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Sparse Bayesian factor analysis for structural damage detection 

under unknown environmental conditions  

ABSTRACT 

Damage detection of civil engineering structures needs to consider the effect of normal 

environmental variations on structural dynamic properties. This study develops a novel 

structural damage detection method using factor analysis in the sparse Bayesian 

learning framework. The unknown changing environmental factors that affect the 

structural dynamic properties are treated as latent variables in the model. The 

automatic relevance determination prior is adopted for the factor loading matrix for 

model selection. All variables and parameters, including the factor loading matrix, 

error vector and latent variables, are solved using the iterative expectation-

maximization technique. The variables are then used to reconstruct structural 

responses. The Euclidean norm of the error vector is calculated as the damage indicator 

to detect possible damage when limited vibration data are available. Two laboratory-

tested examples are utilized to verify the effectiveness of the proposed method. Results 

demonstrate that the number of underlying environmental factors and structural 

damage can be accurately identified, even though the changing environmental data are 

unavailable. The proposed method has the advantages of online monitoring and 

automatic identification of underlying environmental factors. 
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1. Introduction 

Vibration-based structural health monitoring (SHM) typically involves the long-term 

measurement of dynamic responses, followed by damage-sensitive feature extraction 

and structural condition assessment [1–5]. The principle behind vibration-based SHM 

is that damage causes variations in the structural dynamic properties, and so examining 

the variations may detect the damage via an inverse approach [1]. However, civil 

engineering structures are subject to ambient conditions, such as the temperature, 

humidity, wind and traffic loadings, that can vary significantly and also produce 

changes in structural dynamic properties [6–11]. If the changing environmental 

conditions are not fully considered, the emergence of structural damage may be masked, 

and false structural condition identification may occur [6, 8]. 

 

Various methods have been developed for structural damage detection under varying 

environmental conditions, particularly temperature. The methods can be classified into 

two kinds according to whether temperature is measured or not [12]. When 

temperature data are available, correlation models between the measured temperature 

and structural properties are established to explain the physical mechanism of the 

variations in structural dynamic properties [13–16]. Consequently the influence of 

temperature can be removed according to the fitted models. This kind of method is 

straightforward but relies heavily on the accurate and comprehensive measurement of 

environmental variables.  

 

By comparison, the other category of methods conducts damage detection without 

measuring environmental factors. These methods learn the implicit relationship 

between temperature and vibration properties from the damage-sensitive features that 

are collected from the undamaged structure. The effect of damage that has not been 

captured in the undamaged state can then be distinguished from the effect of 

temperature. Representative techniques include auto-associative neural networks [17–
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19], principal component analysis (PCA) [20–22], factor analysis (FA) [23–25], 

support vector machines [26], and Gaussian mixture models [27]. 

 

PCA is a widely used dimensionality reduction technique [20–22, 28–30] that uses a 

small subset of all of the principal components to account for most of the variance of 

the data. The measured structural responses collected before the structure experiences 

damage are used to compute the principal components. The data in the undamaged 

state can be reconstructed from several principal components with small errors, 

whereas the data in the damaged state cannot because the variations caused by damage 

have a different pattern from those induced by environment factors. Therefore, 

deviations in the reconstruction error will be observed with the emergence of damage. 

Representative approaches include the auto-associative neural network by Sohn et al. 

[17] that is essentially a nonlinear PCA, the linear and local nonlinear PCA methods 

by Yan et al. [21, 22] and the kernel PCA method by Reynders et al. [28]. However, 

the majority of these methods involve a tedious process because the number of 

principal components or dimensions to be retained is typically determined using a trial-

and-error method, which is time-consuming, especially for high-dimensional problems.  

 

Unlike PCA, which aims to find a linear combination of principal components to 

preserve the variance of data, FA provides a multi-variable statistical model in which 

factors are embedded as latent variables for interpreting changes in the measurement 

data [31]. An intuitive difference between the two techniques is that PCA treats the 

uncertainties of different components equally in the data reconstruction, whilst FA 

allows for a more comprehensive noise model that considers the uncertainty of each 

factor differently. Deraemaeker et al. [23, 24], Figueiredo et al. [19] and Kullaa [25] 

used FA for structural damage detection under changing environmental conditions. 

However, these studies restricted the covariance matrix to be diagonal, which implies 

that different modes are uncorrelated and independent. This assumption is questionable 
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because different vibration modes are generally extracted from the same set of time 

history data, and thus their uncertainties should be modeled as correlated. Additionally, 

it is desirable to automatically determine the number of environmental factors affecting 

structural dynamic properties, which is a challenging problem. 

 

In recent decades, the Bayesian approach has been investigated for model selection 

[32–35] and uncertainty evaluation [5, 36–40]. Automatic relevance determination 

(ARD) and the highly-related sparse Bayesian learning (SBL) method are effective 

tools for pruning surplus or irrelevant features from the model and resulting in a sparse 

subset [41]. Tipping and Bishop [42, 43] developed a generative Bayesian PCA that 

incorporates the ARD prior. Latent dimensions of the data can be determined 

automatically due to the mechanism to induce sparseness. However, the covariance 

matrix in the Bayesian PCA was chosen as isotropic, so the matrix fails to model 

correlations between different modes. Inspired by the Bayesian PCA work, factor 

analysis in a sparse Bayesian framework is used in this study for structural damage 

detection. The proposed model adopts the same underlying structure as in Bayesian 

PCA but the covariance matrix is treated differently. A full covariance matrix is 

adopted to consider correlations between different modes. The ARD prior is adopted 

for the factor loading matrix in the FA model to automatically identify the number of 

latent environmental factors. The iterative expectation-maximization (EM) algorithm 

[31] is utilized to compute the maximum a posteriori (MAP) estimates of the FA model. 

Due to the nondiagonal covariance matrix, an analytical solution of the loading matrix 

is not directly available but it can be solved using the Sylvester equation via an 

optimization approach.  

 

The rest of this paper is organised as follows. The sparse Bayesian framework of FA is 

presented in Section 2, followed by the EM algorithm which is used to compute all 

variables and parameters in Section 3. Section 4 summarizes the sparse Bayesian FA-
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based method for structural damage detection. The application of the method to two 

experimental examples is presented in Section 5. Conclusions are drawn in Section 6. 

 

2. FA in Sparse Bayesian Framework 

FA was initially introduced by psychologists to identify the underlying factors 

accounting for correlations amongst a dataset of observations [44]. A statistical model 

is established to describe the variabilities of observations in terms of unobserved 

variables. Letting 𝐃𝐃 = �𝐃𝐃1,𝐃𝐃2,. . . ,𝐃𝐃𝑁𝑁� ∈ ℝ𝑁𝑁𝑚𝑚×𝑁𝑁  be a set of 𝑁𝑁𝑚𝑚 -dimensional 

predicted data vectors, the FA model is expressed as [31, 44]  

𝐃𝐃𝑛𝑛 = 𝐖𝐖𝐳𝐳𝑛𝑛 + 𝛍𝛍 + 𝛆𝛆𝑛𝑛 (𝑛𝑛 = 1,2, … ,𝑁𝑁)  (1) 

where 𝐖𝐖  is an 𝑁𝑁𝑚𝑚 × 𝑀𝑀  factor loading matrix, 𝐳𝐳𝑛𝑛  is an M-dimensional standard 

Gaussian vector composed of 𝑀𝑀  independent latent variables with prior density 

𝒩𝒩(𝐳𝐳𝑛𝑛|𝟎𝟎, 𝐈𝐈), 𝛍𝛍 is the global mean of vectors in D, and 𝛆𝛆𝑛𝑛 is an 𝑁𝑁𝑚𝑚-dimensional error 

vector with prior Gaussian density 𝒩𝒩(𝛆𝛆𝑛𝑛|𝟎𝟎,𝚿𝚿)  that accounts for uncertain 

measurement and modelling errors. Conventional FA restricts the covariance matrix 

𝚿𝚿 ∈ ℝ𝑁𝑁𝑚𝑚×𝑁𝑁𝑚𝑚 to be diagonal, thereby modelling the elements in 𝐃𝐃𝑛𝑛 as uncorrelated 

and independent.  

 

FA is used for structural damage detection under unknown changing environmental 

conditions in this study. The training data comprises the evolution of natural frequencies 

in the undamaged state. Given that different modes in 𝐃𝐃𝑛𝑛 (𝑛𝑛 = 1,2, . . . ,𝑁𝑁)  are 

correlated and dependent, the covariance matrix 𝚿𝚿 is chosen as a full matrix instead 

of a diagonal matrix to represent correlations between modes. Unknown environmental 

factors that affect structural frequencies correspond to 𝐳𝐳𝑛𝑛. The calculation of the latent 

variable 𝐳𝐳𝑛𝑛  and parameters 𝐖𝐖 , 𝛍𝛍  and 𝚿𝚿  in Eq. (1) is a classical inverse problem 

from the data space to latent space, which can be solved using the Bayesian method.  
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The overall Bayesian equation to solve the latent variable 𝐳𝐳 = [𝐳𝐳1, 𝐳𝐳2, … , 𝐳𝐳𝑁𝑁] ∈ ℝ𝑀𝑀×𝑁𝑁 

is expressed as [31] 

𝑝𝑝(𝐳𝐳|𝐃𝐃, 𝛏𝛏) = 𝑐𝑐0−1𝑝𝑝(𝐃𝐃|𝐳𝐳, 𝛏𝛏)𝑝𝑝(𝐳𝐳) (2) 

where 𝑝𝑝(𝐳𝐳|𝐃𝐃, 𝛏𝛏) is the posterior probability density function (PDF) of the latent factor 

𝐳𝐳  given data D and model parameters 𝛏𝛏 = {𝐖𝐖,𝛍𝛍,𝚿𝚿} , 𝑝𝑝(𝐃𝐃|𝐳𝐳, 𝛏𝛏)  is the likelihood 

function, 𝑝𝑝(𝐳𝐳) is the prior PDF of 𝐳𝐳, 𝑐𝑐0 = ∫𝑝𝑝(𝐃𝐃|𝐳𝐳, 𝛏𝛏)𝑝𝑝(𝐳𝐳)𝑑𝑑𝐳𝐳 = 𝑝𝑝(𝐃𝐃|𝛏𝛏) and 𝐳𝐳 and 𝛏𝛏 

are chosen to be independent a priori. In Eq. (2), the actual observed data is substituted 

for 𝐃𝐃, whereas Eq. (1) gives a predictive probabilistic model for what the data should 

be.  

 

The posterior PDF of model parameters 𝛏𝛏 is expressed as 

𝑝𝑝(𝛏𝛏|𝐃𝐃, 𝐳𝐳) = 𝑐𝑐1−1𝑝𝑝(𝐃𝐃, 𝐳𝐳|𝛏𝛏)𝑝𝑝(𝛏𝛏) (3) 

where 𝑝𝑝(𝐃𝐃, 𝐳𝐳|𝛏𝛏) is the complete-data likelihood function, 𝑝𝑝(𝛏𝛏) is the prior of 𝛏𝛏, and 

𝑐𝑐1 = ∫𝑝𝑝(𝐃𝐃, 𝐳𝐳|𝛏𝛏)𝑝𝑝(𝛏𝛏)𝑑𝑑𝛏𝛏 = 𝑝𝑝(𝐃𝐃, 𝐳𝐳). 

 

2.1 Prior PDF 

As 𝛏𝛏 = {𝐖𝐖,𝛍𝛍,𝚿𝚿}, 𝑝𝑝(𝛏𝛏) is expressed as 𝑝𝑝(𝛏𝛏) = 𝑝𝑝(𝐖𝐖)𝑝𝑝(𝛍𝛍)𝑝𝑝(𝚿𝚿). As defined, 𝐖𝐖 is 

an 𝑁𝑁𝑚𝑚 × 𝑀𝑀 matrix where 𝑀𝑀 corresponds to the dimension of each latent variable. 

However, the value of 𝑀𝑀 is unknown because the number of environmental factors is 

unavailable. To determine 𝑀𝑀, the ARD prior in Bayesian PCA [43] is adopted here for 

𝐖𝐖 for automatic model selection, that is, an independent Gaussian prior is defined over 

each column of 𝐖𝐖 as follows  

𝑝𝑝(𝐖𝐖|𝜶𝜶) = ��
𝛼𝛼𝑖𝑖
2𝜋𝜋
�
𝑁𝑁𝑚𝑚
2 𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2
𝛼𝛼𝑖𝑖𝐰𝐰𝑖𝑖

T𝐰𝐰𝑖𝑖�
𝑀𝑀

𝑖𝑖=1

 (4) 

where the factor loading 𝐰𝐰𝑖𝑖 is the ith column of 𝐖𝐖, 𝜶𝜶 = [𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑀𝑀]T and 𝛼𝛼𝑖𝑖 is 
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the hyper-parameter that governs the precision of 𝐰𝐰𝑖𝑖. 𝑀𝑀 is first assumed equal to 𝑁𝑁𝑚𝑚, 

making 𝐖𝐖 an 𝑁𝑁𝑚𝑚 × 𝑁𝑁𝑚𝑚 matrix. In the optimization process shown in the next section, 

𝑀𝑀 will be optimized to a value corresponding to the number of environmental factors. 

For simplicity, non-informative priors are chosen for 𝛍𝛍 and 𝚿𝚿. In Eq. (2), the prior 

𝑝𝑝(𝐳𝐳) is defined to follow 𝒩𝒩(𝐳𝐳|𝟎𝟎, 𝐈𝐈), that is, 

𝑝𝑝(𝐳𝐳) = �𝑝𝑝(𝐳𝐳𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

= �
1

2𝜋𝜋
�
𝑀𝑀𝑁𝑁
2
�𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝐳𝐳𝑛𝑛T𝐳𝐳𝑛𝑛
2

�
𝑁𝑁

𝑛𝑛=1

 (5) 

and 𝑝𝑝(𝐳𝐳, 𝛏𝛏) = 𝑝𝑝(𝐳𝐳)𝑝𝑝(𝛏𝛏). 

 

2.2 Observed-data Likelihood PDF 

Using Eq. (1), the mean and covariance for the likelihood function 𝑝𝑝(𝐃𝐃𝑛𝑛|𝛏𝛏, 𝐳𝐳𝑛𝑛) are 

given by 

𝔼𝔼[𝐃𝐃𝑛𝑛|𝛏𝛏, 𝐳𝐳𝑛𝑛] = 𝐖𝐖𝐳𝐳𝑛𝑛 + 𝛍𝛍 + 𝔼𝔼[𝛆𝛆𝑛𝑛] = 𝐖𝐖𝐳𝐳𝑛𝑛 + 𝛍𝛍 (6) 

Cov[𝐃𝐃𝑛𝑛|𝛏𝛏, 𝐳𝐳𝑛𝑛] = 𝔼𝔼[(𝐃𝐃𝑛𝑛 −𝐖𝐖𝐳𝐳𝑛𝑛 − 𝛍𝛍)(𝐃𝐃𝑛𝑛 −𝐖𝐖𝐳𝐳𝑛𝑛 − 𝛍𝛍)T] = 𝔼𝔼[𝛆𝛆𝑛𝑛𝛆𝛆𝑛𝑛T] = 𝚿𝚿 (7) 

 

Therefore 𝑝𝑝(𝐃𝐃𝑛𝑛|𝛏𝛏, 𝐳𝐳𝑛𝑛)  follows the Gaussian distribution 𝒩𝒩(𝐃𝐃𝑛𝑛|𝐖𝐖𝐳𝐳𝑛𝑛 + 𝛍𝛍,𝚿𝚿) . As 

𝛆𝛆𝑛𝑛(𝑛𝑛 = 1,2, … ,𝑁𝑁) are mutually independent, the observed-data likelihood function is 

given by 

𝑝𝑝(𝐃𝐃|𝛏𝛏, 𝐳𝐳) = �𝑝𝑝(𝐃𝐃𝑛𝑛|𝛏𝛏, 𝐳𝐳𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

 

= �
1

2𝜋𝜋
�
𝑁𝑁𝑚𝑚𝑁𝑁
2

|𝚿𝚿|−
𝑁𝑁
2 �𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2

(𝐃𝐃𝑛𝑛 −𝐖𝐖𝐳𝐳𝑛𝑛 − 𝛍𝛍)T𝚿𝚿−1(𝐃𝐃𝑛𝑛 −𝐖𝐖𝐳𝐳𝑛𝑛 − 𝛍𝛍)�
𝑁𝑁

𝑛𝑛=1

 

(8) 

where |𝚿𝚿| is the determinant of 𝚿𝚿. 
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2.3 Complete-data Likelihood PDF 

Based on the assumption of prior independence of 𝐳𝐳  and 𝛏𝛏 , the complete-data 

likelihood 𝑝𝑝(𝐃𝐃, 𝐳𝐳|𝛏𝛏) is a product of the observed-data likelihood function 𝑝𝑝(𝐃𝐃|𝛏𝛏, 𝐳𝐳) 

and the prior PDF 𝑝𝑝(𝐳𝐳) [31], that is 

𝑝𝑝(𝐃𝐃, 𝐳𝐳|𝛏𝛏) = 𝑝𝑝(𝐃𝐃|𝛏𝛏, 𝐳𝐳)𝑝𝑝(𝐳𝐳) (9) 

Substituting Eqs. (5) and (8) into Eq. (9), one has 

𝑝𝑝(𝐃𝐃, 𝐳𝐳|𝛏𝛏) 

= �
1

2𝜋𝜋
�

(𝑀𝑀+𝑁𝑁𝑚𝑚)𝑁𝑁
2

|𝚿𝚿|−
𝑁𝑁
2 �𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2

(𝐃𝐃𝑛𝑛 −𝐖𝐖𝐳𝐳𝑛𝑛 − 𝛍𝛍)T𝚿𝚿−1(𝐃𝐃𝑛𝑛 −𝐖𝐖𝐳𝐳𝑛𝑛 − 𝛍𝛍) −
𝐳𝐳𝑛𝑛T𝐳𝐳𝑛𝑛

2
�

𝑁𝑁

𝑛𝑛=1

 

 (10) 

 

2.4 Posterior PDF 

Using Eq. (10), the posterior PDF of the latent variable 𝐳𝐳 conditional on 𝛏𝛏 is derived 

as 

𝑝𝑝(𝐳𝐳|𝐃𝐃, 𝛏𝛏) = 𝑐𝑐0−1𝑝𝑝(𝐃𝐃|𝛏𝛏, 𝐳𝐳)𝑝𝑝(𝐳𝐳) = 𝑐𝑐0−1𝑝𝑝(𝐃𝐃, 𝐳𝐳|𝛏𝛏) 

∝�𝑒𝑒𝑒𝑒𝑒𝑒 �−
1
2

(𝐃𝐃𝑛𝑛 −𝐖𝐖𝐳𝐳𝑛𝑛 − 𝛍𝛍)T𝚿𝚿−1(𝐃𝐃𝑛𝑛 −𝐖𝐖𝐳𝐳𝑛𝑛 − 𝛍𝛍) −
𝐳𝐳𝑛𝑛T𝐳𝐳𝑛𝑛

2
�

𝑁𝑁

𝑛𝑛=1

 

∝�𝑒𝑒𝑒𝑒𝑒𝑒 �𝐳𝐳𝑛𝑛T𝐖𝐖T𝚿𝚿−1(𝐃𝐃𝑛𝑛 − 𝛍𝛍) −
1
2
𝐳𝐳𝑛𝑛T(𝐈𝐈 + 𝐖𝐖T𝚿𝚿−1𝐖𝐖)𝐳𝐳𝑛𝑛�

𝑁𝑁

𝑛𝑛=1

 

(11) 

 

Since the PDF is quadratic in terms of 𝐳𝐳𝑛𝑛, the posterior PDF of z follows a Gaussian 

distribution 

𝑝𝑝(𝐳𝐳|𝐃𝐃, 𝛏𝛏) = �𝒩𝒩(𝐳𝐳𝑛𝑛|𝐳𝐳�𝑛𝑛,𝐂𝐂𝐳𝐳)
𝑁𝑁

𝑛𝑛=1

∝�𝑒𝑒𝑒𝑒𝑒𝑒 �−
1
2

(𝐳𝐳𝑛𝑛 − 𝐳𝐳�𝑛𝑛)T𝐂𝐂𝐳𝐳−1(𝐳𝐳𝑛𝑛 − 𝐳𝐳�𝑛𝑛)�
𝑁𝑁

𝑛𝑛=1

 (12) 
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∝�𝑒𝑒𝑒𝑒𝑒𝑒 �𝐳𝐳𝑛𝑛T𝐂𝐂𝐳𝐳
−1𝐳𝐳�𝑛𝑛 −

1
2
𝐳𝐳𝑛𝑛T𝐂𝐂𝐳𝐳

−1𝐳𝐳𝑛𝑛�
𝑁𝑁

𝑛𝑛=1

 

By comparing Eqs. (11) and (12), the posterior covariance matrix and mean of 𝐳𝐳𝑛𝑛 are 

seen to be 

𝐂𝐂𝐳𝐳 = (𝐈𝐈 + 𝐖𝐖T𝚿𝚿−1𝐖𝐖)−1 ∈ ℝ𝑀𝑀×𝑀𝑀 (13) 

𝐳𝐳�𝑛𝑛 = 𝐂𝐂𝐳𝐳𝐖𝐖T𝚿𝚿−1(𝐃𝐃𝑛𝑛 − 𝛍𝛍) ∈ ℝ𝑀𝑀 (14) 

Note that the posterior covariance 𝐂𝐂𝐳𝐳  is independent of 𝐃𝐃𝑛𝑛 , whereas the posterior 

mean 𝐳𝐳�𝑛𝑛 depends on 𝐃𝐃𝑛𝑛. The MAP estimate of a Gaussian distribution is equal to the 

mean. Hence, the MAP of 𝐳𝐳𝑛𝑛, denoted as 𝐳𝐳�𝑛𝑛, is given by 

𝐳𝐳�𝑛𝑛 = 𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛|𝐃𝐃𝑛𝑛,𝛏𝛏] = 𝐳𝐳�𝑛𝑛 (15) 

The posterior second moment of 𝐳𝐳𝑛𝑛 is given by 

𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛𝐳𝐳𝑛𝑛T|𝐃𝐃𝑛𝑛,𝛏𝛏] = 𝐂𝐂𝐳𝐳 + 𝐳𝐳�𝑛𝑛𝐳𝐳�𝑛𝑛T (16) 

 

Substituting Eqs. (4) and (10) into Eq. (3), the posterior PDF of model parameters 𝛏𝛏 =

{𝐖𝐖,𝛍𝛍,𝚿𝚿} conditional on 𝐳𝐳 and 𝜶𝜶 is derived as 

𝑝𝑝(𝛏𝛏|𝐃𝐃, 𝐳𝐳,𝜶𝜶) = 𝑐𝑐1−1𝑝𝑝(𝐃𝐃, 𝐳𝐳|𝛏𝛏)𝑝𝑝(𝐖𝐖|𝜶𝜶) 

∝�𝑒𝑒𝑒𝑒𝑒𝑒 �−
1
2

(𝐃𝐃𝑛𝑛 −𝐖𝐖𝐳𝐳𝑛𝑛 − 𝛍𝛍)T𝚿𝚿−1(𝐃𝐃𝑛𝑛 −𝐖𝐖𝐳𝐳𝑛𝑛 − 𝛍𝛍) −
𝐳𝐳𝑛𝑛T𝐳𝐳𝑛𝑛

2
�

𝑁𝑁

𝑛𝑛=1

 

    × �𝑒𝑒𝑒𝑒𝑒𝑒 �−
1
2
𝛼𝛼𝑖𝑖𝐰𝐰𝑖𝑖

T𝐰𝐰𝑖𝑖�
𝑀𝑀

𝑖𝑖=1

 

(17) 

where the unknown parameter vector 𝜶𝜶 = [𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑀𝑀]T needs to be estimated. The 

MAP estimate of parameters 𝛏𝛏 = {𝐖𝐖,𝛍𝛍,𝚿𝚿} cannot be directly obtained from Eq. (17) 

but can be calculated using the EM algorithm as shown in the next section.  

 



11 
 

3. EM Algorithm  

The EM algorithm is a general technique that can be applied to find the maximum 

likelihood solutions of Bayesian models with latent variables [31]. It alternates between 

two updates named the expectation (E) and maximization (M) steps. The E step 

calculates the expectation of the logarithm of the complete-data likelihood function 

with respect to the latent variable, followed by the M step that maximizes this 

expectation with respect to the parameters. The successive E and M steps result in 

convergence to the maximum likelihood solutions of the parameters. In this study, the 

EM algorithm is used to obtain the MAP estimates of the Bayesian FA model with the 

defined prior over 𝐖𝐖. The E step is still calculated using the complete-data likelihood 

function, while now the M step maximizes the sum of the expectation in the E step and 

the prior [31]. Detailed procedures are described as follows. We note that the 

expectation with respect to 𝐳𝐳 is the posterior one throughout this section.  

 

In the E step, the expectation with respect to 𝐳𝐳 of the logarithm of the complete-data 

likelihood function is calculated using Eq. (10): 

𝔼𝔼𝐳𝐳[ln𝑝𝑝 (𝐃𝐃, 𝐳𝐳|𝛏𝛏)] 

=
(𝑀𝑀+𝑁𝑁𝑚𝑚)𝑁𝑁

2
ln �

1
2𝜋𝜋
� −

𝑁𝑁
2

ln|𝚿𝚿| 

   +�𝔼𝔼𝐳𝐳 �−
1
2

(𝐃𝐃𝑛𝑛 −𝐖𝐖𝐳𝐳𝑛𝑛 − 𝛍𝛍)T𝚿𝚿−1(𝐃𝐃𝑛𝑛 −𝐖𝐖𝐳𝐳𝑛𝑛 − 𝛍𝛍) −
𝐳𝐳𝑛𝑛T𝐳𝐳𝑛𝑛

2
�

𝑁𝑁

𝑛𝑛=1

 

=
(𝑀𝑀+𝑁𝑁𝑚𝑚)𝑁𝑁

2
ln �

1
2𝜋𝜋
� −

𝑁𝑁
2

ln|𝚿𝚿| −��
1
2

(𝐃𝐃𝑛𝑛 − 𝛍𝛍)T𝚿𝚿−1(𝐃𝐃𝑛𝑛 − 𝛍𝛍)�
𝑁𝑁

𝑛𝑛=1

 

+��(𝐃𝐃𝑛𝑛 − 𝛍𝛍)T𝚿𝚿−1𝐖𝐖𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛] −
1
2
𝔼𝔼𝐳𝐳(𝐳𝐳𝑛𝑛T𝐖𝐖T𝚿𝚿−1𝐖𝐖𝐳𝐳𝑛𝑛)�

𝑁𝑁

𝑛𝑛=1

−�
1
2
𝔼𝔼𝐳𝐳(𝐳𝐳𝑛𝑛T𝐳𝐳𝑛𝑛)

𝑁𝑁

𝑛𝑛=1

 

(18) 

 

The M step involves the maximization of the sum of this expectation and the logarithm 



12 
 

of the prior on W with respect to 𝛏𝛏 keeping 𝜶𝜶 fixed:  

𝐽𝐽(𝛏𝛏) = 𝔼𝔼𝐳𝐳[ln𝑝𝑝 (𝐃𝐃, 𝐳𝐳|𝛏𝛏)] + ln𝑝𝑝 (𝐖𝐖|𝜶𝜶) 

=
(𝑀𝑀+𝑁𝑁𝑚𝑚)𝑁𝑁

2
ln �

1
2𝜋𝜋
� −

𝑁𝑁
2

ln|𝚿𝚿| −� �
1
2

(𝐃𝐃𝑛𝑛 − 𝛍𝛍)T𝚿𝚿−1(𝐃𝐃𝑛𝑛 − 𝛍𝛍)�
𝑁𝑁

𝑛𝑛=1

 

           +��(𝐃𝐃𝑛𝑛 − 𝛍𝛍)T𝚿𝚿−1𝐖𝐖𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛] −
1
2
𝔼𝔼𝐳𝐳(𝐳𝐳𝑛𝑛T𝐖𝐖T𝚿𝚿−1𝐖𝐖𝐳𝐳𝑛𝑛)�

𝑁𝑁

𝑛𝑛=1

 

           −�
1
2
𝔼𝔼𝐳𝐳(𝐳𝐳𝑛𝑛T𝐳𝐳𝑛𝑛)

𝑁𝑁

𝑛𝑛=1

+
𝑁𝑁𝑚𝑚𝑀𝑀

2
ln �

𝛼𝛼𝑖𝑖
2𝜋𝜋
� −��

1
2
𝛼𝛼𝑖𝑖𝐰𝐰𝑖𝑖

T𝐰𝐰𝑖𝑖�
𝑀𝑀

𝑛𝑛=1

 

 

(19) 

Setting the derivative of 𝐽𝐽(𝛏𝛏 ) with respect to W, 𝛍𝛍  and 𝚿𝚿−1  separately to zero, 

respectively, we have  

𝜕𝜕𝜕𝜕
𝜕𝜕𝐖𝐖

= �𝚿𝚿−1(𝐃𝐃𝑛𝑛 − 𝛍𝛍)𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛]T
𝑁𝑁

𝑛𝑛=1

−�𝚿𝚿−1𝐖𝐖𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛𝐳𝐳𝑛𝑛T] −𝐖𝐖diag(𝛼𝛼𝑖𝑖)
𝑁𝑁

𝑛𝑛=1

= 0 (20) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝚿𝚿−1 =

1
2
�[𝚿𝚿− (𝐃𝐃𝑛𝑛 − 𝛍𝛍)(𝐃𝐃𝑛𝑛 − 𝛍𝛍)T]
𝑁𝑁

𝑛𝑛=1

 

                +�(𝐃𝐃𝑛𝑛 − 𝛍𝛍)𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛]T𝐖𝐖T
𝑁𝑁

𝑛𝑛=1

−
1
2
�𝐖𝐖𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛𝐳𝐳𝑛𝑛T]𝐖𝐖T
𝑁𝑁

𝑛𝑛=1

= 0 

(21) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝛍𝛍

= −�[𝚿𝚿−1𝛍𝛍 −𝚿𝚿−1𝐃𝐃𝑛𝑛] −�𝚿𝚿−1𝐖𝐖𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛]
𝑁𝑁

𝑛𝑛=1

𝑁𝑁

𝑛𝑛=1

= 0 (22) 

 

In the Bayesian PCA developed by Bishop [43], 𝚿𝚿  is assumed to be an isotropic 

diagonal matrix 𝚿𝚿 = 𝛽𝛽𝚰𝚰. Thus, an analytical solution of 𝐖𝐖 can be directly obtained 

using Eq. (20). However, the non-diagonal and non-isotropic assumption for 𝚿𝚿 in this 

study makes an analytical solution for 𝐖𝐖  unavailable. In this regard, Eq. (20) is 

transformed into a Sylvester equation that is expressed as 

𝐀𝐀𝐖𝐖� + 𝐖𝐖�𝐁𝐁 = 𝐂𝐂 (23) 

where 𝐀𝐀 = 𝚿𝚿−1 , 𝐁𝐁 = diag(𝛼𝛼𝑖𝑖)(∑ 𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛𝐳𝐳𝑛𝑛T]𝑁𝑁
𝑛𝑛=1 )−1  and 𝐂𝐂 = 𝚿𝚿−1(∑ (𝐃𝐃𝑛𝑛 −𝑁𝑁

𝑛𝑛=1

𝛍𝛍)𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛]T)(∑ 𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛𝐳𝐳𝑛𝑛T]𝑁𝑁
𝑛𝑛=1 )−1. The MAP value 𝐖𝐖�  is then solved using the Sylvester 
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function in MATLAB.  

 

The MAP values of parameters 𝛍𝛍  and 𝚿𝚿  are derived from Eq. (21) and (22), 

respectively, as  

𝚿𝚿� =
1
𝑁𝑁
�{(𝐃𝐃𝑛𝑛 − 𝛍𝛍)(𝐃𝐃𝑛𝑛 − 𝛍𝛍)T − 2(𝐃𝐃𝑛𝑛 − 𝛍𝛍)𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛]T𝐖𝐖T + 𝐖𝐖𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛𝐳𝐳𝑛𝑛T]𝐖𝐖T}
𝑁𝑁

𝑛𝑛=1

 (24) 

𝛍𝛍� =
1
𝑁𝑁
�𝐃𝐃𝑛𝑛

𝑁𝑁

𝑛𝑛=1

 (25) 

Eq. (25) is derived by substituting Eq. (14) into (22). 𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛] and 𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛𝐳𝐳𝑛𝑛T] in Eqs. 

(23)–(25) are the posterior estimates that are calculated from Eq. (15) and (16).  

 

The negative second derivative of 𝐽𝐽(𝛏𝛏) with respect to 𝛏𝛏, namely, the Hessian matrix, 

should be positive definite to ensure that 𝐽𝐽(𝛏𝛏) at the stationary points 𝐖𝐖 = 𝐖𝐖� , 𝚿𝚿 =

𝚿𝚿�  and 𝛍𝛍 = 𝛍𝛍� is a local maximum, not a minimum or a saddle point. As defined, 𝐖𝐖 ∈

ℝ𝑁𝑁𝑚𝑚×𝑀𝑀 , 𝚿𝚿 ∈ ℝ𝑁𝑁𝑚𝑚×𝑁𝑁𝑚𝑚  and 𝛍𝛍 ∈ ℝ𝑁𝑁𝑚𝑚 . Therefore, the Hessian matrix 𝐇𝐇 ∈

ℝ(𝑁𝑁𝑚𝑚∙𝑀𝑀+𝑁𝑁𝑚𝑚∙𝑁𝑁𝑚𝑚+𝑁𝑁𝑚𝑚)×(𝑁𝑁𝑚𝑚∙𝑀𝑀+𝑁𝑁𝑚𝑚∙𝑁𝑁𝑚𝑚+𝑁𝑁𝑚𝑚) . However, the explicit form of 𝐇𝐇  is 

unavailable due to the high dimension and complicated elements in 𝐇𝐇. In this study, 

the Symbolic Math Toolbox in MATLAB is employed to calculate the analytical 

expression of each element in 𝐇𝐇. In the experimental examples, the numerical values 

of 𝐖𝐖� , 𝚿𝚿�  and 𝛍𝛍� obtained in each iteration are substituted into these elements of H, 

and then its positive definiteness is examined by numerically computing its eigenvalues. 

 

Choosing a non-informative priori for 𝜶𝜶, the MAP estimate of the hyper-parameter 𝜶𝜶 

is given by  

𝜶𝜶� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
𝜶𝜶

𝑝𝑝(𝜶𝜶|𝐃𝐃,𝛍𝛍,𝚿𝚿) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
𝜶𝜶

𝑝𝑝(𝐃𝐃|𝛍𝛍,𝚿𝚿,𝜶𝜶)

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝜶𝜶

�𝑝𝑝(𝐃𝐃|𝐖𝐖,𝛍𝛍,𝚿𝚿)𝑝𝑝(𝐖𝐖|𝜶𝜶)𝑑𝑑𝐖𝐖 

(26) 
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However, a closed-form solution of the integral in Eq. (26) is intractable. The Laplace 

approximation is a technique that can be applied to solve the closed-form solution of 

the integral [45–47]. Assuming that the distribution 𝑝𝑝(𝐃𝐃|𝐖𝐖,𝛍𝛍,𝚿𝚿) has a unique peak 

at 𝐖𝐖� , the asymptotic solution of the integral is obtained as [48] 

ln 𝑝𝑝 (𝐃𝐃|𝛍𝛍,𝚿𝚿,𝜶𝜶) = ln 𝑝𝑝 �𝐃𝐃|𝐖𝐖� ,𝛍𝛍,𝚿𝚿� + ln 𝑝𝑝 �𝐖𝐖� |𝜶𝜶� +
𝑁𝑁
2

ln( 2𝜋𝜋) −
1
2

ln|𝐏𝐏| (27) 

where 𝐖𝐖�  is the MAP estimate of 𝐖𝐖 calculated from Eq. (23), and 𝐏𝐏 is the Hessian 

matrix expressed as 

𝐏𝐏 = −∇∇ ln 𝑝𝑝 �𝐃𝐃|𝐖𝐖� ,𝛍𝛍,𝚿𝚿�𝑝𝑝�𝐖𝐖� |𝜶𝜶� (28) 

From Eq. (27), setting the derivative of ln 𝑝𝑝 (𝐃𝐃|𝛍𝛍,𝚿𝚿,𝜶𝜶) with respect to 𝜶𝜶 to zero, 

one has 

𝛼𝛼�𝑖𝑖 =
𝑁𝑁𝑚𝑚

𝐰𝐰𝑖𝑖
T𝐰𝐰𝑖𝑖 + [𝐏𝐏−1]𝑖𝑖𝑖𝑖

 (29) 

Bishop [43] treated all parameters as well-determined to simplify the solution further 

as  

𝛼𝛼�𝑖𝑖 =
𝑁𝑁𝑚𝑚

𝐰𝐰𝑖𝑖
T𝐰𝐰𝑖𝑖

 (30) 

 

The solutions to the MAP values of the latent variables, parameters and hyper-

parameter in Eqs. (15), (23)–(25) and (30) are coupled and thus must be calculated 

iteratively. The algorithm starts by initializing the parameters and then calculating the 

statistics of the latent variable using Eqs. (15) and (16), and then alternatively updating 

the parameters using Eqs. (23)–(25) and hyper-parameters via Eq. (30). The number 

of latent factors is first assumed equal to the dimensionality 𝑁𝑁𝑚𝑚 of the data sample 

and 𝐖𝐖 is then initialized as an 𝑁𝑁𝑚𝑚 × 𝑁𝑁𝑚𝑚 matrix. During the optimization process, 

some of 𝛼𝛼𝑖𝑖 will approach infinity, automatically enforcing the factor loading 𝐰𝐰𝑖𝑖 and 

the corresponding latent factors to zero. The corresponding zero column 𝐰𝐰𝑖𝑖 is then 
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removed in the iterative process to ensure a unique solution of the Sylvester equation 

in Eq. (23). Upon convergence, the optimal 𝐖𝐖  is an 𝑁𝑁𝑚𝑚 × 𝑀𝑀  matrix, where 𝑀𝑀 

corresponds to the number of latent factors. In this manner, the number of 

environmental factors affecting structural vibration properties is automatically 

determined.  

4. Summary of Sparse Bayesian FA-based Method 

The procedure of the proposed method is summarized as follows:  

 

1. Extract structural dynamic properties collected in the undamaged state as the 

training data from the entire dataset 𝐃𝐃; 

2. Let 𝑀𝑀 = 𝑁𝑁𝑚𝑚 first, initialize 𝐖𝐖(0) and 𝚿𝚿(0), and calculate the mean 𝛍𝛍 of the 

training data using Eq. (25); 

3. Use the training data to calculate unknown variables and parameters. At the jth 

iteration 

(1) Let M equal the number of nonzero columns in 𝐖𝐖(𝑗𝑗−1). Update 𝐖𝐖(𝑗𝑗−1) as 

an 𝑁𝑁𝑚𝑚 × 𝑀𝑀 matrix by removing the zero columns 𝐰𝐰𝑖𝑖. 

(2) Given 𝐖𝐖(𝑗𝑗−1), 𝚿𝚿(𝑗𝑗−1) and 𝛍𝛍:  

Update 𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛](𝑗𝑗) and 𝔼𝔼𝐳𝐳[𝐳𝐳𝑛𝑛𝐳𝐳𝑛𝑛T](𝑗𝑗) using Eqs. (15) and (16); 

Update 𝜶𝜶(𝑗𝑗) using Eq. (30); 

(3) Update 𝐖𝐖(𝑗𝑗) and 𝚿𝚿(𝑗𝑗) using Eqs. (23) and (24), respectively; 

4. Let 𝑗𝑗 = 𝑗𝑗 + 1, repeat Step 3 until the convergence criterion is satisfied, that is, 

�𝚿𝚿(𝑗𝑗) −𝚿𝚿(𝑗𝑗−1)�/�𝚿𝚿(𝑗𝑗)� ≤ 𝑇𝑇𝑇𝑇𝑇𝑇 (e.g. 𝑇𝑇𝑇𝑇𝑇𝑇 = 1×10−5).  

5. Based on the determined 𝐖𝐖, 𝛍𝛍 and 𝚿𝚿, calculate 𝐳𝐳�𝑛𝑛 of the entire dataset D  

using Eq. (15), and then re-generate a new dataset 𝐃𝐃′ = 𝐖𝐖𝐳𝐳� + 𝛍𝛍 + 𝛆𝛆. 

6. Calculate the Euclidean norm of the error vector ‖𝐞𝐞‖2 = ‖𝐃𝐃 − 𝐃𝐃′‖2  as the 

damage indicator for structural condition evaluation. 
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The proposed method has the following advantages. First, the number of underlying 

environmental factors that affect structural dynamic properties is automatically 

determined using the ARD prior. Second, the method can be implemented in an online 

form with the EM algorithm, in which each data vector 𝐃𝐃𝑛𝑛  can be processed 

individually and then discarded before the next data is read in [31].  

 

5. Experimental Validation 

Two experimental examples are presented in this section to illustrate the effectiveness 

of the proposed method. The first is a reinforced concrete (RC) slab for automatically 

determining the number of latent environmental factors, and the second is a steel frame 

for damage detection under varying environmental conditions. 

 

5.1 RC slab 

The RC slab [8] measures 6400 mm × 800 mm × 100 mm with two equal spans of 

3000 mm and 200 mm at each end, as shown in Figure 1. The structure was monitored 

from June 2003 to March 2005. One hundred thirty-six sets of modal properties were 

collected. Although the corresponding temperature and humidity were measured, they 

are not used in this study. The first four frequencies versus sample number are 

illustrated in Figure 2. 

 
Figure 1 RC slab 
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Figure 2 Variations of the first four frequencies of the RC slab  

(Blue dots: training data (N=100); green circles: test data in the undamaged state) 

 

Data of Nos. 39 ~51 of the fourth frequency were not identified in the test. The first 

100 sets of data except the lost data are utilized for training. 𝐖𝐖 and 𝚿𝚿 are initialized 

and the mean of the training data is calculated first. In this study, 𝐖𝐖(0) is randomly 

generated from the uniform distribution in the interval (0, 1). 𝚿𝚿  stands for the 

covariance of the prediction error. It is initialized as a semi-positive definite matrix by 

assuming that the coefficient of variation of each modal frequency is 1% and the 

correlation coefficients of all modes are 0.5. 𝐖𝐖(0) and 𝚿𝚿(0) are shown in Table 1. 

The convergence criterion of the iteration process is set to �𝚿𝚿(𝑗𝑗) −𝚿𝚿(𝑗𝑗−1)�/

�𝚿𝚿(𝑗𝑗)� ≤ 1×10−5. 

 

The EM process took fifteen iterations to converge with the proposed method. The 

evolution of parameters is listed in Table 1. The numerical values of 𝐖𝐖, 𝚿𝚿 and 𝛍𝛍 

obtained in each iteration are substituted into the analytical expression of each element 

in the Hessian matrix computed using the Symbolic Math Toolbox in MATLAB. The 

Hessian matrix is found to have all positive eigenvalues and so be positive definite in 
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all iterations, indicating that the solutions of parameters in Eqs. (23)–(25) correspond 

to a local maximum of 𝐽𝐽(𝛏𝛏). As the process proceeds, two components of 𝜶𝜶 become 

larger and larger and approach infinity upon convergence. The corresponding two 

columns of 𝐖𝐖  are then enforced to zero. Correspondingly, two components of 𝐳𝐳𝑛𝑛 

become zero. The remaining two nonzero components of 𝐳𝐳𝑛𝑛 corresponding to latent 

factors reflect that variations of the first four frequencies can be represented by two 

environmental factors only. This finding is consistent with the results of Ref. [8] 

wherein the slab’s frequencies have a strong correlation with environmental 

temperature and humidity. This example indicates that the sparse Bayesian FA-based 

method can automatically identify the number of significant environmental factors that 

influence structural dynamic properties. Another advantage of the present strategy is 

that the measurement of the two environmental factors is unnecessary. This is 

promising for practical applications because the latent variables are commonly 

unknown. 

 

Table 1 Variation of the variable and parameters in the RC slab example 

Iteration 
No. 

𝜶𝜶 𝐖𝐖 𝐳𝐳1 𝑀𝑀 𝚿𝚿 

0  

0.19 0.44 0.58 0.18
0.04 0.43 0.59 0.29
0.60 0.75 0.17 0.71
0.96 0.43 0.81 0.26

 
 
 
 
 
 

  4 

0.03 0.02 0.06 0.07
0.02 0.06 0.08 0.10
0.06 0.08 0.43 0.26
0.07 0.10 0.26 0.63

 
 
 
 
 
 

 

1 

3.1
3.6
2.9
5.8

 
 
 
 
 
  

 

0.12 0.04 0.06 0.03
0.13 0.13 0.13 0.14
0.77 0.20 0.70 0.59
1.55 0.09 0.17 0.10

 
 
 
 −
 

− 

 

3.04
0.46
1.62
2.57

 
 
 
 − 
  

 4 

0.01 0.01 0.04 0.08
0.01 0.04 0.08 0.11
0.04 0.09 0.53 0.41
0.08 0.12 0.41 1.03

 
 
 
 
 
 

 

8 

Inf
0.4
6.4
31.8

 
 
 
 
 
  

 
0.20 0.02 0.01
0.21 0.02 0.07
1.58 0.75 0.24
2.60 0.11 0.16

 
 
 
 −
 

− 

 
2.33
0.62
0.05

 
 
 
 
 

 3 

0.01 0.02 0.11 0.16
0.02 0.05 0.24 0.20
0.12 0.25 1.55 1.13
0.16 0.20 1.10 2.10

 
 
 
 
 
 

 

15 

Inf
0.5
200
Inf

 
 
 
 
 
  

 
0.19 0.03
0.18 0.11
1.44 0.03
2.51 0.01

 
 
 
 −
 
 

 1.38
0.32
 
 
 

 2 

0.02 0.02 0.11 0.19
0.02 0.06 0.34 0.27
0.11 0.34 2.30 1.50
0.19 0.27 1.50 2.60

 
 
 
 
 
 
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Note: N=100 in this RC slab example, namely, there are 100 components in 𝐳𝐳 = [𝐳𝐳1, 𝐳𝐳2, … , 𝐳𝐳𝑁𝑁] ∈ ℝ𝑀𝑀×𝑁𝑁. We only 

list the first component 𝐳𝐳1 here for demonstration due to the space limit. All of the 100 components in 𝐳𝐳 are 

initialized to 4-dimensional vectors and converge to two-dimensional vectors in the 15th iteration.  

 

Upon convergence, 𝚿𝚿  converges to a full matrix where each diagonal element 

represents the variance of each component of the prediction error, and each off-

diagonal element is the covariance between different components, as shown in Table 

1. The correlation coefficient between components i and j can be calculated as 𝜌𝜌𝑖𝑖𝑖𝑖 =
𝚿𝚿𝑖𝑖𝑖𝑖

�𝚿𝚿𝑖𝑖𝑖𝑖�𝚿𝚿𝑗𝑗𝑗𝑗
  (i, j =1, 2, 3, and 4). Using the determined 𝐖𝐖(15)  and 𝚿𝚿(15) , we can 

calculate the MAP estimates of the latent variables according to Eq. (15) and then re-

generate the dataset 𝐃𝐃′ according to Eq. (1). The reconstruction error of the training 

and test data both corresponding to the undamaged state, is calculated as the damage 

indicator ‖𝐞𝐞‖2 = ‖𝐃𝐃 − 𝐃𝐃′‖2. The 2-norm of the error vector is plotted in Figure 3. 

The reconstruction error of the test data is comparable to that of the training data, 

indicating that the RC slab is in the undamaged state during the monitoring period. 

 

Figure 3 Reconstruction error of the training and test data of the RC slab 

 

5.2 Steel frame 

The two-storey steel frame in Bao et al. [14] is utilized in this study to demonstrate the 
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effectiveness of the proposed method for damage detection under varying 

environmental conditions. The structure is 0.5 m wide and 1.0 m high with two equal 

stories, as shown in Figure 4. The Young’s modulus and mass density are 2.0 × 1011 

N/m2 and 7.67 × 103 kg/m3, respectively. The intact frame was tested from morning to 

afternoon on August 27, 2010. Fourteen accelerometers were installed on columns and 

beams to collect vibration responses. A series of modal tests conducted on the frame 

resulted in 140 sets of modal data throughout the day.  

 
Figure 4 Experimental steel frame 

 

Damage was then introduced to the steel frame. A saw cut was located at the left 

column of the frame, as shown in Figure 5. The depth of the cut was set to 5, 10 and 

15 mm in sequence with the identical length of 20 mm. Correspondingly, the moment 

of inertia of the cut section in these three damage scenarios (DSs) was reduced by 20%, 

40% and 60%, respectively. The modal testing was similarly conducted on each 

damage scenario from morning to afternoon, and 140 sets of modal data of each DS 

were collected.  
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Figure 5 Configuration of the experimental frame and damage locations (unit: mm) 

 

The first six frequencies of the steel frame under undamaged and damaged conditions 

are compared in Table 2. The values presented are the averages of the total 140 sets of 

frequencies in each DS. The intact frame is denoted DS0. DS1 caused an average 

frequency change of 0.26% only in average while DS2 and DS3 caused 0.64% and 0.79% 

average frequency reductions, respectively. Variations of the frequencies during the 

monitoring period are plotted in Figure 6. The temperature of the frame was also 

recorded [14], but it is assumed unknown in this study and only the frequency data are 

used for damage detection. 

 

Table 2 Frequencies of the frame in undamaged and damaged states (unit: Hz) 

Mode  DS0 DS1 DS2 DS3 
1 6.20 6.19(−0.19) 6.17(−0.43) 6.19(−0.13) 
2 17.57 17.49(−0.49) 17.48(−0.52) 17.45(−0.72) 
3 61.07 60.97(−0.17) 60.83(−0.39) 60.74(−0.55) 
4 77.01 76.97(−0.05) 76.65(−0.47) 76.32(−0.89) 
5 80.83 80.73(−0.13) 80.16(−0.83) 80.05(−0.97) 
6 98.09 97.58(−0.52) 96.91(−1.20) 96.66(−1.46) 

Average (%)     (−0.26) (−0.64) (−0.79)             

T1 T2

T5

T6

T7 T8

T3

T4 8.8

4.4

Cut 1 50
0

50
0

Accelerometer

10
00

50
500
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Note: Values in parentheses are the frequency change ratios (%) between the damaged and undamaged states. 

 
Figure 6 First six frequencies of the steel frame 

(Blue circles: DS0; red pentagrams: DS1; carmine triangles: DS2; and green squares: DS3) 

 

The proposed sparse Bayesian FA-based method is applied to the first six modes. One 

hundred and forty sets of the first six frequencies in the undamaged state are used as 

training data. 𝐖𝐖(0) is again generated from the uniform distribution in (0, 1), and the 

initialization of 𝚿𝚿(0)  is the same as that described in Section 5.1. Convergence is 

achieved after nine iterations. Table 3 lists the variations of parameters. The Hessian 

matrix H has all positive eigenvalues and so is positive definite in all iterations. Upon 

convergence, five components of 𝜶𝜶 approach to infinity, enforcing five columns of 

𝐖𝐖  to zero. Only one component of 𝐳𝐳𝑛𝑛  remains nonzero, indicating that only one 

significant environmental factor is responsible for variations of the training data. 

 

Simulated datasets for DS0–DS3 are reconstructed with the determined 𝐖𝐖(9)  and 

𝚿𝚿(9). Reconstruction errors are then calculated and plotted in Figure 7. The damage-

induced deviations can be observed from the figure. The deviation is relatively small 

but still recognizable when damage severity is slight (i.e. DS1). When damage 
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becomes severe (i.e. DS2 and DS3), the reconstruction error increases significantly. 

Therefore, the reconstruction error can be treated as a damage index that indicates that 

the steel frame in DS1–DS3 is in a damaged state. 

 

Table 3 Variations of the variable and parameters in the steel frame example 

No. 𝜶𝜶 𝐖𝐖 𝐳𝐳1 𝑀𝑀 𝚿𝚿 

0  

0.43 0.67 0.54 0.18 0.08 0.53
0.24 0.55 0.24 0.18 0.80 0.19
0.71 0.73 0.06 0.53 0.66 0.75
0.41 0.22 0.89 0.85 0.99 0.75
0.80 0.61 0.32 0.82 0.14 0.30
0.57 0.32 0.46 0.81 0.67 0.68

 
 
 
 
 
 
 
 
  

 
 6 3

4 5 19 24 25 30
5 31 54 68 71 86

19 54 373 235 247 300
10

24 68 235 593 311 378
25 71 247 311 653 396
30 86 300 378 396 962

−

 
 
 
 

×  
 
 
 
  

 

1 

3.2
3.3
4.1
2.5
2.4
3.0

 
 
 
  
 
 
 
 
  

 

0.11 0.67 0.54 0.18 0.08 0.53
0.03 0.55 0.24 0.18 0.80 0.19
0.02 0.73 0.06 0.53 0.66 0.75
0.01 0.22 0.89 0.85 0.99 0.75
0.01 0.61 0.32 0.82 0.14 0.30
0.02 0.32 0.46 0.81 0.67 0.68

 
 
 
 
 
− 
 − − − − −
 
− − − −  

 

0.11
0.06
0.06
0.01
0.13
0.02

 
 − 
 − 
 
 
 
 
  

 
6 4

6 2 5 5 7 3
2 15 16 7 22 8
4 16 66 49 41 94

10
6 8 49 288 17 108
2 18 37 18 294 19
8 11 94 108 19 820

−

− 
 − 
 −

×  
 
 − − −
 
  

 

5 

Inf
176
Inf
Inf
450
641

 
 
 
  
 
 
 
 
  

 4

185 113 93
5 11 10

18 6 5
10

1 1 1
2 1 1
1 1 0

−

 
 − − 
 − − −

×  
− − − 

 
 
  

 0.32
0.02
0.08

− 
 
 
 
 

 3 4

3 2 5 4 8 2
2 16 17 5 25 7
5 17 67 49 43 93

10
4 5 49 293 16 118
8 25 43 16 302 20
3 7 93 118 20 823

−

− 
 − 
 −

×  
 
 − − −
 
  

 

9 

Inf
798
Inf
Inf
Inf
Inf

 
 
 
  
 
 
 
 
  

 4

270
18
29

10
1
4
2

−

 
 
 
 −

×  
− 

 
 
  

 { }0.18−  1 4

2 3 6 5 8 3
3 17 18 6 25 7
6 18 68 49 43 93

10
5 6 49 299 16 120
8 25 43 16 302 21
3 7 93 120 21 835

−

− 
 − 
 −

×  
 
 − − −
 
  

 



24 
 

 

Figure 7 Residue of reconstruction using the first six frequencies 

 

In practical modal testing, higher frequency modes are difficult to measure. We 

therefore pretend that the sixth mode was not measured in all the DSs and only the first 

five modes are used for damage detection. The proposed FA technique is repeated and 

the resulting residues are plotted in Figure 8. Reconstruction errors of test data in DS1 

have no noticeable difference with those of DS0 after removing mode 6. This result 

implies that mode 6 is more sensitive to the slight damage compared with the first five 

modes. Thus, when only the first five modes are used in DS1, a false-negative damage 

diagnosis happens where DS1 is falsely recognized as undamaged. In this situation, 

data collected in DS1 may be falsely used as the training data. Suppose that the first 

five modes collected in DS0 and DS1 are both used as training data. Variations of the 

latent variable and parameters are shown in Table 4. The number of columns of 𝐖𝐖 

converges to one after eleven iterations, and the number of latent factors in 𝐳𝐳𝑛𝑛 is also 

one, as in Table 3. The errors in all DSs are calculated and plotted in Figure 9. 

Significant deviations are observed between the training data (DS0 and DS1) and test 

data (DS2 and DS3). The results indicate that although the slight damage was falsely 

identified as undamaged at the beginning, the proposed method is still capable of 

detecting damage correctly at later stages where damage severity increases.  
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Figure 8 Reconstruction error using the first five frequencies 

 

Figure 9 Reconstruction error using DS0 & DS1 as training data 

 

Table 4 Variations of the variable and parameters using DS0 & DS1 as training data 

No. 𝜶𝜶 𝐖𝐖 𝐳𝐳1 𝑀𝑀 𝚿𝚿 

0  

0.37 0.03 0.88 0.32 0.38
0.58 0.01 0.44 0.55 0.86
0.15 0.80 0.09 0.48 0.69
0.10 0.68 0.63 0.42 0.51
0.75 0.77 0.11 0.80 0.42

 
 
 
 
 
 
  

  5 3

4 5 19 24 25
5 31 54 68 71

10 19 54 373 235 247
24 68 235 593 311
25 71 247 311 653

−

 
 
 
 ×
 
 
  
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11 

Inf
1561

Inf
Inf
Inf

 
 
  
 
 
 
  

 4

177
23

10 6
2
2

−

 
 − 
 × −
 
− 

  

 { }0.11−  1 4

2 5 7 6 1
5 30 36 18 18

10 7 36 77 51 23
6 18 51 181 37
1 18 23 37 204

−

 
 
 
 ×
 
 
  

 

 

6. Conclusions 

A sparse Bayesian FA-based method for output-only structural damage detection 

without measuring the varying environmental parameters is developed in this study. 

The number of underlying environmental factors is automatically identified by 

adopting the ARD prior in the SBL framework. The reconstruction error is then 

calculated as the damage indicator according to the generative FA model. The proposed 

method is applied to two experimental examples under varying environmental 

conditions. The RC slab example demonstrates that the sparse Bayesian FA-based 

method can automatically identify the number of significant environmental factors that 

influence structural dynamic properties. The steel frame example shows that the 

proposed method can successfully detect the existence of damage. The measurement 

of the varying environmental factors is unnecessary in both examples.  
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