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Abstract

Recent research indicates that the trip-based models can perform more accurately for capturing network
hyper-congestion than the conventional macroscopic fundamental diagram (MFD) dynamics, especially
during transient phases. However, due to the complex mathematical structure of the trip-based models, de-
riving analytical properties of the dynamic user equilibrium (DUE) of departure time choice with the trip-
based models is still a challenge. This paper investigates the DUE problem of departure time choice in an
isotropic urban network with identical travelers. Traffic dynamics is captured by the basic trip-based model
using a speed-MFD that maps the traffic accumulation to the space-mean speed of the network. Necessary
conditions for dynamic user equilibrium with and without inflow capacity constraint are derived, respec-
tively. Under dynamic user equilibrium condition, no traveler can reduce her/his travel cost by changing the
departure time. The analysis reveals the significant difference between the basic trip-based model and the
conventional MFD models regarding the information support involved in the departure time choice. The
derivation does not rely on some common assumptions in the literature such as linear travel cost function,
no late arrivals, or linear speed-MFD. The numerical example indicates that the inflow capacity constraint
can help prevent two peaks in the departure profile and the vehicle accumulation.

Keywords: Macroscopic fundamental diagram, trip-based model, departure time choice, dynamic user
equilibrium, scheduling preference.

1. Introduction

The bottleneck model introduced by Vickrey (1969) has been widely employed to study the rush-hour
traffic congestion and the subsequent equilibrium behavior. Due to its point queue assumption, Vickrey’s
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bottleneck model and its extensions are analytically tractable. However, as pointed out in Arnott (2013);
Arnott et al. (2016); Arnott and Buli (2018), Vickrey’s bottleneck cannot capture the hyper-congestion. Li
and Huang (2017, 2018) adopted the LWR model and the Greenshields’ relation to describe the traffic dy-
namics of a single-entry freeway corridor and to derive the user equilibrium (UE) and/or social optimum
(SO) conditions. However, congestion of urban networks cannot be modeled as collections of independent
(point) bottlenecks. Recently, the seminal papers by Daganzo (2007); Daganzo and Geroliminis (2008);
Geroliminis and Daganzo (2008) proposed a network-scale macroscopic fundamental diagram (MFD) to
capture the effect of hyper-congestion on the network level. The MFD establishes an equilibrium rela-
tionship between network traffic accumulation and network outflow. In conjunction with the law of flow
conservation, the MFD describes the network traffic flow evolution based on several assumptions such as
homogeneously distributed traffic congestion and stationary travel demand. A fascinating property of the
MFD dynamics is that it is analytically tractable (Daganzo and Geroliminis, 2008; Buisson and Ladier,
2009; Geroliminis and Sun, 2011; Saberi et al., 2014; Zhong et al., 2018a,b). Small and Chu (2003) applied
the MFD dynamics to investigate the departure time choice by emphasizing the cost of hyper-congestion.

To enable departure time choice, we need to properly define the travel time with respect to the time-
varying traffic condition. In the literature, there are mainly two approaches for evaluating the network travel
time. The first approach assumes that the outflow function of the conventional accumulation-based MFD
model (without modeling the travel time function in the flow propagation explicitly), see Mariotte et al.
(2017) or the travel time of the accumulation-based MFD model with time delay (modeling the travel time
function in the flow propagation explicitly), see Small and Chu (2003); Huang et al. (2020), is determined
by the network traffic conditions at the instant of entering the network. Conventionally, the average network
travel time function at time t is a function of the network accumulation n(t) at time t, i.e.,

h(n(t)) =
n(t)

G(n(t))
(1)

where G(n(t)) is the (outflow) MFD of the network. Such approach is widely used in the perimeter and
gating traffic control based on the MFD framework, e.g., Keyvan-Ekbatani et al. (2012); Haddad and Mirkin
(2016); Mirkin et al. (2016); Haddad and Zheng (2020), and the region-level route guidance or departure
time choice, e.g., Small and Chu (2003); Yildirimoglu and Geroliminis (2014); Yildirimoglu et al. (2015,
2018); Aghamohammadi and Laval (2020); Ni and Cassidy (2020).

On the other hand, the second approach assumes that travel time depends on the time-varying traffic
speed over the course of a trip. In this approach, the travel time is evaluated by the integral of duration
over each distance increment of his/her trip (Arnott, 2013; Fosgerau, 2015; Arnott et al., 2016; Lamotte and
Geroliminis, 2018; Mariotte et al., 2017; Arnott and Buli, 2018; Mariotte and Leclercq, 2019). Mathemati-
cally, travel time h(t) as a function of departure time t is given implicitly by∫ t+h(t)

t
v(n(s))ds = L (2)

where L is the distance travelled, v(n(s)) is the average network traffic speed at time s when the network
accumulation is n(s). This formulation aims at modeling the impact of the time-varying traffic speed v(n(s))
within a trip duration and the trip length L on the travel time function h(t). If the trip length is assumed to
be uniform, the MFD with such a travel time function is termed as the (basic) trip-based (or bathtub) model
(Arnott and Buli, 2018).

Recent research indicates that the trip-based model can perform more accurately in capturing network
hyper-congestion than the conventional accumulation-based MFD dynamics, especially during transient
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phases. This is because the travel time function is explicitly incorporated in the flow propagation in the
trip-based model, see Mariotte et al. (2017); Paipuri and Leclercq (2020). However, every coin has two
sides, incorporating the travel time function in the flow propagation also renders the trip-based dynamics
become delay differential equations (DDEs). The DDE introduces a serious weakness to the trip-based
MFD dynamics that the solution of the equilibria and optima is generally analytically intractable (Arnott
and Buli, 2018).

Under the assumption of homogeneous users, Fosgerau and Small (2013); Arnott (2013) found that the
benefits of congestion pricing using MFD the network loading model could be even greater than that with
Vickrey’s bottleneck model if the pricing scheme can maintain the system at the flow-maximizing accu-
mulation. Arnott et al. (2016) derived a closed-form solution of an equilibrium when no late arrivals are
permitted for a special case of the bathtub model with α − β − γ form of the cost function. Several assump-
tions such as identical commuters, a trip cost function that is linear in travel time and schedule delay, no
late arrivals, and the average network velocity is a negative linear function of traffic density are imposed.
Combining Vickrey’s bottleneck model with the MFD, Amirgholy and Gao (2017) developed a bathtub
model for approximating the user equilibrium of the morning commute problem under several assumptions,
e.g., the equilibrium trajectory can be well approximated by a quadratic function. Arnott and Buli (2018)
further pursued numerical solution algorithm to the equilibrium with the basic bathtub model under the
assumption that the utility or trip cost function is a smooth function of its arguments while following the
same linear speed-density relationship in line with Arnott et al. (2016). Li and Huang (2019) extended the
basic trip-based model to consider the continuous schedule preference. Based on the assumption that the
velocity-density function and the schedule delay penalty function are linear, the user equilibrium and system
optimum with continuous departure rate were derived. All the above references consider an isotropic down-
town area with identical commuters in terms of trip length. Recognizing the trip length heterogeneity would
challenge the fundamental FIFO assumption, Fosgerau (2015); Daganzo and Lehe (2015) investigated the
impacts of trip length heterogeneity on the morning commute while reaching very different conclusions on
the role of trip length. The differences are possibly due to the different scheduling preferences chosen and
the underlying simplified traffic dynamics. Assuming exponential-type scheduling preferences, Fosgerau
(2015) showed that two users differing by their trip lengths sort according to a Last-In, First-Out (LIFO)
pattern under user equilibrium wherein the user with the longest trip starts earlier and finishes later. On
the other hand, using conventional α − β − γ scheduling preferences, Daganzo and Lehe (2015) proved
that the social optimum persists the First-In-First-Out (FIFO) property under a simplified congestion mech-
anism similar to the point bottleneck model. They further concluded that the FIFO is strict only within
families of users having identical scheduling preferences and heterogeneous trip lengths. Arnott and Buli
(2018); Lamotte and Geroliminis (2018); Aghamohammadi and Laval (2020) encouraged further research
effort to the determination of necessary and sufficient conditions for dynamic traffic equilibria including
user equilibrium and system optimum.

This paper investigates the dynamic user equilibrium for departure time choice in the basic trip-based
model. Parallel to the numerical treatments developed in the literature, we focus on deriving the analytical
dynamic user equilibrium condition under general travel time function and schedule penalty function. In-
flow capacity constraint is imposed to restrict the departure rate from exceeding the network capacity. The
analysis reveals the significant difference between the basic trip-based model and the conventional MFD
models regarding the information support involved in the departure time choice. We show numerically
that the inflow capacity constraint with a proper width of the desired departure time window can avoid the
phenomenon of two peaks in the departure profile and the vehicle accumulation, which is considered as an
undesired property by Lamotte and Geroliminis (2018).
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Paper organization: Section 2 introduces the basic trip-based model for network representation and sev-
eral common assumptions. Section 3 formulates the departure time choice problem for the basic trip-based
model and derives the necessary conditions of the equilibrium conditions through the lens of Pontryagin
minimum principle. Numerical examples are worked out to illustrate the properties of the DUE in Sec-
tion 4 based on the numerical algorithm outlined in Appendix A. Finally, Section 5 concludes the paper.
Companion materials are presented in the appendix.

2. The basic trip-based model

To begin with, we summarize the nomenclature used in this paper in Table 1.

Table 1: Nomenclature
Q Travel demand of the region
q(t) Departure rate at time t with qmax as the upper bound
G(t) Trip completion rate at time t
n(t) Traffic accumulation of the region at time t
v(t) Average traffic speed of the region at time t
V(n) Speed-MFD of the region
h(·) Theorectical travel time of the region (Forward in time)
σ(·) Experienced travel time of the region (Backward in time)
Ψ(·) Total travel cost including the schedule delay penalty
φ Minimum travel cost
MFD Macroscopic fundamental diagram
DUE Dynamic user equilibrium
FIFO First-In-First-Out

In line with Arnott and Buli (2018), we impose the following assumptions:

Assumption 2.1. In the basic trip-based model, it is assumed that a fixed number of commuters travel an
equal distance L from home to work over an isotropic downtown area during the morning rush hour. All
travelers have identical scheduling preference.

Assumption 2.2. At any time instant, the average traffic velocity depends on the network traffic accumu-
lation (or density) at that time. The speed-MFD function V(n) is assumed to be positive, continuously
differentiable and strictly decreasing on the interval [0, n jam], i.e., from empty to gridlock. The free-flow
speedV(n = 0) is denoted as v f .

In Arnott and Buli (2018), v(k) = v f

(
1 − k

k j

)
, a linear relation (i.e., Greenshields) between velocity and

density is assumed to simplify the problem.

Assumption 2.3. The utility or trip cost function is a smooth function of its arguments.

Following Lamotte and Geroliminis (2018); Arnott and Buli (2018), the FIFO condition will be guaran-
teed by Assumption 2.1. Due to the FIFO, all vehicles entering the network at the same time, say t, would
have the same travel time, say h(t), and therefore exiting the network at the same time, say t + h(t), as well.
In this sense, we can define the travel time for a commuter departing at time t by subtracting the time when
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the cumulative outflow equals to the cumulative inflow at the time he/she enters the network. In terms of
flow conservation, this implies ∫ t

0
q(s)ds =

∫ t+h(t)

0
G(s)ds (3)

where q(t) is the departure rate at time t and G(t) is the trip completion (or outflow) rate at time t. Differen-
tiating (2) and (3) yields

v (t + h(t))
(
1 + ḣ(t)

)
= v(t) (4)

G (t + h(t))
(
1 + ḣ(t)

)
= q(t) (5)

From the above equations, with 1 + ḣ(t) > 0 under the FIFO condition, we have the following relationship
among the outflow, the network velocity, and the travel time

G(t + h(t)) =
v(t + h(t))

v(t)
q(t) (6)

The evolution of network accumulation n(t) can be defined as

ṅ(t) = q(t) −G(t) (7)

At the end of the planning horizon, all the travel demand should be served, i.e.,∫ T

0
q(s)ds = Q (8)

where Q is the total travel demand.
To distinguish “history (or memory)" and “future" states of the network, we further introduce the “expe-

rienced” (or inverse) travel time function σ(t), which denotes the travel time of vehicles exiting the network
at time t (i.e., exit time). Note that h(t) is the travel time for vehicles entering the network at time t (i.e.,
entry time), the relationship between these two definitions of travel time as depicted in Figure 1 can be
casted as

σ(t) = h (t − σ(t))

Regarding t as “current” time, we have σ(t) known (and thus experienced) and time t − σ(t) as “history”.
Since h(t) depends on the traffic speed throughout the trip duration, it is unknown and yet to be determined
until the trip is completed. Therefore, we regard its exit time s = t + h(t) as “future” (with respect to t). And
we have the following domains for these time indexes:

t ∈ [0,T ]⇐⇒ s ∈ [h(0),T + h(T )]

As the network is empty at time T (i.e., all travel demand has been served), σ(T ) and h(T ) should be the
free-flow time. We denote the free-flow time τ as

σ(n→ 0) = h(n→ 0) = τ

From the definitions of vehicle accumulation and experienced travel time in the sense of flow conservation
(as shown in Figure 1), we can see that the vehicle accumulation at a specific time t, i.e., n(t) = Nin(t) −
Nout(t), is a result of the historical inflow profile during [t−σ(t), t], i.e., n(t) = Nin(t)−Nin (t − σ(t)) noting
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Nin (t − σ(t)) = Nout(t). On the other hand, during the vehicles’ presence in the network, their trip duration
h(t) is a result of the “future” network speed till they exit from the network by (2) (and also (3)). Therefore,
we claim that the traffic state of trip-based models is determined by both the memory and the “future" of
the network. This introduces significant difficulties in analyzing the equilibrium patterns with the trip-based
models, see e.g., Arnott and Buli (2018).

Moreover, we have

t + h(t) − s = 0

Evaluating the derivative of the implicit function, we have

dt
ds

= −

∂(t+h(t)−s)
∂s

∂(t+h(t)−s)
∂t

=
1

1 + ḣ(t)
=⇒ dt =

1
1 + ḣ(t)

ds

Finally, the following relationship can be derived for these two definitions of travel time:

dσ(s)
ds

=
dh (s − σ(s))

ds
=

dh (s − σ(s))
d (s − σ(s))

d (s − σ(s))
ds

= ḣ (s − σ(s))
(
1 −

dσ(s)
ds

)

Figure 1: Relationship between time index and travel time

Several constraints should be imposed on the network outflow. Since vehicles can only depart during
[0,T ], no vehicle should exit the network during t ∈ [0, h(0)], i.e.,

G(t) = 0, t ∈ [0, h(0)]

On the other hand, all vehicles should exit the network before T . Therefore, G(t) = 0, ∀t ≥ T . If we choose
s = t + h(t) (i.e., the exit time) as time index we must have

G(s) = 0, s ∈ [T,T + h(T )]

6



3. Dynamic user equilibrium analysis for departure time choice in the basic trip-based model

A schedule penalty function (or early/late arrival penalty), say κ (χ), is required to enable departure time
choice. The schedule penalty function is usually chosen as a convex function. The total travel cost for a
vehicle departing at time t is a summation of this penalty and the travel time, i.e.,

Ψ(t, v) = h(t) + κ (χ) (9)

where χ is the difference between actual arrival time and preferred arrival time t∗, χ = t + h(t) − t∗, with
t∗ < T . According to Assumption 2.3, this function is a smooth function of its arguments.

Note that in the basic trip-based model, the travel time of a trip is a direct consequence of the dynamic
network traffic speed, say equation (2). Therefore, we highlight this in the definition of total travel cost.
Also note that the network accumulation is a direct consequence of the inflow to the region and is related
with the inflow, outflow and traffic speed of the network through (6). Therefore, the control variables are
chosen as the inflow rate q(t) entering the network and the network traffic velocity v(t) governed by the
speed-MFD functionV(n). Each commuter chooses her/his departure time to minimize her/his travel cost.
Equilibrium is achieved when no commuter can decrease his/her travel cost by altering the departure time
(Arnott and Buli, 2018). This is a special case of the dynamic user equilibrium with departure time choice,
see e.g., Friesz and Han (2019). We formulate the departure time choice problem in the basic trip-based
model by following the optimal control reformulation of the general DUE problem proposed in Friesz and
Han (2019); Huang et al. (2020).

Definition 3.1. Dynamic user equilibrium (Friesz and Han, 2019). For any q∗ ∈ Λ̌ with

Λ̌ =

{
q : q(t) ≥ 0,

∫ T

0
qp(t) dt = Qw, ∀t ∈ [0,T ]

}
, (10)

the vector of path flows as q = (qp : p ∈ P) and any nonnegative vector φ = (φw : w ∈ W) ∈ R|W |+ , the
pair (q∗,φ) is a simultaneous departure-time-and-route-choice dynamic user equilibrium if and only if the
following two conditions are satisfied for all p ∈ Pw and for all w ∈ W:

qp ∗(t) > 0 ⇒ Ψp(t, q∗) = φw,

Ψp(t, q∗) > φw ⇒ qp ∗(t) = 0,
(11)

where φw is the smallest travel cost for the OD pair w given by

φw = min
{
%p : p ∈ Pw

}
> 0, ∀w ∈ W, and %p = ess inf

{
Ψp(t, q) > 0 : t ∈ [0, T ]

}
, ∀p ∈ P

where ess inf is essential infimum which defines the largest essential lower bound for a given function f
wherein all inf f ≤ ess inf f .

Dynamic user equilibrium with departure time choice

min
∫ T

0
Ψ(v∗, t)q(t)dt
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subject to

dn(t)
dt

= q(t) −G(t), (α(t)) (12a)

v (t + h(t)) q(t) = v(t)G (t + h(t)) , (µ(t)) (12b)
dE(t)

dt
= q(t), (ρ(t)) (12c)

E(T ) = Q, (φ) (12d)

v(t) = V(n(t)), (ξ(t)) (12e)

−q(t) 6 0, (γ(t)) (12f)

q(t) − qmax 6 0, (ζ(t)) (12g)

where E(0) = 0 and without loss of generality, we assume zero initial condition n(0) = 0. As explained
in Section 2, (12a) and (12b) define network traffic dynamics and flow propagation constraint of the basic
trip-based model, respectively. (12c) and (12d) define the travel demand. (12e) specifies the speed-MFD.
(12f) is the nonnegative flow constraint. (12g) restricts that the inflow to the region should be less than its
maximum service rate or capacity. Variables in brackets of (12a)-(12g) are Lagrange multipliers associated
with the corresponding constraints, respectively.

Proposition 3.1. The necessary condition for departure time choice equilibrium of the basic trip-based
model with inflow capacity constraint can be stated as:

q(t)
{
> 0,Ψ(v∗, t) + ζ(t) = φ

= 0,Ψ(v∗, t) + ζ(t) > φ
(13)

where φ is the equilibrium travel cost, ζ(t) is the additional cost caused by the traffic control via imposing
an upper bound constraint on the inflow rate, and Ψ(v∗, t) is the travel cost of the vehicles departing at time
t. When there is no inflow capacity constraint, the equilibrium condition reduces to

q(t)
{
> 0,Ψ(v∗, t) = φ

= 0,Ψ(v∗, t) > φ
(14)

Remark 3.1. Proposition 3.1 states that, for any time instant t, when the corresponding generalized travel
cost equals to the user equilibrium cost, the departure rate q(t) > 0; otherwise, when the generalized cost
exceeds the equilibrium, no travelers would depart. Comparing Proposition 3.1 with Definition 3.1, we can
see that (14) is an equivalent expression of (11) when there is no inflow capacity constraints. In case of
the inflow capacity constraints, as every constraint comes with a cost when it is violated, ζ(t) reflects the
additional cost caused by the traffic control via imposing an upper bound constraint on the inflow rate, see
(13). This can be regarded as an extension of the DUE case (Zhong et al., 2011; Huang et al., 2020).

Although the equilibrium condition in (14) seems simpler than that in (13), it does not necessarily
imply (14) is easier to achieve than (13). We will discuss several possible reasons due to the “memory"
effect of flow propagation and the prediction of “future" traffic state required by the basic trip-based model
in Remark 3.2 and the numerical examples.
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Proof of Proposition 3.1. As claimed in Arnott and Buli (2018), given the speed-MFD functionV(n), the
basic trip-based model can be solved from the departure rate q(t). Therefore, the objective is to solve for
q(t) that is consistent with the equilibrium condition. To derive the equilibrium condition, we define the
Hamiltonian function for the optimal control problem as

H(q,G, n, v, E) =Ψ(v∗, t)q(t) + α(t)[q(t) −G(t)] + ρ(t)q(t) + µ(t)
[
ṽ(t)q(t) − v(t)G̃(t)

]
+ ξ(t)

[
v(t) −V(n(t))

]
− γ(t)q(t) + ζ(t) (q(t) − qmax)

where we have used

G̃(t) = G(t + h(t)) = G(s), ṽ(t) = v (t + h(t)) = v(s)

to save notation.
Applying the Pontryagin Minimum Principle, we have

∂H
∂q(t)

= Ψ(v∗, t) + α(t) + ρ(t) + µ(t)ṽ(t) − γ(t) + ζ(t) (15a)

∂H
∂G(t)

= − α(t) (15b)

∂H
∂G̃(t)

= − µ(t)v(t) (15c)

∂H
∂n(t)

= − ξ(t)
∂V(n(t))
∂n(t)

(15d)

∂H
∂v(t)

= − µ(t)G̃(t) + ξ(t) (15e)

∂H
∂ṽ(t)

= µ(t)q(t) (15f)

∂H
∂E(t)

= 0 (15g)

and the following stationary condition regarding the departure rate q(t)

∂H
∂q(t)

= 0, t ∈ [0,T ] (16)

A set of costate equations:

dα(t)
dt

= −
∂H
∂n(t)

, t ∈ [0,T ] (17a)

dρ(t)
dt

= −
∂H
∂E(t)

, t ∈ [0,T ] (17b)

And the boundary condition

−ρ(T ) − φ = 0 (18)

As discussed in Section 2, some variables, such as G(t) and G̃(t); v(t) and ṽ(t), are not independent but related
through flow propagation constraints. Therefore, we need to sort out how their dependence would affect the
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optimality (stationary) condition. To see this, we evaluate the variation of the Hamiltonian function with
respect to G(t) and G̃(t) as

δHG =

∫ T

0

[
∂H
∂G

δG +
∂H
∂G̃

δG̃
]

dt =

∫ T

0

∂H
∂G(t)

δG(t)dt +

∫ T

0

∂H
∂G̃(t)

δG̃(t)dt

=

∫ T

0

∂H
∂G(t)

δG(t)dt +

∫ T

0

∂H
∂G̃(t)

δG (t + h(t)) dt

Note that

s = t + h(t)

t = 0, s = h(0); t = T, s = T + h(T )

dt =

[
1

1 + ḣ(t)

]
t=s−σ(s)

ds

G̃(t) = G(t + h(t)) = G(s)

We have

δHG =

∫ T

0

∂H
∂G(t)

δG(t)dt +

∫ T+h(T )

h(0)

[
∂H
∂G̃(t)

1
1 + ḣ(t)

]
t=s−σ(s)

δG(s)ds

=

∫ h(0)

0

∂H
∂G(t)

δG(t)dt +

∫ T+h(T )

T

[
∂H
∂G̃(t)

1
1 + ḣ(t)

]
t=s−σ(s)

δG(s)ds

+

∫ T

h(0)

∂H
∂G(t)

δG(t)dt +

∫ T

h(0)

[
∂H
∂G̃(t)

1
1 + ḣ(t)

]
t=s−σ(s)

δG(s)ds

We unify the time variables in the integral by θ ∈ [0,T + h(T )] and have in mind that G is evaluated by
the entry time t while G̃ is evaluated by the exit time s. It follows:

δHG =

∫ h(0)

0

∂H
∂G(θ)

δG(θ)dθ +

∫ T+h(T )

T

[
∂H
∂G̃(θ)

1
1 + ḣ(θ)

]
t=θ−σ(θ)

δG(θ)dθ

+

∫ T

h(0)

 ∂H
∂G(θ)

+

[
∂H
∂G̃(t)

1
1 + ḣ(t)

]
t=θ−σ(θ)

 δG(θ)dθ

In the above equation, we regard θ as the current time. For vehicles exiting the network at time θ, they
should enter the network at time θ − σ(θ). Therefore, a physical interpretation to the above equation is that
we trace the memory (i.e., “history") of the network to the entry time of the flow exiting the network at time
θ to deduce the effect of this amount of flow on the equilibrium condition (see also the “memory" effect of
flow propagation explained on Pages 5-6 and depicted in Figure 1 in Section 2). Thus, we obtain

∂H
∂G(θ)

= 0,θ ∈ [0, h(0)] (19a)

∂H
∂G(θ)

+

[
∂H
∂G̃(t)

1
1 + ḣ(t)

]
t=θ−σ(θ)

= 0,θ ∈ [h(0),T ] (19b)[
∂H
∂G̃(t)

1
1 + ḣ(t)

]
t=θ−σ(θ)

= 0,θ ∈ [T,T + h(T )] (19c)
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Applying similar reasoning to v and ṽ1, we have

∂H
∂v(θ)

= 0,θ ∈ [0, h(0)] (20a)

∂H
∂v(θ)

+

[
∂H
∂ṽ(t)

1
1 + ḣ(t)

]
t=θ−σ(θ)

= 0, θ ∈ [h(0),T ] (20b)[
∂H
∂ṽ(t)

1
1 + ḣ(t)

]
t=θ−σ(θ)

= 0, θ ∈ [T,T + h(T )] (20c)

Note that 1 + ḣ(t) > 0 under FIFO, in line with (16), (19a), (19b), (20a), (20b), (19c) and (20c), we have
the following stationary conditions:

∂H
∂q(θ)

= 0, θ ∈ [0,T ] (21a)

∂H
∂G(θ)

+

[
∂H
∂G̃(t)

1
1 + ḣ(t)

]
t=θ−σ(θ)

= 0, θ ∈ [h(0),T ] (21b)

∂H
∂G(θ)

= 0, θ ∈ [0, h(0)] (21c)

∂H
∂v(θ)

+

[
∂H
∂ṽ(t)

1
1 + ḣ(t)

]
t=θ−σ(θ)

= 0, θ ∈ [h(0),T ] (21d)

∂H
∂v(θ)

= 0, θ ∈ [0, h(0)] (21e)[
∂H
∂G̃(t)

]
t=θ−σ(θ)

= 0, θ ∈ [T,T + h(T )] (21f)[
∂H
∂ṽ(t)

]
t=θ−σ(θ)

= 0, θ ∈ [T,T + h(T )] (21g)

Substituting (15b) and (15c) into (21b), we have

α(θ) = −
µ (θ − σ(θ)) v (θ − σ(θ))

1 + ḣ (θ − σ(θ))
, θ ∈ [h(0),T ] (22)

Again, we would like to point out that we are tracing the history of the network to evaluate the effect
of the amount of flow exiting the network at time θ. On the other hand, if the exit time (future) of vehicles
entering the network at time θ is concerned, we can express (22) as

α (θ + h(θ)) = −
µ(θ)v(θ)
1 + ḣ(θ)

, θ + h(θ) ∈ [h(0),T ] (23)

Substituting (15e) and (15f) into (21d) yields

−µ(θ)G̃(θ) + ξ(θ) +
µ (θ − σ(θ)) q (θ − σ(θ))

1 + ḣ (θ − σ(θ))
= 0, θ ∈ [h(0),T ] (24)

1For brevity, we have omitted the derivation.
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Using (5) and noting that G̃(θ) =
q(θ)

1+ḣ(θ)
, we can rewrite (24) as

ξ(θ) =
µ(θ)q(θ)
1 + ḣ(θ)

−
µ (θ − σ(θ)) q (θ − σ(θ))

1 + ḣ (θ − σ(θ))
, θ ∈ [h(0),T ] (25)

According to (21c) and (15b)

∂H
∂G(θ)

= −α(θ) = 0, θ ∈ [0, h(0)]

α(θ) = 0, θ ∈ [0, h(0)] (26)

According to (21e) and (15e) we have

∂H
∂v(θ)

= −µ(θ)G̃(θ) + ξ(θ) = 0, θ ∈ [0, h(0)]

ξ(θ) = µ(θ)G̃(θ) =
µ(θ)q(θ)
1 + ḣ(θ)

, θ ∈ [0, h(0)]
(27)

From (21f) and (15c), we have[
∂H
∂G̃(t)

]
t=θ−σ(θ)

= −µ(θ − σ(θ))v(θ − σ(θ)) = 0, θ ∈ [T,T + h(T )]

regarding the entry time θ − σ(θ). Or by time shifts

−µ(θ)v(θ) = 0, θ ∈ [T − σ(T ),T ] (28)

regarding the current time θ. The physics of Condition (28) is that the network must be cleared at the end
of the planning horizon, i.e., T , for the sake of flow conservation. Therefore, travelers are not allowed to
depart later than T − σ(T ) to guarantee all travelers would arrive at their destination before T .

Similarly, from (21g) and (15f) one can get[
∂H
∂ṽ(t)

]
t=θ−σ(θ)

= µ(θ − σ(θ))q(θ − σ(θ)) = 0, θ ∈ [T,T + h(T )]

µ(θ)q(θ) = 0, θ ∈ [T − σ(T ),T ] (29)

Combining (17a) and (15d) we obtain

α̇(θ) = ξ(θ)
∂V(n(θ))
∂n(θ)

, θ ∈ [0,T ] (30)

Integrating (23), (25), (26), (27) and (30), we have

α(θ) =


0, θ ∈ [0, h(0)]

−
µ (θ − σ(θ)) v (θ − σ(θ))

1 + ḣ (θ − σ(θ))
, θ ∈ [h(0),T ]

(31a)

ξ(θ) =


µ(θ)q(θ)

1 + ḣ(θ)
, θ ∈ [0, h(0)]

µ(θ)q(θ)

1 + ḣ(θ)
−
µ (θ − σ(θ)) q (θ − σ(θ))

1 + ḣ (θ − σ(θ))
, θ ∈ [h(0),T ]

(31b)

α̇(θ) = ξ(θ)
∂V(n(θ))
∂n(t)

, θ ∈ [0,T ] (31c)
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From (31a), (31b) and (29), if θ ∈ [T − σ(T ),T ], we have

ξ(θ) =
µ(θ)q(θ)
1 + ḣ(θ)

−
µ (θ − σ(θ)) q (θ − σ(θ))

1 + ḣ (θ − σ(θ))

= 0 −
µ (θ − σ(θ)) q (θ − σ(θ))

1 + ḣ (θ − σ(θ))

=
q (θ − σ(θ))
v (θ − σ(θ))

α(θ), θ ∈ [T − σ(T ),T ] (32)

Substituting (31c) into (32) results in

α̇(θ) =
q (θ − σ(θ))
v (θ − σ(θ))

α(θ)
∂V(n(θ))
∂n(θ)

, θ ∈ [T − σ(T ),T ]

α(θ) = c̃ exp
(∫

q (θ − σ(θ))
v (θ − σ(θ))

∂V(n(θ))
∂n(θ)

dθ
)

From (31a) and (28), we have α(T ) = 0. This together with

exp
(∫

q (θ − σ(θ))
v (θ − σ(θ))

∂V(n(θ))
∂n(θ)

dθ
)
, 0,

implies c̃ = 0. Therefore,

α(θ) = 0, θ ∈ [T − σ(T ),T ] (33)

From (31a) and (31b), if θ ∈ [h(0),T − σ(T )], we have

ξ(θ) =
µ(θ)q(θ)
1 + ḣ(θ)

−
µ (θ − σ(θ)) q (θ − σ(θ))

1 + ḣ (θ − σ(θ))

=
q(θ)
v(θ)

µ(θ)v(θ)
1 + ḣ(θ)

−
µ (θ − σ(θ)) q (θ − σ(θ))

1 + ḣ (θ − σ(θ))

= −
q(θ)
v(θ)

α (θ + h(θ)) +
q (θ − σ(θ))
v (θ − σ(θ))

α(θ), θ ∈ [h(0),T − σ(T )] (34)

From (34), we notice that ξ(θ), the Lagrange multiplier associated with the speed-MFD for vehicles
entering the network at time θ, depends on both the network memory from θ −σ(θ) to θ and future network
state from θ to θ+h(θ). This is because the network accumulation n(θ) is determined by the network memory
from θ − σ(θ) to θ according to the flow conservation. During the vehicles’ presence in the network, their
trip duration h(θ) is a result of the “future” network speed till they exit from the network by (2).

Substituting (31c) into (34) results in

α̇(θ) =

[
−

q(θ)
v(θ)

α (θ + h(θ)) +
q (θ − σ(θ))
v (θ − σ(θ))

α(θ)
]
∂V(n(θ))
∂n(θ)

, θ ∈ [h(0),T − σ(T )] (35)

Now suppose the following conditions hold for an instant tt ≤ T −σ(T ) satisfying tt + h(tt) ∈ [tt,T ] and

α(θ) = 0, θ ∈ [tt,T ]

There is an infinitesimal ∆tt such that

tt − ∆tt + h(tt − ∆tt) ∈ [tt,T ]
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Obviously, any ∆tt ≤ σ(tt) can fulfil the above requirement.
Now consider θ ∈ [tt − ∆tt, tt], note θ + h(θ) ∈ [tt − ∆tt + h(tt − ∆tt), tt + h(tt)] ⊂ [tt,T ], we have

α(θ + h(θ)) = 0. From (35) we have:

α̇(θ) = −
q(θ)
v(θ)

∂V(n(θ))
∂n(θ)

α (θ + h(θ)) +
q (θ − σ(θ))
v (θ − σ(θ))

∂V(n(θ))
∂n(θ)

α(θ) =
q (θ − σ(θ))
v (θ − σ(θ))

∂V(n(θ))
∂n(θ)

α(θ)

α(θ) = c̃ exp
(∫

q (θ − σ(θ))
v (θ − σ(θ))

∂V(n(θ))
∂n(θ)

dθ
)

Note α(tt) = 0. This together with exp
(∫ q(θ−σ(θ))

v(θ−σ(θ))
∂V(n(θ))
∂n(θ) dθ

)
, 0, implies c̃ = 0. Therefore,

α(θ) = 0, θ ∈ [tt − ∆tt, tt] (36)

To sum up, we have

α(θ) = 0, θ ∈ [tt − ∆tt,T ]

for t ∈ [tt − ∆tt,T ]. It has been proven earlier that α(t) = 0, and noting that [T − σ(T ),T ] ⊆ [tt − ∆tt,T ]
with tt arbitrarily chosen. We can expand this time interval to the entire planning horizon [0,T ]. This gives

α(t) = 0, t ∈ [h(0),T ]

With (31a), we have

α(t) = 0, t ∈ [0,T ]

Further, we have

µ(t) = 0, t ∈ [0,T ] (37)

From (15a) and (16), we have the following condition at the equilibrium

Ψ(v∗, t) + α(t) + ρ(t) + µ(t)ṽ(t) − γ(t) + ζ(t) = 0, t ∈ [0,T ]

Using (15g), (17b) and the boundary condition (18), we have

ρ(t) = ρ(T ) = −φ

Therefore,

Ψ(v∗, t) − γ(t) + ζ(t) = φ, t ∈ [0,T ]

Note that γ(t) is the Lagrange multiplier associated with the nonnegative flow constraint. Whenever there is
a departure, we have q(t) > 0 and thus γ(t) = 0. We now can summarize the equilibrium condition for the
basic trip-based model with departure time choice as

q(t)
{
> 0,Ψ(v∗, t) + ζ(t) = φ

= 0,Ψ(v∗, t) + ζ(t) > φ
(38)

where φ is the equilibrium travel cost, ζ(t) is the additional cost caused by the traffic control via imposing
an upper bound constraint on the inflow rate. When there is no upper bound constraint on the inflow rate,
we have

q(t)
{
> 0,Ψ(v∗, t) = φ

= 0,Ψ(v∗, t) > φ
(39)

�
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Remark 3.2. As we can see from the above proof and the discussion in Section 2, due to the difference in
evaluating travel time for these two classes of MFD models, the information support should be also different.
In the accumulation-based model, the travel time and thus the travel cost is determined by the current traffic
state. Travelers choose their departure times according to the travel cost perceived. On the other hand, the
travel cost of trip-based model depends on the “future state” information (i.e., the traffic state throughout
the trip duration). We need to predict the traffic state (speed to be exact) during the trip to infer the travel
time to support the departure time choice for travelers. However, accurate prediction of future traffic state
is never easy unless it is a pure connected automated vehicle environment (Zhong et al., 2017). Or, we can
apply the trip-based model for off-line applications that the optimization is based on the historical traffic
pattern.

4. Numerical examples

Numerical examples are conducted to demonstrate the properties of DUE with the basic trip-based mod-
el with respect to different test scenarios in this section. The solution algorithm is outlined in the appendix.
Consider an urban network admitting a well-defined MFD widely used in the literature (Geroliminis et al.,
2013), e.g., G(n) =

(
1.4877×10−7×n3−2.9815×10−3×n2+15.0912×n

)/
3600, with Gmax = 6.3 (unit/time).

The traffic state within the basic trip-based model is given by a well-defined relationship between the travel
production P (n(t)) and the accumulation n(t). Note that the travel production P (n(t)) is the distance of all
vehicles in a unit time, we have the relationship between the mean speedV (n(t)) and the travel production
P (n(t)) as P (n(t)) = V (n(t)) n(t). According to Daganzo (2007); Mariotte et al. (2017), the trip length L is
the same for all travelers and satisfies G (n(t)) = P (n(t)) /L. Then we have the following equation:

V (n(t)) n(t) = P (n(t)) = G (n(t)) L (40)

to extract the speed-MFD from the accumulation MFD. Following this, we haveV(n) = 1.4877×10−7×n2−

2.9815×10−3×n+15.0912 (unit-legnth/unit-time), with free flow velocityV(0) = 15.0912 (unit-legnth/unit-time).
The trip length is L = 3600 (unit-length), while the region free flow travel time is L/V(0), around 238 unit-
times. Total amount of within-region demand to be assigned is Q = 1500 (units). The planning horizon is
set at T = 800 (unit-times) to ensure all travel demand can be served. The upper bound of inflow rate is set
as 6.3 (unit/time), i.e., the capacity. Early/late arrival penalty is defined as

κ[χ] =


0.1(t + h(t) − tde)2, t + h(t) < tde

0, tde ≤ t + h(t) ≤ tdl

0.1(t + h(t) − tdl)2, t + h(t) > tdl

(41)

with expected arrival time window ranging from [tde, tdl] = [400, 600] (unit-time).
Solving the DUE with departure time choice only, we depict the inflow rate against the corresponding

travel cost over time and the number of vehicles in Figure 2(a)-Figure 2(b), respectively. The generalized
travel cost (including the travel time, schedule penalty, and the additional cost induced by the inflow upper
bound) and the path flow during the departure window fulfill the DUE condition as outlined in (13). The
departure time window is larger than the preferred departure window (with zero schedule penalty). This is
because travelers choose their departure times to minimize the generalized travel cost and also try to avoid
the additional cost induced by the saturated inflow constraint. Note that there is no route choice but departure
time choice for within-region case, it is similar to the perimeter control located at a regional border, that
manipulates the transfer flows across the border to optimize the regional operational performance, with
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Figure 2: Generalized travel cost against departure profile and number of vehicles with constraint

control input saturation as investigated in Haddad (2017a,b). The inflow profile depicted in Figure 2(a) is
similar to the Bang-bang like optimal control law obtained in the conventional optimal control formulations
of gating control (Haddad, 2017a; Zhong et al., 2018a). Similar observation is also achieved for the DUE
problem with departure time choice using the accumulation-based MFD system with time delay as the
network loading model (Huang et al., 2020). Despite their similarity, we would like to point out that there
is no guarantee that the optimal departure rate will be the Bang-bang law as achieved in the conventional
optimal control formulations of gating control. Interested readers can refer to Huang et al. (2020) for details.

The difference between the trip-based model and the accumulation-based MFD model in terms of flow
propagation and travel time evaluation can also result in a very different treatment on the inflow capacity
constraint. In the accumulation-based MFD dynamics, the travel time is determined by the network state at
the instant when the vehicle enters the network, i.e., (1). We need an upper bound (explicitly or implicitly)
to restrict the departure rate to avoid the situation that all vehicles rush into the network at the moment when
the minimum travel cost is first achieved (Zhong et al., 2011; Han et al., 2019; Huang et al., 2020). On the
other hand, the travel time of trip-based model is a result of the network traffic speed throughout the trip
duration, i.e., (2). The trip-based MFD model do not need such an upper bound to ensure a proper DUE
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pattern since too large inflow rate would result in a very large travel time rendering the cost and flow could
not form a UE pattern. To see this, we remove the upper bound inflow constraint to test the unconstrained
UE pattern. Figure 3(a) depicts the departure flow profile against the travel cost profile while Figure 3(b)
presents the evolution trajectory of corresponding number of vehicles. As we can see, once the minimum
cost is achieved, a departure rate around 24.6 (units/unit-time) rush into the network (around three times the
network inflow capacity). The travel cost increases with respect to the accumulation in the network. The
inflow rate must then decline to maintain a low cost level. After a while, an amount of vehicles complete
their trips. The travel cost profile would decrease again. As a consequence, the departure rate would admit
an increase till all the demand is served. This results in two peaks in the departure profile and two flats in
the number of vehicles. It is also possible that two peaks in the vehicle accumulation can be observed if the
departure time window is large enough. On the other hand, the UE cost pattern is not as ideal as that of the
constrained one. This highlights the benefit of introducing inflow capacity constraint, i.e., not only making
the problem more physically meaningful but also preventing the undesired phenomenon of two peaks in the
departure profile and vehicle accumulation.
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Figure 3: Generalized travel cost against departure profile and number of vehicles without constraint

Regarding the above discussion in Remark 3.2, the departure rate constraint imposed in this example
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can somehow alleviate the information support required by the trip-based model. When the departure rate
constraint is activated, the inflow rate to the network is certain (i.e., the upper bound). Thus the network traf-
fic state, travel time, and schedule penalty are easy to obtain. The additional cost induced by the departure
rate constraint is determined by the Lagrange multiplier. Thus the DUE cost under this case can be obtained
quite easily. On the other hand, for the unconstrained case, the travel cost of trip-based model depends
on not only the current traffic state (as a result of the historical inflow profile) but also the “future” traffic
state throughout the trip duration as discussed in Section 2. Assessing the travel cost in this manner is very
difficult. Therefore, it is more difficult to obtain a good dynamic user equilibrium as shown in Figure 3(a).

Figure 4: The effect of desired arrival time window on generalized travel cost and departure profile: unconstrained case

To test the effect of desired arrival time window on the generalized travel cost and the departure profile,
we assume the desired arrival time window is [440, 560] (unit-time) and adopt the same settings for other
parameters. For the unconstrained case, as we can see from Figure 4, compared with the previous case with
the desired arrival time window as [400, 600], smaller the time window is, higher the departure flow rate is.
This is because the travel demand is squeezed into a narrower departure time window to achieve the DUE.
Thus larger travel time is incurred and higher DUE cost would be yielded.

To test the effect of desired arrival time window and the upper bound constraint on the generalized travel
cost and the departure profile, we test the combinations of the desired arrival time windows [440, 560] and
[400, 600] (unit-time) with the upper bound constraints 6.3 and 7.56 (20% above the capacity). We would
like to point out that although the physical meaning of the upper bound constraint is regarded as the network
capacity, we only change the upper bound constraint in the tests while keeping the MFD unchanged for a
fair comparison. Figure 5 shows that, under the same desired arrival time window, the additional cost caused
by the upper bound constraint increases sharply as the upper bound constraint decreases. On the other hand,
assuming the upper bound constraint is 9.45 (50% above the capacity), Figure 6 indicates that, with the same
upper bound constraint, the width of the desired arrival time window has a strong impact on the additional
cost. The additional cost increases as the desired arrival time window becomes smaller.

Given the travel demand, the congestion level depends on the inflow capacity constraint and the desired
arrival time window (within which no schedule penalty would be occurred). For the first test scenario
wherein the inflow capacity constraint is 6.3 and the desired arrival time window is 200, the travel demand
1500 is (16 %) larger than the nominal network capacity 1260 (i.e., 6.3 × 200). Therefore, the additional
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Figure 5: The effect of upper bound constraint on generalized travel cost and additional cost with arrival time window [400, 600]

Figure 6: The effect of desired arrival time window on generalized travel cost and additional cost

cost caused by the inflow capacity constraint is quite large and its average scope is around 13.6 % of the
DUE cost, see Figure 2(a). For the case when the inflow capacity constraint is 7.56 and the desired arrival
time window is 200, the travel demand 1500 is slightly less than the nominal network capacity 1512 (i.e.,
7.56 × 200). Therefore, we can observe two peaks in the departure flow profile while the additional cost
caused by the inflow capacity constraint is small, see Figure 5. For the case when the inflow capacity
constraint is 9.45 and the desired arrival time window is 120, the travel demand 1500 is (24.4 %) larger
than the nominal network capacity 1134. The additional cost of this case is around 13% of the DUE cost.
This example suggests that, given large enough desired arrival time window (i.e., ensuring the feasibility of
the DUE problem), the inflow capacity constraint may have a stronger effect on the additional cost than the
desired arrival time window. However, we cannot conclude this as a general rule from such limited samples
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on the one hand. On the other hand, the physical meaning of the inflow capacity constraint is the maximum
throughput of the accumulation MFD (which is converted into speed MFD by (40)). When we increase the
inflow capacity constraint to 9.45, we do not change the accumulation MFD accordingly so as to perform a
fair comparison in the sensitivity analysis.
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Figure 7: The effect of MFD parameters on generalized travel cost and additional cost

Modify the MFD by times 1.5
To test the effect of MFD parameters on the generalized travel cost and the departure profile, we assume

a network with the free flow speed 1.5 times faster than in Figure 2 while the upper bound and other settings
stay unchanged for a fair comparison. As shown in Figure 7(a), the DUE conditions are well-satisfied in
both scenarios while the departure time in the network with higher speed postponed later than the original
network. An interpretation of this phenomenon is that travelers in the network with better infrastructure
have the freedom to depart late and access to smoother traffic state as shown in Figure 7(b). This supports
the investment in infrastructure construction and development.

5. Conclusions

Recently, the trip-based MFD models, which are claimed to be more accurate than the conventional
accumulation-based MFD model especially during transient phases, is used to replace the Vickrey’s bottle-
neck model to simulate the hyper-congestion in rush-hour traffic dynamics by both transportation scientists
and urban transportation economists. But every coin has two sides: while the trip-based model can better
capture the hyper-congestion it also introduces significant mathematical difficulties that preclude straight-
forward analytical and numerical solutions (Arnott and Buli, 2018). This paper investigated the dynamic
user equilibrium of departure time choice in an isotropic urban network with identical travelers using the
basic trip-based model. Parallel to the numerical treatments developed in the literature, analytical DUE
conditions under general travel time function and schedule penalty function were derived. Under dynamic
user equilibrium, no traveler can reduce her/his travel cost by changing the departure time. The derivation
does not rely on some common assumptions in the literature such as linear travel cost function, no late
arrivals, and linear speed-MFD. Numerical examples verified theoretical developments. It is demonstrated
that the width of the desired arrival time window can lead to a unimodal evolution of accumulation but two
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peaks in the departure profile depending on the demand level under the same network configuration, e.g.,
the inflow capacity constraint. The numerical results also demonstrate that the inflow capacity constraint
can prevent the two peaks in the departure profile and vehicle accumulation meanwhile generating a better
DUE pattern. Extending the analysis for trip-based models with heterogeneous trip lengths, solving for the
social optimum and pricing applications would be interesting future works.
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Appendix A. Solution algorithm

For demonstration purpose, we adopt the time-discretization based solution algorithm for the DUE
problem using the MFD systems with time-varying delays as the network loading model developed in Huang
et al. (2020). The essential difference lies in the network loading models, i.e., trip-based model in this paper
and the accumulation-based model with time delays in Huang et al. (2020). As discussed in Zhong et al.
(2011); Huang et al. (2020), the DUE problem cannot be solved by the optimal control formulation directly
but through an iterative optimal control problem (or a fixed point algorithm) as depicted in Algorithm 1. To
begin with, we summarize the nomenclature used in the algorithms in Table A.2.
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Table A.2: Nomenclature used in Algorithms 1 − 3
l Current iteration index
Imax Maximum iteration number
q∗ Optimal inflow profiles of DUE problem
ql Optimal inflow profiles of lth subproblem
Ψl Cost of ql

ε Tolerance of iteration
$ Scalar parameter of the fixed-point problem
∆t Time discretization
∆n Vehicle discretiaztion
N The number of discrete-time intervals
kt Index of discrete-time interval
τin(kt) Entry time of time interval kt

qkt Departure rate of time interval kt

τout(kt) Exit time of vehicles entering at time τin(kt)
hkt Travel time of vehicles entering at time τin(kt)
Qin(kt) Cumulative inflow up to time τin(kt)
Qout(kt) Cumulative outflow up to time τin(kt)
V(n) Speed-MFD
tin Current entry time
tout Current exit time
nin Accumulation at time tin
nout Accumulation at time tout
vin Speed at time tin
vout Speed at time tout
a Arrive rate at time tout
Qin

tin Cumulative inflow up to time tin
Qout

tin Cumulative outflow up to time tin
Qin

tout
Cumulative inflow up to time tout

Qout
tout

Cumulative outflow up to time tout
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Algorithm 1 Fixed point algorithm for the DUE problem
Input: Maximum iteration number Imax, tolerance ε ∈ R+, parameter $ ∈ R+

Output: optimal inflow profiles q∗

1: Initialization: iteration index l = 0, initial feasible solution q0

2: repeat
3: l = l + 1
4: Optimal control subproblem. Solve

ql = arg min
q

1
2

∫ T

0

[
ql−1 −$Ψl−1 − q

]2
dt

where Ψl as evaluated by Algorithm 2 is the travel cost associated with the inflow profiles ql, and q lies
in the following set {

q : −q(t) ≤ 0, q(t) ≤ qmax,

∫ T

0
q(t) dt = Q, ∀t ∈ [0,T ]

}
.

5: until l > Imax or ‖q
l+1−ql‖

‖ql‖
≤ ε

6: return optimal inflow profile q∗ = ql
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Algorithm 2 Region loading
Input: time discretization ∆t, vehicle discretization ∆n, departure rate q(t)
Output: Travel time hkt (kt = 1, 2, · · · ,N)

1: Initialization: number of time intervals N = T/∆t, entry time τin(kt) (kt = 1, 2, · · · ,N,N + 1) and
departure rate qkt (kt = 1, 2, · · · ,N)

τin(kt) = (kt − 1)∆t, qkt = q (τin(kt))

Cumulative inflow Qin(kt) (kt = 1, 2, · · · ,N,N + 1)

Qin(kt) =

kt−1∑
k=1

qkt∆t

Cumulative outflow Qout(1) = 0
2: Initialization: current entry time tin = τin(1), current exit time tout = τin(1) + h1
3: for kt = 1 to N do
4: if qkt = 0 then
5: Calculate nin (accumulative at time tin), and nout (accumulative at time tout) by Algorithm 3
6: Calculate vin(speed at time tin) and vout (speed at time tout)

vin = V(nin), vout = V(nout)

7: Update tin and tout: tin = tin + ∆t, tout = tout +
vin
vout

∆t
8: else
9: repeat

10: Calculate nin (accumulative at time tin), and nout (accumulative at time tout) by Algorithm 3
11: Calculate vin(speed at time tin) and vout (speed at time tout)

vin = V(nin), vout = V(nout)

12: Calculate arrive rate a: a =
vout
vin

qkt

13: Update tin and tout
14: if tin + ∆n/qkt < τout(kt + 1) then

tout = tout +
∆n
a
, tin = tin +

∆n
qkt

15: else

tout = tout +
(τout(kt + 1) − tin) qkt

a
, tin = τout(kt + 1)

16: end if
17: until tin = τin(kt + 1)
18: end if
19: Update: τout(kt + 1) = tout, Qout(kt + 1) = Qout(kt) + qkt∆t
20: Calculate travel time: hkt = τout(kt + 1) − τin(kt + 1)
21: end for
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Algorithm 3 Flow propagation
Input: current entry time tin, current exit time tout, entry time τin(k) (k = 1, 2, · · · ,N,N + 1), cumula-

tive inflow Qin(k) (k = 1, 2, · · · ,N,N + 1), exit time τout(k) (k = 1, 2, · · · , kt), cumulative outflow
Qout(k) (k = 1, 2, · · · , kt),

Output: accumulative flow nin, nout
1: Calculate cumulative inflow Qin

tin at time tin

Qin
tin =


0 if tin < τin(1)
Qin(s) +

Qin(s+1)−Qin(s)
τin(s+1)−τin(s) (tin − τin(s)) if τin(s) ≤ tin < τin(s + 1), s = 1, 2, · · · ,N

Qin(N + 1) if tin ≥ τin(N + 1)

2: Calculate cumulative outflow Qin
tin at time tin

Qout
tin =

{
0 if tin < τout(1)
Qout(s) +

Qout(s+1)−Qout(s)
τout(s+1)−τout(s) (tin − τout(s)) if τout(s) ≤ tin < τout(s + 1), s = 1, 2, · · · , kt

3: Calculate cumulative inflow Qin
tout

at time tout

Qin
tout

=


0 if tout < τin(1)
Qin(s) +

Qin(s+1)−Qin(s)
τin(s+1)−τin(s) (tout − τin(s)) if τin(s) ≤ tout < τin(s + 1), s = 1, 2, · · · ,N

Qin(N + 1) if tout ≥ τin(N + 1)

4: Calculate cumulative outflow Qin
tout

at time tout

Qout
tout

=

{
0 if tout < τout(1)
Qout(s) +

Qout(s+1)−Qout(s)
τout(s+1)−τout(s) (tout − τout(s)) if τout(s) ≤ tout < τout(s + 1), s = 1, 2, · · · , kt

5: Calculate accumulative flow nin, nout

nin = Qin
tin − Qout

tin

nout = Qin
tout
− Qout

tout
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