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Abstract

Adverse Events (AE) are harmful events re-
sulting from the use of medical products. Al-
though social media may be crucial for early
AE detection, the sheer scale of this data
makes it logistically intractable to analyze us-
ing human agents, with NLP representing the
only low-cost and scalable alternative.

In this paper, we frame AE Detection and
Extraction as a sequence-to-sequence problem
using the T5 model architecture and achieve
strong performance improvements over com-
petitive baselines on several English bench-
marks (F1 = 0.71, 12.7% relative improvement
for AE Detection; Strict F1 = 0.713, 12.4%
relative improvement for AE Extraction). Mo-
tivated by the strong commonalities between
AE-related tasks, the class imbalance in AE
benchmarks and the linguistic and structural
variety typical of social media posts, we pro-
pose a new strategy for multi-task training that
accounts, at the same time, for task and dataset
characteristics. Our multi-task approach in-
creases model robustness, leading to further
performance gains. Finally, our framework
shows some language transfer capabilities, ob-
taining higher performance than Multilingual
BERT in zero-shot learning on French data.

1 Introduction

Before market release, drugs are regularly tested for
safety and effectiveness in clinical trials. However,
since no clinical trial is large enough to find all po-
tential Adverse Events (AEs) on a wide and diverse
range of population, Pharmacovigilance continu-
ously monitors the market to timely intervene, in
case unexpected AEs are discovered.

∗ equal contribution

According to multiple sources (Sen, 2016;
Alatawi and Hansen, 2017), AEs are systemati-
cally under-reported in official channels. A grow-
ing number of patients, though, talk about them
on social platforms like Twitter and health forums,
sharing medical conditions, treatment reviews, side
effect descriptions and so on. These outlets contain
crucial information for Pharmacovigilance, but the
sheer scale of this data – velocity, volume, variety
– makes manual exploration prohibitively expen-
sive. For this reason, Natural Language Processing
(NLP) technologies represent the only low-cost and
scalable alternative.

In recent years, the research community ap-
proached this problem by promoting thematic
workshops and shared tasks, such as the Social
Media Mining For Health Applications (SMM4H)
(Weissenbacher et al., 2019; Klein et al., 2020),
as well as by creating resources, such as CADEC
(Karimi et al., 2015). Despite these efforts, the
automatic detection of AEs from social outlets has
still to face major challenges: i) posts containing
AEs are rare compared to other posts (i.e. rare
signal and imbalanced data); ii) text typologies
largely differ across media (i.e. text length and
structure); iii) informal and figurative language
is dominant, often containing slang, idioms, sar-
casm and metaphors; iv) datasets contain broad dif-
ferences in the annotations, sometimes focusing
only on the symptom mentions and others times
including temporal, locative and intensity modi-
fiers; v) annotated resources for model fine-tuning
are only available for a small set of languages (i.e.
cross-lingualism).

Most of these challenges have led the research
community to develop end-to-end solutions for
each task, missing the benefit of performing multi-
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ple related tasks with the same model (i.e. transfer
learning). In this paper, we aim to tackle the above-
mentioned challenges all at once by framing the
AE detection and AE extraction tasks as genera-
tive sequence-to-sequence (seq-to-seq) problems,
to be addressed with a single architecture, namely
T5 (Raffel et al., 2019). In previous studies, the
T5 architecture showed high flexibility in dealing
with text from different domains and typologies,
even in knowledge-intensive tasks (Petroni et al.,
2021). Furthermore, the T5 architecture is capable
of incrementally learning new tasks with few or no
labels (Xue et al., 2020).

In the following paragraphs, not only we show
that T5 outperforms strong baselines on multiple
English benchmarks (F1 = 0.71, 10.94% relative
improvement for AE detection; Strict F1 = 0.713,
12.46% relative improvement for AE extraction),
but, to fully unleash its potential and thereby ad-
dress the above-mentioned challenges (i.e., small,
varied and imbalanced data), we introduce a novel
multi-task/data training framework that efficiently
handles task complexity, data imbalance and tex-
tual differences, further improving over the state-of-
the-art results. Assessed in multiple cross-textual
and (zero-shot learning) cross-lingual AE detection
and AE extraction settings, T5 shows robustness
and improves over all the competitive baselines, de-
spite being simpler – in terms of number of layers
and parameters – than the competitors.

To summarize, our contributions are: i) we use
T5 for framing AE detection and extraction as a
sequence-to-sequence problem, obtaining strong
performance on multiple tasks and datasets; ii) we
describe a new approach for balancing data across
tasks and datasets in a multi-task setting, which
leads to F1-score improvements on all benchmarks;
iii) we test our model in a crosslingual transfer
(English to French) scenario, showing that it out-
performs Multilingual BERT in zero-shot learning.

2 Related Work

Early efforts in automated Pharmacovigilance have
targeted Electronic Health Records (EHR) to detect
evidence of AEs (Uzuner et al., 2011; Jagannatha
et al., 2019). However, not all AEs lead to clinical
visitations: many users prefer to discuss their expe-
riences with drugs on the Internet, and this fact led
to a growing interest in the automatic detection of
adverse events from social media platforms.

Some of the early machine learning systems for

AE detection from social media data used a com-
bination of various classifiers along with word em-
beddings as features (Sarker and Gonzalez, 2015;
Nikfarjam et al., 2015; Daniulaityte et al., 2016;
Metke-Jimenez and Karimi, 2016).

After the introduction of challenges such as
Social Media Mining for Health Applications
(SMM4H) (Weissenbacher et al., 2018, 2019) and
CADEC (Karimi et al., 2015), most works focused
on neural networks (Sarker et al., 2018; Minard
et al., 2018). With the development of attention
mechanism (Vaswani et al., 2017), Transformer-
based language models such as BERT (Devlin
et al., 2019) and its biomedical (e.g., BioBERT
(Lee et al., 2020), ClinicalBERT (Alsentzer et al.,
2019) and PubMedBERT (Gu et al., 2020)) and
non-biomedical variants (e.g., SpanBERT (Joshi
et al., 2020)) obtained state-of-the-art performance
in AE detection (Weissenbacher et al., 2019; Klein
et al., 2020; Portelli et al., 2021a,b).

Models like BERT and its variants can be de-
scribed as encoder-only: in order to carry out a
specific task, a decoder has to be followed by task-
specific trainable network, most often in the form
of a linear layer. Recent developments in NLP led
to the introduction of models such as T5 (Raffel
et al., 2019), which is an encoder-decoder Trans-
former architecture. In a series of studies, T5 and
its variants have shown performance gain on vari-
ous datasets and applications (Raffel et al., 2019;
Xue et al., 2020), despite being smaller in terms of
parameters. The prefix training approach adopted
by T5 allows users to fine-tune on various tasks
concurrently, creating a single model that can incre-
mentally learn while being capable of performing
different tasks simultaneously. To our knowledge,
the present contribution is the first to frame AE
detection and extraction as generative problems.

3 Methods

3.1 The T5 Model
We employ T5, a pre-trained encoder-decoder trans-
former proposed by Raffel et al. (2019). This model
maps a vector sequence of n input words repre-
sented by X1:n = x1, · · · ,xn to an output se-
quence of Y1:m = y1, · · · ,ym with an a-priori
unknown length of m, with a conditional probabil-
ity defined as:

pθmodel
(Y1:m|X1:n) (1)

The architecture of the model is very similar to



3536

T5

"assert ade: I had wild dreams after taking
10/325 mg of Norco in the morning" "adverse event problem"

"ner ade: I had wild dreams after taking
10/325 mg of Norco in the morning" "wild dreams; "

"ner drug: I had wild dreams after taking
10/325 mg of Norco in the morning" "Norco;"

"ner dosage: I had wild dreams after taking
10/325 mg of Norco in the morning"

"10/325
mg"

"ner ade: I feel a bit drowsy & have a little blurred
vision after taking Arthrotec when I need it." "bit drowsy; blurred vision; "

Figure 1: Diagram of our sequence-to-sequence framework, which is a fine-tuned T5 model for four prefix: “assert
ade:” (yellow box) for detection task, “ner ade:” (pink box) for the task of extracting AE’s , “ner drug:” (blue box)
for extracting drug mentions and “ner dosage:” (green box) for extracting drug dosage information from the input.

the original Transformer proposed by Vaswani et al.
(2017). An input sequence is first passed to the en-
coder which consists of self-attention followed by
feed-forward layers. The encoder maps the input to
a sequence of embeddings that go through normal-
ization and drop-out layers. The decoder attends
to the output of the encoder using several attention
layers. The self-attention layers, instead, employ
masking to make the decoder only attend to the
past tokens, in an auto-regressive manner:

pθdecoder(Y1:m) =

m∏
i=1

pθdecoder(yi|Y0:i−1) (2)

where pθdecoder(yi|Y0:i−1) is the probability distri-
bution of the next token yi. Finally, the output of
the decoder passes through a SoftMax layer over
the vocabulary. Raffel et al. (2019) proposed to add
a prefix in front of the input sequence to inform
the model about which task to perform (e.g. sum-
marization, question answering, classification etc.;
see Figure 1).The model was trained on the Colos-
sal Clean Crawled Corpus (C4), a massive corpus
(about 750 GB) of web-extracted and cleaned text.

3.1.1 Pre-Training and Pre-Finetuning
Raffel et al. (2019) explored a wide range of
architectures and pre-training objectives, finding
that encoder-decoder models generally outperform
decoder-only language models, and that a BERT-
style denoising objective – where the model is
trained to recover masked words in the input –
works best. Moreover, the best variant of their sys-
tem made use of an objective that corrupts contigu-
ous spans of tokens, similarly to the span corrup-
tion strategy introduced for the SpanBERT model
(Joshi et al., 2020).

The resulting model was then pre-finetuned on
a variety of tasks from the following sources: the

GLUE (Wang et al., 2018) and the SuperGLUE
(Wang et al., 2019) benchmarks for natural lan-
guage understanding, the abstractive summariza-
tion data by Hermann et al. (2015) and Nallap-
ati et al. (2016), the SQUAD question answering
dataset (Rajpurkar et al., 2016) and the WMT trans-
lation benchmarks for translation from English to
French, from English to German and from English
to Romanian. The tasks were all treated as a single
task in the sequence-to-sequence format, by con-
catenating all the datasets together and appending
the task-specific prefixes to the instances.

T5 comes in versions, small (60 million param-
eters), base (220 million parameters), large (770
million parametrs), 3B (3 billion parameters) and
11B (11 billion parameters). In the paper we will
use the term T5 to either refer to the architecture
or to the T5-Base, as opposed to T5-Small, which
will always be mentioned as such.

3.2 Seq-to-Seq AE-related Tasks

Given an input sequence of words X1:n =
x1, · · · ,xn that potentially contains drug, dosage
and AE mentions, we frame the AE detection (i.e.
binary classification) and extraction (i.e. span de-
tection) tasks as seq-to-seq problems, further fine-
tuning T5 to generate Y1:m = y1, · · · ,ym, where
Y is either the classification label or the text span
with the AE. By selecting the prefixes (see Table
1), we train T5 on all these tasks (see Figure 1).

Prefix Task Definition Task Type
assert ade Contains AE or not CLS (binary)
ner ade Extract AE span NER (span)
ner drug Extract drug span NER (span)
ner dosage Extract drug dosage span NER (span)

Table 1: Prefix and task definition. AE assertion is bi-
nary classification (CLS), while the remaining tasks are
Name Entity Recognition (NER).
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For the AE detection, as it is a binary classi-
fication task, we have chosen the prefix “assert
ade:” and the labels i) “adverse event problem”
(i.e., positive) and ii) “health ok” (i.e., negative).
Usually, to train Named Entity Recognition (NER)
systems, the input data is transformed into stan-
dard Inside–Outside–Beginning (IOB) format and
individual tokens are classified in one of the IOB
tags. However, the T5 model can utilize the direct
span as a generation target. If multiple spans can
be extracted, they can be provided to the system
separated by a semicolon or other special charac-
ters. For our experiments on language transfer, we
simply apply the “assert ade: ” to data in a differ-
ent language (i.e., French). The model will auto-
matically leverage the knowledge acquired during
the pre-finetuning in the machine translation task.
Tasks and definitions are summarized in Table 1.

3.3 Multi-Task and Multi-Dataset
Fine-Tuning

Generative models like T5 can be easily trained
on multiple tasks. However, multi-task learning
poses challenges as models may overfit or underfit,
depending on the task difficulty, the label distribu-
tion and the variability across tasks and datasets
(Arivazhagan et al., 2019). In Raffel et al. (2019),
proportional mixing and temperature scaling train-
ing strategies were adopted to address the data bal-
ance across tasks. In this work, we extend these
strategies to a multi-dataset scenario, in which
tasks are trained on multiple datasets containing
heterogeneous data. This scenario is typical in AE
detection, where data comes from medical blogs,
forums, tweets and other social media outlets, each
of which carries specific writing styles as well as
different textual structures and lengths. The an-
notation scheme may differ too across datasets,
with some schemes focused on the symptoms only,
while others including also the temporal, manner
and intensity modifiers.

We assume a multinomial probability distribu-
tion θt over the fine-tuning task t, given that the
fine-tuning task t itself is comprised of dataset(s) d.
We define Md as the number of samples of dataset
d and ρd the probability of drawing an example
from d during training.

In proportional mixing, we intuitively sample in
proportion to the dataset size. Therefore, the proba-
bility of drawing a sample from task t is computed
as θt = min(γt,Nt)∑

tmin(γt,Nt)
, where Nt corresponds to

the number of samples available for task t across
all datasets, computed as Nt =

∑
dMd. The prob-

ability of drawing from dataset d is similarly es-
timated as ρd = min(γd,Md)∑

tmin(γd,Md)
. For the sake of

algorithm re-utilization, these parameters γd and
γt are introduced because, even with proportional
mixing, large datasets may still dominate the train-
ing. These parameters are meant to limit the impact
of such large datasets and they have been set to 214

as in the original paper (Raffel et al., 2019).
Temperature scaling has also been shown to

boost multi-task training performance (Raffel et al.,
2019; Goodwin et al., 2020). It was used for Mul-
tilingual BERT, to make sure that the model had
sufficient training on low-resource languages (De-
vlin et al., 2019). To implement scaling with a
temperature T , the mixing rate for each task and
dataset is raised to the power of 1/T , and then the
rates are re-normalized so that they sum to 1. There-
fore, initially, the probabilities are computed with
temperature scaling, respectively, as θt =

T√θt∑
t
T√θt

(for the probability of drawing from task t) and as
ρd =

T√ρd∑
d
T√ρd (for the probability of drawing from

dataset d). We set T as 2 as it is the best reported
value for temperature scaling strategy demonstrated
in Raffel et al. (2019) and Goodwin et al. (2020).

To assess the value of using multi-dataset sam-
pling, in our experiments we will compare the orig-
inal proportional mixing and temperature scaling
by Raffel et al. (2019) with our approach.

4 Experimental Settings

General figures for all the datasets are reported in
Table 2, while more detailed textual statistics are
available in Appendix A. More details about the
training can be found in Appendix B.

4.1 Datasets
SMM4H This dataset was introduced for the
Shared Tasks on AE in the Workshop on Social
Media Mining for Health Applications (SMM4H)
(Weissenbacher et al., 2018). The dataset is com-
posed of Twitter posts, typically short, informal
texts with non-standard ortography, and it contains
annotations for both detection (i.e., Task 1, classifi-
cation) and extraction (i.e., Task 2, NER) of AEs.
The number of samples differs from the original
dataset as many tweets vanished, due to deletion or
access restriction in the platform. Splits are strat-
ified, to maintain an equal ratio of positive and
negative examples (see Table 2).



3538

CADEC CADEC contains 1,250 medical forum
posts annotated with patient-reported AEs. In this
dataset, texts are long and informal, often deviating
from English syntax and punctuation rules. Forum
posts may contain more than one AE. For our goals,
we adopted the training, validation, and test splits
proposed by Dai et al. (2020) (see Table 2).

ADE corpus v2 This dataset (Gurulingappa
et al., 2012) contains case reports extracted from
MEDLINE and it was used for multi-task training,
as it contains annotations for all tasks in Table 1, i.e.
drugs, dosage, AE detection and extraction. Splits
are stratified, to maintain an equal ratio of positive
and negative examples (see Table 2).

WEB-RADR This dataset is a manually curated
benchmark based on tweets. We used it exclusively
to test the performance of the multi-task models,
as it was originally introduced only for testing pur-
poses (Dietrich et al., 2020) (see Table 2).

Dataset Total Positive Negative
SMM4H Task 1
(AE Detection) 15,482 1,339 14,143

Train (80%) 12,386 1,071 11,315
Validation (10%) 1,548 134 1,414
Test (10%) 1,548 134 1,414
SMM4H Task 2
(AE Det., AE & Drug Extr.) 2,276 1300 976

Train (60%) 1,365 780 585
Validation (20%) 455 260 195
Test (20%) 456 260 196
CADEC
(AE Det., AE & Drug Extr.) 1,250 1,105 145

Train (70%) 875 779 96
Validation (15%) 187 163 24
Test (15%) 188 163 25
ADE Corpus v2
(AE Detection) 23,516 6,821 16,695

Train (60%) 14,109 4,091 10,018
Validation (20%) 4,703 1,365 3,338
Test (20%) 4,704 1,365 3,339
ADE Corpus v2
(AE Extraction) 6,821 6,821 0

Train (60%) 4,091 4,091 0
Validation (20%) 1,365 1,365 0
Test (20%) 1,365 1,365 0
ADE Corpus v2
(Drug Extraction) 7,100 7,100 0

Train (60%) 4,260 4,260 0
Validation (20%) 1,420 1,420 0
Test (20%) 1,420 1,420 0
ADE Corpus v2
(Drug Dosage Extraction) 279 0 0

Train (60%) 167 0 0
Validation (20%) 56 0 0
Test (20%) 56 0 0
WEB-RADR
(AE Detection & Extraction)
Test 57,481 1,056 56,425
SMM4H-French
(AE Detection)
Test 1,941 31 1,910

Table 2: Dataset Statistics and Splits.

SMM4H-French The SMM4H French Dataset
contains a total of 1,941 samples out of which 31
samples belong to AE (positive) class and 1,910
samples have the label Non-AE (negative class).
This dataset is only used for testing the zero-shot
transfer (see Table 2).

4.2 Settings

AE Detection We train and test T5 and the base-
lines (see 4.3.1) on the SMM4H Task 1 dataset. We
then assess the robustness of T5 and the best per-
forming baseline on the test sets of CADEC, ADE
Corpus v2 and WEB-RADR.

AE Extraction We train and test T5 and the base-
lines (see 4.3.2) on the SMM4H Task 2 dataset. We
then assess the robustness of T5 and the best per-
forming baseline by testing them (trained on either
SMM4H Task 2 or CADEC) on the test sets of
SMM4H Task 2, CADEC, ADE Corpus v2 and
WEB-RADR.

Multi-Task Learning We train T5-Base on all
the training sets for all tasks, using proportional
mixing or temperature scaling both with the orig-
inal multi-task (see 4.3.3) and with our proposed
multi-task and multi-dataset approach, and we eval-
uate the resulting models on the available test sets.

Language Transfer We train T5 and the Multi-
lingual BERT (see 4.3.4) on the SMM4H Task 1
English dataset, and then we test it in a zero-shot
learning setting on the SMM4H-French dataset.

4.3 Baselines

4.3.1 AE Detection
Our baselines are five pre-trained BERT variants
with a classification head fine-tuned for AE detec-
tion. A weighted cross-entropy loss function is
used for all of them to adjust for class imbalance.
BioBERT (Lee et al., 2020) was built upon the
original BERT and further pre-trained on PubMed
abstracts. We used BioBERT v1.1, which was re-
ported to perform better in biomedical tasks.
BioClinicalBERT (Alsentzer et al., 2019) was pre-
trained on MIMIC III dataset containing Electronic
Health Records (EHR) of ICU patients.
SciBERT (Beltagy et al., 2019) was pre-trained on
1.14 million papers, randomly selected from seman-
tic scholar, with an 18-82 ratio between computer
science and biomedical papers.
PubMedBERT (Gu et al., 2020) was pre-trained
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from scratch on PubMed abstracts, without build-
ing upon the vocabulary of the original BERT.
SpanBERT (Joshi et al., 2020) adopts a different
pre-training objective from BERT. This model is
trained by masking full contiguous spans instead
of single words or subwords, which allows it to
encode span-level information.

4.3.2 AE Extraction Task Baselines
For the AE EXTRACTION task, we use the
four models described in Portelli et al. (2021a),
namely BERT, BERT+CRF, SpanBERT, and
SpanBERT+CRF. The authors reported state-of-
the-art performance with the SpanBERT mod-
els on SMM4H, and their implementation
is publicly available at https://github.com/

ailabUdineGit/ADE.

4.3.3 Multi-Task Learning
For Multi-Task Learning, we use as baseline the T5
model fine-tuned with the original training strate-
gies by Raffel et al. (2019), which balance across
tasks (TB, task balancing) but do not account for
multi-dataset learning (DB, dataset balancing). We
refer to them as T5TB-PM for proportional mixing
and T5TB-TS for temperature scaling. We refer to
our approach, which accounts also for the multi-
dataset learning, as T5TDB-PM for proportional mix-
ing and T5TDB-TS for temperature scaling.

4.3.4 Language Transfer
As a baseline for Language Transfer, we use Multi-
lingual BERT (the uncased version), which was pre-
trained on monolingual corpora in 102 languages
(Devlin et al., 2019). The model was fine-tuned by
adding a classification head on the top to perform
AE Detection in a zero-shot setting.

4.4 Metrics

We adopt the same metrics of the SMM4H com-
petition. 1 For the AE Detection (i.e., the assert
ade prefix) we use precision, recall, and F1-score
for the positive (AE) class. For the AE Extraction
(i.e., the ner ade, ner drug, ner dosage prefixes) we
use both Strict and Partial Match F1-Score (Weis-
senbacher et al., 2019; Klein et al., 2020). The
same AE Detection and AE Extraction metrics have
also been used in the Multi-Task setting and in the
Language Transfer settings.

1https://competitions.codalab.org/
competitions/20798

5 Results and Analysis

5.1 AE Detection

Table 3 summarizes precision, recall and F1 score
obtained by T5-Small, T5-Base and the baselines
on the SMM4H Task 1 test set.

Model Precision Recall F1
BioBERT 55.5 63.1 59.0
BioClinicalBERT 68.3 59.7 63.7
SciBERT 68.8 55.9 61.7
PubMedBERT 59.7 61.9 60.8
SpanBERT 55.0 73.1 62.8
T5-Small 58.1 65.0 61.3
T5-Base 68.8 73.7 71.1

Table 3: Precision, Recall and F1-Score for the positive
AE class in the SMM4H Task 1 test set

T5-Small obtains competitive performance, lag-
ging slightly behind the performance of some
BERT variants, while T5-Base outperforms all the
other approaches, with a 12.7% relative F1-score
improvement over the best baseline, BioClinical-
BERT (the improvement for the McNemar test is
significant at p < 0.001). It should also be no-
ticed that the two versions of T5, together with
SpanBERT, improve over the Recall of the other
BERT variants. The result seems to comply with
the report by Portelli et al. (2021a,b), who found
that models relying on span-based objectives had
increased recall in the task, probably because they
are better at identifying longer AE spans that would
otherwise go undetected.

Model\
Test set

SMM4H
Task 2 CADEC

ADE
Corpus

v2

WEB-
RADR

BioClinical BERT 82.5 90.1 28.6 32.3
T5-Base 88.0 93.7 31.7 35.8

Table 4: F1-Score for T5-Base and BioClinicalBERT
trained on SMM4H Task 1 and tested on all datasets.

Table 4 provides the results for the model gener-
alization evaluation that we run for T5 and the best
baseline. In this evaluation, we train the systems on
SMM4H Task 1 and test on the other datasets (i.e.
SMM4H Task 2, CADEC, ADE Corpus V2 and
WEB-RADR), which differ from the training set
in terms of linguistic features, text structures, text
lengths and even annotation schemes. Both mod-
els obtain high performance on SMM4H Task 2
and CADEC, despite their textual differences. The
large linguistic difference of the ADE Corpus v2

https://github.com/ailabUdineGit/ADE
https://github.com/ailabUdineGit/ADE
https://competitions.codalab.org/competitions/20798
https://competitions.codalab.org/competitions/20798
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SMM4H Task 2 CADEC
Architecture Partial F1 Strict F1 Partial F1 Strict F1
BERT 66.1 55.9 77.7 65.2
BERT+CRF 68.1 59.5 77.2 64.4
SpanBERT 66.7 59.2 79.2 67.2
SpanBERT + CRF 70.1 63.4 79.4 67.6
T5-Small 70.7 66.1 75.6 65.7
T5-Base 75.1 71.3 79.1 69.8
Dai et al. (2020) - - - 69.0

Table 5: Partial and Strict F1 score for the AE Extraction task on SMM4H Task 2 and CADEC. For CADEC, we
also report the current SOTA model by Dai et al. (2020).

(i.e., MEDLINE case reports) explains instead the
drastic drop in performance for both systems in this
dataset, in which T5-Base still performs better than
the baseline. WEB-RADR also proves to be a chal-
lenging benchmark for its extreme class imbalance,
but our system still achieves an F1-score around
0.36 for the positive class, while BioClinicalBERT
is performs than the T5-Base.

5.1.1 Qualitative Analysis on SMM4H
In order to better understand the model perfor-
mance, we picked some samples from the SMM4H
Task 1 test dataset to compare between captured
and non-captured AE and analyze the reason be-
hind the miss-classification. In few cases, the
model has problems identifying non-standardized
acronyms, for example the input “really bad RLS
from <drug name>”, is classified as non-AE by the
model compared to its original label as an AE. The
model is not able to understand the meaning be-
hind RLS, which denotes Restless Leg Syndrome
in this scenario. We observed that if the RLS is
changed to nightmares, headache or restless leg
syndrome, the model recognizes the input as an
AE. The model is able to capture most of the AE

Figure 2: Performance in the AE Extraction task, with
the number of layers and parameters for each system.

unusual references such as “<drug name> burns
like thousand suns”, “<drug name> was a joke”,
“<drug name> tastes like battery acid”. Yet we
found some cases in which the model failed. For
example, the inputs “stomach feels like a cement
mixer after taking <drug name>” was classified as
non-AE. In this case, “cement mixer” is used in a
figurative way to refer to the fact that the stomach
is not well or it is churning. Once we replace this
figurative image with a term such as churning, the
model correctly classifies the sample as AE.

5.2 AE Extraction
Table 5 summarizes the results for the AE Ex-
traction task for T5 and the baselines trained on
SMM4H Task 2, including the scores for a recent
SOTA system on CADEC (Dai et al., 2020). It
can be seen that both T5 models outperform all
the baselines on the SMM4H data, while on the
longer and more structured CADEC texts the Span-
BERT architectures are more competitive for the
partial F1-score. On the other hand, our best model
still retains a better performance for the Strict F1
metric, suggesting that it is more accurate in detect-
ing the boundaries of the AE span. T5-Base also
outperforms the system by Dai et al. (2020).

Model SMM4H
Task 2 CADEC

ADE
Corpus

v2

WEB-
RADR

Trained on SMM4H Task 2
SpanBERT
+ CRF 70.1 (63.4) 15.7 (2.8) 24.6 (15.1) 18.9 (7.3)

T5-Base 75.1 (71.3) 24.4 (20.5) 38.9 (29.5) 36.2 (13.9)
Trained on CADEC
SpanBERT
+ CRF 35.4 (28.6) 79.4 (67.6) 31.2 (24.8) 20.1 (7.9)

T5-Base 57.9 (51.6) 79.1 (69.8) 50.3 (43.7) 30.4 (18.8)

Table 6: Partial (strict) F1-scores for T5-Base and Span-
BERT+CRF trained on SMM4H Task 2 and CADEC
and evaluated on all datasets.

In order to further evaluate the system general-
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Text Statistics BERT BERT+CRF SpanBERT SpanBERT+CRF T5-Base
Dale Chall Readability+ 8.34 8.15 8.20 8.32 9.44
Automated Readability+ 8.42 8.37 8.35 8.51 10.37
Flesch Reading Ease− 62.73 63.57 62.60 62.92 53.18

Table 7: Text Statistics metric to evalute the quality of span generated by models trained on SMM4H Task 2 dataset
( + represents higher score is better and − means lower score is better)

Task Model/Dataset SMM4H
Task 1

SMM4H
Task 2 CADEC ADE

Corpus v2
WEB-
RADR Avg. Score

assert ade

T5TB -PM 55.2 91.5 92.7 91.7 31.9 72.6
T5TDB - PM 67.9 88.5 98.7 91.7 37.4 76.8
T5TB -TS 65.3 83.5 91.1 90.9 36.1 73.3

T5TDB - TS 69.4 89.4 98.7 91.5 37.3 77.2

ner ade

T5TB -PM - 75.7 (71.8) 46.5 (39.9) 58.4 (53.4) 38.6 (15.1) 54.8 (45.0)
T5TDB - PM - 75.7 (71.8) 74.4 (64.0) 59.7 (55.9) 38.7 (15.8) 62.1 (51.8)
T5TB -TS - 75.3 (70.2) 45.2 (38.4) 59.7 (56.1) 38.9 (15.6) 54.7 (45.0)

T5TDB - TS - 75.7 (71.1) 75.3 (66.0) 60.3 (56.7) 39.1 (15.8) 62.6 (52.4)

ner drug

T5TB -PM - 92.3 (92.3) 88.7 (88.7) 79.4 (79.0) - 86.8 (86.6)
T5TDB - PM - 90.3 (90.3) 92.4 (91.8) 82.2 (82.0) - 88.3 (88.0)
T5TB -TS - 88.2 (88.1) 88.4 (88.1) 80.2 (79.8) - 85.6 (85.3)

T5TDB - TS - 91.8 (91.8) 94.1 (93.4) 83.1 (82.8) - 89.6 (89.3)

ner dosage

T5TB -PM - - - 73.2 (67.8) - 73.2 (67.8)
T5TDB - PM - - - 78.5 (71.4) - 78.5 (71.4)
T5TB -TS - - - 76.7 (71.4) - 76.7 (71.4)

T5TDB - TS - - - 78.5 (71.4) - 78.5 (71.4)

Table 8: F1-scores for the multi-task setting. Task Balancing (TB) is compared to our Task and Dataset Balancing
(TDB) approach, with PM = Proportional Mixing and TS = Temperature Scaling. F1 of the positive class is
reported for AE Detection (the assert ade row), while partial (strict) F1 is reported for the Extraction tasks.

ization capability, we test on all the AE Extraction
datasets both T5-Base and SpanBERT+CRF (best
baseline), after training them on SMM4H Task 2
and on CADEC. In Table 6, it can be seen that
T5-Base has better generalization than the baseline
on all datasets, with F1-scores that are 10 points
higher or more. Training on CADEC generalizes
better (with the only exception of the partial met-
ric for WEB-RADR), while systems trained on the
SMM4H perform poorly on the other benchmarks.

Fig. 2 compares the baselines and the T5 per-
formance in AE extraction, in terms of number
of layers/parameters. The plot suggests that the
model parameters and the number of layers are not
the factors for the T5 models performance gain, e.g.
T5-Small has almost half the number of parame-
ters (60 million) and half of the layers (6 layers) of
BERT and its variants and it still performs better.

5.2.1 Analysis of Extracted Spans on
SMM4H

We employ some commonly used text statistics to
assess the spans extracted by the T5 model. Table 7
compares three text statistics metrics for the model

trained on the SMM4H Task 2 dataset. The higher
scores obtained by T5 in the Dale Chall Readability
(Chall and Dale, 1995) and Automated Readability
index (Smith and Senter, 1967) suggest this model
is able to generate a higher percentage of AE spans
with rare terms. The lower Flesch Reading score
(Kincaid et al., 1975), instead, indicates that the
model generates spans that are more readable.

5.3 Multi-Task Learning

Table 8 includes the scores on all the test sets for
the multi-task T5 models, trained either with the
original or with our proposed strategy (see 3.3).

In AE Detection, our T5TDB approach always
outperforms the original T5TB by a large margin
(5.8% relative improvement for PM and 5.3% for
TS), except for the Proportional Mixing case in
SMM4H Task 2.Margins are smaller in ADE Cor-
pus V2 and WEB-RADR. Looking at the compari-
son between TS and PM for T5, the former is better
in the SMM4H subsets and comparable in all the
others, globally obtaining a higher average score.

Our training approach improves both partial and
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strict F1-scores on the AE Extraction task, where
the models are tested on all datasets except for
SMM4H Task 1, which does not have AE Extrac-
tion annotations (13.3% relative improvement for
PM and 14.4% for TS). In all datasets, our training
strategies obtain equal or superior performance for
both partial and strict F1 scores, with large gains on
CADEC and more marginal gains on SMM4H Task
2, ADE Corpus v2 and WEB-RADR. TS is again
preferable to PM, obtaining a higher average score.
The results for the Drug and Dosage tasks are simi-
lar: in Drug Extraction, SMM4H Task 2 confirms
to be more challenging for T5TDB-PM (T5TB-PM
outperforms it by 2 points), while T5TDB-TS out-
performs its counterpart. In all the other settings,
the Task and Dataset Balancing approaches score
higher than Task Balancing-only ones.

Overall, our approaches consistently achieve
gains in the multi-task setting, independently from
task type (i.e. Detection or Extraction) and annota-
tion scheme. TS proves to be superior to PM in all
tasks, even though it may lag slightly behind PM
in some datasets.

5.4 Cross-lingual Transfer

As a final evaluation, we tested the ability of T5-
Base and Multilingual BERT to generalize the AE
Detection task to a new language, i.e. French. No-
tice that the SMM4H French data proved to be chal-
lenging, due to the extreme class imbalance (Klein
et al., 2020). It can be seen in Table 9 that T5-
Base obtains higher F1-score, specifically thanks
to a higher precision. Multilingual BERT, instead,
shows higher recall. Overall, the T5-Base perfor-
mance in zero-shot learning is encouraging, and
further improvements are likely to come with few
shot learning or with more targeted strategies for
multilingual training.

Architecture Zero-Shot
Precision Recall F1

Multilingual BERT 10.2 32.2 15.5
T5-Base 17.9 22.6 20.0

Table 9: Metrics for Multilingual BERT and T5-Base
on zero-shot learning on SMM4H-French.

6 Conclusions

In order to address several typical challenges of the
healthcare domain (small, imbalanced and highly
variable datasets, cross-lingual data), we proposed
to treat AE Detection and AE/Drug/Dosage Ex-

traction tasks as sequence-to-sequence problems,
adapting the T5 architecture and improving over all
the baselines in both the Detection and the Extrac-
tion tasks. To maximize the benefit of multi-task
and multi-dataset learning, we introduced a new
training strategy that extends Raffel et al. (2019),
showing that our approach accounts for multiple
and diverse datasets and leads to consistent im-
provements over the original T5 proposal. Finally,
the model also shows some language transfer abili-
ties in the zero shot setting, leaving the door open
for future experiments to extend our training frame-
work towards multilinguality (Xue et al., 2020).
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A Dataset Textual Statistics

Table 10 presents textual statistics to show the dif-
ference in type of datasets with respect to their
input sequence length, target (extraction) span
sequence length and other parameters. It can
observed that the input sequence length is rela-
tively short for the SMM4H and for WEB-RADR
datasets, while CADEC and ADE corpus datasets
tend to include longer texts. The Flesch reading
ease score (Flesch and Gould, 1949) indicates the
readability of the sentence, with lower values repre-
senting that the text is difficult to understand for the
average reader. The ADE corpus datasets have the
lowest Flesch reading score, as the text is adopted
from MEDLINE and contains more medical terms,
while Twitter data (SMM4H, WEB-RADR) and the
health forum (CADEC) datasets contain a lower
amount of scientific terminology and are typically
made of shorter texts, with a lower degree of syn-
tactic complexity.

B Training Details

All the experiments have been performed on the
top of Hugging-face’s Python package (Wolf et al.,
2019). 2 The code for the models implemented
in the paper is available at https://github.com/
shivamraval98/MultiTask-T5_AE

B.1 AE Detection

The baseline BERT models for AE detection were
trained on one NVIDIA Tesla V100 16 GB GPU

2https://github.com/huggingface/transformers

and it takes the model approximately 30 minutes to
execute for all epochs. The hyperparameters used
for baseline models are detailed in Table 11.

Model Epoch Batch Size Warm-up Steps
BioBERT 3 32 400
BioClinicalBERT 5 40 500
SciBERT 5 40 400
PubMedBERT 5 40 300
SpanBERT 3 40 400

Table 11: Hyperparameters for AE Detection baselines.
The learning rate and weight decay was kept constant
with values 5e− 05 and 0.01 respectively

The T5 models were trained using a cluster of
four NVIDIA Tesla V100 16 GB GPU, with 80
batch size per GPU and 10 epochs for T5-Small,
and 16 batch size per GPU and 7 epochs for T5-
Base. The learning rate for the both the t5 models
was set to 1e − 04. The input and the generated
sequence length were set to 130 and 20, respec-
tively, with exponential length penalty set to 2 for
the generated sequence. For the rest of the hyperpa-
rameters, we used the default values in the library.

The T5-Small model approximately takes 3-5
minutes per epoch while T5-Base executes for 7-
10 minutes per epoch in the aforementioned cluster
environment setting.

B.2 AE Extraction

The hyperparameters for the baseline mod-
els (BERT, BERT+CRF, SpanBERT and Span-
BERT+CRF) of AE extraction were set as de-
scribed in Portelli et al. (2021a). The hyperparame-

Dataset Avg. Seq
Length

Avg.
Span Length
(AE, Drug or

Dosage)

Avg.
Stopwords

in span

Avg. Freq.
of AE per

sample

Unique AE
words

% of AE
Samples

Unique Drug
Mentions

Flesch Reading
Ease Score

SMM4H Task 1
(AE Detection)

98.9 - - - - 8.6 - 64.7

SMM4H Task 2
(AE Det., AE & Drug Extr.)

108.8 9.1 0.2 1 1108 57.1 69 62.1

CADEC
(AE Det., AE & Drug Extr.)

459.4 16.1 2.4 6 2303 89.0 320 69.1

ADE Corpus v2
(AE Detection)

132.5 - - - - 28.9 - 23.2

ADE Corpus v2
(AE Extraction)

152.1 18.5 0.1 1 2662 100 - 13.6

ADE Corpus v2
(Drug Extraction)

152.3 10.8 0 - - 100 1251 14.3

ADE Corpus v2
(Drug Dosage Extraction)

163.4 8.5 0 - - 100 - 23.6

WEB-RADR
(AE Detection & Extraction)

106.3 16.5 1.1 2 2037 1.8 - 61.3

SMM4H French
(AE Detection)

142.4 - - - - 1.6 - -

Table 10: Comparison of the AE datasets according to different textual statistics.

https://github.com/shivamraval98/MultiTask-T5_AE
https://github.com/shivamraval98/MultiTask-T5_AE
https://github.com/huggingface/transformers


3546

ter setting for the T5-Small and T5-Base for both
SMM4H Task 2 and CADEC dataset is presented
in Table 12 and the default values were utilized for
the rest of the hyperparameters.

Model ISL OSL BS EP LR Time
SMM4H Task 2 AE Extraction
T5-Small 130 20 80 10 1e-4 5
T5-Base 130 20 64 7 1e-4 7
CADEC AE Extraction
T5-Small 512 150 64 25 1e-3 10
T5-Base 512 150 32 20 1e-3 20

Table 12: Hyperparameters for T5-Small and T5-Base
when trained on SMM4H and CADEC AE Extraction
Task (ISL = Input Sequence Length, OSL = Output Se-
quence Length, BS = Batch Size (over all GPU’s), EP
= Epoch, LR = Learning Rate, Time = Training Time
in mins per epoch).

B.3 Multi-Task Training
The Multi-Task Training was performed on T5-
Base by combining all the training sets and experi-
menting for the originally proposed Task Balanc-
ing (TB) approach, and for our proposed task plus
multi-dataset balancing (TDB) strategy for propor-
tional mixing (PM) and temperature scaling (TS).
The same hyperparameters were utilized for all set-
tings with batch size 8, learning rate 1e− 04, input
sequence length 512 and output sequence length
150. Temperature value was kept to be 2 for the
temperature scaling method. For every multi-task
setting, it took the model approximately 60 min-
utes to train for one epoch in the 4 GPU cluster
computing environment setting.

B.4 Cross-Lingual Transfer
Multilingual BERT was trained using the four GPU
cluster setting with batch size 256 over all GPU’s
for 7 epochs. The learning rate was set as 5e− 05
with 0 warmup steps and 0.01 weight decay. The
T5-Base model trained on English SMM4H Task
1 AE Detection dataset was utilized to perform
zero-shot on SMM4H French Dataset.


