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Abstract: This paper presents a dynamic buckling analysis for a rotationally restrained functionally 

graded (FG) graphene nanoplatelets (GPLs) reinforced composite (FG-GPLRC) porous arch under a 

uniform step load where GPL nanofillers are uniformly dispersed while the porosity coefficient varies 

along the thickness direction of the arch. The effective material properties of the FG-GPLRC porous 

arch are determined by the volume fraction distribution of materials. Analytical solutions for the 

symmetric limit point dynamic buckling and anti-symmetric bifurcation dynamic buckling loads of 

rotationally restrained FG-GPLRC porous arches are derived by using an energy-based approach. 

Critical geometric parameters that determine the dynamic buckling mode switching behavior are also 

identified and discussed. Depending on the geometric parameters and the rotational restraint stiffness, 

the FG-GPLRC porous arch can buckle in either a symmetric limit point mode or an anti-symmetric 

bifurcation mode dynamically. It is also found that the dynamic buckling load of the arch can be 

considerably improved by adding a small amount of GPLs as reinforcing nanofillers. The influences 

of the porosity coefficients, GPL weight fractions, arch dimensions and geometries on the dynamic 

buckling behavior of rotationally restrained FG-GPLRC porous arches are comprehensively 

investigated through extensive parametric studies.  
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1. Introduction 
Lightweight materials and structures are of great significance due to their high cost-effectiveness, 

superior mechanical performance and associated environmental benefits [1-3]. Therefore, porous 

materials such as metal foams have been attracting considerable interests and attention from both 

research and industry communities [4, 5].  

A vast number of research studies have been devoted to investigate the structural behavior of 

functionally graded (FG) porous structures. Magnucki and Stasiewicz [6] analyzed the elastic 

buckling behavior of a porous beam. Bahaadini et al. [7] performed the stability analysis of spinning 

thin-walled porous beams under a compressive axial load. Chen et al. [8, 9] carried out the buckling, 

bending and nonlinear free vibration analyses of FG porous beams. Jalaei et al. [10] studied the 

dynamic instability of magnetically embedded viscoelastic porous FG nanobeams and found that the 

porosity effect on the dynamic stability of FG nanobeams largely depends on the power-law index 

and magnetic fields. Gao et al. [11] presented the nonlinear primary resonance of FG porous 

cylindrical shells with multiscale method. Wu et al. [12, 13] investigated the free and forced vibration 

characteristics as well as the uncertain static behavior of FG porous structures through finite element 

method. In addition, She et al. [14, 15] further analyzed the snap-buckling and nonlinear bending 

behavior of FG porous curved nanotubes. Li and his co-workers presented the nonlinear vibration [16] 

and buckling [17, 18] analyses of porous beams and observed that the mechanical behavior of porous 

beams is directly related to its porosity distribution. Karami et al. investigated the free vibration of 

doubly-curved nanoshells [19] and porous nanotubes with variable thickness [20] according to a 

modified power law rule and the Hamiltonian principle. Fan et al. [21-23] conducted a series of 

studies on the buckling, thermal postbuckling, and nonlinear oscillations of porous FG micro/nano-

plates via a non-uniform rational B-spline formulation. 

Concurrent to the above studies, incorporating graphene nanoplatelets (GPLs) into matrix 

materials has recently been proven to be a highly effective way to enhance the mechanical 

performance of composite structures [24-27]. Rafiee et al. [28, 29] experimentally found that the 

Young’ modulus, tensile strength and fracture toughness of nanocomposites can be remarkably 

improved by adding a small amount of GPLs, and the reinforcing effect is much better than using 

CNTs as reinforcing nanofillers. Liu et al. [30, 31] demonstrated that the mechanical properties of 

graphene reinforced alumina-ceramic composites are higher than those monolithic ceramic 

composites. In another experimental work, Tang et al. [32] reported that graphene reinforced 

nanocomposites possess higher strength and fracture toughness when graphene is highly dispersed in 

a polymer matrix. Furthermore, many researchers have conducted a series of studies on mechanical 

behavior of FG-GPLRC porous structures. For example, the free vibration, elastic buckling, post-
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buckling and nonlinear bending of FG-GPLRC porous beams have been comprehensively 

investigated [33-35]. In addition, Li et al. [36] conducted the isogeometric analysis of FG-GPLRC 

porous plates. In addition to beam and plate structures, FG-GPLRC cylindrical shells have also been 

widely studied to reveal the characteristics of buckling [37], linear vibration [38] and nonlinear 

dynamics [39]. These results have shown that the prominent mechanical performance of porous 

materials and the excellent reinforcing effect of GPLs. 

Arch structures have been widely implemented in mechanical and structural engineering due to 

its elegant shape and mechanical performance. It is often adopted as a major structural element to 

support the overall skeleton of structures. In real-engineering applications, arch structures are mainly 

subjected to dynamic loads such as wind and impact loads. Due to the compression and bending stress 

characteristics on arch structures, the dynamic behaviors become the main factors for the arch bearing 

capacity. Numerous research studying on dynamic stability and buckling of isotropic arch structures 

can be found in the open literature [40-47]. Considering an anisotropic composite arch, Yang et al. 

[48-53] discussed the free vibration, buckling and postbuckling characteristics of FG-GPLRC arches 

and found that the structural behavior of the FG-GPLRC arch is quite sensitive to boundary conditions 

and thermal effect. Liu et al. [54] investigated the nonlinear behavior and stability of FG-GPLRC 

arches under a static uniform load and verified the reinforcing effect of GPLs on the buckling load of 

FG-GPLRC arches. Li et al. [55, 56] further studied the coupling effects of thermal and mechanical 

loads on the stability of confined FG arches. Zhao et al. [57] investigated the free vibration, elastic 

buckling and dynamic instability of functionally graded porous arches reinforced by graphene 

platelets. However, no previous work has been reported on the dynamic buckling behavior of 

dynamically loaded FG-GPLRC porous arches under general boundary conditions, despite its 

practical significance.   

Therefore, the purpose of this paper is to fill this important knowledge gap to gain, for the first 

time, an in-depth understanding of the dynamic buckling performance of such an arch subjected to a 

uniform step load. The effective materials properties of FG-GPLRC porous arches are determined by 

the volume fraction distribution of materials. Analytical solutions for the symmetric limit point 

dynamic buckling and anti-symmetric bifurcation dynamic buckling loads are obtained through an 

energy-based method for FG-GPLRC porous arch with elastically restrained ends which is a generic 

boundary condition model covering free, pinned, and fixed end boundary conditions. Effects of 

porosity coefficients, GPL weight fraction, elastic constraints, and geometrical parameters on the 

dynamic buckling characteristics of rotationally restrained FG-GPLRC porous arches are 

comprehensively studied. The critical parameters governing the switching dynamic buckling mode 

of the FG-GPLRC porous arch are discussed in detail. 
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2. Effective materials properties 
The material properties of FG-GPLRC porous arches with a thickness of h and width of b are 

shown in Fig. 1. Two different porosity distributions with a uniform GPL reinforcement along the 

thickness direction are considered in this study. Noted that Emax and Emin are the maximum and 

minimum elastic moduli of the porous material, respectively. 

 
(a) Porosity distribution 1 with a uniform GPL distribution (PD1) 

 
(b) Porosity distribution 2 with a uniform GPL distribution (PD2) 

Fig. 1 Porosity distribution types 

The elastic modulus and mass density of FG-GPLRC porous arches with the porosity distribution 

1 (PD1) and porosity distribution 2 (PD2) are given as [54] 

( ) ( )01cE z E e zξ= −    (1) 

( ) ( )1c mz e zρ ρ ξ= −    (2) 

where e0 is the porosity coefficient as defined by 

min
0

max

1 Ee
E

= −  (3) 

According to the Gaussian random field scheme, the mechanical properties of the closed-cell 

cellular solids can be formulated as [34, 58] 
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( ) ( ) 2.3
1.121

1.121
m

c

E z e z
E

ξ− 
=  
 

 (4) 

from which the mass density coefficient em can be derived as 

( )( )
( )

2.3
01.121 1 1

m

e z
e

z

ξ

ξ

− −
=  (5) 

where ( )zξ is the distribution function of the aforementioned porosity distributions as shown in Fig. 

2, which can be written as 

PD1: ( ) cos zz
h
πξ  =  
 

 (6) 

PD2: ( ) cos +
2 4

zz
h

π πξ  =  
 

 (7) 

The effective Young’s modulus Ec is determined by the Halpin−Tsai micromechanical model as 

[28, 48-53] 

( )
( )

( )
( )

L L GPL T T GPL
M M

L GPL T GPL

3 1 5 1+
+

8 1 8 1c

V V
E E E

V V
ξ η ξ η
η η

+
= × ×

− −
 (8) 

with  

( )
( )

GPL M
L

GPL M L

1E E
E E

η
ξ
−

=
+

, ( )
( )

GPL M
T

GPL M T

1E E
E E

η
ξ
−

=
+

 (9) 

( )L GPL GPL T2 2a bξ ξ= × , ( )T GPL GPL2 b tξ =  (10) 

( )
M GPL

GPL
M GPL GPL GPL1

WV
W W

ρ
ρ ρ

=
+ −

 (11) 

where EGPL and EM are the Young’s moduli of GPL nanofillers and metal matrix, respectively. aGPL, 

bGPL, tGPL, aGPL/bGPL and bGPL/tGPL are the length, width, thickness, aspect ratio and width-to-thickness 

ratio of GPLs, respectively. VGPL is the volume fraction of GPLs. WGPL is the GPL weight fraction. 

The mass density of the composite is given by the rule of mixture as 

GPL GPL M Mc V Vρ ρ ρ= +  (12) 

where GPLρ and Mρ are the mass densities of GPLs and metal matrix, respectively. Note that the volume 

fractions MV and GPLV are related by M GPL 1V V+ = . 

3. Equations of motion 
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A rotationally restrained FG-GPLRC porous arch, having a central angle 2Θ, radius R and arc 

length S, under a uniform step load is shown in Fig. 2. The stiffness of the elastic rotational constraints 

at both ends is k, and θ is the angular coordinate in the coordinate system. 

 
Fig. 2 Configuration and coordinate system of a FG-GPLRC porous arch under a uniform step load 

It is assumed in the present analysis that (i) the FG-GPLRC porous arch is linearly elastic; (ii) 

the lateral and torsional deformations of the arch are fully restrained; and (iii) the damping effect is 

neglected in this study. According to the classical arch theory [48], the displacement fields of the arch 

are presented as 

( ) ( ), ,V t v tθ θ=  (13) 

( ) ( ) ( ), , ,zW t w t v t
R

θ θ θ′= −  (14) 

where , V and W are the displacements of the arch along z and y directions, respectively; 

v and w are the mid-plane (z = 0) displacements of the arch in the z and y directions, respectively. 

Accordingly, the nonlinear strain-displacement relations are derived from the above displacement 

field as 

2

2
v zw v v

R
ε

′
′ ′′= − + −


    (15) 

in which v v R=  and w w R=  are the dimensionless radial and axial displacements, respectively. 

The governing equations of the rotationally restrained FG-GPLRC porous arch can be derived 

by using the Hamilton’s principle given as 

( )2

1

0
t

t
T U dtδ − =∫  (16) 

with 0v wδ δ= =   at  t = t1, t2  for θ−Θ ≤ ≤ Θ . The kinetic energy T and total potential energy 

U are derived as 

( ) ( )d dθ′ ≡
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( )
2

2 2
/2

/

1 z
2

h

h

WVT Rb z d d
t t

ρ θ
Θ

−Θ −

    ∂ ∂
+    

     
=

∂ ∂∫ ∫  (17) 

( )
/2 2 2 2

/2

1 1
2 2

h

ih
i

U Rb E z dzd qR v d kvε θ θ
Θ Θ

−Θ − −Θ
=±Θ

′= − + ∑∫ ∫ ∫    (18) 

Substituting Eqs. (13), (14), (15), (17) and (18) into Eq. (16), and setting the coefficients of vδ   

and wδ   in Eq. (16) to be zero, the governing equations of the arch can be derived as 

( ) 1
0

INR I w v
R

′ ′= −   (19) 

( ) 2 1 2
0

I INR NRv M qR I v w v
R R

′′ ′′ ′+ − − = − +     (20) 

where 

2
11

11 2
BvN A w v v
R

′ 
′ ′′= − − + + 

 


    (Axial compressive force) (21) 

2
11

11 2
DvM B w v v
R

′ 
′ ′′= − + − 

 


    (Bending moment) (22) 

and the inertia related terms and the stiffness components are given by 

{ } ( ){ }
2

2
0 1 2

2

, , 1, , dz
h

h

I I I b z z zρ
−

= ∫  (23) 

{ } ( ){ }
2

2
11 11 11

2

, , 1, , dz
h

h

A B D b E z z z
−

= ∫  (24) 

In this analysis, the FG-GPLRC porous arch with elastic rotational constraints at both ends is 

considered, and the associated boundary conditions are 

0 =0v w M kv±Θ ±Θ′= = − ±  ，  at θ = ±Θ  (25) 

and the initial conditions at t = 0 are assumed to be 

0v w= =   and 0v w= =    (26) 
where the dot over v  and w  denotes differentiation with respect to t.   

4. Nonlinear equilibrium 

4.1 Limit point equilibrium 

When the FG-GPLRC porous arch is subjected to a static uniform load q, the inertia terms in 

Eqs. (19) and (20) are neglected, the equilibrium and stability equations of the arch can be obtained 

as  
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( ) 0NR ′ =  (27) 

( ) 2 0NR NRv M qR′′ ′′+ − − =  (28) 

Substituting Eqs. (21), (22) and (27) into Eq. (28) yields the following fourth-order differential 

equation in the radial direction of the arch as follows 

2

ivv v P
µ

′′+ =


  (29) 

where µ is the dimensionless axial force parameter defined by 

2
2 NRµ

κ
=  with 

2
11

11
11

BD
A

κ = −  (30) 

and the dimensionless load P is defined by 

qR NP
N
−

=  (31) 

The dimensionless radial displacement v  can be obtained by solving Eq. (29) in conjunction 

with the associated boundary conditions specified in Eq. (25) as 

( ) ( ) ( ) 22 2 2
12

1 cos cos
cos cos

2
B KPv K

R
β µθ

β µθ β µ θ β
µ

= −
− − + −  

  (32) 

with 11 11B B A= , β µ= Θ , α is the relative flexibility of the elastic rotational constraints defined 

as kSα κ= . The parameters K1 and K2 are given by  

1
2 1

2 cos sin
K α

αβ β β
+
+

= − , 2
2

2 cos sin
K αβ

αβ β β+
=  (33) 

Substituting Eq. (32) into Eq. (21) gives the nonlinear relationship between the parameter β and 

the applied load P as 

2
1 1 1 0A P B P C+ + =  (34) 

with  

2
11 12

sin cos sin cos 1
4 6

A K Kβ β β β β β
β β

− −
+ +=  (35) 

( )

0 2
1 12

0 1

1
sin cos 1 cos sin sin cos

3 2
sin 1

B KK K

B K

B β β β β β β β β β
β λ β

β
λ

 − − −
+ + − 

 
+

−

=
 (36) 

( ) ( )22 2
2 2 0 20 211

21 2

4 cos sin cos sin
4

K K B KB KrC
β β β β β ββ

λ λ
β

λβ
− + −

+= +  (37) 
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where B0 = B/h and 11 11r A hκ= . λ  is the arch geometrical parameter as given by 

2

2
R S

h h
λ Θ Θ
= =  (38) 

When a uniform radial load is applied to the FG-GPLRC porous arch, the arch may buckle in a 

symmetric limit point instability mode. The limit point loads may be either maxima or minima on the 

nonlinear equilibrium path and can be found from 

2
2 2 2 0A P B P C+ + =  (39) 

with 

1
2 14A A Aβ

β
∂

−
∂

= , 1
1 12 4 2BA BB β

β
∂

− + −
∂

= , 1
2 12 CBC β

β
∂

− +
∂

=  (40) 

By solving Eqs. (34) and (39), combining Eq. (32), the solutions of the limit point load and limit 

point equilibrium path of FG-GPLRC porous arches under a uniform radial load can be determined. 

4.2 Bifurcation equilibrium 

The FG-GPLRC porous arch with with elastic rotational constraints may also buckle in an anti-

symmetry bifurcation mode. The critical condition for equilibrium may be stated that the second 

variation of the total potential of the arch system is equal to zero for any admissible infinitesimal 

variations of the deformation. Thus, the differential equation for bifurcation buckling is [45] 

2 0
ivv v
µ

′′+ =
% %  (41) 

The general solution of Eq. (41) is 

( ) ( )1 2 3 4sin cosb E E Ev E θ µθ µθ+ + +=%  (42) 

where E1, E2, E3 and E4 are the undetermined coefficients. 

0b bv w= =% % , 0b
b

v kv
R
κ ′′

′+ =
% %  at θ = ±Θ  (43) 

Substituting Eq. (43) into Eq. (42) obtains 

1

2

3

4

1 sin cos
1 sin cos
0 1 2 sin cos 2 cos sin
0 1 2 sin cos 2 cos si

0

0n

0
0

E
E
E
E

β β
β β

µαβ β µ β µαβ β µ β
µαβ β µ β µαβ β µ β

−Θ − 
 Θ 
 − + − −
 − − − − 

   
   
   =   
   
     

 (44) 

To obtain the non-trivial solution for the coefficients E1, E2, E3, and E4, the determinant of the 

coefficient matrix must be zero, which leads to the characteristic equation as follows 
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2sin cos sinsin cos 0
2 2 2
β β ββ β β
α αβ αβ

    
+ − + =    

    
 (45) 

The critical dimensionless axial force parameter bβ  for the bifurcation buckling of FG-GPLRC 

porous arches can be obtained when the first factor of Eq. (45) vanishes and leads to 

b b bβ η π µ= = Θ  (46) 

Substituting Eq. (46) into Eq. (30), the axial compressive force Na of the FG-GPLRC porous 

arch with elastic rotational constraints corresponding to an anti-symmetric buckling is obtained as 

( )
( )

22

22 2
bb

bN
R S

η π κµ κ
= =  (47) 

The bifurcation equilibrium condition of the arch can be determined from the following equation 

by substituting Eq. (46) into Eq. (34) as  

2
3 3 3 0A P B P C+ + =  (48) 

with  

3 1, b
A A β η π== , 3 1, b

B B β η π== , 3 1, b
C C β η π==  (49) 

from which the bifurcation load is solved as  

2
3 3 3 3

3

4
2

B B A C
P

A
− ± −

=  (50) 

The existence of real solutions in Eq. (50) requires 2
3 3 34 0B A C− ≥  , which gives a critical 

geometric parameter 1bλ that triggers the bifurcation buckling of the arch. At the bifurcation point, the 

arch bifurcates from its primary equilibrium path to the bifurcation equilibrium path which can be 

found by assuming its postbuckling displacement tv  as [59] 

t s av v v= +    (51) 

where sv is the symmetric component of the displacement as follows 

( ) ( ) ( ) 22 2 2
12

cos cos1cos cos
2

b b
s b b b b b

b

B KPv K
R

β µ θ
β µ θ β µ θ β

µ
−= − − + −  

  (52) 

and av is the anti-symmetric component given as 

( )
( )2 2 2

sin
cos 1 2

b b

b b b
av K µ θ µ θ

µ µ αµ
 

− 
Θ + Θ

=


  (53) 

where the amplitude parameter K can be solved by substitution of Eq. (51) into Eq. (21) then 
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integration of Eq. (21) along the arch length as 

2 2
4 4 4 4 0A P B P C D K+ + + =  (54) 

with  

4 3A A= , 4 3B B= , 4 3C C=  (55) 

and D4 is 

( )
( )

2 4 2

2 2 23 24
12 cos 4 4 3 sin

4 cos4 2 1 cos
b b b b b

b bb b b

D
β β α β αβ β

β ββ αβ β

+ − −

+
= +  (56) 

The bifurcation equilibrium path can then be determined by combining Eqs. (51) and (54). The 

amplitude parameter K can be solved from Eq. (54) as follows 

2
4 4 4

4

A P B P CK
D

+ +
= ±

−
 (57) 

5. Dynamic buckling analysis 

5.1 Dynamic buckling load 

Under a small step load, the FG-GPLRC porous arch oscillates about its equilibrium position 

and does not enter into its unstable equilibrium path. Once the applied load is sufficiently large such 

that the arch reaches its unstable equilibrium path, dynamic buckling will occur. The energy-based 

method is employed in this section to derive the dynamic buckling load. For a conservative system, 

the total energy Π  of the arch remains constant 

constantU TΠ = + =  (58) 
Substituting Eqs. (21) and (22) into Eqs. (17) and (18) and dividing by Rκ , respectively, the 

dimensionless kinetic energy T  and total potential energy U  can be expressed as 

( )
2 /

2 2
2

/2
z

2
h

h

R b VT dWz d
t t

ρ θ
κ

Θ

−Θ −

    ∂ ∂
+    

     
=

∂ ∂∫ ∫  (59) 

2
2

2 5 3
11

2

1
2 4 i

i

v vr vU dqRβ
αλ κ

θ
µ

Θ

=±Θ−Θ

′′ 
′= − +  Θ 

+ ∑∫
 

  (60) 

It is noted that the arch is initially at rest before the step load is applied. Herein, the total energy 

of the system is equal to zero, that is 0U TΠ = + = . Since the dimensionless kinetic energy T  is 

always positive, the total energy 0Π =  is true only when the dimensionless total potential energy

0U ≤ . In other words, the condition for the oscillation to occur is 0U ≤ , and its critical state is  

0U =  (61) 
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As previously discussed, the FG-GPLRC arch may buckle in either a limit point instability mode 

or a bifurcation mode. When a limit point buckling occurs, substitution of Eq. (32) into Eq. (60) gives 

the dimensionless total potential energy U  as follows 

( )2
5 5 5U A P B P C= Θ + +  (62) 

with 

( ) ( )
2

2
1 1

2
1

5

sin cos sin
2 2sin cos

2
sin 4 6 3

6

K K

K

A
αβ β β β β

β β β
α

β αβ α
α α

+ +
+ −

+ +
+ +

=
 (63) 

( )

( )

22

5
2

1

2 2
1

2 4 sin 2 cos sin2 sin cos
3

cos sin sin

BK
R

B K

K

µβ α β αβ β ββ β β
αβ

αβ β β αβ β

αβ

 −
=

+

+
− + − 


+
+


 (64) 

( )24 2 4 2 2 2
211 2

25 2 2

2 cos sincos sin
2 2
sin BKr B K

R
C

R
µ β β ββ µ β β β β

λ αβ β β
− +

+ + += 
 

 (65) 

For bifurcation buckling, the dimensionless total potential energy U   can be derived by 

substituting Eq. (51) into Eq. (60) as 

( )2 2
6 6 6 6U A P B P C D K= Θ + + +  (66) 

with 

6 5, b
A A β η π== , 6 5, b

B B β η π== , 6 5, b
C C β η π==  (67) 

and D6 is  

( )26

2

2 2

2 sin cos+
2 cos2 1

b b b b

b bb

D αβ β β β
β βαβ

−

+
=  (68) 

The arch remains unbuckled and oscillates around its stable equilibrium position under a small 

step load but will move into an unstable equilibrium position and lose its in-plane stability in the 

dynamic buckling mode when the step load is large enough. Hence, another necessary condition for 

dynamic buckling to take place is that the oscillation of the arch induced by the step load needs to 

attain the unstable equilibrium position. 

In what follows, an aluminum-based metal matrix with the material properties EM = 70GPa and 
3

M 2700kg mρ = is chosen in the following study. The FG porous arch (b×h = 0.03m×0.025m) is 

reinforced by GPLs (EGPL = 1010GPa, 3
GPL 1062.5kg mρ = , aGPL = 2.5µm, bGPL = 1.5µm and tGPL = 

1.5nm) uniformly dispersed in the metal matrix. For the limit point dynamic buckling, a rotationally 

restrained FG-GPLRC porous arch (PD2 pattern) for 0.02α =  is investigated, and its limit point 
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dynamic buckling load is presented in Fig. 3, where vc is the displacement of the arch crown; f is the 

rise of the arch. The solid line is the nonlinear equilibrium path calculated from Eqs. (32) and (34) in 

which “ab”, “bc”, and “cd” are the primary stable equilibrium path, unstable equilibrium path, and 

remote stable equilibrium path, respectively. The dash line represents the total potential energy U

corresponding to the nonlinear equilibrium path obtained from Eq. (62). Noted that Nb0 is the value 

of Nb of the aluminium-based metal arch. 

 
Fig. 3 Limit point dynamic buckling of an FG-GPLRC porous arch (PD2 pattern) for 0.02α =  

As shown in Fig. 3 that there exist two possible points (n and m) in the total potential energy 

curve at which 0U =  and the arch may experience dynamic buckling under a uniform step load. At 

point m, its corresponding point on the nonlinear equilibrium path is located in the remote stable path 

“cd” and is a stable point where the arch does not buckle dynamically. However, at point n, its 

corresponding point e with qR/Nb0 = 0.6021 on the nonlinear equilibrium path is located in the 

unstable equilibrium path bc. This means that under a uniform step load qR/Nb0 = 0.6021, the arch 

will oscillate to the unstable equilibrium point e and lose its in-plane stability dynamically by 

snapping through from the unstable equilibrium point e to the remote stable path “cd”. Hence, the 

limit point dynamic buckling load of the FG-GPLRC porous arch is determined to be 0.6021 in this 

loading case. Moreover, the limit point dynamic buckling load and the corresponding axial force can 

be determined by solving Eqs. (34) and (62) simultaneously as shown in Fig. 4. 
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Fig. 4 Limit point dynamic buckling load of an FG-GPLRC porous arch (PD2 pattern) for 0.02α = . 

The behavior of anti-symmetric bifurcation dynamic buckling is depicted in Fig. 5 where the 

results of a rotationally restrained FG-GPLRC porous arch (PD2 pattern) for 0.5α =  are presented. 

It is noted that the load increases along the primary stable equilibrium path ab (solid line) until the 

upper bifurcation point g is reached first and the arch buckles along the bifurcation unstable 

equilibrium path “gh” in an anti-symmetric mode. The potential energy corresponding to the 

bifurcation unstable equilibrium path “gh” is calculated by Eq. (66) and represented by a thick dash 

line. Note that the criterion in Eq. (61) is satisfied at point o only and its corresponding point in the 

nonlinear equilibrium path is point s with qR/Nb0 = 0.7137 located on bifurcation unstable equilibrium 

path “gh”. From the energy conservation principle, the oscillation of the arch under a uniform step 

load can reach the unstable equilibrium position s with zero kinetic energy, leading to an anti-

symmetric bifurcation dynamic buckling which makes the arch jump to the remote equilibrium branch 

“hd”. Hence, the uniform step load qR/Nb0 = 0.7137 corresponding to the point s is defined as the 

bifurcation dynamic buckling load. It should be mentioned that this value can also be determined by 

solving Eqs. (54) and (66) simultaneously. 
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Fig. 5 Bifurcation dynamic buckling of an FG-GPLRC porous arch (PD2 pattern) for 0.5α =  

5.2 Dynamic buckling mode switching 

As aforementioned, the bifurcation buckling of the FG-GPLRC porous arch may occur when

1bλ λ≥ . However, in some cases, the bifurcation point is located on the descending branch of the 

primary equilibrium path after the limit point buckling occurs, which means that the bifurcation point 

of the arch cannot be reached and the arch will buckle in a symmetric limit point instability mode. 

Hence, a critical geometric parameter 2bλ   that defines the switching behavior between the 

symmetric limit point instability and anti-symmetric bifurcation buckling modes can be found by 

setting the symmetric limit point buckling load obtained from Eq. (39) to be equal to the anti-

symmetric bifurcation buckling load obtained from Eq. (48) at bβ β=  . When 2bλ λ≥  , the FG-

GPLRC porous arch will buckle in an anti-symmetric bifurcation buckling mode. 

On the other hand, a critical geometric parameter sλ  that defines the lowest dynamic buckling 

load of the FG-GPLRC porous arch can be determined by using the total potential energy approach 

as shown in Fig. 6. It can be seen that, when sλ λ> , the total potential energy vanishes at two points: 

an unstable point and a stable point. The unstable point corresponds to the dynamic buckling point. 

However, when sλ λ< , the total potential energy 0U < , the arch motion cannot reach to its static 

equilibrium path and it just oscillates continuously without dynamic buckling. 
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Fig. 6 Critical geometric parameter sλ for the lowest dynamic buckling of an FG-GPLRC porous arch (PD2 

pattern) for 0.02α =  

The effects of the flexibility of the elastic rotational constraintsα  on the critical geometric 

parameters ( 2bλ , 1bλ and sλ ) of FG-GPLRC porous arches are shown in Fig. 7. It can be seen that, for 

both FG-GPLRC porous arches with the patterns PD1 and PD2, the critical geometric parameters 

increase with an increase of the rotational restraint stiffness. In region I ( 2bλ λ>  ), the dynamic 

buckling of the FG-GPLRC porous arch is anti-symmetric bifurcation dynamic buckling; in region II 

( 1 2b bλ λ λ≤ ≤  ), the dynamic buckling of the FG-GPLRC porous arch is symmetric limit point 

dynamic buckling or anti-symmetric bifurcation dynamic buckling depending on which one occurs 

first; in region III ( 1s bλ λ λ≤ < ), the dynamic buckling of the FG-GPLRC porous arch is symmetric 

limit point dynamic buckling; and in region IV ( sλ λ< ), the arch becomes a slightly curved beam 

and does not display dynamic buckling behavior but produces forced vibration under a uniform step 

load. 

 
(a) 

 
(b) 

Fig. 7 Critical geometric parameter for a rotationally restrained FG-GPLRC porous arch: (a) PD1 pattern; and (b) 

PD2 pattern 
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Table 1 shows the effects of the porosity on the critical geometric parameters of a rotationally 

restrained FG-GPLRC porous arch with 0.5α = , in which e0 = 0 stands for a solid arch. It is noted 

that the critical geometric parameters ( 2bλ , 1bλ and sλ ) of the FG-GPLRC porous arch increase as the 

porosity increase, which means that the porosity has a significant contribution in the dynamic 

buckling mode switching of the FG-GPLRC porous arch. 

Table 1 Critical geometric parameters of an FG-GPLRC porous arch (S/h = 50, WGPL = 0.5%, 0.5α = ) 

Distribution 
pattern 

Critical 
geometric 
parameters 

e0 

0 0.1 0.3 0.5 

PD1 2bλ  2.9377 2.9756 3.0651 3.1792 

1bλ  2.5470 2.5799 2.6575 2.7564 

sλ  1.4277 1.4462 1.4897 1.5452 
PD2 2bλ  2.9377 2.9503 2.9739 2.9906 

1bλ  2.5470 2.5619 2.5915 2.6169 

sλ  1.4277 1.4503 1.5007 1.5589 

6. Results and discussion 

6.1 Model verification 

To validate the proposed analytical method for dynamic buckling loads of rotationally restrained 

FG-GPLRC porous arches, a finite element analysis (FEA) for the dynamic buckling is performed in 

this section by using the commercial software ANSYS 14.5 with elements SHELL181 and 

COMBIN14. To model the material variation, the cross section of the arch is subdivided into multiple 

layers in the thickness direction. The material properties are assigned to each layer according to Eqs. 

(1) and (2). Since it has been illustrated by the previous works [48, 53] that 10 individual layers are 

sufficiently accurate to model an ideal FG structure. Hence, 10 layers are adopted in the numerical 

verification for efficient computation but without compromising the accuracy of the results. The 

nonlinear transient dynamic analysis executed by ANSYS 14.5 is used to obtain the dynamic response 

of the arch subjected to a uniform step load. The FE results for a rotationally restrained FG-GPLRC 

porous arch (PD2 pattern) with 0.02α =  under different step loads (i.e., qR/Nb0 = 0.4817, 0.5900 and 

0.6135) are plotted in Fig. 8a from which it can be seen that the arch motion is oscillatory under 

qR/Nb0 = 0.4817 or 0.5900 but becomes so large that dynamic buckling occurs at qR/Nb0 = 0.6135 

which is very close to the analytical limit point dynamic buckling load qcrR/Nb0 = 0.6021 obtained 

from Figs. 3 and 4. It can also be seen from Fig. 8b that the arch motion is symmetric, implying that 

the dynamic buckling of the FG-GPLRC porous arch for 0.02α = is a symmetric limit point dynamic 

buckling mode. 
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(a) 

 
(b) 

Fig. 8 A rotationally restrained FG-GPLRC porous arch for 0.02α = under a uniform step load: (a) Transient 

responses under different load amplitudes; and (b) Deformed shapes of the arch at different time. 

The transient responses of the rotationally restrained FG-GPLRC porous arch (PD2 pattern) for 

0.5α =  under the same step load are presented in Fig. 9a where the bifurcation dynamic buckling 

load can be determined in a similar way. It is worth noting that an anti-symmetric geometric 

imperfection of 0.1% arch length (S/1000) is introduced to trigger the anti-symmetric dynamic 

bifurcation behavior of the FG-GPLRC porous arch in FE analysis. Once again, the FE result 

(qcrR/Nb0 = 0.7279) agrees quite well with the analytical solution (qcrR/Nb0 = 0.7137). The deformed 

shapes of the arch shown in Fig. 9b indicate that the arch motion is anti-symmetric. Table 2 shows 

that the relative error between the present solutions and FE results is less than 2%, indicating that the 

analytical solutions agree well with the FE results. 

 

 
(a) 

 
(b) 

Fig. 9 A rotationally restrained FG-GPLRC porous arch for 0.5α = under a uniform step load: (a) Transient 

responses under different load amplitudes; and (b) Deformed shapes of the arch at different time. 
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Table 2 Comparison of dynamic buckling load for an FG-GPLRC porous arch 

Dynamic buckling load Limit point Bifurcation mode 
Present solution 0.6021 0.7137 

FE result 0.6135 0.7279 
Relative error (%) 1.85% 1.95% 

6.2 Parametric studies 

The dynamic buckling load of rotationally restrained FG-GPLRC porous arches is studied in this 

section. The effects of the GPL weight fraction WGPL and the porosity e0 on the dynamic buckling 

load of FG-GPLRC porous arches with the patterns PD1 and PD2 are shown in Fig. 10 for symmetry 

limit point dynamic buckling, and in Fig. 11 for anti-symmetry bifurcation dynamic buckling. The 

following parameters are adopted for both buckling studies in Fig. 10 and Fig. 11 as: S/h = 50, h = 

0.025m, and 5λ =  . The flexibility of the elastic rotational constraints of the arch is adopted as

0.02α = for a limit point dynamic buckling study, and 0.5α = for a bifurcation dynamic buckling 

study. It is noted that the increase of the porosity e0 reduces the dynamic buckling load of the FG-

GPLRC porous arch at all specific WGPL. On the other hand, the dynamic buckling load significantly 

increase by introducing the GPLs composites, and both dynamic buckling loads increase as GPL 

weight fraction WGPL increases. Furthermore, the influences of the porosity and the GPLs 

reinforcement can be well illustrated by using the analytical equations. For example in Fig. 10a, by 

comparing to the solid arch (e0 = 0) without GPLs reinforcement, the limit point dynamic buckling 

load is increased by 32.8% when adding 1% GPLs, but reduced over 30% when introducing a porosity 

level of 0.6. Furthermore, with the porosity introduced, the dimensionless mass 0 MI bhρ  of the FG-

GPLRC porous arch decreases with the increasing of porosity e0, as shown in Fig. 12. 

 
(a) 

 
(b) 

Fig. 10 Effects of the GPL weight fraction WGPL and the porosity e0 on the limit point dynamic buckling load of an 

FG-GPLRC porous arch: (a) PD1 pattern; and (b) PD2 pattern 
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(a) 

 
(b) 

Fig. 11 Effects of the GPL weight fraction WGPL and the porosity e0 on the bifurcation dynamic buckling load of 

an FG-GPLRC porous arch: (a) PD1 pattern; and (b) PD2 pattern 

 
Fig. 12 Effect of porosity e0 on the mass of an FG-GPLRC porous arch 

 

The effect of GPL geometrical size is studied for the limit point dynamic buckling load of the 

FG-GPLRC porous arch (PD2 pattern) for 0.02α =  in Fig. 13a, while for the bifurcation dynamic 

buckling load of the FG-GPLRC porous arch (PD1 pattern) for 0.5α =  in Fig. 13b. As shown in 

these figures, the dynamic buckling load of the arch increases as the GPL width-to-thickness ratio 

and aspect ratio increase. The former effect is more significant than that of the latter one. This is 

because GPLs with a larger surface area and fewer single layers offer better enhancing effect on the 

effective Young’s modulus of the GPL reinforced porous composites according to Eq. (8). Moreover, 

the influence of GPL geometry tends to be less pronounced when bGPL/tGPL is close to 103, beyond 

which the dynamic buckling load remains almost unchanged. 
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(a) 

 
(b) 

Fig. 13 Effects of the GPL geometrical size on a rotationally restrained FG-GPLRC porous arch: (a) Limit point 

dynamic buckling load; and (b) Bifurcation dynamic buckling load  

Fig. 14 shows the influence of the geometric parameterλ on the dynamic buckling load. It can 

be seen that the dynamic buckling load of the FG-GPLRC porous arch in both buckling modes 

becomes larger as λ  increases. According to the critical geometric parameters shown in Fig. 7 and 

Table 1, for a very shallow arch having 1.7170 2.9659λ≤ ≤  , the limit point buckling is the 

dominant mode and the arch will buckle in a limit point mode dynamically. When 2.9659λ > , the 

anti-symmetric bifurcation buckling mode becomes dominant and the arch will buckle in a bifurcation 

mode dynamically. 

 
Fig. 14 Effect of the arch geometric parameter λ on the dynamic buckling load of an FG-GPLRC porous arch 

7. Conclusions 
The dynamic buckling behavior of rotationally restrained FG-GPLRC porous arches under a 
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point and anti-symmetric bifurcation dynamic loads have been derived for rotationally restrained FG-

GPLRC porous arches. The influences of porosity, GPL weight fraction, structural dimensions as well 

as arch geometries on the dynamic buckling behavior have been discussed in detail. It is found that 

the dynamic buckling load of the arch can be remarkably enhanced with the addition of a low content 

of GPLs. However, the dynamic buckling load is reduced as the porosity increases. Numerical results 

also showed that GPLs with a larger surface area and fewer single layers are preferred reinforcing 

nanofillers. The FG-GPLRC porous arch supported by elastic rotational constraints at both ends can 

buckle in either a symmetric limit point mode or an anti-symmetric bifurcation mode dynamically, 

depending on the geometric parameters and elastic rotational constraints. It should be noted that 

without the analytical solutions developed herein, the mechanism governing the dynamic buckling 

mode switching behavior of the FG-GPLRC porous arch by its material and geometry parameters 

cannot be easily predicted and well understood. 
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