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ABSTRACT
Inflatable dams are flexible hydraulic structures that are constructed on rivers and are inflated by
fluids such as air or water. This research investigates the effects of influential dimensionless factors
on estimating one of the critical hydraulic characteristics of inflatable dams, namely the discharge
capacity. Various parameters such as the proportion of total upstream head to dam height (H1/Dh),
the ratio of overflowing head to dam height (h/Dh), the ratio of discharge per unit width to its maxi-
mum value (q/qmax), the ratio of the internal pressure of the tube to its maximum value (p/pmax) and
the ratio of the longitudinal coordinate placement of each element to xmax are used. A hybridmodel
based on the Particle Swarm Optimization (PSO) and the Genetic Algorithm (GA), PSO-GA, is pro-
posed to improve the accuracy of the estimation by combining the advantages of both algorithms.
Moreover, the performance of the model is compared with available hybrid models, including the
Artificial Neural Networks (ANNs) optimized by Stochastic Gradient Descent (SGD)model (ANN-SGD)
and the ANN-PSO andANN-GAmodels. Finally, the performance of the algorithms is evaluated using
statistical indicators such as the coefficient of determination (R2), root mean square error (RMSE),
mean absolute percentage error (MAPE) and the scatter index (SI). The results show that the inter-
nal pressure plays a vital role with respect to forecasting the discharge coefficient, and omitting it
degrades the accuracy by 2.12%. In comparison with other models, the proposed PSO-GA hybrid
model provides themost accurate results (R2 = 0.999, MAPE = 0.04). Finally, comparing the results
of the proposed PSO-GA with the benchmarked ANN-GA, ANN-PSO and ANN-SGD methods proves
the superiority of the hybrid PSO-GAmethod.
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1. Introduction

The measurement of discharge and fluid depth in rivers
and open channels is one of the topics that often inter-
est engineers and researchers. More often, engineers use
different types of hydraulic structures to control flood
and water levels (Akoz et al., 2014). One of them is
an inflatable dam, which is made of rubberized tubes
that are typically filled with fluids, air or water, and
hooked to two ends of concrete foundations (Doty et al.,
1986;Waldow&Bystrom, 2002). As an engineering solu-
tion, inflatable dams are favoured by many practitioners
in the industry owing to multiple advantages that they
offer, such as flexibility of height adjustment of the dam,
environment-friendliness, economic structure, readiness
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for use for flood control, readiness for adjustingwater lev-
els for agricultural purposes, usefulness in hydropower
projects, and a good alternative to steel structures in
low-temperature areas and cold countries such as Japan
and Canada (Chanson & Tam, 1998; ul Islam & Kumar,
2009, 2016; Waldow & Bystrom, 2002). The literature
has numerous studies that focused on inflated dams.
For example, Kim (2003) conducted a 2D analysis of
water-filled inflatable dams to investigate critical exter-
nal water levels on the tube due to internal pressure head.
An explicit finite difference program, FLAC, was used
and the results of numerical analysis corresponded well
with experimental observations. El-Jumaily and Salih
(2005) investigated the performance of air and water
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inflated dams under different upstream and downstream
water depths and compared their empirical findings with
theoretical results. They observed acceptable agreement
between the two outcomes. Cheraghi-Shirazi et al. (2014)
presented a numerical model for inflatable dams under
different internal pressures and upstream/downstream
water heads. They found that the effect of some parame-
ters such as the coefficient of elasticity, interior pressure,
channel width and the dam’s thickness were in equi-
librium with the height of the inflatable dam. Recently,
many novel artificial intelligence methods have evolved
for parameter estimation in engineering problems. For
example, Karimi et al. (2015b) determined the discharge
capacity of a triangular labyrinth side weir utilizing
the Multi-Layer Neural Network (ANN-MLP) method.
Abdin and Abdeen (2007) introduced an ANN method
with a high degree of proficiency to simulate the efficacy
of submerged lentic weeds on the hydraulic efficiency of
branched open channel systems.

Different soft computing methods, on the basis of
empirically collected datasets, have been used to simulate
and optimize the required parameters in many engineer-
ing problems with high accuracy. For instance, Parsaie
(2016) estimated the discharge coefficient of side weirs
utilizing empirical functions, MLP and radial basis func-
tion (RBF) neural networks. Their results indicated that
the RBF model had the best accuracy amongst empir-
ical functions and artificial intelligence methods. The
adoption of computational intelligence algorithms has
been extended to different sectors of engineering sci-
ences including water and hydraulic structures in order
to estimate the mean velocity of flow, and to predict
the discharge coefficient, sediment transport and scour.
Karimi et al. (2015a) estimated the mean flow velocity
in different widths of intake channel through the use of
Gene Expression Programming (GEP), and their results
showed highly efficient prediction by the model. Ebte-
haj et al. (2015) simulated the discharge coefficient in
a side weir using the Group Method of Data Handling
(GMDH) and demonstrated the high efficiency of this
method. Ebtehaj et al. (2016) estimated sediment trans-
port in open channels using a combined Feed-Forward
Neural Networks (FFNNs) and an Extreme Learning
Machine (ELM) algorithm (FFNN-ELM) and proved
its high capability for sediment estimation. Goel (2008)
modelled scour downstream of spillways by the support
vector machine (SVM)method and proved the appropri-
ate potential of this method for predicting scour down-
stream of spillways. Several research works have shown
that combining more than one optimization techniques
can be effective and beneficial. For example, Zaji and
Bonakdari (2002) tried to estimate the discharge coeffi-
cient of rectified side weirs using various neural network

and particle swarmoptimization approaches. They found
that all methods used in that study had a low estimation
error, but equations obtained from PSO could be used
in practical projects. Zaji et al. (2015) predicted the dis-
charge coefficient of a side weir using radial basis neural
networks and particle swarm optimization. Their results
indicated that the MNLPSO model showed lower error
compared toMLPSO and RBNNmethods. Jung andKar-
ney (1991, 2006) and Chang et al. (2013) used PSO and
GAs for the optimization of transient hydraulic protec-
tion devices and water resources utilization, respectively.
They introduced PSO and GA techniques as powerful
optimization techniques that were capable of solving and
modelling many complex problems.

In the present research, both approaches are com-
bined in order to produce a hybrid modelling approach
that can be used to improve the accuracy of predicting
the discharge coefficient of inflatable dams. To this end,
dimensional analysis is performed in aiding to determine
factors that can influence the estimation of the discharge
capacity with six different models, considering each of
the dimensionless parameters under different conditions
with the aim of underpinning the most influential input
variables through training and testing phases. Four statis-
tical indicators (R2, RMSE, MAPE and SI) are utilized to
appraise the accuracy of the results of the models. The
most important drawbacks of this type of work based
on previous articles presented in this field were often
the high errors of results using experimental formulas,
and moderate amounts of error using artificial intelli-
gencemethods. In this study, the performance of anANN
model is strengthened for the prediction of the discharge
capacity of inflatable rubber dams using hybrid algo-
rithms including PSO, GA and SGD. Additionally, to the
best knowledge of the authors, an SGD algorithm is used
for the first time for forecasting the discharge capacity of
inflatable rubber dams.

2. Materials andmethods

In this research, a hybrid particle swarm optimiza-
tion—genetic algorithm (PSO-GA) model is designed to
estimate the discharge coefficient (Cd) of an air-inflated
dam. Some brief explanations of this model are given as
follows.

2.1. The Genetic Algorithm (GA)

The GA is an intelligent search method based on genetic
and chromosome structures (Ebtehaj & Bonakdari,
2014). It is a computational optimization algorithm that
considers a set of points in solution space at each com-
putational iteration and searches different areas of the
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solution space efficiently. In this search mechanism, the
fitness function is not computed at all points of the solu-
tion space but the target function value for each point
is inferred to get an average statistical target function
in all subspaces that are interdependent with that point
(Ebtehaj & Bonakdari, 2014). These subspaces are aver-
aged statistically. The search space leads to areas where
the statistical mean is high, and the existence of an abso-
lute optimal point is more possible. In this method, in
contrast to a one-way procedure, the solution space is
searched comprehensively, and therefore the possibility
of converging to a local optimum point is low. Addi-
tionally, this algorithm has no limitation for optimiz-
ing functions such as derivative and continuity func-
tions (Ebtehaj & Bonakdari, 2014). This algorithm only
requires the amount of target function at different points
to be determined and does not use additional informa-
tion such as the derivative of the target function (Ebtehaj
& Bonakdari, 2014). Genetic algorithm can be consid-
ered in a number of problems including linear, nonlinear,
continuous and separated. Moreover, it is easily compat-
ible with different problems. In general, it simulates the
biologic evolution process using selection, crossover and
mutation operators.

The selection operator is one of the remarkable pro-
cesses for selecting parents to produce new populations
that affect the convergence of genetic algorithms (Ebtehaj
&Bonakdari, 2014). Goldberg andDeb first evaluated the
speed of convergence of different selection states (Gold-
berg & Deb, 2008). In the roulette wheel or probable
samplingmethod, which is applied in this research, chro-
mosomes with higher fitness are given more chances to
be considered for being parents. The probability for each
chromosome i is indicated in Equation (1) (Ebtehaj &
Bonakdari, 2014):

pi = fi/
N∑
j=1

fi (1)

where fi and N denote the fitness of chromosome i and
the population size, respectively. Crossover andmutation
are two other operators in genetic algorithms. Crossover
simultaneously operates on two chromosomes and com-
bines features of the chromosomes to produce a new
generation (Ebtehaj & Bonakdari, 2014). The movement
of people among the sub-population in which the best
individual of a sub-population is replaced by the worst
people in the population is called migration. Random
selection of a cut point and producing a new generation
via combining a fraction of one of the parents to the left
side of the cut point with a fraction of the other parent
to the right side is a simple method to obtain crossover
(Ebtehaj & Bonakdari, 2014). In mutation, some parts of

the chromosome are changed randomly to obtain a bet-
ter response and escape from the optimization area. In
fact, in this mode, characteristics are generated that are
not found in the father.

2.2. Particle SwarmOptimization (PSO)

The PSO algorithm is inspired by the concurrent flight
of birds, the shoalling of fish, and their social lives.
This algorithm uses a series of simple equations. In this
algorithm, each particle deputizes a probable answer to
move randomly in the problem space. The experience
of neighbouring particles and the knowledge of each
particle affect the changing location of each particle in
the search space (Ebtehaj & Bonakdari, 2016; Kennedy,
2015b; Zaji et al., 2015). A particle’s position influences
the search process of the particle itself. Modelling such
socio-biological instincts creates a search procedure in
which particles desire and tend towards suitable areas.
Each particle in the group learns from the others and,
according to the knowledge obtained, tends to go to the
best of their neighbours (Ebtehaj & Bonakdari, 2016;
Kennedy, 2015b; Zaji et al., 2015).

The operation of the algorithm is based on the theory
that each particle will regulate its position in the search
space according to the best place located there and the
best location within the entire neighbourhood (Ebtehaj
& Bonakdari, 2016; Kennedy, 2015b; Zaji et al., 2015). It
is assumed that there is a D-dimensional space and that
the ith particle of the population is designated a veloc-
ity vector and a position vector (Ebtehaj & Bonakdari,
2016; Kennedy, 2015b; Zaji et al., 2015). Any change in
the location of each particle is the result of changing its
velocity and position in the previous conditions (Ebte-
haj & Bonakdari, 2016; Kennedy, 2015b; Zaji et al., 2015).
The best value ever reached (pbest) and the position of
xi are presented by each particle. Each particle comes to
determine the best answer by identifying the best results
ever obtained from pbest (gbest) (Ebtehaj & Bonakdari,
2016; Kennedy, 2015b; Zaji et al., 2015). Each particle
then tries to change its position to gain the best answer
using the information below:

Vk+1
i = wvki + c1r1 · (pbesti − xki ) + c2r2 · (gbest − xki )

(2)
where Vi and xi denote the current position and current
speed, respectively (Ebtehaj&Bonakdari, 2016; Kennedy,
2015b; Zaji et al., 2015). Equation (2) shows the speed
changes of each particle. In Equation (2), vki is the speed
of each representative in repetition ki; w, c1, c2, r1 and r2
denote weighting parameter, weight factors, and random
numbers between zero and one, respectively; xki denotes
the location of each particle i at iteration k; pbesti denotes
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pbest in particle i and; gbest denotes gbest in the group.
Equation (3) demonstrates the position of each particle
(Ebtehaj & Bonakdari, 2016; Kennedy, 2015b; Zaji et al.,
2015):

xk+1
i = xki + vk+1

i (3)

In Equation (2), the weighting parameter w guarantees
the convergence of the algorithm. Theweighting parame-
ter controls the effect of previous speeds on current rates.
The balance between functionality and comprehensive
exploration of the local group is represented by an appro-
priate weighting parameter value (Ebtehaj & Bonakdari,
2016; Kennedy, 2015b; Zaji et al., 2015). A suitable choice
of weighting factor will decrease the number of repeti-
tions to find the optimal solution. Inertia constant factor
greater than one increases the effect of the previous rate
in developing the algorithm search space, but renders
the algorithm unstable. The amount of W was first con-
stant. Shi and Eberhart’s researches (Taddy, 2019; Tsu-
ruoka et al., 2009) created great changes to this algorithm.
They changed the weighting parameter linearly from the
maximum amount to its minimum amount as shown in
Equation (4):

w = wmax − wmax − wmin

itermax
· iter (4)

where wmax and wmin denote initial and final weights,
iter and itermax illustrate a number of repetitions and
the largest number of repetitions. In Equation (2), C1
and C2 parameters are critical for the convergence of the
algorithm (Ebtehaj & Bonakdari, 2016; Kennedy, 2015b;
Zaji et al., 2015). An appropriate answer may converge
sooner and avoid the possibility of being stuck in local
minimum points. The parameters r1 and r2 affect the
uniformity of solutions and this parameter is randomly
selected between zero and one. The value of the particles
allows them to move in random paces in the range from
gbest to pbest (Ebtehaj & Bonakdari, 2016; Kennedy,
2015b; Zaji et al., 2015).

2.3. Stochastic Gradient Descent (SGD)

SGD is a method for improving an objective function
with suitable softness properties (Taddy, 2019). SGD
method, unlike the massive gradient descent method,
changes one step for each data such as x(i) and its cor-
responding value y(i):

θ = θ − η · ∇θ J(θ ; x(i); y(i)) (5)

Themassive descending gradientmethod performs addi-
tional and unnecessary computations for large data sets
because the gradient computes the same data repeat-
edly before making any changes. The random method

eliminates these additional computations by making a
change with each gradient. For this reason, this method
ismuch faster and can have instant learning. The random
method makes changes with high variance, which causes
the objective function to fluctuate sharply.

While the mass gradient method always converges to
the minimum of the same arc that encloses the parame-
ters, the fluctuations of the random method on the one
hand enable it to find better relative minimum and on
the other hand cause the final convergence to be accu-
rate. Minimization is harder because this method has a
large deviation from the original value in each iteration.
However, it has been proven that when the learning rate
is slowly increased, this method shows the same conver-
gence of the mass method with high reliability, converges
to absoluteminimumat convex levels and to relativemin-
imum at non-convex levels. Besides, in each iteration, the
order of the data is changed randomly (Tsuruoka et al.,
2009).

SGD uses a randomly-selected subsection of the train-
ing examples to predict the gradient of the target function
given by Equation (5) (Tsuruoka et al., 2009).

αw =
N∑
i=1

K(j · w) − C
∑
i

|ωi| (6)

where N is the batch size, C is the meta-parameter and
ωt is the weight of the feature. The updated weights of the
features at training instance j are presented as follows:

ωk+1 = ωk + ηK
∂

∂ω
(K(j · ω) − C

N

∑
i

|ωi|) (7)

In Equations (6) and (7),K is the iteration numerator and
ηK is the learning rate, which decreases as the iterated son
advances.

2.4. Particle SwarmOptimization–Genetic
Algorithm (PSO-GA)

The PSO andGAalgorithms are two kinds of population-
based evolutionary algorithms. These two algorithms
have similar properties, but each of them has advantages
and disadvantages (Bilhan et al., 2010; Chang et al., 2013;
Zaji & Bonakdari, 2002). Requiring a lot of functions
for examining the model and high computation costs
are some of the disadvantages of GA. Besides, different
GA operators, such as selection, mutation, and crossover,
convergence, decrease the speed of the algorithm (Bilhan
et al., 2010; Chang et al., 2013; Zaji & Bonakdari, 2002).
PSO algorithm has memory, yet causes loss of informa-
tion of individual not chosen. In PSO, common action
and reaction increase the search for an optimal solu-
tion. However, inGA, investigating optimal solutions in a
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Figure 1. Flowchart of the PSO-GA hybrid algorithm.

globally optimal area have encountered problems (Bilhan
et al., 2010; Chang et al., 2013; Zaji & Bonakdari, 2002).

In this research, a new hybrid algorithm with
advantages of both PSO and GA algorithms, termed

PSO-GA, is created to boost the accuracy of the search
(Zaji & Bonakdari, 2002). PSO-GA method is used
for computing global solutions. For this purpose, this
method considers the entire search space that combines
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standard and fast regulations updated the position in
the PSO with the concepts of selection, mutation, and
crossover in GA (Figure 1) (Chang et al., 2013; Smith,
1993; Zaji & Bonakdari, 2002). Some of the individuals
having similar properties with those in the previous gen-
eration, but in a different position in the search space,
are replaced using alternative operators by applying GA
operators according to PSO, produced individuals, and
remaining individuals. This updating mechanism con-
stitutes the evolution in PSO standard algorithm. The
updating principle of PSO algorithm is shown in Equa-
tions (8) and (9) (Chang et al., 2013; Smith, 1993; Zaji &
Bonakdari, 2002):

vt+1
j = wvtj + c1rand1(pbestj(GA) − ktj)

+ c2rand2(gbest(GA) − ktj) (8)

kt+1
j = ktj + vt+1

j , kmin t+1
j

max

(9)

In Equations (8) and (9), pbestj (GA) indicates the
best answer obtained by particle j after action by the
GA operators, and gbest (GA) indicates the best solu-
tion in the group after action by the GA operators (Zaji
& Bonakdari, 2002). A setting method is utilized in the
optimal design of performance upon PSO-GA algorithm
(Figure 1) (Chang et al., 2013; Smith, 1993; Zaji &
Bonakdari, 2002). For allocating priority to PSO or GA,
two driving parameters are added to the algorithm. K1
and K2 are two effective terms that are used in PSO
and GA, respectively (K1 +K2 = 1). K1 determines the
number of individuals that can be transmitted to the
next generation and K2 expresses the number of indi-
viduals that can replace the current generation. If K1 or
K2 is equal to zero, GA or PSO (respectively) does not
have any effect on individuals. To explain the effective-
ness of PSO-GA, the following points are mentioned: in
PSO-GA, the quality of the solution (competence) in the
upgrade method is considered. Factors that are close to
a good solution attract other factors that are exploring
various sections of the search space. When all factors
are close to an appropriate result, they move very slowly.
Therefore, gbest supports them to find the best overall
solution. Using memory, the PSO-GA algorithm retains
the best gbest solution ever discovered so that it is avail-
able at all times. Each factor can see the best gbest solution
and lean towards it. The above points make the PSO-
GA algorithm powerful enough to solve a wide range of
optimization problems.

2.5. Artificial Neural Networks (ANNs)

The advantages of the ANN method include good per-
formance in analysing complex flows and nonlinear flow

Figure 2. Architecture of a multi-layer perceptron network.

patterns. ANN’s flexible structure enables it to model
complex and/or nonlinear patterns between input and
output data. Neural network training means gaining net-
workweights. The classification of ANN types is based on
methods used to obtain weights as well as transfer func-
tions used. A multilayer perceptron neural network, as
one of the most widely used types of ANN, consists of
an input layer, one or more hidden layers and an output
layer, see Figure 2 (Kisi et al., 2012; Smith, 1993; Ste-
infeld et al., 2015). Each layer consists of a number of
neurons. In the neural network studied in here, sigmoid
and linear activation functions are used for hidden and
output layer neurons, respectively. Various functions can
be considered as sigmoid functions and, in this study,
the hyperbolic tangent is utilized as an activation func-
tion in hidden layers. The Lunberg–Marquardt method
is used to train the ANN. In this method, the back propa-
gation algorithm is utilized to find the weights and biases
of the neural network. The implemented ANN model
has two hidden layers. Moreover, the number of neurons
in each hidden layer is determined utilizing a trial-and-
error procedure (Kisi et al., 2012; Smith, 1993; Steinfeld
et al., 2015).

2.6. Genetic Programming (GP)

GP, as one of the evolutionary algorithms, has a tree
structure. The recursive form of assessment and estima-
tion of trees is easy. Any node of a GP structure has
an operator function mode, and each terminal node is
contained with an operand that causes improvement as
well as an assessment of mathematical statements (Koza
& Koza, 1992; Khan et al., 1998; Steinfeld et al., 2015).
The process of GP is such that functions required to cre-
ate the final model and set are selected first. In the next
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step, the available data set is called to predict the desired
parameters and compare them with the actual amounts.
Chromosomes are then generated randomly to represent
the initial population. In the next step, for the population
produced using the available chromosomes, the program
is executed, and the suitability of the objective function is
checked. If a program stopping criterion is fulfilled, the
program is stopped; otherwise, new chromosomes that
are genetically modified are used in the new population,
and the target function is reappraised. This operationwill
continue until the conditions for stopping the program
are met (Ferreira, 2001a; Koza & Koza, 1992; Khan et al.,
1998; Steinfeld et al., 2015).

The fitness of a unique program i for the fitness of
model j by Ferreira (2001) is presented as follows:

if E(ij) ≤ p, then f (ij) = 1; else f (ij) = 0
In the above relation, p is the precision and E(ij) is

the error of program i for the fitness of model j, which
is expressed as follows for absolute error:

E(ij) = |p(ij) –Tj|
The fitness value of a unique program (fi) is also

expressed as follows: fi = ∑(
R − |p(ij) − Tj

)
In the above, the relation R of the selection domain

p(ij) is the value predicted by the unique program i for
the fitness of model j and Tj is the target value for the fit-
ness of model j. It should be noted that the parameters of
GEP are determined utilizing a trial-and-error procedure
to obtain the most accurate predictions.

3. Experiments

3.1. Experimental setup

Empirical data provided by Alhamati et al. (2005) are uti-
lized for estimating the discharge coefficient of an inflat-
able dam. The laboratory studies are performed on a 20m
long, 0.9m wide and 0.6m deep channel. The inflatable
dam model is placed at 8.5m from the upstream end of

Table 1. Ranges of parameters used to estimate the discharge
coefficient.

p/pmax q/qmax H1/Dh h/Dh x/xmax Cd

Minimum 0.3 0.2565 1.1194 0.1194 0.11191 0.298
Maximum 1 1 1.28 0.276 1 0.364
Average 0.6111 0.4298 1.1618 0.1618 0.44 0.3231
St. dev. 0.1918 0.2502 0.0523 0.0523 0.4301 0.02134
Variance 0.0368 0.0626 0.0027 0.0027 0.1851 0.0004

the channel. A rectangular weir is fixed at the beginning
of the channel to measure the discharge and an air com-
pressor is utilized to inflate the air in the dam. To prevent
leakage between the channel walls, an extra length (20 cm
from both sides of the model) is added to the model
length. Figure 3 shows a schematic sketch of the inflat-
able dam used in this experiment, and Table 1 lists the
statistical values of the input parameters used to estimate
the discharge coefficient.

The following dependent parameters are utilized for
estimating the discharge coefficient (Cd):

• (H1/Dh): the ratio of total upstream head to dam
height,

• (h/Dh): the ratio of overflow head to dam height,
• (q/qmax): the ratio of discharge per width unit to its

maximum value,
• (p/pmax): the ratio of internal pressure of the tube to

its maximum value,
• (x/xmax): the ratio of longitudinal coordinate place-

ment of each element to xmax.

To specify the efficacy of each input parameter
(q/qmax, p/pmax, H1/Dh, h/Dh, x/xmax) on the output
parameter (Cd), the coefficient of determination (R2) is
used (Sharafi et al., 2016). The closer this coefficient is to
one, the more effective is the input parameter. The com-
putedR2 for q/qmax, p/pmax,H1/Dh, h/Dh and x/xmax data
are 0.88, 0.59, 0.860, 0.86 and 0.15, respectively, indicat-
ing that q/qmax and x/xmax range from the highest to the

Figure 3. A section view of the air-inflated rubber dam.
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lowest correlation. From the results of a regression cor-
relation test, it can be expected that x/xmax is the least
effective input data for forecasting Cd, and q/qmax is the
most effective input data.

Six models are utilized to predict the discharge coef-
ficient (Cd). As shown in Equations (10)–(15), Model 1
uses all the parameters, while each of the remainingmod-
els opts out one of the input parameters to observe its
effect on the prediction outcome:

Model 1: Cd = f
(

p
pmax

.
q

qmax
.
h
Dh

.
H1

Dh
.

x
xmax

)
(10)

Model 2: Cd = f
(

p
pmax

.
q

qmax
.
h
Dh

.
H1

Dh

)
(11)

Model 3: Cd = f
(

p
pmax

.
q

qmax
.
h
Dh

.
x

xmax

)
(12)

Model 4: Cd = f
(

p
pmax

.
q

qmax
.
H1

Dh
.

x
xmax

)
(13)

Model 5: Cd = f
(

p
pmax

.
h
Dh

.
H1

Dh
.

x
xmax

)
(14)

Model 6: Cd = f
(

q
qmax

.
h
Dh

.
H1

Dh
.

x
xmax

)
(15)

3.2. Evaluation criteria

To assess the accuracy of the measured Cd by the hybrid
PSO-GA model, different statistical indices, such as the
coefficient of determination (R2), the Root Mean Square
Error (RMSE), the Mean Absolute Percentage Error
(MAPE), SI and δ, are utilized as shown in Equations
(16)–(20):

R2 =
[ n∑
i=1

(xi − x̄)(yi − ȳ)/

√√√√ n∑
i=1

(xi − x̄)2
n∑

i=1
(yi − ȳ)2

⎤
⎦
2

(16)

RMSE =
√√√√1

n

n∑
i=1

(xi − yi)2 (17)

MAPE = 1
n

n∑
i=1

|xi − yi|
xi

(18)

SI = RMSE
x̄

(19)

δ% =
( N∑

i=1
|(yi − xi)|/

N∑
i=1

yi

)
× 100 (20)

Table 2. Adopted optimum parameters of PSO-GA.

Parameter Value

Maximum number of iterations 1200
Population size 400
Maximum number of sub-iterations for GA 50
Maximum number of sub-iterations for PSO 50
Weight factor in PSO 2

where yi and xi denote the forecasted and real discharge
coefficients, respectively. ȳ and x̄ denote the average fore-
casted and real discharge coefficients, respectively.

Moreover, Taylor diagrams are utilized to compare and
appraise the accuracy of the studied models. Moreover,
to understand the difference between the measured and
estimated values, different points with different colours at
the polar pole are used in Taylor diagrams.

4. Results and discussion

The accuracies of six different models for estimating the
discharge coefficient of the inflatable dam are reported
at this section. Furthermore, given that there is no spe-
cific way to split training and test data in data-driven
methods, different researchers have used different ratios,
e.g. Diop et al. (2020), Esmaeilzadeh et al. (2017), Kar-
gar et al. (2019) and Samadianfard et al. (2014). For
developing the studied ANN-PSO, ANN-GA and PSO-
GA models, the data are split into 75% training section
and 25% testing section. In Models 1–6, the dimension-
less parameters—the ratio of total upstream head to dam
height (H1/Dh), the ratio of overflow head to dam height
(h/Dh), the ratio of discharge per width unit to its max-
imum value (q/qmax), the ratio of the internal pressure
of the tube to its maximum value (p/pmax) and the ratio
of the longitudinal coordinate placement of each element
to xmax—are used as independent parameters to forecast
the discharge coefficient. To have a controlled experi-
ment, the impacts of dropping out one of the parameters
on the forecasted discharge coefficient are investigated
using the PSO-GA algorithm and compared to empiri-
cally observed ones as shown in Figure 4. Additionally,
according to previous studies (Gharabaghi et al., 2018;
Gholami et al., 2018), the adopted optimum parameters
of PSO-GA are presented in Table 2.

The best result is spawned by Model 1 (R2 = 0.993),
followed by Model 2 (R2 = 0.973). In Model 2, the dis-
charge coefficient of the inflatable dam is estimatedwith a
relative approximate error of 0.74% and an acceptable R2

of 0.973. This model suggests that removing the dimen-
sionless parameter x/xmax still leads to good results and
hence it has no significant impact.

In Model 4, omitting the ratio of overflow head to
dam height (h/Dh) has a considerable efficacy on the
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Figure 4. Comparing forecasted Cd with observed outcome in the training phase.

estimation of the discharge coefficient, as the accuracy
decreases and the determination coefficient is nearly
R2 = 0.941.

Model 3 evaluates the effect of the ratio of total
upstream head to dam height (H1/Dh) on the discharge

coefficient, where a determination coefficient ofR2 = 0.926
is obtained. The outcomes reveal that the calculation
accuracy of Model 3 is lower than that of Models 1, 2
and 4. Model 3 also produces lower values compared to
empirical values at some points.
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Figure 5. Comparing forecasted Cd with observed one under
Model 1 in the testing phase.

Eliminating the discharge parameter in Model 5
results in a lower prediction accuracy for the discharge
coefficient and degrades the fitness of R2, which drops
to 0.897. Consequently, the discharge parameter plays an
important role in estimating the discharge coefficient.

Model 6 examines the effect of the absence of inter-
nal pressure of the tube on the prediction accuracy. The
model produces estimations with a higher degree of vari-
ation, above and below, around the actual values of the
discharge coefficient. The results show that removing this
input parameter decreases the relative error by 1.82% and
decreases accuracy compared to other models.

As depicted in Figure 5, the predicted values of the dis-
charge coefficients are compared to the actual ones under
the testing phase of Model 1. The determination coeffi-
cient shows a high fitness value close to 1.0 (R2 = 0.984)
as the predicted values are close to the real ones as sum-
marized in Table 3 with a relative error of 0.57%.

Table 4 provides an overall summary of the perfor-
mance of all models against one another using various
statistical tools. Models 1 and 2 show top results with
R2 = 0.993 and R2 = 0.73, respectively. Using RMSE to
evaluate errors in the model’s prediction, Model 1 poses
the lowest RMSE value as it is closest to zero. Similarly,
the RMSE of Model 2 is as low as 0.002, which confirms
that the absence of the dimensionless parameter x/xmax
has no impact on the estimation of the discharge coeffi-
cient. MAPE, as an error-index, reflects the gap between
the estimated and observed data as a percentage of the
observed values. The maximum error (1.82%) is posed
in Model 6, where dropping out the internal pressure of
the tube parameter increases the error notably. On the
other hand,Model 1 exhibits the bestMAPE value, as low
as 0.46%, which reflects a higher accuracy of the model.
The SI index is another errormeasurement indicator that
is computed by dividing the RMSE index by the mean
observation values. Hence, the closer it is to zero, the
more accurate the prediction is. With reference to the SI
value, Model 6 produces the worst SI value (0.019) while
Model 1 has the best one (0.004).

Table 3 shows error indicators for different models in
the testing phase. The least value of R2, which is around
0.811, is found for Model 6, denoting lower prediction
accuracy. Model 1 gives the closest estimates to real val-
ues and thus its R2 is high and near 1.0 (0.984). Model
1 obtains an RMSE index equal to 0.001, which indi-
cates a low prediction error. The highest MAPE error
index is attributed to Model 6, which is approximately
2.12%. The results indicate that Models 1 and 2 have
top performance for estimating the discharge coefficient,
and Model 1 has the best prediction accuracy. Table 5
summarizes the results obtained under Model 1.

In Table 6, the performance of the hybrid algo-
rithms. including ANN-GA, ANN-PSO and ANN-SGD,
are assessed. According to Table 6, the SGD algorithm,

Table 3. Performance evaluation of various models in the testing phase.

PSO-GA GP ANN

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 1 Model 1

R2 0.984 0.961 0.918 0.937 0.876 0.811 0.857 0.853
RMSE 0.001 0.002 0.004 0.003 0.005 0.008 0.002 0.004
MAPE (%) 0.57 0.87 1.34 1.03 1.58 2.12 0.69 2.00
SI 0.004 0.007 0.012 0.010 0.015 0.019 0.009 0.022

Table 4. Performance evaluation of various models in the training phase.

PSO-GA GP ANN

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 1 Model 1

R2 0.993 0.973 0.926 0.941 0.897 0.824 0.818 0.878
RMSE 0.001 0.002 0.004 0.003 0.004 0.006 0.007 0.005
MAPE (%) 0.46 0.74 1.22 0.99 1.36 1.82 2.05 1.91
SI 0.004 0.007 0.012 0.010 0.013 0.019 0.031 0.023
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Table 5. Estimated discharge coefficient using the hybrid PSO-GA under Model 1.

p (KN/m2) q (m2/s/m) H1/D1 h/D1 x(m) Cd (EXP) Cd (PSO-GA)

4 0.005,833,333 1.121,156 0.121,156 −2.15E-03 0.314 0.314,001
4 0.005,833,333 1.121,156 0.121,156 −2.58E-02 0.314 0.313,96
4 0.005,833,333 1.121,156 0.121,156 −4.30E-02 0.314 0.313,929
4 0.005,833,333 1.121,156 0.121,156 8.51E-01 0.314 0.314,045
4 0.005,833,333 1.121,156 0.121,156 7.87E-01 0.314 0.314,138
4 0.005,833,333 1.121,156 0.121,156 7.19E-01 0.314 0.314,221
4 0.005,833,333 1.121,156 0.121,156 6.38E-01 0.314 0.314,296
2 0.005,833,333 1.130,964 0.130,964 −2.95E-17 0.298 0.297,973
2 0.005,833,333 1.130,964 0.130,964 8.60E-03 0.298 0.297,987
2 0.005,833,333 1.130,964 0.130,964 5.15E-01 0.298 0.298,337
2 0.005,833,333 1.130,964 0.130,964 8.13E-01 0.298 0.298,079
2 0.005,833,333 1.130,964 0.130,964 7.15E-01 0.298 0.298,202
2 0.005,833,333 1.130,964 0.130,964 6.38E-01 0.298 0.298,272
1.5 0.005,833,333 1.133,799 0.133,799 −2.15E-03 0.3 0.299,895
1.5 0.005,833,333 1.133,799 0.133,799 −2.15E-03 0.3 0.299,895
1.5 0.005,833,333 1.133,799 0.133,799 −2.15E-03 0.3 0.299,895
1.5 0.005,833,333 1.133,799 0.133,799 8.17E-01 0.3 0.300,079
1.5 0.005,833,333 1.133,799 0.133,799 7.32E-01 0.3 0.300,147
1.5 0.005,833,333 1.133,799 0.133,799 6.38E-01 0.3 0.300,197

Table 6. Performance of the hybrid algorithms.

PSO-GA ANN-GA ANN-PSO ANN-SGD

R2 0.999 0.942 0.933 0.957
RMSE 0.0001 0.004 0.003 0.001
MAPE (%) 0.04 1.29 0.78 0.43
SI 0.0004 0.015 0.009 0.004

which is used for the first time for forecasting the dis-
charge capacity of inflatable rubber dams, has the most
significant impact on improving theANN results. Finally,
by comparing the error metrics presented in Tables 3 and
6, it can be observed that the hybrid PSO-GAmodel has a
higher capability for accurately forecasting the discharge
capacity of inflatable rubber dams.

Moreover, Figure 6 gives the overall distribution of
errors among all models presented in this study. It shows
that Model 1 has the best performance in forecasting the
discharge coefficient. According to Figure 5, 90% of the
predicted discharge coefficients in Model 1 have a rela-
tive error of less than 3%, while 80% of the data have a
relative error lower than 3%. It is worth mentioning that
Model 2 also shows a sufficiently good performance, and
Model 6 has a relative error of less than 4%.

Using a Taylor diagram, the correlation and stan-
dard deviation values between estimated and observed
values are investigated. In Figure 7, a Taylor diagram
is presented for all methods implemented. The RMSE
parameter in the diagram is defined as the distance from
the reference point (green dot) to any other point. The
most accuratemodel is considered as theminimum space
between the green and corresponding dots (Taylor, 2001).
According to Figure 7, the red point (PSO-GA) is the
closest point to the green point and has a minimum dis-
tance from the reference point; therefore it yields accurate
results with minimum error.

Figure 6. Error distribution of the hybrid PSO-GA algorithm
across all models.

5. Conclusion

Inflatable dams are popular solutions for many engi-
neering and environmental problems, such as irriga-
tion, power generation, flood control and environmental
improvement. In this research, the discharge coefficient
of an inflatable dam (Cd) is estimated by a new hybrid
PSO-GA algorithm. Five dimensionless input parameters
are utilized in this research: the ratio of total upstream
head to dam height (H1/Dh), the ratio of overflowing
head to dam height (h/Dh), the ratio of discharge per
unit width to its maximum value (q/qmax), the ratio of
the internal pressure of the tube to its maximum value
(p/pmax) and the ratio of the longitudinal coordinate
placement of each element to xmax. The proposed hybrid
algorithm is a combination of PSO and GA so as to ren-
der the new algorithmmore efficient (faster convergence)
and effective (higher accuracy). The developed hybrid
PSO-GA is characterized by its quick convergence, yet
it slows down sharply near the optimal point during the
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Figure 7. Taylor diagram of observed and estimated values.

search process. The genetic algorithm is very sensitive
to the initial conditions. The random nature of genetic
operators makes the algorithm sensitive to the initial
population. This may lead to no convergence if the ini-
tial population is not well selected. Furthermore, experi-
ments with the hybrid PSO-GA algorithm show that the
developed algorithm responds faster, is not dependent
on the initial population and finds more accurate results.
This paper experiments with six different models and
conducts a sensitivity analysis by observing the impact of
excluding one input parameter at a time on the final pre-
diction. This comprehensive investigation demonstrates
that the model that utilizes all dimensionless parame-
ters (Model 1) for estimating the discharge coefficient
produces better results in comparison with other mod-
els, and also has the highest R2 values, reaching 0.984.
Model 1 provides the least MAPE value, which is almost
0.57% in comparison with the rest. The results indicate
that internal pressure is introduced as the most effec-
tive parameter for determining the discharge coefficient,
and neglecting this parameter decreases the estimation
accuracy and relative error of estimation up to 2.12%
in this model. Finally, the performance of some existing

hybrid algorithms, including ANN-GA, ANN-PSO and
ANN-SGD, are compared against PSO-GA. According
to the results, the SGD algorithm has the most signif-
icant impact on improving the ANN results. As a final
conclusion, comparing the error metrics indicates that
the proposed PSO-GA model has a high capability for
accurately forecasting the discharge capacity of inflatable
rubber dams.
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