the best performance. 387 

 f(x) =
1

1+e−x
 (13) 388 

As mentioned before, in order to make full use of advantages of both gradient-based and 389 

population-based algorithms, four ANN models with integrated learning algorithms (i.e. GDM-390 

GA, GDM-PSO, LM-GA and LM-PSO) are compared in this study. In these hybrid learning 391 

process, GA or PSO are employed for global search and then GDM or LM are used for fast 392 

local convergence. Before modelling, the parameters of each algorithm are claimed as follows. 393 

The learning rate and training epochs are determined as 0.01 and 1000 respectively, the 394 

momentum of GDM is selected as 0.9, the probability of crossover and mutation of GA are 0.7 395 

and 0.01 respectively, the particle velocity of PSO are ranged from -2.0 to 2.0 and the particle 396 

position are ranged from -1.5 to 1.5. For both GA and PSO, each generation consists of 30 397 

individuals and the operations will terminate at the maximum generation of 50. The main 398 
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parameters of the ANN models are listed in Table 1. 399 

Compared with ANN, the model structure of SVM requires many fewer parameters to be 400 

specified. As mentioned previously, the modelling performance of SVM largely hinge on the 401 

applied kernel function and predefined parameters. Empirically, the Gaussian kernel function 402 

(RBF function) should be the first choice since it can ideally handle nonlinear problems by 403 

relatively simpler calculations and fewer parameters (Hsu et al. 2003). It is also widely 404 

employed in many cases of HAB events forecasting with satisfactory performances (Xie et al. 405 

2012; Park et al. 2015). Thus, the Gaussian kernel function is selected herein to nonlinearly 406 

map feature vectors. The main parameters of SVM model are summarized in Table 2. 407 

Table 1 Key parameters of ANN models 408 

Input Nodes 56 Hidden Layer 1 

Hidden Nodes 5 Output Node 1 

Transfer Functions Sigmoid/Sigmoid Training Algorithms GDM/LM/PSO/GA 

Gradient Descent with Momentum (GDM): 

Learning Rate 0.01 Training Goal 0.001 

Learning Epochs 1000 Momentum Term 0.9 

Levenberg-Marquardt algorithm (LM): 

Learning Rate 0.01 Training Goal 0.001 

Learning Epochs 1000   

Genetic Algorithm (GA): 

Maximum Generation 50 Population size 30 

Crossover rate 0.7 Mutation rate 0.01 

Generation gap 0.95 Chromone length 20 

Crossover strategy Single-point Selection Strategy Roulette wheel 

Particle Swarm Optimization (PSO): 

Maximum Generation 50 Population size 30 

Particle velocity -2.0~2.0 Particle position space -1.5~1.5 

 409 
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Table 2 Key parameters of SVM model 410 

Kernel Function Gaussian Function 

Gaussian Function Parameter 0.25 

Insensitive Factor 0.1 

Loss Function 8 

Cross validation 5-fold 

Grid-search space 2-4~24 

 411 

Before applying Gaussian kernel functions in SVM, there are only three parameters to be 412 

determined: (1) The constant C, which penalize the outliers. (2) The insensitive parameter ϵ, 413 

which controls the error tolerance of insensitive zone. (3) The Gaussian parameter γ . 414 

Theoretically, inappropriate choices of these values may induce overfitting or underfitting. In 415 

order to determine the optimal combination of three parameters, the cross-validation and grid-416 

search method recommended by Hsu et al. (2003) is conducted. A 5-fold cross-validation is 417 

carried out and the parameters with minimum cross-validation error are picked to train the 418 

model. In present case, the ideal parameters are found as C = 8;  ϵ = 0.1;  γ = 0.25. 419 

4.3. Performance Indicators 420 

In order to quantitatively describe the modelling performance, we select the root-mean-421 

square-error (RMSE) Eq. (14) to evaluate measure the deviation between the predicted value 422 

and the measured value and use the correlation coefficient (CC) Eq. (15) to measure the 423 

goodness of fit. Generally, a model with smaller RMSE is considered to have less modelling 424 

error while a model with CC closer to 1 is considered to have a better positive correlation. 425 
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  RMSE = √
∑ (ŷi−yi)

2m
i=1

m
  (14) 426 

  CC =
∑ (ŷi−ŷ̅i)(yi−y̅i)
m
i=1

√∑ (ŷi−ŷ̅i)
2m

i=1  √∑ (yi−y̅i)
2m

i=1  

 (15) 427 

where yI and ŷI denote actual value and predicted value respectively and the variables with 428 

a capped bar represents the average value; m is the number of samples. 429 

In this study, both the modelling accuracy and its generalization ability are considered in 430 

performance evaluation. After the model is trained, the training set will be re-input into the 431 

model to check the accuracy of the model and then the untrained testing set will be used to test 432 

the generalization ability to process new data. In addition, the training time (T) is also employed 433 

to reflect the computing cost.  434 

To sum up, the application principle and procedure of the ML-based water quality 435 

prediction developed in this study starts with the model description and variable selection. 436 

Prepared data set with 8 selected environmental variables then will be fed into two different 437 

ML models (i.e. ANN and SVM) and relevant parameters will be dynamic adjusted repeatedly. 438 

After predicting and results analysis, the performances of each model will be evaluated and 439 

compared so that the best adopted model can be selected. For clarity, the integral process of the 440 

developed ML-based scheme is presented in Figure 6. 441 
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 442 

Figure 6: The application principle and procedure of ML-based water quality prediction 443 

5. Results and Discussion 444 

5.1. Comparison of Predicting Performances 445 

In this section, the full models trained with all mentioned 8 environmental variables are 446 

established based on both ANN and SVM techniques as given in Figure 6. Table 3 lists the 447 

modelling results evaluated by error, correlation and training time. In terms of ANN models, 448 

predicting performances of four learning algorithms are compared and the results of 449 
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evolutionary process and water quality prediction are shown in Figures 7 and 8, respectively. 450 

Overall, four algorithms all showed good predicting ability to accurately capture both the 451 

growth trend and magnitude of Chl-a concentration both in training and testing set (Figure 8), 452 

which means that the four models are effectively established and there is no overfitting problem. 453 

Based on the results of modelling error and correlation, the global optimal solution was found 454 

by PSO with fewer generation steps than GA as indicated in Table 3 and Figure 7. In this case, 455 

it reveals that PSO may have better search efficiency on global optimization.  456 

Table 3 Performance indicators of different ANN algorithms 457 

 Training Set Testing Set Training 

Time(s)  RMSE CC RMSE CC 

GDM-GA 3.750 0.798 1.853 0.863 3.85 

GDM-PSO 3.943 0.770 1.845 0.803 3.39 

LM-GA 1.717 0.961 0.769 0.976 2.12 

LM-PSO 1.615 0.965 0.765 0.972 2.04 

SVM 1.243 0.980 0.660 0.984 61.19 

 458 

On the other hand, by comparing results of two different gradient-based algorithms in 459 

Table 3 and Figure 7, it can be clearly seen that outputs predicted by LM has a better agreement 460 

with observations than that predicted by GDM. The models using the GDM algorithm showed 461 

larger errors and is more prone to phase mismatch as given in Figure 8(b). Furthermore, the 462 

convergence rate of LM is also considered to be superior with nearly a half computing time of 463 

GDM. Comprehensively, the network using LM-PSO algorithm for training is considered as a 464 

better performed model because of the higher accuracy and efficiency in both training (with 465 

RMSE of 1.615 and CC of 0.965) and testing sets (with RMSE of 0.765 and CC of 0.972). 466 
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Therefore, from this comparative study, LM-PSO algorithm is retained in the ANN model for 467 

further analysis. 468 

 469 

 470 

Figure 7: Evolutionary process of four different hybrid algorithms: (a) GDM with GA and 471 

PSO; (b) LM with GA and PSO 472 

 473 
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 474 

 475 

Figure 8: Results Comparison of four hybrid ANN models: (a) training set (b) testing set 476 

 477 

In terms of RMSE and CC, Table 3 also shows that the SVM model trained with the same 478 

training set data performed even slightly better than the best ANN model (i.e. LM-PSO above). 479 

The comparisons of these two ML methods are further depicted in Figures 9 and 10 for the 480 

results of water quality prediction and performance, respectively. By using SVM technique, the 481 

highest correlation coefficient was achieved in both training set (CC=0.980) and testing set 482 

(CC=0.984) as well as the lowest RMSE (1.243 for training set and 0.660 for testing set 483 

respectively) (see Figure 10). Meanwhile, it is revealed in Figure 9 that the SVM can handle 484 

better the nonlinear relationship between water quality variables and chlorophyll concentration 485 

than the ANN models. However, it should be noted that it takes much longer to train the SVM 486 
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(~60s) than the ANN (2~4 s) as the SVM takes a quadratic programming with time complexity 487 

of O(m3) (m is the number of examples).  488 

 489 

 490 

Figure 9: Results comparison of the ANN and SVM methods: (a) training set (b) testing set 491 

 492 

 493 
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 494 

Figure 10: Prediction performance comparison of the ANN and SVM methods: (a) training 495 

set; (b) testing set 496 

5.2. Variable Importance Analysis 497 

The identification of the significant factors that strongly influence algal dynamics is 498 

imperative to understand the causality and mechanism of algal blooms events, which are also 499 

beneficial in early warning and precautionary measures implement. Two different methods 500 

mentioned in Section 3.3, namely ‘stepwise’ method and ‘weight’ method, are conducted in 501 

this study. 502 

Tables 4 and 5 list the best input combination of the model with lowest RMSE in each 503 

step for the ‘stepwise’ methods of both ANN and SVM respectively. Noted that the 504 

redundancies, noise and irrelevant components are likely to be introduced by adding variables, 505 

while the performance of the model does not increase monotonically with the increase of 506 

variables as shown in Figure 11. According to the results of ‘stepwise’ method in Tables 4 and 507 

5, both ANN and SVM method suggest Chl-a concentration as the most significant factor 508 
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contributing to algal growth in the studied area. Other variables including BOD5, TIN, DO and 509 

pH are also considered to have relatively higher contributions to the algal growth, which are 510 

ranked 2-4 in the forward selection process. It is also noting that with the increase of the number 511 

of variables, the training time of SVM may greatly exceed that of ANN, but with limited 512 

improvement on the model performance (Figure 11). More details on obtaining the final results 513 

of Table 4 and Table 5 may refer to the supplementary materials of this paper. 514 

Table 4 Results and Performance of the ‘stepwise’ method for the ANN method (all the 515 

variables with 7-13 lagged days) 516 

Step Best Combination of Inputs 
Training Set Testing Set Time 

(s) RMSE CC RMSE CC 

1 Chl-a 1.835 0.955 0.799  0.977  1.50 

2 Chl-a, BOD5 1.775 0.958 0.822  0.975  1.64 

3 Chl-a, BOD5, TIN 1.783 0.957  0.839  0.974  1.57 

4 Chl-a, BOD5, TIN, DO 1.751 0.959  0.821  0.974  1.64 

5 Chl-a, BOD5, TIN, DO, pH 1.712 0.961  0.772  0.977  1.61 

6 Chl-a, BOD5, TIN, DO, pH, PO4 1.774 0.958  0.825  0.974  1.65 

7 Chl-a, BOD5, TIN, DO, pH, PO4, SDD 1.696 0.961  0.839  0.974  1.89 

8 Chl-a, BOD5, TIN, DO, pH, PO4, SDD, Temp 1.615 0.965 0.765 0.972 2.04 

 517 

Table 5 Results and Performance of the ‘stepwise’ method for the SVM method (All the 518 

variables with 7-13 lagged days) 519 

Step Best Combination of Inputs 
Training Set Testing Set Time 

(s) RMSE CC RMSE CC 

1 Chl-a 2.093 0.945 0.799 0.977 9.62 

2 Chl-a, BOD5 1.713 0.962 0.746 0.979 25.12 

3 Chl-a, BOD5, TIN 1.814 0.958 0.773 0.978 28.83 

4 Chl-a, BOD5, TIN, DO 1.474 0.971 0.751 0.979 42.24 

5 Chl-a, BOD5, TIN, DO, pH 0.778 0.992 0.597 0.987 42.77 

6 Chl-a, BOD5, TIN, DO, pH, PO4 0.806 0.991 0.588 0.987 50.43 

7 Chl-a, BOD5, TIN, DO, pH, PO4, SDD 0.717 0.993 0.556 0.988 52.21 

8 Chl-a, BOD5, TIN, DO, pH, PO4, SDD, Temp 1.243 0.980 0.660 0.984 61.19 

 520 
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 521 

Figure 11: Performance comparison based on ‘stepwise’ method (The CC indicator is for 522 

testing set; training time is for training set) 523 

 524 

In addition, the suggested ‘weight’ method (Gevrey et al. 2003) is also conducted to 525 

quantify the relative importance (RI) for each variable. The results of RI values for each input 526 

variable are shown in Table 6 and Figure 12. Specifically, the values that are larger than the 527 

overall average (1/56=1.78%) are deemed to be relatively more significant and thus shaded in 528 

blue in the table. In the analysis of ‘weight’ method, all variables with lag times of (t-7) and (t-529 

13) in Table 6 indicate potentially high relation with current Chl-a concentration (output) (as 530 

visualized in Figure 12). Furthermore, considering all time lags of a variable as a whole, the 531 

summation of the RI for each environmental variable can be calculated by Eq. (16) and is 532 

plotted in Figure 13.  533 

Si = ∑ RI(%)i
nT
i=1          (16) 534 

Not surprisingly, the ‘weight’ method also suggests that the factor of Chl-a being the most 535 
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significant variable with the sum total RI of 22.64% (see Figure 13).  536 

By comparison, the result of the “weight” method is overall consistent with that of the 537 

former “stepwise” method, which also confirms the applicability and accuracy of the ML 538 

methods for the water quality prediction proposed in this study.  539 

Table 6 The RI results by the ‘weight’ method 540 

Variable 
RI of Each Input Variable (%) 

Sum 
t-7 t-8 t-9 t-10 t-11 t-12 t-13 

Chl-a 8.28 6.69 1.61 0.51 1.24 1.97 2.34 22.64 

TIN 2.83 1.44 2.54 2.94 1.03 1.20 3.17 15.15 

DO 2.70 1.05 1.81 0.31 1.54 1.01 1.19 9.60 

PO4 2.28 1.61 1.56 1.15 0.72 1.20 0.97 9.48 

SDD 1.90 0.49 1.58 0.80 0.49 0.75 2.18 8.18 

Temp 2.30 0.68 0.62 1.02 0.96 0.65 1.07 7.30 

BOD5 5.30 1.90 1.01 1.08 0.94 1.77 3.90 15.90 

pH 3.82 1.00 0.64 0.87 1.92 1.55 1.94 11.74 

Total 100 

*Numbers in blue are for IR > 1.78% (i.e., overall average) 541 

 542 

 543 

Figure 12: The RI value of each influence variable 544 

 545 
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 546 

Figure 13: The summation of the RI for each environmental variable (𝑺𝒊) by considering all 547 

time lags of a variable as a whole  548 

5.3. Environmental Interpretation  549 

Based on the above results and analysis by the proposed ML methods, the time-lagged 550 

Chl-a concentration is considered to be the most significant variable contributed to the current 551 

algae abundance. In other word, the upcoming algal bloom events are strongly related to Chl-552 

a concentration with 1-2 weeks ahead, which indicates the occurrence of HAB in Tolo Harbour 553 

with a cycle of 1-2 weeks. This auto-regressive characteristic of algal growth dynamics is also 554 

observed and concluded by other scholars (Lee et al. 2005; Muttil and Lee 2005; Muttil and 555 

Chau 2006). After comparing with three differently flushed stations, Muttil and Lee (2005) 556 

confirmed the phenomenon was related to the tidal flushing conditions. The sampling station 557 

TM3 is located at a side cove in Tolo Harbour. Due to the very limited tidal flushing, the water 558 

circulation is extremely weak (with average current velocity of 0.04m/s) and water residence 559 

time is relatively long (about 28 days). Hence, it is justifiable that the time-series reoccurrence 560 
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phenomenon is very obvious in this semi-closed coastal water due to the inertial process of the 561 

physical system (Muttil and Chau 2007).  562 

The BOD5 is ranked as the secondary important variable by ‘stepwise’ method of both 563 

ANN and SVM and also obtained a relatively high RI (15.90%) in the ‘weight’ method. 564 

Biologically, the indicator of BOD5 represents the amount of oxygen demanded by 565 

decomposing micro-organisms to break down organic substance over five days, which is 566 

usually adopted as the indicator of the degree of organic pollution in water. It has been 567 

determined as a main factor contributing to eutrophication (Chen et al. 2002; Solanki et al. 568 

2010) and a linear and positive relations between BOD5 and Chl-a are observed based on 569 

numerical models (Xu and Xu 2015). In Tolo Harbour, there was also consistent observations 570 

that the highest level of BOD5 was detected during the period of the worst eutrophication (Li 571 

et al. 2004; Xu et al. 2004b). 572 

The ambient nutrient variable TIN is ranked as the third significant variable in all analyses, 573 

while the other nutrient variable PO4 had a less important contribution. In general, the 574 

concentration of nutrient elements in water, such as nitrogen (N) and phosphorus (P), promote 575 

the growth of aquatic phytoplankton. It is interpretable that the growth and reproduction of 576 

algal are directly dependent on nutrient supply. (Xu et al. 2004a; Chau 2007; Xu et al. 2010; 577 

Davidson et al. 2012). The municipal and industrial wastewater containing heavy nitrogen and 578 

phosphorus load stimulate the growth of algal biomass in response to the increase in nutrient 579 

load (Chang et al. 2017). Conversely, the exhaustion of essential nutrient limits development 580 

of algal flora. However, unlike freshwater in riverine or reservoir, the nitrogen is more likely 581 
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to be the limiting factor in many coastal eutrophic water systems rather than phosphorus (Elser 582 

et al. 2007; Davidson et al. 2012; Paerl et al. 2014; Park et al. 2015). In Hong Kong, the Tolo 583 

Harbour was also classified as a nitrogen limiting water system especially during the period of 584 

frequent HAB (Xu et al. 2010). Therefore, it is reasonable that the RI of TIN is much higher 585 

than PO4, which also means that nitrogen plays a much more important role in the growth of 586 

algae than phosphorus in Tolo Harbor. 587 

The dissolved oxygen (DO) and pH are ranked as the fourth and fifth significant variables, 588 

respectively. Theocratically, DO is necessary for the aquatic organisms in terms of respiration 589 

and other important biochemical reaction. When a large number of algae accumulate rapidly, 590 

the dissolved oxygen in the water will be depleted, resulting in hypoxia issues. In Tolo Harbour, 591 

a negative correlation between the dissolved oxygen and algal abundance was also observed 592 

and verified based on both statistical data and three-dimensional numerical eutrophication 593 

models (Lee et al. 2005; Chau 2007). The pH value is considered as another plant growth 594 

limiting factor which directly affect the absorption of nutrient solution (Khan and Ansari 2005). 595 

The formation of Chl-a is also limited by acid environment, while alkaline environment with 596 

high pH value was demonstrated to promote the growth of algal and often results in bloom 597 

(George and Heaney 1978; Wei et al. 2001; Yang et al. 2008). 598 

In this study, the water temperature and SDD are suggested relatively insignificant to the 599 

algal dynamics in Tolo Harbour. SDD is a measure of light penetration into water body which 600 

is usually used to water transparency. Theoretically, SDD is mainly influenced by light intensity. 601 

However, light was considered to rarely limit the growth of phytoplankton in inner Tolo (Xu et 602 
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al. 2010). Some scholars also pointed out that water temperature was also an important factor 603 

to promote algal growth (Park et al. 2015; Michalak 2016), but the annual temperature variation 604 

is quite small (less than 1℃ per month) in Tolo Harbour due to the tropical climate, hence it 605 

is also reasonable that the water temperature has limit impacts on algal growth (Flewelling et 606 

al. 2005; Muttil and Chau 2006; Cressey 2017). 607 

In conclusion, the current chlorophyll concentration has a predictive effect on the 608 

occurrence of HAB events in the upcoming week. In the process of preventing and controlling 609 

HAB events in Tolo Harbour, though it is also important to focus on DO and pH, the load of 610 

organic pollutants and nitrogen should be reduced at priority, while SDD and water temperature 611 

are not the key points in water quality restoration. To some extent, these machine learning 612 

models are promising to provide environment management department with some useful 613 

information to understand the insight of the algal growth in Tolo Harbour so that suitable 614 

strategies can be made to restore eutrophication and mitigate the harmful bloom impacts. 615 

5.4. Long-term Change of Water Quality in Tolo Harbour 616 

With intensified anthropogenic exploitations since 1970s, the ecosystem of Tolo Harbour 617 

began to degrade. In early 1980s, increased population migrated to Tai Po and Shatin, two new 618 

towns along the Tolo Harbour, where industrial areas were also developed. The water 619 

environment degraded sharply due to excessive domestic and industrial sewage discharging 620 

into Tolo Harbour nearby. Averagely, during the decade of 1980s, the daily BOD and TIN loads 621 

caused by sewage discharge to Tolo Harbour were recorded as high as 14,000 and 6,000kg/day 622 

respectively (Xu et al. 2004a), which stimulated the development and production of algal 623 
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species. In late 1980s, harmful algal blooms or red tides events began to occur in Tolo Harbour 624 

frequently with the worst situation of 43 incidents in 1988 alone. In order to mitigate 625 

environmental pollutions, the Hong Kong authority announced Tolo Harbour Action Plan 626 

(THAP) including a series of schemes, such as livestock waste control, effluent diversion 627 

schemes and sewage treatment works with the target level of BOD and TIN daily discharge 628 

decrease to 5,000 kg/day and 600kg/day. After such scheme implementation, the water quality 629 

has been improved gradually, with the average annual HAB incidents in Tolo Harbour 630 

decreased from 16 during 1986~1996 to only 5 during 2008~2018. Specifically, at the most 631 

affected TM3 station, the mean concentrations of BOD5 and TIN were declined by 37.9% and 632 

61.9% respectively, and the average annual Chl-a now is almost less than 10 (μg/L) (EPD, 2019).  633 

The successful restoration of Tolo Harbor shows that reduction of BOD and TIN load as 634 

the THAP’s primary targets has a very obvious effect on reducing red tide and water bloom. It 635 

is noteworthy that the similar enlightenments can be obtained from the ANN and SVM models 636 

developed in this study. In reality, each water ecosystem has its own individuality hence it is 637 

hard to fully grasp a causative pattern of algal developments. Before the complicated 638 

relationship between algal and environmental variables is well-understood, machine learning 639 

models seem to be good supplements to understanding the complex process. Although machine 640 

learning models are regarded as a ‘black box’ model, the case study of Tolo Harbour confirms 641 

that the results and interpretations can play a significant role in restoring water degradation. 642 

6. Conclusions 643 

In this study, two machine learning (ML) models namely ANN and SVM are implemented 644 
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and applied to model and predict the algal growth trend and magnitude in Tolo Harbour by 645 

training with 30-year monitored data. In general, both ANN and SVM could provide very 646 

satisfactory results. During the model training stage of the ANN, four hybrid learning 647 

algorithms are implemented and compared for their performance in improving the water quality 648 

prediction. In terms of accuracy and generalization, LM-PSO algorithm is proved to be the best 649 

predictive performance over other ANN models. In addition, the performance of SVM is better 650 

than all ANN models in terms of water quality prediction results, but with lower computational 651 

efficiency due to the inclusion of the nonlinear relationships among variables and outputs.  652 

Based on the application results and analysis, it is demonstrated that the upcoming algal 653 

bloom events are strongly related to Chl-a concentration with 1-2 weeks ahead of the time, 654 

which indicates the auto-regressive characteristics of algal dynamics. The analysis results also 655 

reveal that the variables of BOD, TIN, DO, PO4 and pH can be key variables contributing to 656 

abundance of blooms in Tolo Harbour during past three decades. This is evidenced by the 657 

practice that the occurrence of HAB events has been noticeably decreased after the long-term 658 

efforts to reduce BOD and nutrient load in this studied area. This result is also consistent with 659 

the recommendation from the ML methods in this study, which confirms the usefulness of the 660 

interpretations of important variables by these methods in restoring water degradation.  661 

Finally, the results and findings of this study also suggest that the ML methods can provide 662 

supplementary information for the understanding of the complicated algal behavior and 663 

eutrophication mechanisms as well as appropriate suggestions on water quality prediction and 664 

improvement for total coastal hydro-environmental management. 665 
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