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Abstract 

Yaw control is one of the most promising active wake control strategies to 

maximize the total power generation of wind farms. Meanwhile, structural 

performance has been shown to need to be considered in yaw optimization. Since 

most wind turbines (WTs) are sunk into the wake flow of upstream counterparts, the 

combination of wake effects and yaw adjustment complicates the calculation of 

structural loads. However, efficient and accurate calculation of fatigue loads 

associated with yaw operation is essential to the yaw-based optimization. In this study, 

in order to efficiently evaluate the structural performance of yawed WT under wake 

effects, five fatigue loads at critical WT components and corresponding power output 

are predicted by machine learning. To achieved this, various inflow conditions, 

including both free stream and wake inflow combined with practical yaw control 
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angles, are selected as inputs to machine learning models. Then support vector 

regression (SVR) model is trained and estimated to find the optimal surrogate. The 

superiority of the selected SVR based method is verified by comparing with another 

algorithm in several metrics. The prediction accuracy under various inflow conditions, 

yaw angles, and wind speeds are analyzed in details. The results show that the 

selected features are overall sufficient to predict fatigue loads and power yield of any 

given WT in farms under yaw control. The proposed fatigue loads and power 

prediction method is expected to make contributions to the yaw-based multi-objective 

optimization of a wind farm.  
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1. Introduction 

As carbon neutrality being put on the agenda, renewable energy sources are 

being deployed on a large scale. In particular, as one of the fastest growing renewable 

energy, wind energy hits milestone with 82GW new installation in 2020 and is 

expected to have an annual installation of 180GW in future, as reported by the Global 

Wind Energy Council (GWEC) [1].  

With the boost of wind energy, large wind farms with huge capacities play an 

important role in providing sustainable green electricity. However, wind turbines 

(WTs) installed in deep rows of a wind farm are exposed to variable inflow profiles 

and mechanical loads caused by wake effects from upstream WTs [2]. The wake 

effects are characterized as higher turbulent level and lower velocity compared with 

the free stream. More importantly, multi-wake interactions and wind direction 

changes increase the complexity and imbalance of wake flow, lowering the power 

generation and exacerbating fatigue loads. Therefore, mitigating the wake effects 

experienced by downstream WTs is critical for lifetime extension and power output 



 

 

improvement. 

Recently, the techniques of active wake control (AWC) have been proven worth 

considering [3,4]. Active yaw control (AYC), as one of the most promising AWC 

methods, is a strategy to intentionally redirect the wake away from the downstream 

WTs with the purpose of achieving the net power increase in the entire wind farm [5] 

[3,6]. The superiority of yaw techniques in terms of enhancement in power yield is 

verified by making comparison with other AWC techniques like tilt and pitch control 

[7] [8]. The performance of yaw misalignment was investigated experimentally 

through Ref. [6,9–11], of which significant power increase of a wind farm [6][10] and 

the secondary wake steering [11] were observed. Miao et al. [12] further confirmed 

the effectiveness of wake steering optimization with positive yaw angles while 

claiming that negative yaw angles may have adverse effects. The authors indicated 

that this phenomenon can be explained as the weaker wake deviation as a result of its 

reaction with clockwise-rotating blades. Additionally, Simley et al. [13] conducted a 

comparative study and found that accounting for dynamic variability of wind 

direction can benefit yaw-based optimization in power improvement. The farther the 

separation distance, the greater the effectiveness. Similarly, variability and uncertainty 

of wind direction were considered in the yaw optimization strategies by Rott [14] and 

Quick [15]. 

Active yaw control has been proved to be beneficial in terms of the total power 

yields of wind farms, but some studies [4,5,16] show that improperly designed yaw 

angle will lead to the increase of fatigue loads. Consequently, when applying yaw 

optimization to maximize the power generation in a wind farm, it is essential to take 

the corresponding mechanical loads into account in case the adverse structural 

performance offsets the benefit of yaw-based power increase.  

In order to predict the yaw control-related fatigue loads of WTs in wind farms, 

the fatigue characteristics of WT in yaw conditions and the factors affecting them 

need to be clarified. Studies[17,18] have found that damage equivalent load (DEL) of 

blade root edgewise moment is mainly influenced by gravitational loads, therefore, 



 

 

being almost flat with the variation of yaw angles. However, the equivalent flapwise 

moment at blade root is highly related to unstable wind loads and therefore the yaw 

angles. In particular, the DEL of flapwise moments show asymmetric around the 

unyawed baseline, of which positive yaw angles result in lower DEL while negative 

yaw angles lead to higher DEL [7,19]. The mainstream explanation [20–23] is that 

that is attributed to wind shear since it counteracts the advancing and retreating effect 

of blades for positive misalignment, resulting in the lowest loads at some positive yaw 

angles. Accordingly, Ennis et al. [21] suggested that wind shear should be taken into 

account in the wind turbine yaw optimization controller. As for the effect of 

turbulence intensity on DEL, Kragh and Hansen [24] revealed that after wind speeds 

slightly higher than rated, optimal wake steering can be achieved without loss of 

power, while mitigating fatigue loads on downstream WTs due to the reduction of TI 

enabled by wake redirection .When the TI is low, the flapwise DEL can be 

significantly influenced by yaw angles. As a result, a maximum of 20% fatigue loads 

reduction can be achieved at lower TI by yaw but it may be penalized by the load 

increase of other components of the turbine. Likewise, Kanev et al. [22] concluded 

that increasing TI makes flapwise DEL less sensitive to yaw angle while its effect on 

tower bottom needs further investigation.  

Although the existing models with sufficient resolution are able to capture 

dynamic structural performance from wind conditions [3,25], they are 

computationally expensive and therefore not suitable for applications requiring quick 

responses and many assessments, particularly yaw-based optimization. Besides, as a 

rudimentary forecasting methods, lookup table (LUT) [23] seems to be insufficient to 

provide accurate results. In this case, machine learning-based method can become a 

favorable surrogate to predict fatigue loads of wind turbines with both high accuracy 

and efficiency. With data stemming from SCADA measurements, Obdam [26] trained 

a neural network (NN) model to estimate the tower bottom loads of an offshore WT. 

Cosack et al. [27] tested the prediction performance of four load estimation 

procedures, including classical regression methods, conventional physical models, 



 

 

state estimators and NN models. Among them, the statistical parameters of standard 

signals without any extra sensors were mapped to the fatigue loads by a NN model 

and the results showed relatively small errors. In Ref. [28], flapwise and edgewise 

blade root moments were forecasted with Levenberg-Marquardt back-propagation NN 

model, of which seven SCADA signals in 48 intervals of 10-min statistics were 

adopted to train the model. Barthorpe et al. [29] carried out a stationary fatigue 

experiment for a 9m CX-100 blade and employed non-linear NN models including the 

Auto-Associative NN model (AANN) and Radial Basis Function (RBF) networks 

model to commence failure detection. Besides, tower top oscillations from a powerful 

aeroelastic simulation tool, OpenFAST, were trained by different Artificial Neural 

Networks (ANN) to construct an economic-tracking Nonlinear Model Predictive 

Control (etNMPC) system to reduce the fatigue loads of WT tower [30].  

However, the machine learning-based method has rarely been studied before in 

yaw control-related dynamic responses and power prediction, especially under wake 

conditions. Fatigue forecasting in previous study concerning yaw control is made 

using either LUT [23] or steady-state model [31]. On the other hand, data obtained 

from experiments require costly load measurements and a large effort of 

post-processing [28]. If the sample size is not big enough, the prediction accuracy 

cannot be guaranteed. Also, the cup anemometer of SCADA installed on the nacelle 

can only record one wind speed. As mentioned before, wind shear has a significant 

effect on flapwise equivalent loads, therefore only one wind speed (usually at hub 

height) is inadequate to describe the wind profile for free flow, let alone the wake 

flow and wake superposition. 

In this study, yaw control-related fatigue loads and power prediction under wake 

effects are performed using support vector regression combined with high-fidelity 

aero-elastic tool. The main contributions of this study are outlined as follows. (1) 

Typical relative distances between WTs are employed to generate various wake 

effects in wind farms and almost 60% fatigue forecasting of yawed WT are calculated 

based on wake inflow conditions. (2) Yaw angles from -30 degrees to 30 degrees are 



 

 

considered in fatigue loads prediction, making it valuable in building up yaw-based 

multi-objective optimization control system. (3) Wind shear and turbulent intensity 

are considered to generate both free stream and wake flow, so that the true responses 

of components under yaw controls can be reflected. (4) Due to the adaptation of a 

machine learning algorithm and high-fidelity aero-elastic code, the proposed model is 

cost-effective and reliable, which is particularly suitable for yaw-based real-time 

optimization. (5) The wind profile input of the proposed prediction method can be 

obtained by either numerical model or LiDAR measurements. The easy availability of 

data ensures the universality and practicability of this model.  

The remaining of this paper is organized as follows. In section 2, the modeling 

approach will be introduced in detail, of which the wind field modeling approaches 

including both free flow and wake flow are described. The second part of this section 

shows how the fatigue loads are calculated and then converted into comparable DEL. 

In section 3, the machine-learning based method for fatigue loads prediction and 

corresponding scenarios of data preparation are discussed. Then the modelling 

procedure and evaluation criteria are also introduced. In section 4, the superiority of 

the fatigue loads and power prediction method is verified and the factors that may 

affect prediction accuracy are investigated. Finally, key findings and conclusions of 

this study are drawn and listed. The proposed method is capable of predicting fatigue 

loads in yawed conditions with high accuracy and efficiency and therefore making 

contributions to yaw-based multi-objective optimization.  

2. Fatigue modeling of WTs in wind farms 

In order to predict the turbine fatigue loads and power output through the method 

of machine learning, a large amount of effective data is needed to build the database. 

Compared with data from field measurements, wind field modeling can conveniently 

generate a large dataset for training uses. Besides, all possible inflow conditions can 

be taken into account through modeling, making the database diverse enough to 

predict the fatigue loads under yaw control of any given WT in farms. In this study, 



 

 

thousands of fatigue load modeling are carried out first through a method that strikes a 

balance between accuracy and computational efficiency. The NREL 5MW baseline 

wind turbine (NREL 5MW hereafter) is adopted as the turbine model. 

This section presents the method of full-field turbulent wind modeling, including 

both free flow and wake flow. Furthermore, an aeroelastic method of WT fatigue load 

calculation for any given inflow condition is introduced. According to the common 

practice of fatigue estimation, the obtained time-series data is then transferred to 

damage equivalent loads (DEL) for comparison. 

2.1 Wind field modeling  

In this study, thousands of realistic time series of wind fields are generated by the 

TurbSim code, which is a stochastic, full-field and turbulent wind simulator 

developed by NREL [32]. In TurbSim, by means of inverse Fast Fourier Transform 

(IFFT), classical turbulent spectral models, such as IECKAI and IECVKM [32], can 

be used to generate time-series of three-components wind-speed vectors at points in a 

vertical grid. The height and width of the wind field grid are selected to be 240m and 

1084m, respectively, to be large enough to accommodate different layouts of WT 

pairs. According to the IEC standard [33], 600s continuous operational signals of the 

fluctuating load are required for DEL calculation. Therefore, the analysis time of 

TurbSim is set as 800s and only the last 600s are selected for stability. Characteristics 

of flow field like turbulent intensity, shear exponent and mean velocity at reference 

height can be specified. Detailed information of parameter selection regarding wind 

speed, turbulent intensity and shear exponent will be explained in Section 3.2 

Scenarios of dataset preparation. 

With the large-scale exploitation of wind power, wind turbines in a farm are 

typically sunk into the wake of their upstream counterparts. Therefore, in the far wake 

region (usually about 5D, D denotes the diameter of WT) where downstream WTs are 

typically installed, the flow field perceived by these WTs is quite complicated. 

Compared with the sheared free stream directly generated by TurbSim, the wake flow 



 

 

behind a WT is always characterized as approximately three-dimensional Gaussian 

shape with lower wind speed and higher turbulent level [34]. Moreover, the relative 

distances between WTs are various due to differences in the layout of different wind 

farms and changes in wind direction. According to the superposition of the wake area 

and swept area of the downstream rotor, the wake inflow perceived by downstream 

WT can be categorized into three types: full wake, partial wake and mixing wake.  

In this case, an accurate description of wake development and interaction is 

essential for predicting fatigue loads and power output of WTs in wake flow. Thus, 

dynamic wake meandering (DWM) in FAST.Farm [35,36], modeling the wake-deficit 

evolution as a passive tracer with thin shear-layer approximation, is implemented to 

capture the wake characteristics and therefore derive the effective wind speed 

perceived by downstream WTs. Furthermore, since the relative distance can be broken 

down into spanwise spacing and streamwise spacing, these two factors are responsible 

for generating different layouts of WT pairs. Ultimately, various wake inflow 

conditions can be generated by the combinations of different relative distances 

between WTs and free-flow conditions. Detailed information of parameter selection 

regarding relative distances will be explained in Section 3.2 Scenarios of dataset 

preparation. 

2.2 Fatigue loads evaluation  

The NREL 5MW WT is selected as the target wind turbine model, which has a 

diameter of 126m and a hub height of 90m. For detailed specifications of NREL 5MW, 

please refer to Ref. [37]. The fatigue loads of a wind turbine is calculated by 

ElastoDyn of OpenFAST [38–40], which serves as a high-fidelity aeroelastic 

simulator in this study. ElastoDyn adopts the Kane’s equation [41] of motion to model 

a wind turbine structurally and can be stated as: 

  * 0r rF F+ =                                (1) 

where rF  and *

rF  are two sets of scalar quantities named genralized active foreces 



 

 

and generalized inertia forces, respectively. The total generalized active forces 

compose of the resultant of all applied forces acting on components of a WT, 

including aerodynamic forces, elastic forces, gravitational forces, generator forces and 

damping forces: 

r r Aero r Elastic r Grav r Generator r DampF F F F F F= + + + +            (2) 

of which, 
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where v  is the number of particles with mass in the system, iXE

rv  is the thr  partial 

velocity associated with particle iX . iS

AeroF  is the resultant force of all aerodynamic 

forces exerting on point S in blade i .  
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where V  is the potential energy and rq  denotes the generalized coordinate. N is the 

number of degrees of freedom (DOF), 
ijk  is the generalized stiffness, ( )iq t  and 

( )jq t  are the generalized coordinates related to the flexible body. 

As for generalized inertia forces, the mass of blades, hub, nacelle and tower 

contribute to the total inertia forces and can be represented as: 

* * * * *

r r B r H r N r TF F F F F= + + +                    (5) 

The generalized inertia forces assoicated with blade result from the blade’s 

distribued lineal density ( )B r : 

( )*

0

H
i i

R R
S SE E

r B B r iF r v a dr
−

= −                     (6) 



 

 

where iSE

rv  is the thr  partial velocity associated with point S in blade i  and iSEa  

is the acceleration of the same point in the inertial coordinate.  

Similarly, the distributed linear density of the tower, ( )T h , contributes to the 

corresponding generalized inertia forces: 

( )*

0

H
E T E T

r T T rF h v a dh= −                     (7) 

where E T

rv  is the thr  partial velocity associated with point T in the tower and E Ta  

is the acceleration of the same point in the inertial coordinate.  

The generalized inertia forces related with nacelle can be caused by tower 

deflections, yaw rates and tilt rates: 

( )* E D E D E N E D

r N r N rF v m a H
 

=  − +  − 
 

                (8) 

where E D

rv  is the thr  partial velocity associated with the point D in nacelle, Nm  is 

the mass of nacelle, E Da  is the acceleration of the center of nacelle mass in the 

inertial coordinate, E N

r  is the thr  partial angular velocity associated with the 

nacelle and E DH


is the time derivative of angular momentum of the nacelle about its 

mass center in the inertia frame. 

Similarly, the generalized inertia forces related to hub are: 

 ( )* E C E C E H E C

r H r H rF v m a H
 

=  − +  − 
 

                (9) 

where E C

rv  is the thr  partial velocity associated with the point C in nacelle, Hm  is 

the mass of nacelle, E Ca  is the acceleration of the center of nacelle mass in the 

inertial coordinate, E H

r  is the thr  partial angular velocity associated with the 



 

 

nacelle and E CH


is the time derivative of angular momentum of the nacelle about its 

mass center in the inertia frame. 

For wind turbines experiencing free streams, the full-field turbulent wind vectors 

generated by TurbSim are adopted by the FAST simulator to calculate the dynamic 

structural responses. Due to the fatigue fractures usually happening in the alternating 

shear stress parts, five fatigue loads at critical components of WT are selected as the 

representatives: flapwise and edgewise bending moment of blade root, yaw moment 

of yaw bearing as well as fore-after and side-to-side moment of the tower base. 

Besides that, the power yield under corresponding inflow condition is also selected as 

an indicator.  

It is worth noting that the DOF of first and second blade flapwise modes, fore-aft 

tower bending modes and side-to-side tower bending modes, the DOF of first 

edgewise blade mode and the DOF of drivetrain rotational flexibility and generator 

are enabled. For WTs sunk into the wake flow of upstream WTs, multiple wind 

turbine combinations are needed to generate various wake flow for the uses of fatigue 

loads calculation. In this case, simulations are carried out in FAST.Farm [40,42], 

which calculates the dynamic structural loads (using OpenFAST) of given WTs in a 

plant using DWM model to account for wake development and interaction. 

By applying rainflow cycle-counting algorithm [43], a 10-min (as suggested by 

IEC standard [33]) continuous operational signals of fluctuating load can be then 

converted to damage equivalent load, giving the same fatigue damage as the real 

turbulent flow. The cycles are characterized by ranges with load-mean and an 

assumption of linear accumulation of load cycles known as Miner’s rule [44] is 

adopted. As denoted by Eq. (1): 

 
( )

i

RF
i i i

n
D

N L
=                            (10) 

where D  denotes the total damage, iN  is the number of cycles to failure, in  is the 



 

 

cycle count, and RF

iL  is the cycle’s load range about a fixed value of the mean load. 

The relationship between load range and cycles to failure can be reflected as follow 

through the S-N curve [45]:  
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                         (11) 

where ultL  is the ultimate design load of the component under consideration, MFL  is 

the fixed load mean and m  is the Wöhler exponent, which depends on the material 

of the specific components of turbines. According to the IEC standard [33], for steel 

m is 4 and for glass fiber m is approximately 8 to 12. Therefore, the Wöhler exponent 

for tower and yaw bearing is 4 and that for the blade is 10.   

The actual load cycles occur over a spectrum of the load means instead of a fixed 

mean load assumed in the above equations. Consequently, the Goodman correction 

model [45] is applied to adjust the load ranges of fatigue cycles, RF

iL , to treat the data 

as if each cycle occurred about a fixed mean load.   

 

ult MF

RF R

i i ult M

i

L L
L L

L L

 −
 =
 −
 

                       (12) 

where R

iL  is the load range of i-th cycle about a load mean of M

iL . 

3. Surrogate modeling 

The fatigue modeling method described above is sufficient to evaluate structural 

responses of a yawed WT, but are computationally expensive, let alone to find the 

optimal yaw angles for all WTs in a wind plant. Since yaw optimization usually 

requires fast and reliable evaluation of many loads and corresponding power output, a 

surrogate model based on the five outputs of fatigue modeling as well as power yield 

is developed. In this study, support vector regression (SVR) is adopted to predict five 



 

 

fatigue loads and power output due to its strong generalization ability and structural 

risk minimization principle, which has been successfully applied in non-linear 

modeling [46–48]. In the same time, a backpropagation-NN (BPNN) model [49] is 

also trained to make a comparison. It should also be noted that a convolutional NN 

(CNN) model is selected for comparison, but not presented as the low accuracy.   

3.1 The theory of SVR 

SVR, as an extension of support vector machine (SVM), was specifically 

developed by Drucker et.al [50] for regression. The algorithm determines the trade-off 

between the fitting error minimization and the smoothness of the estimated function. 

Given training vectors p

ix R , 1,...,i n=  and a vector 
ny R , the problem solved 

by SVR can be written as follows: 

*

*

, , ,
1

1
min ( )

2

n
T

i i
b

i

C
  

   
=

+ +                (13) 

with constraints, 

( )T

i i iy x b   − −  +  

( ) *T

i i ix b y   + −  +  

*, 0, 1,...,i i i n   =                       (14) 

Prediction of samples who is at least   away from their true value will be 

penalized by i  or *

i , depending on whether their predictions lie below or above 

the   tube.  

The SVR dual problem can be formulated as: 

( ) ( ) ( ) ( )
*

* * * *

,

1
min

2

T
T TQ e y

 
        − − + + − −      (15) 

with constraints, 



 

 

( )* 0Te  − =  

*0 , , 1,...,i i C i n   =                      (16) 

where e  is the vector of all ones, Q is an n  by n positive semidefinite matrix, 

( , ) ( ) ( )T

ij i j i jQ K x x x x  = is the kernel. The training vectors are implicitly mapped 

into a higher dimensional space by the function  . 

The prediction is: 

( ) ( ) ( , )i i i

i SV

y f x K x x b 



= = − +                   (17) 

where ( , )iK x x  is the kernel function. In this study, the non-linear radial basis 

function (RBF) kernel is adopted and written as: 

2( , ) exp( )iK x x x x− − = ‖ ‖                    (18) 

where   is the kernel function parameter of the RBF kernel. 

3.2 Scenarios of dataset preparation  

The aim of this study is to make fatigue loads and power prediction of yawed 

WTs under wake effects by a machine learning method. Based on the previous study 

[22,23,51,52], the power loss of WTs with yaw angle exceeding 30   would not be 

compensated by the power increase of downstream WTs. Additionally, yaw angles 

with same absolute value but opposite directions could exert different structural 

performance on WT due to wind shear [20–23]. Therefore, yaw angles are set as 0 , 

5  , 10  , 15  , 20  , 25  , 30  , of which 5−   is neglected considering its 

low improvement in power output but negative effects on structural performance. 

According to the specification of NREL 5MW [37], the cut-in and cut-out speeds 

of which are 3m/s and 25m/s, respectively. Thus, the inflow speeds are set from 3m/s 

to 25m/s with an interval of 2m/s. Besides, based on the turbulent intensity observed 



 

 

in wind farms [49], it is reasonable to set TI from 2% to 26% with an interval of 3%. 

For yawed cases under free streams (as the existing research did), the inflow 

profile would be sheared flow and can be determined by power law as follow.  

( )0 0

0

( )
z

U z u
z

=                            (19) 

where 0z  is the reference height and 0u  is the corresponding wind speed. Here the 

hub height is set as reference height and therefore the 0u  is the wind speed at hub 

height.   is the power exponent of the sheared flow, whose range is set from 0.1 to 

0.26 with an interval of 0.04.  

For yawed cases in the downstream of other WTs, the wake interaction and 

partial wake will disturb the originally ideal sheared inflow and cause added 

turbulence intensity. Despite different original wind speed and TI, the factor that 

effects wake inflows is the relative distance between WTs, which can be broken down 

into streamwise and spanwise distances (as shown in Fig.1). In terms of streamwise 

distance, 4D to 7D (D equals 90m for NREL 5MW) with an interval of 1D are 

adopted due to the typical distance of downstream WTs. For similar reasons, spanwise 

distances are set as 0D, ±0.5D, ±0.75D, ±1D, ±1.3D.  

 

Fig.1 The illustration of streamwise and spanwise distances. 

Consequently, it can be concluded that only one speed at hub height (usually 

obtained by SCADA) is insufficient to describe the inflow profiles of WTs under 

wake effects. To unify the input variables of cases under different inflow conditions, 



 

 

in this study, the initial wind speed at hub height, the shear exponent of free flow and 

streamwise and spanwise spacings that affect wake flow are represented by wind 

speed of selected nine points (three by three) at rotor plane (as demonstrated in Fig.2) 

and turbulent intensity at hub height. It should be noted that in addition to being 

obtained through TurbSim used in this study, the wind speeds of the nine points and 

TI as input variables can also be obtained through the analytical wake models or 

LiDAR measurements, giving the proposed fatigue loads and power prediction 

method great universality and practicability.  

 

Fig.2 The selected nine points representing wind profile on rotor plane. 

To systematically evaluate the structural performance of yawed WTs in wind 

farms, five fatigue loads are extracted as representatives. In addition to the DEL of 

flapwise and edgewise loads at blade root that are often employed in existing 

researches, the DEL of yaw bearing and side-to-side and fore-after tower base are also 

considered to preserve the possibility for future multi-objective optimization 

regarding wind farms. Finally, the 10-min averaged electrical power yield under 

corresponding inflow conditions is added as the sixth output variable of the database.    

By skipping redundancy and unnecessary cases, a total of 12728 10-min 

simulations are carried out to build up the database, including 5600 samples related to 

free flow and the rest of them to wake flow. Please note that two WTs with such 

numerous combinations of layouts and inflow conditions are capable of covering the 



 

 

main situations of wake superposition, therefore being sufficient to build up the 

database for the purpose of fatigue loads prediction. 

3.3 The SVR modeling procedure 

In the light of the above Eq. (13) ~ (18) and theory introduced in 3.1 The theory 

of SVR, a surrogate method using SVR for fatigue loads and power prediction is 

developed. The modeling process in this study can be divided into the following steps: 

(1). Build up the database and clarify the features and targets. In this study, 

12728 samples are prepared, including various free stream (5600 cases) and wake 

flow (7128 cases) conditions. 11 input variables are composed of 9 points (three by 

three) of 10-min averaged wind speed at rotor plane, turbulent intensity and yaw angle 

while 6 outputs are 5 representative fatigue loads of the target wind turbine and its 

power generation.   

(2). Randomly split the dataset into the training set and test set. In this study, the 

test set is 20% of the whole dataset. 

(3). Standardize the dimension features. Standardization of datasets is a common 

practice for machine learning to avoid large magnitude differences between different 

dimension features.  

(4). Tune the hyper-parameters of SVR. Hyperparameters are parameters that 

cannot be directly learned from machine learning models. When training an SVR with 

RBF kernel, the hyperparameters are the coefficient of kernel, C, and the 

regularization constant, gamma. The grid search method is responsible for exhaustive 

searching, of which the specified values of C are 1e1,1e2,1e3,1e4, 1e5, 1e6, 1e7, 1e8, 

1e9, 1e10 and the specified values of gamma are ranged from -10 to -1 with an 

interval of 1 spaced evenly on a log scale. The classical five-fold cross-validation [53] 

is employed to find the optimal hyperparameters.  

(5). Train the SVR model with the tuned optimal parameters, make predictions 

and evaluate the results. The detailed evaluation criteria for targets are explained in 



 

 

the next section.  

3.4 Evaluation criteria for fatigue and power predictions 

The performance of the optimized machine learning models can be evaluated 

using three metrics: normalized root mean square error (NRMSE), mean absolute 

percentage error (MAPE) and coefficient of regression ( 2R ). 
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where iy  is the true value of i -th sample for validation and ˆ
iy  is the corresponding 

predicted value. maxy  and miny  is the maximal and minimal value in n  samples of 

actual output set, respectively.   denotes an arbitrarily small but positive number in 

case of undefined results when y is zero while y  means the average value of actual 

output.  

Note that while the root mean square error (RMSE) is always adopted as an 

important indicator to reflect the deviation between predicted and true values, its 

value can be largely influenced by data range. To make comparisons between datasets 

and models with different scales, the normalized root mean square error (NRMSE) is 

employed instead by dividing the RMSE by the difference between the maximum and 

minimum y values. MAPE is a measure of prediction accuracy of forecasting models 

by linearly averaging all absolute percentage errors. 2R  represents the proportion of 

the variation of actual value that can be explained by the predicted value, so as to 

judge the interpretability of the regression models. 



 

 

4. Results and discussion 

4.1 Comparison and validation of the proposed forecasting method 

As the machine-learning algorithm of the proposed method for fatigue and power 

forecasting, the support vector regression method with the best performance 

(coefficient of kernel is determined to be 0.1 and the regularization constant is 100000) 

is employed in this section to verify its regression ability. Meanwhile, as a common 

practice in machine learning, the back-propagation neural network (BPNN) 

mentioned above is also tuned for comparison. By using the same database as SVR, 

the best hyperparameters, such as the number of layers and the number of neurons in 

each layer are determined by means of grid search and cross-validation. The optimal 

number for the hidden layer of BPNN is turned out to be 2 with 150 neurons in the 

first layers and 100 neurons in the second layer.   

The prediction errors of both ML methods are first listed in Table 1 for 

comparison. The coefficient of regression 2R  of both methods are relatively high, 

especially for the prediction of DEL of flapwise and yaw moment, tower-base loads as 

well as electrical power. However, 2R  of edgewise load of BPNN is smaller than 

that of SVR. As for MAPE, is most representatives’ prediction, these values of BPNN 

are about two or three times larger than that of SVR. The MAPE of SVR predicted 

results are almost within 3.5% except for the DEL of side-to-side moment at tower 

base, which can be attributed to the scenario of wind speed selection. In this study the 

selected nine points of wind speed cover the whole rotor area, whereas the wind speed 

that exerts effects on tower base is actually not included for the sake of simplicity. 

Even though, the predicted results also better match the true value with acceptable 

precision. The MAPE of power prediction from SVR is still very small, but that from 

BPNN is rather noticeable. Combined with the corresponding high performance of 

2R , this phenomenon can be caused by the relatively low performance in small power 

forecasting because in this region the ratio of error to true value will be large. This in 

turn can illustrate that the SVR model is able to provide not only good but also 



 

 

reliable regression ability in all operating ranges of the wind turbine. Since the root 

mean square error tends to penalize bias more than linearly averaged relative error 

such as MAPE, it is an ideal indicator for demonstrating how the predicted value 

deviates from the true value. It can be noticed that the standard deviation of SVR 

predicted results is smaller than the counterpart in all targets. In particular, the 

NRMSE of DEL of edgewise and yawing moment as well as power forecasting are an 

order of magnitude smaller than that of BPNN, confirming the regression stability of 

the SVR-based prediction method. 

Table 1 Prediction performance comparison for SVR and BPNN. 

ML 

methods 

SVR  BP-NN 

 2R [-] MAPE[-] NRMSE[-]  2R [-] MAPE[-] NRMSE[-] 

EdgewiseDEL  0.9963 0.4% 0.0082  0.9814 1.0% 0.0169 

FlapwiseDEL  0.9963 3.3% 0.0104  0.9926 5.3% 0.0140 

YawingDEL  0.9996 1.5% 0.0037  0.9971 5.2% 0.0104 

Side-to-sideDEL  0.9820 7.4% 0.0222  0.9799 9.0% 0.0229 

Fore-aftDEL  0.9969 2.9% 0.0100  0.9964 3.9% 0.0113 

Power  0.9995 0.7% 0.0082  0.9981 13.0% 0.0184 

Corresponding to the MAPE in Table 1, Fig.3 displays the probability density 

function of relative errors for both ML-based methods. It can be noticed that the 

overall relative errors of edge moment are an order of magnitude smaller than that of 

other indicators, of which the majority of SVR errors fall within 0.02% whereas that 

of BNPP errors are ranged in 0.04%. Additionally, over 30% of SVR predicted results 

have nearly zero error while the corresponding error probability density of BNPP is 



 

 

only about 15%. In Fig.3 (b), the probability density of both ML methods has a 

similar trend, while the SVR predicted errors are smaller compared with the BNPP 

results with similar density. The margin of SVR errors is also smaller on both sides, 

indicating a lower probability to make regression with large gaps. In Fig.3 (c), two 

almost zero error probability densities of SVR together account for more than 70% 

and as the error increase, the frequency decreases rapidly. On the other hand, the 

largest error of BPNN is about two or three times larger than that of SVR error. In 

Fig.3 (d), SVR performances slightly better than the counterpart although the trend of 

frequency is similar for both methods. The detailed analysis based on different inflow 

conditions and yaw angles will be presented in the following part of this paper to 

figure out the potential factors that may influence the accuracy of regression. In Fig.3 

(e), although the wind speed that affects fore-after moment is not included in the 

database as well, the regression ability shown in this figure is much better than the 

DEL of side-to-side moment. In Fig.3 (f), the difference in probability density is 

rather huge. Almost all SVR predicted power yields match the true value very well, 

whereas some relatively large errors occur in the BNPP results. As explained above, 

prediction gaps in low power regions may largely affect the final performance of 

BPNN.   



 

 

 

Fig.3 Probability density function of prediction error for fatigue loads and power 

output of SVR and BPNN. 

Fig.4 demonstrates the regression capability of the adopted SVR model for all 

six targets. It can be concluded that the overall regressions are rather good, returning 

high 2R  scores for fatigue loads from blade to tower base as well as power 

prediction. Fatigue loads at blade root in both directions are well forecasted within the 

whole spread of actual data. Since the variance of DEL of flapwise moment can be 

substantially affected by yaw angles while that of edgewise moment is dominated by 

gravitational load, the prediction results verify the rationality of feature selections. 

More notably, the predictions of fatigue load of the yaw bearing perfectly follow the 

true values. As for fatigue loads at the tower base, the values in both directions are 

concentrated below 20000 kN-m. The regression performance of side-to-side fatigue 

load at larger values is prone to be less accurate than that at lower values while the 

predictions of fore-after fatigue load work perform well in all fatigue ranges. 

Therefore, it is safe to say that the regression results of fatigue loads at the tower base 

are relatively high and acceptable. The predictions of power output are exceedingly 



 

 

accurate below 2500kw. On the other hand, the predicted values are slightly 

overestimated above half of the rated power and are underestimated a little when 

approaching the rated 5000kw. To sum up, the regressions of main representatives of 

wind turbine performance, including fatigue loads from blade root to tower base and 

the expected power output, prove that nine points (three by three) of 10-min averaged 

wind speed at rotor plane combined with TI and yaw angle are sufficient to determine 

turbine fatigue performance under active yaw controls.  

 

Fig.4 Regression plots of the SVR model. (a) edgewise DEL. (b) flapwise DEL. 

(c) yaw DEL. (d) side-to-side DEL. (e) fore-after DEL. (f) power output. 

Based on the analysis above, it can be concluded that SVR based method 

outperforms the BPNN based method in terms of fatigue loads and power prediction 

for yawed turbines in wind farms. The predicted value of SVR can largely determine 

the true value of all fatigue metrics and power output. The regression ability of SVR 

is also reflected in smaller mean absolute percentage error as well as higher 

probability density around zero error or steeper slop as the error value increase. By 

comparing the root square mean error, the prediction errors of SVR are observed to be 



 

 

less discrete than that of BPNN, proving its predictive stability for any given yawed 

WTs in farms.  

4.2 Performance analysis  

While the superiority of SVR on fatigue loads and power forecasting is verified, 

the potential factors that affect the prediction accuracy still need to be further 

investigated. One of the most notable contributions of this work is that the fatigue 

loads prediction of yawed WTs is not only performed under free stream but also takes 

the wake inflow into account. Besides, the yaw angles and different wind speed levels 

may also exert influence on prediction accuracy. Therefore, the factors discussed 

above are employed to study the performance of proposed fatigue loads and power 

prediction method in depth. 

Fig.5 shows the relative errors of all five fatigue loads and power output under 

both free stream and wake inflow. It can be seen that except for the side-to-side DEL 

at the tower base, the prediction precision of all other representatives is as good under 

the influence of free-flow as under the influence of wake flow, proving that 

complicated inflow conditions would not harm the accuracy of prediction. The 

performance of side-to-side moment forecasting is worthy of attention. As we can see 

the predictions under perturbed wake effects even have better performance than that 

under sheared inflow. This phenomenon can be explained by the uneven wind 

distribution in the lateral direction, which is believed to make some contributions to 

side-to-side moment prediction under yaw conditions compared with fairly uniform 

distribution under free inflows. Consequently, the complexity of inflow conditions has 

little effect on the prediction of edgewise, flapwise, yaw and fore-after DEL as well as 

power yield while the perturbed wake inflow is found to be beneficial of side-to-side 

DEL prediction. 



 

 

 

Fig.5 Comparison of prediction accuracy under free stream and wake flow conditions. 

Fig.6 illustrates the relative errors of DEL of five representative fatigue loads and 

power output concerning different yaw angles. It can be seen that the predicted results 

of edgewise DEL are highly accurate and not affected by the variation of yaw angles. 

This is due to the fact that it is mainly dominated by gravitational force as explained 

before. On the other hand, the flapwise moment at blade root can be rather different 

under different yaw control strategies. Thus, combined with the corresponding error 

bars shown above can, it can be demonstrated that its accuracy concerning different 

yaw angles is relatively consistent, except for a minimum value at five degrees. The 

predicted yaw DEL of yaw bearing also matches the true values very well at different 

yaw angles, leaving only that of 30 degrees above 2%. It is observed that the 

side-to-side DEL at tower base has the biggest relative errors at all yaw angles, mainly 

because the wind speed is chosen for this study only covers the area swept by rotor 

without considering the wind speed along with the tower. In the meantime, this figure 

reveals that its prediction accuracy is dominated by the variation of yaw angle. The 

prediction error reaches its maximal value at unyawed or nearly unyawed conditions 

and decreases as the absolute yaw angle increase. Since the side-to-side moment starts 

to become larger when the rotor plane and wind direction are not perpendicular, its 

value at unyawed conditions is relatively small, making its prediction error easier to 

be amplified. On the whole, the yaw control in the positive direction could cause more 



 

 

error compared with a yaw in the negative direction with the same absolute value. On 

the contrary, the prediction precision of fore-aft moment at tower base is less affected 

by yaw angle variation, giving the maximal value of no more than 4% at -30 degrees. 

The yaw angle seems also to have effects on the accuracy of power forecasting, of 

which bigger yaw angles cause a larger error and small angles generate little error. 

Although the yaw angles in the negative direction generally produce larger errors than 

their positive counterparts, the overall power prediction is very precise, with the 

highest error bar of less than 2%. 

 

Fig.6 The relative errors of SVR under different yaw angles. 

Fig.7 shows the regression accuracy of fatigue loads and power output in terms 

of different wind speed. It should be noted that the wind speed at hub height is chosen 

as the representative and the rated wind speed of selected NREL 5MW is 11.4 m/s. 

The prediction accuracy of edgewise DEL is found to be rarely affected by the wind 

speed though the maximal error appears around the rated speed. The error of flapwise 

DEL decreases with the increase of wind speed by and large. The biggest value 

belongs to the 3~5 m/s group, which could also be explained by a relatively small 

denominator compared with flapwise DEL under larger inflow wind speed. The 

performance of SVR on yaw DEL prediction is constantly accurate along with the 



 

 

wind speed from cut-in to cut-out, giving the biggest one of only 2.2% appeared in the 

6~8 m/s group. The obvious large error of side-to-side DEL starts to decrease after 

15~17 m/s, which means that the proposed selection of wind speed representative 

points would be more effective when the inflow wind speed at relatively large. As for 

the fore-after DEL prediction, the error increases along with the wind speed first and 

then decreases after reaching its maximal value around the rated speed. The maximal 

error of power prediction is 1.8%, indicating that the overall performance of SVR on 

this target is rather accurate. The biggest one appears at 3~5 m/s group, which usually 

corresponds to little power yield. At this speed group, an error of tens of kilowatts 

may lead to a notable relative error. However, the relative error itself is very small 

compared with the BNPP predicted results presented in Table 1. With the increase of 

wind speed, the accuracy of power forecasting increases comparatively, especially the 

wind speed after the 11.5~14 m/s group. For unyawed WT under the free stream, the 

power output can reach its rated value when the wind speed exceeds its rated speed. 

However, the asymmetric inflow in the lateral direction caused by wake flow and yaw 

angle can result in power losses to some extent and therefore increase the wind speed 

at which the rated power yield can be achieved. It is conceivable that both the yaw 

angle and the perturbed wake inflow conditions have little effect on the power 

prediction when the speed is large enough. Therefore, it is reasonable that the power 

prediction error is smaller at high wind speed. 



 

 

 

Fig.7 The relative errors of SVR under different wind speed. 

5. Conclusion 

This study aims to efficiently and accurately predict yaw control-related fatigue 

loads and power output based on machine learning with the consideration of wake 

effects in wind farms. The NREL 5MW reference wind turbine is utilized as the 

turbine model. The TurbSim is adopted to generate realistic free flow and its 

combination with FAST.Farm is responsible for producing various perturbed wake 

flows. Fatigue loads at blade root, yaw bearing and tower base where fatigue fractures 

usually happen as well as corresponding power yield are computed by a high-fidelity 

aeroelastic code OpenFAST and chosen as the output variables of machine learning. 

Due to the consideration of wake effects and yaw angles in fatigue loads and power 

prediction, the proposed method can make contributions to yaw-based multi-objective 

optimization of wind farms. The main conclusions are drawn and listed as follows. 

(1) A comparative study has been performed among different machine learning 

algorithms to verify the superiority of the proposed prediction approach. The 

study shows that the accuracy of SVR predicted results of all five fatigue 



 

 

loads and power output are relatively high and the dispersion of errors is 

small. Further analysis also indicates that the complicated wake inflow has 

less effect on prediction accuracy compared with WT perceived free stream. 

In particular, the asymmetric wake inflow has proven to be beneficial for 

side-to-side moment forecasting.  

(2) Nine points (three by three) of 10-min averaged wind speed covered rotor 

swept area combined with turbulent intensity and yaw angle are proved to be 

sufficient to forecast five fatigue loads at critical components and power 

yield under active yaw controls. Most of the output variables have prediction 

errors of no more than 3.5%, of which edgewise DEL and power output have 

even smaller prediction errors, within 1%. Considering the wind speed along 

the tower is not included, an overall error of 7.4% and a regression 

coefficient of 0.982 of side-to-side moment at tower base is acceptable.  

(3) The accuracy of edgewise and fore-after moments are found to be less 

affected by the variation of yaw angles. However, the prediction error of 

side-side moment at tower base seems to strongly depend on yaw angle. Its 

maximal value is achieved at zero or nearly zero yaw conditions and 

decreases with the increase of absolute yaw angles. Since the side-to-side 

DEL is relatively small when the rotor is perpendicular to the wind direction, 

the denominator of relative error may amplify the prediction gap. Besides, 

the prediction of side-to-side DEL with negative yaw angles tends to be more 

accurate than that with positive yaw angles. 

(4) The variation of wind speed has proven to have little effect on the prediction 

of edgewise DEL. However, the prediction error shows an obvious decrease 

after the 9~11.4m/s wind speed group, indicating that the prediction of this 

target can be more precise when the inflow wind speed is relatively large. 

Similarly, the prediction accuracy of power output also increases with the 

increase of wind speed. Since the yaw angles and disturbing wake inflow can 

exert little effects on power output when the wind speed is large enough, the 

prediction gap is small and therefore has a rather high accuracy.    
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