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Abstract  1 

Existing bridges are aging and deteriorating; raising concerns for public safety and preservation 2 

of these valuable assets. Furthermore, large number of bridges exists in transportation networks; 3 

simultaneously maintenance budgets are being squeezed. These states of affairs necessitate the 4 

development of a computer vision-based method in an attempt to alleviate shortcomings of 5 

visual inspection-based methods. In this context, the present study proposes a three-tier method 6 

designated for the automated detection and recognition of bridge defects. In the first tier, singular 7 

value decomposition (SVD) is adopted for the sake of formulating the feature vector set through 8 

mapping most dominant spatial domain features in images. The second tier encompasses a 9 

hybridization of Elman neural network (ENN) and invasive weed optimization algorithm (IWO) 10 

to enhance the prediction performance of the Elman neural network. This is accomplished 11 

through designing a variable optimization mechanism that aims at searching for the optimum 12 

exploration-exploitation trade-off in the neural network. The third tier involves its validation 13 

through comparisons against a set of conventional machine learning and deep learning models 14 

capitalizing on performance prediction and statistical significance tests. A computerized platform 15 

was programmed in C#.net to facilitate its implementation by the users. It was found that the 16 

developed method outperformed other prediction models achieving overall accuracy, F-measure, 17 

Kappa coefficient, balanced accuracy, Matthews’s correlation coefficient and area under curve of 18 

0.955, 0.955, 0.914, 0.965, 0.937 and 0.904, respectively as per cross validation. It is expected 19 

that the developed method can improve the decision-making process in bridge management 20 

systems.       21 

Keywords: Bridges, computer vision, singular value decomposition, Elman recurrent neural 22 

network, invasive weed optimization, C#.net    23 
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1. INTRODUCTION   1 

Bridges are regarded as one of the core elements of the infrastructure systems. Meanwhile, they 2 

are vulnerable to severe deterioration agents such as freeze-thaw cycles, excessive distress loads 3 

due to the traffic overload, sulfates, alkali-silica reaction (ASR), poor construction practices, etc. 4 

As per the Canadian infrastructure report card, 26% of the bridges are either “Fair”, “Poor” or 5 

“Very Poor” [1]. Moreover, one-third of Canada’s bridges were reported to have structural or 6 

functional deficiencies with short remaining service life, whereas 20 million light vehicles, 7 

750,000 trucks, and 15,000 public transits use the Canadian bridges annually (National Research 8 

Council Canada, 2013). The average age of the bridges is 24.5 years in 2007 compared to a mean 9 

service life of 43.3 years. Therefore, 57% of the estimated service life has already been 10 

consumed [2]. In addition to that, the backlog of bridge maintenance, rehabilitation and 11 

replacement is estimated to be equal to $10 billion. The continuous increase in the backlog 12 

results in a significant deterioration in the condition of the bridge elements [3].  13 

In view of the above, it is very decisive to evaluate the condition of the bridge decks in order to 14 

preserve them within safe condition and to ensure the public safety. As such, maintenance-15 

related interventions should be condition-driven in order to maintain the structural health, 16 

reliability and durability of bridge decks within allocated budget limitations. The current routine 17 

inspections are usually carried out by inspectors to evaluate the condition of the bridges based on 18 

the assessment of surface defects. These condition ratings are error-prone because the visual 19 

inspection-based methods are highly dependent on the skills and experience of inspectors, which 20 

created wide variations among the evaluations of the inspectors. Therefore, the subjectivity, 21 

uncertainty and safety risks of the visual inspection process in addition to its labor extensive and 22 

time-consuming nature lead in turn to imprecise judgments.  23 

Recently, the use of computer vision-based methods became a trend to evaluate surface defects 24 

in concrete structures. The development of automated detection and evaluation methods enable 25 

the transportation agencies to overcome the drawbacks of the visual inspection-based methods, 26 

which are considered as the most common practice to monitor the condition of the bridge decks. 27 

Computer vision-based methods aid in obtaining more objective and precise defects evaluation. 28 

Additionally, they are characterized by being time and cost efficient [4-6]. Detection of defects is 29 

not the only required task but also their recognition and evaluation of their magnitude of 30 

severities. In this regard, each surface defect is assessed using a set of descriptors and different 31 

types of defects require different types of maintenance. Ground truth annotated dataset is 32 

essential for the detection and recognition of surface and subsurface defects. For instance, 33 

establishing a labelled dataset for non-destructive tests is usually a more difficult task than visual 34 

images [7]. One of the approaches to establish a ground truth is to take number of cores at 35 

different locations [8]. Another approach is to generate an agreement map based on group of 36 

inspection techniques including infrared thermography, hammer sounding and limited physical 37 

sampling [9]. In view of this situation, the development of automated detection and recognition 38 

method is vital as an initial stage to objectively evaluate the condition of the bridge elements. As 39 

such, the main objectives of the present study are as follows: 40 

1- Develop a self-adaptive hybrid SVD − ENN − IWO method designated for the automated 41 

detection and recognition of surface defects  42 

2- Validate the proposed method through comparison with some widely-recognized deep 43 

learning and machine learning models. 44 
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2. LITERATURE REVIEW  1 

Several previous machine learning-based methods were developed for the automated and 2 

accurate detection and recognition of surface defects. Yao et al. [10] presented a bridge crack 3 

detection and classification model based on a climbing root using a set of image processing 4 

techniques. Wiener filtering method was applied to remove the motion blur of the acquired 5 

images. Then, the wavelet transform was employed to minimize the texture effects of the crack 6 

area and finally, support vector machine (SVM) was implemented to classify the cracks and 7 

evaluate their severity levels. Tong et al. [11] presented a new method for image-based crack 8 

detection to facilitate the automatic bridge inspection process. Gaussian filter was used to 9 

remove the noise and enhance the image quality. Morphological operations are used to ensure 10 

the connection between the crack segments. The objective of the model was to decide whether 11 

the binary images represent a crack or not based on some criteria such as circularity of the 12 

region, aspect ratio, perimeter and area. The proposed model achieved an accuracy of 93% and it 13 

outperformed some other methods such as Fujita method, canny edge detection method and 14 

Sobel edge detection method.    15 

Moon and Kim [12] proposed an automatic system for crack detection using some image 16 

processing techniques to enable the inspectors to perform the crack monitoring task effectively. 17 

The irregular illumination present in the images was removed using improved subtraction 18 

method by applying a median filter and then gray image is subtracted from the enhanced image. 19 

Then a Gaussian low-pass filter was utilized to connect small gaps and to adjust the distortion in 20 

the crack shape. The tuning parameters such as threshold value, median filter size, Gaussian 21 

filter size, standard deviation of the Gaussian filter, were determined via a set of organized 22 

experiments using signal to noise ratio metric. Finally, a back-propagation artificial neural 23 

network is designed to binary classify whether the concrete images contain cracks or not. The 24 

model was capable to detect crack images by 90% and non-crack images by 92%, whereas the 25 

number of hidden layers was defined based on experience. Xuejun and Yan [13] developed a 26 

bridge crack detection system using video frame processing. The classification of bridge cracks 27 

was performed via deep belief network (DBN). The proposed model was capable of achieving a 28 

classification accuracy of 94%, 93% and 90% for the transverse cracks, longitudinal cracks, and 29 

network cracks. DBN outperformed some conventional utilized classification methods such as 30 

SVM and back propagation neural network.  31 

Chen et al. [14] proposed a method for the detection of concrete cracks using Otsu algorithm. In 32 

the developed model, Gaussian filter was applied to remove noise from background. 33 

Morphological operations were applied to remove noise from the segmented image while 34 

maintaining the shape features of the cracking. It was highlighted that the developed model could 35 

efficiently generate a binary image of cracks. Dawood et al. [15] proposed a machine vision-36 

based method for the evaluation of spalling in subway network. In it, Gaussian filter was 37 

employed to remove the noise and enhance the image details. The developed method utilized a 38 

histogram-based thresholding that encompassed the selection of optimum threshold value 39 

according to trial and error technique. Artificial neural network model was then developed to 40 

automatically evaluate spalling area. It was inferred that the developed model could assist asset 41 

managers in establishing reliable and timely intervention plans.         42 
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Bu et al. [16] introduced a model that integrates both wavelet features and support vector 1 

machines to detect bridge cracks automatically in images. They compared between three feature 2 

extraction methods which are: Daubechies Wavelet features, Gabor filter and Zernike moments. 3 

They concluded that Daubechies Wavelet features provided the best performance followed by 4 

Gabor filter and finally Zernike moments. They also highlighted that support vector machine 5 

achieved an accuracy of 93% in normal images, 90% in complex images, and 92% in overall 6 

images. Cen et al. [17] utilized convolutional neural network to detect the presence of cracks in 7 

reinforced concrete bridges. The images were captured using unmanned aerial vehicle (UAV) 8 

such that images of size 48×48 were used as an input to train the model. They experimented 9 

different sizes of filter window, whereas they concluded that the filter window size 48×2 10 

achieved the highest accuracy. The proposed detection method was capable of achieving 93.12% 11 

prediction accuracy using 2304 crack images and 5368 non-crack images.  12 

Li et al. [18] introduced a two-stage crack detection method based on convolutional neural 13 

network. The first stage involved feeding a small patch centering each pixel into the predictor to 14 

compute the probability that a pixel belong to a cracked area. In the second stage, a bigger patch 15 

elicited from the first confidence map is fed into the second predictor to obtain a second 16 

confidence map. Finally, the two confidence maps are combined to generate a final confidence 17 

map, which is used to map whether or not a certain pixel belong to cracked regions. The 18 

introduced method outperformed the canny edge detector method and STRUM (Spatially tuned 19 

robust multi-feature) method as per accuracy, precision and sensitivity. Yeboah et al. [19] 20 

developed an approach for the automatic detection and classification of bridge cracks using a 21 

robotic system. They utilized radon transform and directional projection variance for feature 22 

extraction. Finally, adaBoosted RVM (Relevance Vector Machines) was utilized to classify the 23 

cracks into no-cracks, simplex cracks and complex cracks. The proposed method outperformed a 24 

set of classifiers such as adaboost, RVM, back propagation artificial neural network and prior 25 

mathematical modelling.  26 

Kruachottikul et al. [20] utilized a pre-trained deep convolutional neural network called 27 

“Halcon” for the detection of defects in bridge sub structure surface. They established a binary 28 

classification model that enabled to determine whether the images encompassed defects or not. 29 

They highlighted that the developed transfer learning-based model achieved a total accuracy of 30 

89.3% which could improve the inspection process conducted by the departments of highways. 31 

Xu et al. [21] developed a convolutional neural network-based model for the purpose of 32 

detection of cracks in bridges. In the developed model, the feature extraction was envisioned on 33 

the Atrous spatial pyramid pooling to map the multi-scale context. Additionally, depthwise 34 

separable convolution was applied after the convolutional layer to minimize the computational 35 

effort and number of parameters of the deep learning model. They deduced that the developed 36 

model outperformed a set of pre-trained networks by achieving accuracy, precision, sensitivity, 37 

specificity and F-measure of 96.37%, 78.11%, 100%, 95.83% and 0.8771, respectively. 38 

Kim et al. [22] introduced a region-based convolutional neural network model coupled with 39 

transfer learning for identification of cracks in an aging concrete bridge. In this model, the deep 40 

neural network model was pre-trained using the Cifar-10 dataset. Furthermore, a dataset of 384 41 

images was utilized for training and testing purposes. It was concluded that this model achieved 42 

a relative error of 1-2% in the quantification of cracks. Cha et al. [23] employed convolutional 43 

neural network for the detection of concrete cracks. The architecture of the deep convolutional 44 
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neural network (DCNN) was composed of four convolutional layers, two pooling layers, one 1 

rectified linear unit layer and one softmax layer. The developed model was validated through 2 

comparisons against Canny and Sobel edge detection methods. It outperformed them providing 3 

training accuracy and testing accuracy of 98.22% and 97.42%, respectively.     4 

Wang et al. [24] utilized an integration of AlexNet and VGG11 pre-trained deep convolutional 5 

neural networks for bridge crack identification. The feature maps created by the two networks 6 

are concentrated in series to be sent to a softmax classifier for categorization of cracks. It was 7 

found that the developed model yielded improvements in the prediction accuracies by 0.32% and 8 

0.41% with respect to AlexNet and VGG11 networks, respectively. Słonski [25] compared the 9 

performances of four different architectures of deep convolutional neural networks in the 10 

automated detection of concrete surface cracks. This comprised small convolutional network 11 

with and without data augmentation, pre-trained VGG16 with data augmentation alongside 12 

VGG16 with a combination of data augmentation and fine-tuning. It was reported that the 13 

VGG16 coupled data augmentation and fine-tuning provided the highest classification 14 

performance achieving training and validation accuracies of 95% and 93%, respectively.               15 

Dorafshan et al. [26] investigated the implementation of two modes of deep convolutional neural 16 

network in concrete crack detection. In the first mode, the AlexNet architecture was fully-trained 17 

from scratch capitalizing on the dataset captured using small unmanned aerial systems. The 18 

second mode encompassed a transfer learning-based network of same topology that was pre-19 

trained using ImageNet dataset. The performances of the deep neural networks were evaluated 20 

stepping on three datasets. It was reported that the transfer learning-based network had higher 21 

training accuracy than the fully trained network. Furthermore, it achieved higher validation 22 

accuracies for the three datasets by values ranging from 5.3% to 10%. Dung and Anh [27] 23 

presented a crack detection method capitalizing on deep fully convolutional neural network. The 24 

main pillar of the fully convolutional neural network was VGG16 that was pre-trained using the 25 

ImageNet dataset. In this regard, the proposed encoder incorporated all the convolutional and 26 

pooling layers of the VGG16 except the fully connected and softmax layers. VGG16 was 27 

selected over other pre-trained networks including ResNet and InceptionV3 since it provided 28 

better performance in crack image classification. The encoder-decoder fully convolutional neural 29 

network was then trained end to end based on crack-labeled images dataset. It was highlighted 30 

that the developed segmentation method achieved average precision and maximum F1-score of 31 

89.3% for the testing dataset.       32 

In the light of the previous studies, it can be inferred that current practices of visual inspection 33 

provide subjective, inconsistent and inaccurate evaluation of the condition of the bridge decks. It 34 

can be also noticed that most of the conducted studies were primarily concerned with defects’ 35 

detection alongside detection and evaluation of cracks. There is a lack of investigation of other 36 

surface defects including scaling and spalling, whereas “Defect” and “No Defect” classes or 37 

“Crack” and “No Crack” classes are not sufficient to evaluate the severities of bridge defects. In 38 

this context, this may create incomprehensive and unreliable condition assessment models that 39 

can substantially influence the maintenance prioritization and planning models in the different 40 

managerial levels.  41 

Another shortcoming can be observed is that some of the reported models require conducting 42 

segmentation as a pre-processing to build the automated detection model of surface defects [10-43 
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14]. In this context, the segmented image is mainly utilized as an input to the machine learning 1 

model. This increases the net computational time and complexity as a result of the increase in 2 

number of pre-processing stages. Furthermore, these segmentation models are primarily 3 

histogram-based, clustering-based, region-based or edge detection-based. In this context, the 4 

previously- mentioned segmentation models are highly variant and sensitive to low contrast and 5 

non-uniformly illuminated images due to the multimodality of intensity histograms. This may 6 

induce many error points and significant degradation in defects’ extraction because the 7 

prediction accuracy of the machine learning model is becoming highly dependent on the defects’ 8 

segmentation algorithm [28-30]. In this context, it is more practical and efficient to rely on the 9 

gray-level images to design the classification model of surface defects.  10 

Another point to consider is that some models counted on feeding the whole input image directly 11 

to build the machine learning model. In this regard, high computational cost and resources are 12 

consumed per epoch during the training process endeavoring to explore the multi-dimensional 13 

space [15]. In similar context, some previous models utilize a set of simple defects’ descriptors 14 

such as area, eccentricity, ratio of major axis to minor axis. These models suffer from the 15 

absence of advanced feature extraction algorithm [10-12]. A feature extraction algorithm is 16 

necessitated in the case of presence of complex and noisy texture of images of bridge deck, 17 

which are mainly characterized by weak signals of defects patterns, in homogeneity of defects 18 

and the diversity of defects [31-33]. The presence of advanced and efficient feature extraction 19 

algorithm is essential in distilling the useful features in the images [34-35]. Their absence may 20 

undermine the discrimination and learning capacity of the machine learning, and cause its failure 21 

to distinguish the defects from background elicited from its failure to delineate the important 22 

features in the input images [36-37]. In this context, more attention should be dedicated to the 23 

implementation of feature extraction algorithm in an attempt to improve the learning capacity of 24 

the machine learning model.  25 

Some previous models counted on artificial neural network models to model the surface defects 26 

[12, 15]. In this regard, gradient descent algorithm is considered as one of the most commonly 27 

utilized for their training. It is based on finding the partial derivative of the error function to 28 

update the weights of the connections between neurons. The training process based on the 29 

gradient descent often gets trapped in a local minima or premature convergence and sometimes 30 

causes over-fitting and under-fitting problems especially in the case of presence of multilayer 31 

neural network [38-40]. The multi-layer neural network is normally linked with large search 32 

space, multi-local minima points, non-differential function and complex multi-dimensional curve 33 

[41-44]. Furthermore, in some cases, the global minimum is hidden between the local minima. 34 

Thus, the gradient descent algorithm can end up oscillating between the local minima [40].  35 

Deep learning has been adopted in the recent years to analyze and evaluate the surface defects in 36 

the different assets. However, there are shortcomings encountered in the adoption of deep 37 

convolutional neural networks. Deep learning requires huge training dataset to capture the 38 

features and build the relationships between the set of independent variables and the dependent 39 

variables, which sometimes can be difficult to find and tedious to create. This sometimes 40 

implicate over-fitting triggered by the presence of small dataset, which may drastically influence 41 

the recognition capacity of the machine learning models [45-46]. Another disadvantage of deep 42 
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learning is that sometime it induces detection latency as a result of the high processing demands 1 

[47].  2 

Another shortcoming of the deep learning models is the presence of wide range of hyper 3 

parameters that substantially influence the performance of the deep learning models. This 4 

includes the number of filters, stride size, padding size and kernel sizes to create the feature map, 5 

number of convolutional layers, type of transfer function, type of pooling operation, number of 6 

fully connected layers, number of neurons, and weights of the connections between neurons. 7 

There are infinite numbers of possible solutions that needs exhaustive search to be carried out, 8 

which causes the manual tuning of the hyper parameters to be a very challenging and tedious 9 

task [48-50]. Also some of the reported models adopted classical machine learning models for 10 

the detection of surface defects [12, 15-16, 19]. However, these models are not fully automated 11 

and require manual tuning of their hyper parameters. In this context, the absence of automated 12 

systematic method to define the optimum parameters of the deep convolutional and machine 13 

learning models can lead to its entrapment in local minima which yields inferior solutions 14 

triggered by the long computational time and poor convergence [40, 51-53]. Hence, this 15 

necessitates the development of a self-adaptive method that can autonomously tune its 16 

parameters based on the available dataset with minimum human intervention.          17 

Some previous studies relied on transfer learning-based deep neural networks to detect the 18 

surface defects. In this context, pre-trained source deep convolutional neural networks coupled 19 

with transfer learning mechanism, are utilized for defects’ recognition rather than training the 20 

deep neural network from scratch. These models are vulnerable to negative transfer, which 21 

allude to the situations where the transfer of information learned from the source domain has a 22 

detrimental implication on the prediction of the target domain. The absence of sufficient degree 23 

of similarity between the features of the source domain and target domain undermines the 24 

learning performance of the target errand [54-55]. In view of the above, the present study 25 

proposes a self-adaptive hybrid SVD − ENN − IWO designated for the automated detection and 26 

recognition of surface defects. This is expected to enhance the prediction accuracies of defects 27 

detection and recognition alongside facilitating the implementation of autonomous bridge 28 

inspection platform, which eventually aids in establishing efficient condition assessment models 29 

and reliable maintenance prioritization plans.          30 

3. PROPOSED METHOD   31 

The ultimate objective of the present study is to design a self-adaptive three-tier method. It is 32 

envisioned on integration of singular value decomposition, Elman recurrent neural network and 33 

invasive weed optimization algorithm to automatically detect and classify the bridge defects in 34 

reinforced concrete bridges. The bridge defects detection is a binary classification model to 35 

detect whether or not the images contain defects. The bridge defects recognition model aims at 36 

identifying if the defected images contain cracking or spalling or scaling. In the present study, 37 

the images are manually labelled using visual inspection [56-58]. The framework of the proposed 38 

SVD − ENN − IWO method is depicted in Figure 1. The proposed method houses three main 39 

modules which are: feature extraction, hybrid parameter-structural learning and performance 40 
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evaluation, whereas the output of the first module is the feature vector set while the output of the 1 

second module is the classification scheme. Finally, the output of the third module is designated 2 

for evaluating the recognition capacity of the developed method capitalizing on a set of 3 

performance prediction and statistical significance comparisons. 4 

For the first module, the first step is to convert the true-color image RGB to the grayscale image, 5 

whereas the intensity values of the gray-scale image vary from 0 to 255. For the RGB image, R 6 

stands for red, G stands for green, and B stands for blue. The gray-scale images can improve the 7 

image processing while preserving important features of the defect. Then, the images are 8 

standardized to size 100×100 in order to facilitate the further processing stages. The proposed 9 

method utilizes Wiener filer as a frequency domain filter to remove the maximum noise from the 10 

degraded image while maintaining the significant features in the image. The proposed method 11 

adopts un-supervised SVD to capture the underlying essential features in the images by 12 

eliminating the insignificant features and reducing the computational complexity of the data, 13 

which leads to lesser computational time and more accurate analysis. SVD is utilized to compute 14 

the singular values of the images which are extracted in the form of feature vectors. This feature 15 

vector set is then used as an input to feed the Elman recurrent neural network. There are different 16 

types of feature selection algorithms including principal component analysis, singular value 17 

decomposition, non-negative matrix factorization, latent semantic analysis and locality 18 

preserving projections. In this regard, singular value decomposition is preferred over other 19 

feature extraction algorithms because it proved its efficiency in dealing with wide range of 20 

engineering application including forecasting weekly solar radiation [59], streamflow forecasting 21 

[60] and acoustic event classification [61]. Additionally, it is characterized by its low 22 

computational complexity [62-63]. It is also worth mentioning that singular value decomposition 23 

demonstrated superior dimensionality reduction accuracy against principal component analysis 24 

according to a set of performance evaluation tests [64-65].       25 

The second module is the hybrid parameter-structural learning, whereas the proposed method 26 

utilizes invasive weed optimization to enhance the training process of the Elman neural network 27 

by addressing the exploration-exploitation trade-off dilemma. Invasive weed optimization 28 

algorithm is deployed for both parametric and structural learning, i.e., to automatically optimize 29 

the hyper parameters of Elman neural network including the weights alongside its best possible 30 

architecture. The Elman neural network is trained by designing a variable-length single-objective 31 

optimization problem which encompasses a fitness function of minimization of misclassification 32 

error. The steps of the invasive weed optimization algorithm are repeated until satisfying the 33 

convergence criteria, i.e., reaching maximum number of iterations. The optimum transfer 34 

functions, number of hidden and context layers, number of hidden and context neurons, and 35 

weights and bias terms establish the optimized Elman neural network, which is appended and 36 

utilized to simulate the instances of testing dataset. Invasive weed optimization algorithm is 37 

selected because it demonstrated its higher search capacity in solving diverse and sophisticated 38 

engineering problems such as optimal resource operation [66], optimization of energy supply 39 

systems [67] and prediction of compression index of limited-treated expansive clays [68]. In 40 

addition to this, invasive weed optimization algorithm outperformed a set of common and 41 

efficient meta-heuristics including non-dominated sorting genetic algorithm II, particle swarm 42 

optimization algorithm, artificial immune system and artificial bee colony [69-71].  43 
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The third module is carried out for the purpose of validating the recognition accuracy of the 1 

developed method capitalizing on two folds of comparison namely, performance prediction and 2 

statistical significance tests. The comparative analysis is conducted against a set of conventional 3 

machine learning models and deep learning models reported for their higher accuracies. The 4 

well-performing machine learning models encompass discriminant analysis (DA), K-nearest 5 

neighbors (KNN), random forest (RF), support vector machines and decision tree (DT), back 6 

propagation artificial neural network (ANN) and Elman neural network. More details about the 7 

afore-mentioned classifiers can be found in Rathi and Palani [72], Yang et al. [73], Feng et al. 8 

[74], Ahmad et al. [75] and El-Zahab et al. [76]. The deep learning models involve a deep 9 

convolutional neural network trained from scratch (CONVNET) alongside a group of different 10 

pre-trained deep neural network architectures, namely AlexNet, VGG16, VGG19 and CaffeNet. 11 

The prediction models are analyzed using both split validation and K-fold cross validation based 12 

on F-measure, Kappa coefficient, balanced accuracy (BACC), Matthews’s correlation coefficient 13 

(MCC) and area under curve (AUC). In the present study, 10-fold cross validation is adopted to 14 

guarantee the training and testing of the whole dataset, which truncates the risk of encountering 15 

over-learning or over-fitting by the prediction models.      16 

The second fold of comparison comprises a set of statistical significance tests. In this context, 17 

Shapiro-Wilk is at first employed to analyze the normality of accuracies of the different folds at 18 

significance level of 0.05. Parametric or non-parametric testing is then carried out capitalizing on 19 

the normality assessment of observed data. A set of box plots are created for the purpose of 20 

graphical analysis of the robustness of prediction models with respect to a certain performance 21 

indicator. The recognition accuracies of the prediction models are analyzed using a dataset 22 

constructed by the authors denoted as dataset I in addition to the bridge deck images existing in 23 

the public benchmark dataset SDNET2018 [77], which is denoted as dataset II. This is carried 24 

out for the sake of conducting a further analysis of the robustness of the proposed method in 25 

dealing with different sizes of datasets. Average ranking (AR) method is eventually utilized for 26 

the sake of establishing a unified assessment of the performances of prediction models across the 27 

different datasets. More details about the computational procedures of the average and standard 28 

deviation of rankings utilized in the AR method can be adopted from Yu et al. [78]. The previous 29 

models are automated using a computerized platform that encompasses an integration of visual 30 

C#.net and Matlab programming languages.  31 
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 1 

Figure 1: Framework of the proposed defects’ detection and recognition method 2 
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4. MODEL DEVELOPMENT  1 

This section delineates the algorithms and techniques presented in the “Proposed Method” 2 

section.   3 

4.1 Singular Value Decomposition  4 

Singular value decomposition is a powerful tool that has many applications such as data 5 

compression and pattern recognition. SVD enables robust and reliable matrix factorization in 6 

order to extract the algebraic and geometric invariant features of an image. SVD factorizes a 7 

square or non-square matrix into two orthogonal matrices and a singular value matrix. The 8 

spatial domain features of an image of size 100×100 can be modelled using singular value 9 

decomposition by a feature vector set of size 1×100 (see Figure 2). This is expected to speed up 10 

the computational process by eliminating insignificant features meanwhile preserving as much as 11 

possible information in the image. The singular value decomposition of a rectangular real 12 

complex matrix A is expressed as follows [79-80]. 13 

A = UΣVT  = [

u11 ⋯ u1m

u21 … u2m

⋮ ⋱ ⋮
um1 ⋯ umm

]

m×m

× [

s1 0 ⋯ 0
0 s2 … 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ sm

]

m×n

× [

v11 ⋯ v1n

v21 … v2n

⋮ ⋱ ⋮
vn1 ⋯ vnn

]

n×n

T

           (1) 14 

Such that; 15 

U UT = I                                                                                                                                                          (2)     16 

V VT = I                                                                                                                                                          (3) 17 

s1≥s2 ≥ s3 … … . ≥ sm                                                                                                                                  (4) 18 

Where; 19 

A is a m × n matrix. U is a m × m orthonormal matrix. V is a n × n orthonormal matrix. Σ is a 20 

diagonal matrix of size m × n which is composed of singular values of A such that it holds non-21 

negative numbers. The diagonal entries of the Σ matrix represent the singular values and they 22 

have higher values compared to the entries of U and V such that a matrix of size m × n can be 23 

reduced to a vector of size n. The singular values are ranked in a descending order, whereas the 24 

first entries of the singular value matrix contain the most substantial information while the last 25 

entries at the vector contain the least significant information. The singular values contain the 26 

energy information while the orthogonal matrices contain the intrinsic information. UT and  VT 27 

are the transpose of matrices U and V, respectively. I is the identity matrix. The columns of U are 28 

called left singular vectors of A while the columns of V are called the right singular vectors of A.  29 

 30 
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 1 

Figure 2: Extracted spatial domain features using singular value decomposition 2 

4.2 Elman Recurrent Neural Network 3 

Elman neural network is one of the types of recurrent neural network that was introduced by 4 

scientist Jeffrey Locke Elman in 1990 [81]. It is delineated by the presence of additional context 5 

layers, which aid in establishing a memory for the computations conducted so far in the network. 6 

The main distinct feature between the recurrent neural network and feedforward neural network 7 

is that the output at each time step relies on the previous inputs and computations through 8 

memorizing preceding events in the case of recurrent neural networks. However, the network 9 

outputs are independent of each other and they depend solely on the current time step in the case 10 

of feedforward neural networks. It is worth mentioning that the connections between neurons 11 

alongside the dependencies between layers establish a directed cycle that aids in maintaining a 12 

state between subsequent time steps [82-83].         13 
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Elman neural network comprises input layer, hidden layer, context layer, and output layer, such 1 

that number of neurons in the context layer equals to number of neurons in the hidden layer. The 2 

neurons in each layer are designated for the propagation of information from one layer to the 3 

subsequent layers. In the ENN, the connections of hidden layers entering the context layer are not 4 

weighted. Nevertheless, the connections of the context layer entering the hidden layer are 5 

weighted. Elman neural network is one of the recurrent neural networks because it is 6 

characterized by the presence of feedback loop. This in return is expected to induce a significant 7 

implication on improving the learning and recognition capability of the network. It should be 8 

mentioned that the feedback loop encompasses the utilization of unit-delay element (Z−1), which 9 

provides non-linear dynamism to the behavior of Elman recurrent neural network.     10 

The output of the hidden layer is being sent to both context and output layers. In this context, the 11 

output from the hidden layer is fed into the context to be appended in order to capitalize on this 12 

information in the subsequent interactions. Then, it is fed through the weighted connections back 13 

to the hidden layers in the succeeding steps. In this manner, the ENN is repeatedly remembering 14 

the hidden layer output of the previous iterations which enables the ENN to preserve its short 15 

term memory which can enhance the learning performances of ENN. It should be stated that the 16 

connections between the context layer output and hidden layer are weighted while the 17 

connections between the hidden layer output and context layer are un-weighted [84-85]. 18 

The hidden layer output and output layer output can be obtained using Equations 5 and 6, 19 

respectively.  20 

X(k) = f(W2Xc(k) + W1U(k − 1))                                                                                                          (5) 21 

Y(k) = g(W3X(k))                                                                                                                                       (6) 22 

Give that:  23 

Xc(k) = X(k − 1)                                                                                                                                         (7) 24 

Where; 25 

W1denotes the weight of the input later to the hidden layer. W2 indicates the weight of the 26 

context layer to the hidden layer. Xc(k) stands for the output of the context layer. X(k) denotes 27 

the output of the hidden layer. U(k − 1) stands for the input of the neural network. Y(k) denotes 28 

the output of the neural network. f represents the transfer activation function at the hidden layer. 29 

g represents the transfer function at the output layer.  30 

Gradient descent is the most commonly utilized algorithms to train the Elman neural network 31 

and back propagation neural networks. The networks are called “back propagation” because the 32 

error of the prediction or classification accuracy is computed at the output layer based on the 33 

targeted and predicted output values for each input instance (image). The calculated errors 34 

propagate backwards through the network layers all the way from the output to the hidden layers 35 

and then further to the input layer in an attempt to generate as much as possible close values to 36 

the desired output. Gradient descent algorithm capitalizes on computing the partial derivative of 37 



15 

 

the error function in order to update the weights of the connection between different layers 1 

during each training epoch (k). In this regard, the modified weights during the training process as 2 

per the error partial derivative function can be obtained using Equation 8. In the present study, 3 

the optimum weights of connections are derived based on minimizing the error cost function of 4 

sum of squared error (SSE) between the predicted and desired classification values during each 5 

training epoch. The error cost function can be defined using Equation 9 [86].   6 

Wij(k + 1) = Wij(k) +  ∆ Wij((k)  =  Wij(k) − η ×
∂E(k)

∂Wij
                                                               (8) 7 

E = ∑(Pt − Ot)2

N2

t=1

                                                                                                                                        (9) 8 

Where; 9 

∆ Wij((k) denotes the adjustment or increment in the weights of connections between layers. 10 

Wij(k + 1) and Wij(k) represent the updated and current weights, respectively. η depicts the 11 

learning rate. 
∂E(k)

∂Wij
 represents the error partial derivative with respect to the weights. E denotes 12 

the error cost function. Pt and Ot stand for the predicted and targeted values, respectively.  13 

The architecture of the Elman neural network for defects recognition is depicted in Figure 3. The 14 

defects’ recognition model is formulated as a multi-class classification problem, whereas the 15 

number of input neurons equal to the number of singular values obtained from the feature 16 

extraction module. Additionally, the number of output neurons is equal to the number of classes 17 

or defects. In this regard, one-hot encoding algorithm is applied for the purpose of more realistic 18 

classification of surface defects through the efficient modeling of categorical values. It is 19 

selected over the label encoding or integer encoding algorithm because in the label encoding, the 20 

higher the categorical value the more important the category is, which may lead to confusion and 21 

misinterpretation of the encoded variables by the machine learning model [87-88]. In the one hot 22 

encoding algorithm, the categorical values are encoded as binary vector. In this transformation, 23 

each class label or surface defect has its own register bits. As such, for M class labels, there will 24 

be M mutually exclusive binary vectors. In the binary vector, a class label is signified by the 25 

value one for the index of the integer while other elements take the value zero. For instance, 26 

cracking, spalling and scaling are of class labels 1, 2 and 3, respectively. In this regard, cracking, 27 

spalling and scaling are hot encoded using the binary vectors [1 0 0], [0 1 0] and [0 0 1], 28 

respectively. The model output is the probability an instance or a sample belongs to each 29 

particular class. In this context, the image is assigned to the class associated with the highest 30 

probability [89-90].  31 
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 1 

Figure 3: Architecture of the Elman recurrent neural network for bridge defects 2 

recognition 3 

4.3 Autonomous Training of Elman neural network 4 

As stated earlier, the ultimate objective of the present study is to develop an automated method 5 

for bridge defects detection and recognition. The bridge defects detection is formulated as a 6 

binary classification problem to classify images based on the existence of defects present in 7 

images. The output of this model is whether the images contain defects or not. The bride defects 8 

recognition is articulated in the form of three-point classification problem. Its output is whether 9 

the image contains cracking, spalling or scaling. A crack is a linear fracture, which extends partly 10 
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or completely through the concrete member because of the tensile stresses. The tensile stresses 1 

are primarily carried out by the steel reinforcement and concrete. When the tensile stresses 2 

surpass the structural capacity of the concrete, the concrete starts to crack and the tensile stresses 3 

are transformed completely to the steel reinforcement. Spalling is a problematic surface defect, 4 

which is induced in the form of a fragment of concrete detached from a larger concrete. It can 5 

cause serious structural damage and sometimes it can significantly contribute to the structural 6 

collapse of the concrete structure. Scaling is a surface deterioration mechanism which can be 7 

defined as flaking or peeling of finished hardened concrete surface more often due to the 8 

exposure to cycles of freezing and thawing and the utilization of de-icer chemicals. When 9 

concrete pores near the surface thaws and freezes as a result of the temperature fluctuations. It 10 

affects the functional performance of the structural element because it influences the riding 11 

quality and safety of traffic.  12 

In the present study, the invasive weed optimization algorithm is utilized instead of the gradient 13 

descent algorithm to train the neural network for the following two reasons: inferior accuracy of 14 

the gradient descent and manual tuning of hyper parameters. The learning of gradient descent 15 

neural network is vulnerable to slow convergence, local minima entrapment and over-fitting 16 

issues as described earlier. In the same context, there are a wide range of hyper parameters, 17 

which significantly affect the learning performance of the neural network. These parameters are 18 

highly sensitive to their initial values, whereas their initial setting is always variable from one 19 

case to the other. For instance, there is no exact method to systematically identify the number of 20 

hidden neurons and layers, whereas most of the equations present in the literature are case 21 

dependent and cannot be generalized. So, if the number of hidden neurons is less than the 22 

optimum number, then the accuracy will be so much affected. Furthermore, if the number of 23 

hidden neurons is more than optimum number, this will consume long processing and training 24 

time. In this regard, the blindness in the determination of the parameters of Elman neural 25 

network may result in the network to be trapped in an inferior solution. Additionally, this may 26 

cause lengthy computational time of the training process and slow convergence. Thus, a self-27 

adaptive method is formulated for the sake of autonomous and dynamic tuning the input 28 

parameters based on the present dataset.  29 

Invasive weed optimization algorithm is employed to train the Elman neural network by 30 

optimizing both the weights and structure of the ENN simultaneously in an attempt to amplify its 31 

learning capacity. The structural training includes both the topological structure and the transfer 32 

functions of the ENN model. Eight types of transfer activation are analyzed namely, log-sigmoid 33 

transfer function, hyperbolic tangent sigmoid transfer function, Elliot symmetric sigmoid transfer 34 

function, positive linear transfer function, radial basis transfer function, triangular basis transfer 35 

function, linear transfer function and normalized radial basis transfer function. The parameter 36 

learning encompasses optimizing both the values of weights and bias terms. The structural and 37 

parameter training is conducted based on minimizing the single objective function of 38 

misclassification error of the total instances during each training epoch as follows.  39 

MC_ERR = min
FAL_CLASS

TOT_ISNT
                                                                                                                   (10) 40 

Where; 41 
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MC_ERR denotes the misclassification error. FAL_CLASS indicates number of falsely classified 1 

instances. TOT_ISNT represents total number of instances in the training dataset. It should be 2 

highlighted that misclassification error is preferred over other performance indicators since it is a 3 

well-known good performing performance indicator, unitless, and un-biased performance metric. 4 

Furthermore, it is usually more practical and efficient to deal with error cost functions in 5 

machine learning.  6 

Optimality theory is primarily capitalized on the fixed-length assumption, whereas most of the 7 

optimization algorithms encompass a fixed length vector of decision variables to represent a 8 

particular solution in the design space. Nevertheless, some few reported cases in the literature 9 

which encompass variable-length optimization problems. In it, the number of decision variables 10 

is changing iteratively over the training epochs. It should be mentioned that the variable-length 11 

optimization problems are of more complex nature and they require more computational time 12 

and resources during the training process when compared against the fixed-length optimization 13 

problems. There is no clear definition for the gradient vector of the variable-length problem in 14 

the variable-length optimization problems. Hence, gradient-based methods are inefficient in 15 

dealing with such type of problems. One of the approaches to deal with the variable-length 16 

optimization models is to assume a fixed length for the decision variables and to tune iteratively 17 

the decision variable that causes variability in length. Nevertheless, this approach often leads to 18 

suboptimal solutions. Additionally, it is inefficient and impractical method especially in the 19 

presence of wide ranges of decision variables. This necessitates the formulation of a new 20 

approach which enables the estimation of the varying length of vector of candidate solutions in 21 

each iteration [91].  22 

In the present study, a self-adaptive optimization method is designed to handle the variability in 23 

the length of the optimization problem because the length of the optimization problem changes 24 

iteratively based on the number of hidden layers, number of context layers and number of hidden 25 

neurons. In order to be able to address the problem in hand, the variable length of the vector of 26 

solutions has to be known during the optimization process using a predefined function, i.e., the 27 

total number of connection weights has to be known during the training process. The total 28 

number of weights and bias terms can be computed using Equation 11. As shown in Equation 11, 29 

the optimization model gives the user the flexibility to design a multi-hidden layer neural 30 

network and a multi-context layer neural network based on the input dataset of images.     31 

Num = ((I + 1) × N) + ((N × C × P) + ((N + 1) × N × (P − 1)) + ((N + 1) × O)             (11) 32 

Where; 33 

Num stands for the total number of weights and bias terms. I represents the number of input 34 

neurons. N indicates the number of hidden neurons. C represents the number of neurons in the 35 

context layer. P represents number of hidden and context layers. O depicts the number of output 36 

neurons. In this regard, the number of context layers is assumed to be equal to the number of 37 

hidden layers for simplification purposes.  38 
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4.4 Invasive Weed Optimization  1 

Invasive weed optimization is a meta-heuristic bio-inspired search algorithm that was proposed 2 

by Mehrabian and Lucas in 2006. IWO emulates the natural and invasive behavior of weeds in 3 

colonizing and exploring the search space in an attempt to find the most optimum place for 4 

growth and reproduction. Weeds are aggressive, fast and robust plants which grown 5 

spontaneously and they exhibit a harmful serious effect on cultivated crops. IWO is primarily 6 

based on four core phases that will be discussed in the following lines [92-94].   7 

The first phase is to generate an initial population of weeds that are spread in the i-dimensional 8 

search space. The position of each weed represents a solution. Then, the fitness of each weed 9 

within the population is calculated based on a designated predefined objective function. The 10 

second step is the reproduction, whereas in this phase each weed in the population is allowed to 11 

produce seeds based on its own fitness function value, maximum and minimum fitness values 12 

within the population in addition to the maximum and minimum number of seeds. It is worth 13 

mentioning that the higher the fitness of the weed, the more seeds it is allowed to produce. The 14 

reproduction process of the seeds is depicted in Figure 4. The number of seeds which are allowed 15 

to be produced by a particular weed can be computed as follows.    16 

Seedi =
fi − fmin

fmax−fmin

 × (smax − smin) + smin                                                                                         (12) 17 

Where; 18 

Seedi denotes number of seeds associated with the i − th weed. fi depicts the current fitness of 19 

the weed. fmax, and fmin represent the maximum and minimum fitness in the current population, 20 

respectively. smax, and smin denote the maximum and minimum allowable number of seeds, 21 

respectively.  22 

 23 
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 1 

Figure 4: Reproduction process based on the weed’s fitness 2 

The third phase is the spatial dispersion, whereas the seeds are randomly scattered in the solution 3 

space based on a normal distribution of a mean equal to zero and an adaptive varying standard 4 

deviation. This phase guarantees that the seeds are accumulated around the weed plant, which 5 

leads to a local search around each parent weed. The standard deviation of the seed dispersion 6 

starts from a predefined initial maximum value and it is reduced to a final predefined minimum 7 

value using non-linear function. In this regard, the probability of observing a seed existing far 8 

from the weed plant is high at the beginning of the search process and it decreases within the 9 

iterations. The standard deviation of a particular iteration can be computed as follows.  10 

σi = σmin + (
itermax−iter

itermax−itermin
)

p

× (σmax − σmin)                                                                                (13)                             11 

Where; 12 

σi stands for the standard deviation of the current iteration. σmax, and σmin describe the initial 13 

and final standard deviation of the optimization process, respectively. itermax denotes the 14 

maximum number of iterations. p represents non-linear modulation index that is a number 15 

between two and three. It should be noted that the high standard deviation at the beginning is 16 

essential to allow better exploration of the solution space. It decreases by increasing the number 17 

of iterations to facilitate the exploitation of design search space.  18 

The final phase is the competitive exclusion, whereas it is performed because the number of 19 

weeds and seeds reaches the maximum population size due to the fast and exponential 20 

reproduction. In this stage, the parent weeds in addition the seeds are sorted based on the fitness 21 

value for the purpose of eliminating the solutions with the least fitness values to keep the number 22 

of the weed plants and seeds within the maximum allowable population size. The seeds and their 23 
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parent weeds with higher fitness are allowed to survive, and become reproductive. The process 1 

continues until the convergence criteria are met (reaching the maximum number of iterations).  2 

5. TRANSFER LEARNING-BASED NEURAL NETWORKS 3 

Pre-trained networks are deep learning architectures that were previously trained with very large 4 

datasets such as ImageNet and Places365. In this regard, transfer learning is fine-tuning a pre-5 

trained deep network on a target dataset. There are two main ways of transfer learning namely, 6 

fine-tuning and feature extraction. In the first way, the weights of the pre-trained network serve 7 

base line or initial values of the learning process. In this regard, part of the network uses directly 8 

the pre-trained weights while the other is trained from scratch. Normally, the first layers of the 9 

network preserve their weights as the features of these layers are usually generic and can be 10 

applied elsewhere. On the other hand, the late layers provide more specific features and they 11 

need to be adjusted for the sake of establishing more adaptive model to the training dataset.  12 

In the second way, the pre-trained filters are utilized as feature extractor in the workflow. It is 13 

carried out by removing the last output layer of deep convolutional neural network and dealing 14 

with the output of the second last layer as the extracted features (usually a high dimensional 15 

vector). In this regard, the pre-trained filters are applied to extract features from the new dataset, 16 

such that the obtained encoded features can be analyzed by any other classification model. It is 17 

worth mentioning the feature extraction approach is preferred over the fine-tuning if the new 18 

research dataset is different from the original training dataset of the pre-trained deep network in 19 

terms of size and content [95-96]. A set of well-known deep convolutional neural network 20 

architectures such as AlexNet and VGG19 are discussed in the following lines. More information 21 

about VGG16 and caffeNet can be found in Simonyan and Zisserman [97], and Jia et al. [98].   22 

5.1 AlexNet 23 

AlexNet architecture was developed by krizhevsky et al. [99] which won the ImageNet Large 24 

Scale Visual Recognition Challenge in 2012. The architecture is composed of five convolutional 25 

layers and three fully connected layers such that, the input size of the image is 224×224×3. In the 26 

first convolutional layer, 96 kernel filters of size 11×11×3 and a stride of 4 pixels are applied to 27 

generate a stack of 96 feature maps. The second convolutional layer receives the output of the 28 

first convolutional layer and filters it with 256 kernels of size 5×5×48. The third, fourth and fifth 29 

convolutional layers utilize kernels of size 3×3 and these layers are connected without 30 

intervening normalization or pooling layers. Each of the fully connected layers encompasses 31 

4096 neurons.   32 

5.2 VGG19 33 

VGG19 is a deeper pre-trained architecture than VGG16. It is composed of 19 trainable layers 34 

with learnable weights: 16 convolutional layers and 3 fully connected layers. Its input is images 35 
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of size 224×224 and three channels. The number of filter kernels starts with 64 and increases 1 

until reaching 512. In this regard, the convolutional layers utilize small kernels of size 3×3 with 1 2 

pixel for stride and padding. The convolution operations are followed by rectified linear unit to 3 

add the dimension of non-linearity to the network structure. The max pooling layers uses kernels 4 

of size 2×2 and stride of 2 pixels for downsizing the feature map. The stack of convolutional 5 

layers is followed by three fully-connected layers, whereas the first two layers encompass 4096 6 

nodes while the last one involves 1000 nodes. The last fully-connected layer is followed by 7 

softmax layer with the same number of outputs to provide the probabilities of a certain input 8 

instance belongs to each of the 1000 classes of the ImageNet [97]. It is worth mentioning that 9 

VGG19 is a larger network than VGG16 and more computationally expensive to train.   10 

6. PERFORMANCE EVALUATION  11 

There are several performance measures for evaluating the performance of classifiers. No single 12 

measure can provide an accurate insight of the classifier performance. Hence, a set of 13 

performance metrics are utilized to assess the recognition capacities of different classifiers. The 14 

confusion matrix includes information about the predicted and actual classifications. Based on 15 

the information retrieved, the performance of different classifiers can be evaluated. The micro-16 

averaging of different performance metrics is utilized to evaluate the average performance of 17 

classifiers over different classes except for the area under curve, which is computed using macro-18 

averaging. One of the main objectives of the present study is to establish a comprehensive 19 

evaluation of the bridge defects detection (binary classification) model and bridge defects 20 

recognition (multi-class classification) model. In order to fulfill this objective, a set of 21 

performance evaluation metrics are utilized for the sake of analyzing the capabilities of the 22 

classification model. In this regard, a set of well-known performance measures reported for their 23 

efficiency in judging the success of predictive models, are employed in the present study. This 24 

involves the indicators of overall accuracy and F-measure [100-101]. The present study 25 

encompasses imbalanced dataset which may cause the afore-mentioned measures to be 26 

misleading, overoptimistic and inducing highly-inflated results. A dataset is called imbalanced if 27 

it contains different number of instances in each class. This may lead to misinterpretation of the 28 

evaluation of classifiers. In this regard, Kappa coefficient, balanced accuracy, Matthews’s 29 

correlation coefficient and area under curve are utilized as more appropriate measures to better 30 

reflect the performances of the classifiers [102-103].      31 

The overall accuracy, F-measure, Kappa coefficient, balanced accuracy, Matthews’s correlation 32 

coefficient and area under curve for multi-class classification can be computed using Equations 33 

14, 15, 16, 17, 18 and 19, respectively [104-108]. Overall accuracy is the most commonly-34 

utilized classification metric, whereas it can be defined as the ratio between the correctly 35 

classified instances to the total number of instances. Sensitivity is sometimes called “recall” or 36 

“true positive rate”, whereas it is used to evaluate the capability of the classifier to map the 37 

positive instances. Sensitivity is expressed as the number of positive correctly classified 38 

instances to the total number of positive instances. Specificity is sometimes called “inverse 39 

recall” or “true negative rate”, whereas it is used to measure the capacity of the classifier to 40 

identify the negative instances. Specificity is defined as the number of the negative correctly 41 

classified instances to the total number of negative instances.  42 
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Precision is used to measure the agreement of instances with positive labels, whereas it is 1 

expressed as the number positive correctly classified instances to the total number of predicted 2 

instances. F-measure is the harmonic mean of the precision and recall. It offers trade-off between 3 

the two metrics because in some cases one of the metrics dominates the other. Kappa coefficient 4 

is utilized to measure the agreement between the predicted instances and the actual instances. 5 

Kappa coefficient is a robust index because it considers the probability that an instance is 6 

classified by chance. It measures the fraction of correctly classified instances after the omission 7 

of probability of by chance agreement.  8 

Balanced accuracy is the average of the sensitivity and specificity. In the case of highly 9 

imbalanced data, accuracy can be a misleading performance metric. Thus, the balanced accuracy 10 

can solve the bias in the imbalanced data, and thus can stand as a better performance metric to 11 

compare the different classifiers. Matthews’s correlation coefficient is a correlation coefficient 12 

that measures the similarities between the observed and predicted classification, Moreover, 13 

sometimes it stands as a better-balanced performance evaluation than averaged percentages 14 

because it considers all fields of the confusion matrix. Area under curve is derived from receiver 15 

operating characteristic (ROC) curve. The ROC curves are used to visually compare the 16 

performance of the classifiers. The ROC curve is a 2-Dimensional curve such that the true 17 

positive rate (sensitivity) is plotted on the vertical axis while the false positive rate (1-specificity) 18 

is plotted on the horizontal axis. ROC curve, which is close to the diagonal implies random 19 

guessing. ROC curve, which is close to the top left corner, implies perfect performance of the 20 

classifier. 21 

Overall Accuracy =
∑  Xii

R
i=1

∑ ∑  Xii
R
i=1

R
i=1

                                                                                                        (14) 22 

F − measure =
2 × sensitivity × precision

sensitivity + precision
                                                                                     (15) 23 

Kappa coefficient =
over_agre − exp _agre

1 − exp _agre
24 

=
[N × ∑  Xii]

R

i=1
− [∑  Xi+ × X+i]

R

i=1

N2 − [∑  Xi+ × X+i]
R

i=1

             (16) 25 

Balanced accuracy =
Sensitivity + Specificity

2
                                                                                (17) 26 

MCC =
(TP × TN) − (FP × FN)

√(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)
                                                     (18) 27 

AUC = ∫ f(x)                                                                                                                                             (19)
b

a

 28 
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Such that; 1 

Precision =
∑  TPC

i=1

∑  TPC
i=1 + ∑  FPC

i=1

                                                                                                           (20) 2 

Sensitivity (recall) =
∑  TPC

i=1

∑  TPC
i=1 + ∑  FNC

i=1

                                                                                         (21) 3 

Specificity =
∑  TNC

i=1

∑  TNC
i=1 + ∑  FPC

i=1

                                                                                                        (22)  4 

Where; 5 

C indicates number of classes. TP, TN, FP and FN denote the number of true positive 6 

instances, true negative instances, false positive instances and false negative instances, 7 

respectively. TP, TN, FP and FN represent the instances correctly identified, correctly 8 

rejected, incorrectly identified and incorrectly rejected, respectively. over_agre and 9 

exp _agre indicate the overall agreement and expected agreement, respectively. N 10 

denotes the total number of instances. R represents number of rows or columns 11 

(classes). Xii represents the element of i − th row and i − th column in the confusion 12 

matrix (diagonal elements). Xi+ and X+i indicate the total number of instances in the 13 

i − th column and total number of instances in the i − th row, respectively. MCC holds 14 

values between -1 and +1, whereas +1 indicates perfect agreement, 0 indicates 15 

similarity to random prediction and -1 indicates total disagreement between the 16 

observed and predicted instances. AUC holds values between 0 and +1 such that +1 17 

implies perfect diagnostic test. f(x) represents the ROC curve. The lower and upper 18 

bounds of the ROC curve are denoted by a and b, respectively. The higher 19 

the Overall Accuracy, F − measure, Kappa coefficient, Balanced accuracy, MCC and  20 

AUC, the better the classifier performance is.  21 

7. METHOD IMPLEMENTATION  22 

The proposed method is validated using dataset I and dataset II to test its robustness towards 23 

different types and natures of images.  24 

7.1 Dataset I   25 

7.1.1 Dataset description  26 

The developed SVD − ENN − IWO method is utilized for the defects detection and recognition. 27 

In this regard, two datasets are generated from dataset I for the sake of defects detection and 28 

recognition. For the defects detection model, a dataset comprising of 265 real-world images are 29 

used as an input to experiment the proposed method such that 200 images are used for training 30 

while the remaining 65 images are used for testing. For the defects recognition, the data set is 31 
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composed of 264 images, whereas 215 and 49 images are utilized for training and testing the 1 

model, respectively. These images were captured from three bridge decks in Montreal and Laval, 2 

Canada using Sony DSC-H300 digital camera of 20.1 megapixel resolution. All the calculations 3 

and optimization algorithms took place on a laptop with an Intel Core i7 CPU, 2.2 GHz and 16 4 

GB of memory. The images are resized to 100×100 to speed up the computation process. Sample 5 

of the distress images is shown in Figure 5. The images were captured in different weather 6 

conditions for the purpose of establishing automated detection and recognition models that are 7 

invariant to the lighting conditions.  8 
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Figure 5: Sample of the defects images of dataset I 25 

7.1.2 Baseline implementation  26 

In the defects detection model, the images are labeled to defected and non-defected ones. In this 27 

regard, the dataset of bridge defects detection comprises 239 and 26 of defected and non-28 

(a) Spalling- Image “A”                                            (b) Spalling- Image “B” 

                    (c)   Scaling- Image “C”                                  (d) Cracking- Image “D” 
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defected images. With respect to the conventional machine learning models and deep learning 1 

models, images of size 100×100 are utilized as an input to feed the prediction models. The 2 

developed method is compared against a set of conventional machine learning models and 3 

different deep learning architectures for its validation. Each model is governed by a set of 4 

adjustable parameters that were determined based on iterative trial and error procedure. For the 5 

defects detection, linear discriminant analysis (LDA) is utilized to perform the discriminant 6 

analysis. The number of nearest neighbors in the  KNN model is assumed three. In the decision 7 

tree, the minimum numbers of branch node observations and leaf node observations are set to 10 8 

and 1, respectively with 10 maximum category levels. With respect to the SVM model, Gaussian 9 

radial basis function is utilized with scaling factor and sigma of one. The number of bags is 10 

assumed 20 in the random forest model. For the ANN model, the number of hidden layers and 11 

hidden neurons are assumed two. The learning rate and momentum coefficient are assumed 12 

0.001 and 0.8, respectively. Furthermore, log-sigmoid transfer function is utilized. In the Elman 13 

neural network, the number of hidden layers and context layers are set to three while the number 14 

of hidden neurons and context neurons are assumed two.  15 

With regard to deep learning models, the architecture of CONVNET is composed of two 16 

convolutional layers whereas the first one utilizes 16 filters of size 3×3 and padding of 1 pixel. 17 

The second uses 32 filters of size 3×3 and padding of 1 pixel. The first convolutional layer is 18 

followed by a max pooling layer of window size 2×2 and stride of 2 pixels. Each convolutional 19 

layer is followed by a rectified linear unit activation function to establish more effective training 20 

through mapping the negative values to zero and maintaining the positive values. Finally, one 21 

fully connected layer of two neurons followed by a softmax layer are used for binary 22 

classification purpose. CONVNET model alongside the set of pre-trained models are trained using 23 

the stochastic gradient descent algorithm. The learning rate and MiniBatchSize are assumed 24 

1×10-6 and 10, respectively. The number of epochs is assumed 500 for the different defects 25 

detection models. Training performance of AlexNet for bridge defects detection is reported in 26 

Table 1. It reports the elapsed time of training and the generated classification accuracy.  27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 
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Table 1: Sample of training performance of AlexNet for bridge defects detection   1 

Epoch Iteration Time Elapsed (seconds) 
Mini-batch 

loss 

Mini-

batch 

accuracy 

Base 

learning 

rate 

1 1 0.1 6.4643 60% 1.00e-06 

50 1000 30.49 9.5654 40% 1.00e-06 

100 2000 61.56 6.377 60% 1.00e-06 

420 8400 273.48 3.1885 80% 1.00e-06 

500 10000 331.27 3.1885 80% 1.00e-06 

For the defects recognition model, the images were either classified to cracking or spalling or 2 

scaling. The dataset used for defects recognition consists of 20, 174 and 70 images of cracking, 3 

spalling and scaling. This model utilizes the same setting of hyper parameters utilized in the 4 

defects detection model. The architecture of random forest for bridge defects recognition is 5 

presented in Figure 6. The resulting tree map demonstrates how the random forest can be utilized 6 

to classify images as per the type of defects. For instance, if x(5660) is less than 145.5 and 7 

x(4856) is more than 187. Thus, there cracking defect is the most dominant defect in the present 8 

image. It is worth mentioning that the input feature vector used to train the conventional machine 9 

learning model is of size 1×10000. The dimensions herein denote the indices of the image pixel.  10 

Table 2 reports sample of training course of CONVNET model designated for bridge defects 11 

recognition. 12 
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 1 

Figure 6: knowledge-based random forest for bridge defects recognition 2 

Table 2: Sample of training performance of 𝐂𝐎𝐍𝐕𝐍𝐄𝐓 for bridge defects recognition based 3 

on dataset I 4 

Epoch Iteration Time Elapsed (seconds) 
Mini-batch 

loss 

Mini-

batch 

accuracy 

Base 

learning 

rate 

1 1 0.09 1.0913 40% 1.00e-06 

50 1050 12.08 0.9806 70% 1.00e-06 

100 2100 24.4 0.7539 70% 1.00e-06 

400 8400 96.84 0.3859 80% 1.00e-06 

500 10500 131.60 0.3328 100% 1.00e-06 

 5 

 6 

1

2 2 3

1 2 1 2 1

2 3

x5660 < 145.5   

x4856 < 187   x4657 < 141.5   

x3362 < 152   x3358 < 121   x1402 < 141   

x7674 < 87   x5398 < 156   x9272 < 145.5   

x3030 < 108.5   

  x5660 >= 145.5

  x4856 >= 187   x4657 >= 141.5

  x3362 >= 152   x3358 >= 121   x1402 >= 141

  x7674 >= 87   x5398 >= 156   x9272 >= 145.5

  x3030 >= 108.5
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7.1.3 Proposed model implementation  1 

The developed SVD − ENN − IWO method utilizes singular value decomposition for the purpose 2 

of dimensionality reduction and extracting the most significant features in images. In the singular 3 

value decomposition, an input image of size 100×100 can be reduced to a feature vector of size 4 

1×100. For instance, the distribution of singular values of image 5.a is depicted in Figure 7. In 5 

this regard, the first few diagonal elements contain the most considerable amount of information 6 

while the tail end of the feature vector incorporates lesser information. It can be inferred that the 7 

first 50 dimensions are able to preserve substantial amount of information (approximately 95% 8 

of the total inform present in the image). The interface of the feature extraction model in the 9 

computerized platform is shown in Figure 8. By clicking “View” button, the singular values 10 

vector for the different images are displayed and By clicking “Plot”, the distribution of singular 11 

values are plotted.    12 

 13 

Figure 7: Distribution of the singular values for image 4.a 14 
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 1 

Figure 8: Interface of the developed feature extraction model 2 

In the SVD − ENN − IWO model, the feature vector of 100 singular values is used as an input to 3 

establish its training. Since the performance of the Elman neural network is significantly 4 

influenced by its parameters such as number of hidden layers, number of context layers, number 5 

of hidden neurons, number of context neurons, type of transfer functions, moment value, bias 6 

terms and weights of the connections between neurons. The present study relies on the IWO to 7 

establish a proper setting for the tuning parameters of the Elman neural network. The 8 

optimization parameters of the developed SVD − ENN − IWO model for defects detection are 9 

listed in Table 3. The maximum number of hidden and context layers are 5. Also, the maximum 10 

number of hidden and context neurons are five. Eight transfer functions are investigated and the 11 

values of weights and bias terms are real numbers between -1 and 1. Therefore, the maximum 12 

length of the optimization problem is 759. The parameters of the IWO algorithm are as follows: 13 

the number of iterations and the initial population size are assumed 500 and 250, respectively. 14 

The maximum and minimum numbers of seeds are 5 and 0, respectively. The initial and final 15 

standard deviations are assumed 0.5 and 0.001, respectively. The convergence of the developed 16 

SVD − ENN − IWO model for defects detection is shown in Figure 9. The least misclassification 17 

error achieved by SVD − ENN − IWO model equals to zero. Moreover, the optimization model 18 

stabilizes at iteration 120 which demonstrates the superior search capability of the IWO 19 

algorithm. The optimum structure of the ENN is as follows: the optimum numbers of hidden and 20 

context layers are one while the optimum number of hidden and context neurons are one. The 21 

optimum transfer function is the Elliot symmetric sigmoid transfer function.   22 

 23 
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Table 3: The optimization parameters of the Elman neural network and their 1 

corresponding ranges for defects detection  2 

Decision Variable   Range 

Number of hidden and context neurons 1 ≤ integer number ≤ 5 

Number of hidden layers and context layers 1 ≤  integer number ≤  5 

Type of transfer function 1 ≤  integer number ≤  8 

Weights and bias terms -1 ≤  real number ≤  1 

3 
Figure 9: Convergence of the 𝐒𝐕𝐃 − 𝐄𝐍𝐍 − 𝐈𝐖𝐎 model for defects detection based on 4 

dataset I 5 

The interface of the developed SVD − ENN − IWO model for defects recognition is depicted in 6 

Figure 10. In the computerized platform, the user is asked to identify the ranges of the 7 

optimization hyper parameters of Elman neural network alongside the parameters of invasive 8 

weed optimization algorithm. As can be seen, the upper bounds of number of hidden layers, 9 

context layers, hidden neurons and context neurons are assumed 15. Other setting of 10 

0 50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

0.06

Iteration

M
is

c
la

s
s

if
ic

a
ti

o
n

 e
rr

o
r



33 

 

optimization hyper parameters and parameters of IWO algorithm are the same as the ones used in 1 

the bridge defects model. The Elman neural network of this model is composed of three output 2 

neurons as a result of the investigation of three defects. The output of this model is obtained by 3 

pressing the “View” button. This encompasses the maximum length of the variable-length 4 

optimization model, minimum mean absolute percentage error, and optimum hyper parameters 5 

of Elman neural network. In this regard, the maximum length of the optimization problem is 6 

8301, which constitutes a large search space that entails deploying an exhaustive exploration 7 

mechanism to deal with the wide-ranging and variability of the search space. The optimum 8 

topology of the ENN is as follows: optimum numbers of hidden and context layers are one while 9 

the optimum number of hidden and context neurons are eight. The optimum transfer function is 10 

the hyperbolic tangent sigmoid transfer function. The convergence of developed SVD − ENN −11 

IWO model for defects recognition is depicted in Figure 11. The minimum misclassification 12 

error achieved by the SVD − ENN − IWO model equals to 0.0372. Furthermore, the IWO 13 

algorithm stabilizes at iteration 292, which illustrates the capability of the IWO algorithm in 14 

exploring the search space.  15 

 16 

Figure 10: Interface of the developed 𝐒𝐕𝐃 − 𝐄𝐍𝐍 − 𝐈𝐖𝐎 model for bridge defects 17 

recognition 18 
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 1 

Figure 11: Convergence of the 𝐒𝐕𝐃 − 𝐄𝐍𝐍 − 𝐈𝐖𝐎 model for defects recognition 2 

7.1.4 Analysis and Discussion  3 

The confusion matrices of the thirteen prediction models are reported in Table 4. An image with 4 

defects was classified as true positive if it was detected by the prediction model that it contains 5 

defects. An image with no defects was classified as true negative if no defects were detected by 6 

the prediction model. If a prediction model failed to detect defects in a defected image, it would 7 

be classified as false negative. If an image with no defects, was detected as defected image by 8 

the prediction model, this is considered as false positive. Evaluation of them demonstrates that 9 

the SVD − ENN − IWO managed to achieve the highest correctly classified defected images. 10 

Additionally, it provided acceptable accuracy in detecting the non-defected images. Conversely, 11 

it can be interpreted that KNN could hardly detect the defected images while managing to detect 12 

the non-defected images efficiently. KNN, AlexNet and caffeNet achieved the highest correctly 13 

classified non-defected images. In this context, the number of correctly classified defected 14 

images and non-defected images attained by the developed model are 52 and 9, respectively. It 15 

can be also inferred that the CONVNET model was able to detect the defects better than the pre-16 

trained deep neural networks. This can be explained by the existence of versatile lighting 17 

condition images in the defects detection dataset. It is expected that such conditions created 18 

negative transfer due to the absence of sufficient similarity between the source domain and target 19 

domain, which in return undermined the learning performance of the deep neural networks.    20 

 21 
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Table 4: Confusion matrices of the prediction models for bridge defects detection based on 1 

testing dataset I 2 

Prediction model Predicted class 
Actual class 

No defect Defect 

Discriminant analysis 

 

No defect 37 1 

Defect 17 10 

K-nearest neighbors 
No defect 31 0 

Defect 23 11 

Random Forest 
No defect 47 4 

Defect 7 7 

Support vector 

machines 

No defect 43 2 

Defect 11 9 

Decision tree 
No defect 50 9 

Defect 4 2 

Artificial neural 

network 

No defect 45 7 

Defect 9 4 

Elman neural network 
No defect 47 5 

Defect 7 6 

𝐂𝐎𝐍𝐕𝐍𝐄𝐓 
No defect 51 3 

Defect 3 8 

AlexNet 
No defect 27 27 

Defect 0 11 

VGG16 
No defect 29 0 

Defect 25 11 

VGG19 
No defect 32 1 

Defect 22 10 

CaffeNet 
No defect 23 0 

Defect 31 11 

𝐒𝐕𝐃 − 𝐄𝐍𝐍 − 𝐈𝐖𝐎 
No defect 52 2 

Defect 2 9 
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The performance accuracies of the prediction models for the testing dataset based on split 1 

validation and for the entire dataset based on 10-fold cross validation are recorded in Table 5 and 2 

Table 6, respectively. It is worthy to note that developed model outperformed other prediction 3 

models based on split validation and 10-fold cross validation. With regards to split validation, it 4 

provided overall accuracy, F-measure, Kappa coefficient, balanced accuracy, Matthews’s 5 

correlation coefficient and area under curve of 0.939, 0.963, 0.781, 0.891, 0.781 and 0.891, 6 

respectively. As per the split validation, decision tree provided the lowest prediction accuracies 7 

achieving  overall accuracy, F-measure, Kappa coefficient, balanced accuracy, Matthews’s 8 

correlation coefficient and area under curve of 0.8, 0.885, 0.132, 0.554, 0.149 and 0.554, 9 

respectively. With regards to cross validation, artificial neural network yielded the lowest 10 

prediction outcome. In the context, the developed model managed to establish an average 11 

improvement in the performance indicators by 24.85% when compared against the ENN model. 12 

The prediction accuracies of the cross validation and testing accuracies are close to each other 13 

which evinces that the developed method doesn’t suffer from over fitting. The receiver operating 14 

characteristics curves for the different prediction models are depicted in Figure 12. The ROC 15 

curves are utilized to visually compare the performance of the prediction models. A larger area 16 

under ROC curve indicates a better performance of the prediction model. In this context, the 17 

ROC curve of the SVD − ENN − IWO lies above other classifiers. This implies that AUC for 18 

SVD − ENN − IWO is larger than other classifiers. Thus, the developed model provides better 19 

classification performance than other models. This evinces the significant enhancement in the 20 

classification accuracy achieved by the implementation of the developed model.        21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 
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Table 5: Performance evaluation of the prediction models for defects detection based on 1 

testing dataset I 2 

Prediction 

model 

overall 

accuracy 

F-

measure 

Kappa 

coefficient 

Balanced 

accuracy 

Matthews 

correlation 

coefficient 

Area 

under 

curve 

Discriminant 

analysis 
0.723 0.804 0.376 0.797 0.452 0.797 

K-nearest 

neighbors 
0.646 0.729 0.313 0.787 0.431 0.787 

Random Forest 0.831 0.895 0.457 0.753 0.462 0.753 

Support vector 

machines 
0.8 0.869 0.463 0.807 0.499 0.807 

Decision tree 0.8 0.885 0.132 0.554 0.149 0.554 

Artificial neural 

network 
0.754 0.849 0.184 0.599 0.185 0.599 

Elman neural 

network 
0.815 0.887 0.388 0.709 0.39 0.709 

𝐂𝐎𝐍𝐕𝐍𝐄𝐓 0.907 0.944 0.672 0.836 0.672 0.836 

AlexNet 0.585 0.667 0.253 0.645 0.38 0.645 

VGG16 0.615 0.698 0.282 0.769 0.405 0.769 

VGG19 0.646 0.736 0.285 0.751 0.376 0.751 

CaffeNet 0.523 0.597 0.201 0.713 0.334 0.713 

𝐒𝐕𝐃 − 𝐄𝐍𝐍

− 𝐈𝐖𝐎 
0.939 0.963 0.781 0.891 0.781 0.891 

 3 

 4 

 5 

 6 
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Table 6: Performance evaluation of the prediction models for defects detection based on 1 

entire dataset I using 10-fold cross validation 2 

Prediction 

model 

overall 

accuracy 

F-

measure 

Kappa 

coefficient 

Balanced 

accuracy 

Matthews 

correlation 

coefficient 

Area 

under 

curve 

Discriminant 

analysis 0.918 0.947 0.685 0.931 0.712 0.931 

K-nearest 

neighbors 0.801 0.872 0.418 0.884 0.512 0.884 

Random Forest 
0.934 0.957 0.688 0.837 0.689 0.837 

Support vector 

machines 0.934 0.959 0.747 0.926 0.758 0.926 

Decision tree 
0.893 0.936 0.425 0.695 0.427 0.695 

Artificial neural 

network 0.859 0.917 0.236 0.608 0.237 0.608 

Elman neural 

network 0.908 0.944 0.588 0.824 0.593 0.824 

𝐂𝐎𝐍𝐕𝐍𝐄𝐓 
0.957 0.974 0.811 0.886 0.812 0.89 

AlexNet 
0.761 0.845 0.357 0.863 0.464 0.863 

VGG16 
0.758 0.842 0.352 0.861 0.461 0.861 

VGG19 
0.596 0.712 0.182 0.583 0.341 0.583 

CaffeNet 
0.724 0.817 0.31 0.843 0.427 0.843 

𝐒𝐕𝐃 − 𝐄𝐍𝐍

− 𝐈𝐖𝐎 0.977 0.984 0.906 0.949 0.907 0.949 

 3 

 4 

 5 

 6 

 7 
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 22 

Figure 12: Receiver operating characteristics curves of the prediction models for defects 23 

detection based on entire dataset I 24 

The confusion matrices of the prediction models for bridge defects recognition are reported in 25 

Table 7 and Table 8. It enables to analyze the classifications of data in depth. With respect to the 26 

Elman neural network, it misclassified six instances. Out of them, four cracking images were 27 

classified as spalling. In the support vector machines, the highest confusion was between spalling 28 
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and scaling. It can be also inferred that the developed model reduced the confusion between 1 

cracking and spalling when compared against Elman neural network. Additionally, it 2 

substantially reduced the misclassified spalling and scaling. It is worth mentioning that the 3 

developed model misclassified two cracking images as spalling. In this context the developed 4 

model has the highest success rate in the detection of spalling and scaling images. It managed to 5 

accurately detect cracking, spalling and scaling with 3, 38 and 6, instances. Conversely, K-6 

nearest neighbors had the lowest accuracy in the detection of spalling with 23 instances. It had 7 

one correctly classified cracking image. Additionally, it can be observed that it failed to detect 8 

scaling images.          9 

The classification performances evaluations of the prediction models for bridge defects 10 

recognition based on split validation and cross validation are recorded in Table 9 and Table 10, 11 

respectively. With respect to the classification performance of testing dataset, it can be noted that 12 

the developed model provided the highest prediction accuracies achieving overall accuracy, F-13 

measure, Kappa coefficient, balanced accuracy, Matthews’s correlation coefficient and area 14 

under curve of 0.959, 0.959, 0.882, 0.969, 0.939 and 0.903, respectively. However, K-nearest 15 

neighbors yielded the lowest classification performance accomplishing overall accuracy, F-16 

measure, Kappa coefficient, balanced accuracy, Matthews’s correlation coefficient and area 17 

under curve of 0.531, 0.531, 0.033, 0.647, 0.293 and 0.534, respectively. A the level of cross 18 

validation, the developed SVD − ENN − IWO model outperformed other prediction models 19 

attaining overall accuracy, F-measure, Kappa coefficient, balanced accuracy, Matthews’s 20 

correlation coefficient and area under curve of 0.955, 0.955, 0.914, 0.965, 0.937 and 0.904, 21 

respectively. It managed to improve the classification performance indicators by values ranging 22 

from 10.7% to 37.44% when compared against the artificial neural network. The ROC curves of 23 

the developed model and Elman neural network are presented in Figure 13 and Figure 14, 24 

respectively. They enable to establish a rigorous visual performance evaluation of the prediction 25 

model with respect to each class of defects. For the SVD − ENN − IWO model, the areas under 26 

curve of cracking, spalling and scaling are 0.775, 0.969 and 0.987, respectively. For the Elman 27 

neural network, the areas under curve of cracking, spalling and scaling are 0.861, 0.787 and 28 

0.785, respectively. In this regard, the highest successful detection rate was in scaling followed 29 

by spalling and then cracking. In the Elman neural network, its highest success rate was in the 30 

detection of scaling followed by spalling and finally scaling. This demonstrates that the 31 

developed model managed to significantly enhance the detection accuracy of spalling and 32 

scaling.  33 

   34 

 35 

 36 

 37 

 38 
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Table 7: Confusion matrices of the prediction models for bridge defects recognition based 1 

on testing dataset 2 

 3 

 4 

 5 

 6 

 7 

Prediction model Predicted class 
Actual class 

Cracking Spalling Scaling 

Discriminant 

analysis 

 

Cracking 1 4 0 

Spalling 1 34 3 

Scaling 0 6 0 

K-nearest 

neighbors 

Cracking 3 15 1 

Spalling 2 23 5 

Scaling 0 0 0 

Random Forest 

Cracking 0 1 0 

Spalling 4 37 6 

Scaling 1 0 0 

Support vector 

machines 

Cracking 1 0 0 

Spalling 4 38 6 

Scaling 0 0 0 

Decision tree 

Cracking 0 0 0 

Spalling 5 38 6 

Scaling 0 0 0 

Artificial neural 

network 

Cracking 0 0 0 

Spalling 2 37 3 

Scaling 3 1 3 

Elman neural 

network 

Cracking 1 1 0 

Spalling 4 37 1 

Scaling 0 0 5 
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Table 8: Confusion matrices of the prediction models for bridge defects recognition based 1 

on testing dataset (Continued) 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

Prediction model Predicted class 
Actual class 

Cracking Spalling Scaling 

𝐂𝐎𝐍𝐕𝐍𝐄𝐓 

Cracking 0 0 0 

Spalling 2 38 0 

Scaling 3 0 6 

AlexNet 

Cracking 5 2 0 

Spalling 0 34 0 

Scaling 0 2 6 

VGG16 

Cracking 5 0 0 

Spalling 0 35 0 

Scaling 0 3 6 

VGG19 

Cracking 5 1 0 

Spalling 0 33 0 

Scaling 0 4 6 

CaffeNet 

Cracking 5 1 0 

Spalling 0 33 0 

Scaling 0 4 6 

𝐒𝐕𝐃 − 𝐄𝐍𝐍

− 𝐈𝐖𝐎 

Cracking 3 0 0 

Spalling 2 38 0 

Scaling 0 0 6 
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Table 9: Performance evaluation of the prediction models for defects recognition based on 1 

testing dataset 2 

Prediction 

model 

overall 

accuracy 

F-

measure 

Kappa 

coefficient 

Balanced 

accuracy 

Matthews 

correlation 

coefficient 

Area 

under 

curve 

Discriminant 

analysis 0.714 0.714 0.021 0.786 0.571 0.516 

K-nearest 

neighbors 0.531 0.531 0.033 0.647 0.293 0.534 

Random Forest 
0.755 0.755 0.108 0.816 0.631 0.503 

Support vector 

machines 0.795 0.795 0.143 0.847 0.694 0.548 

Decision tree 
0.776 0.776 0 0.832 0.663 0.5 

Artificial neural 

network 
0.816 0.816 0.427 0.861 0.722 0.654 

Elman neural 

network 
0.878 0.878 0.616 0.908 0.816 0.755 

𝐂𝐎𝐍𝐕𝐍𝐄𝐓 0.898 0.898 0.701 0.923 0.845 0.791 

AlexNet 0.918 0.918 0.809 0.939 0.877 0.967 

VGG16 0.939 0.939 0.852 0.954 0.908 0.975 

VGG19 0.898 0.898 0.768 0.923 0.846 0.958 

CaffeNet 0.898 0.898 0.768 0.923 0.846 0.958 

𝐒𝐕𝐃 − 𝐄𝐍𝐍

− 𝐈𝐖𝐎 
0.959 0.959 0.882 0.969 0.939 0.903 

 3 

 4 

 5 

 6 

 7 
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Table 10: Performance evaluation of the prediction models for defects recognition based on 1 

entire dataset using 10-fold cross validation 2 

Prediction 

model 

overall 

accuracy 

F-

measure 

Kappa 

coefficient 

Balanced 

accuracy 

Matthews 

correlation 

coefficient 

Area 

under 

curve 

Discriminant 

analysis 0.805 0.805 0.597 0.85 0.714 0.783 

K-nearest 

neighbors 0.782 0.782 0.633 0.834 0.68 0.865 

Random Forest 
0.858 0.858 0.715 0.891 0.794 0.828 

Support vector 

machines 0.892 0.892 0.791 0.917 0.846 0.854 

Decision tree 
0.896 0.896 0.79 0.919 0.851 0.845 

Artificial neural 

network 0.833 0.833 0.665 0.872 0.754 0.756 

Elman neural 

network 0.859 0.859 0.696 0.892 0.795 0.743 

𝐂𝐎𝐍𝐕𝐍𝐄𝐓 0.89 0.89 0.768 0.915 0.841 0.766 

AlexNet 
0.936 0.936 0.879 0.949 0.91 0.922 

VGG16 
0.944 0.944 0.895 0.956 0.922 0.929 

VGG19 
0.933 0.933 0.873 0.947 0.905 0.921 

CaffeNet 
0.941 0.941 0.889 0.953 0.917 0.909 

𝐒𝐕𝐃 − 𝐄𝐍𝐍

− 𝐈𝐖𝐎 0.955 0.955 0.914 0.965 0.937 0.904 

 3 
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 1 

Figure 13: Receiver operating characteristics curves of the developed 𝐒𝐕𝐃 − 𝐄𝐍𝐍 − 𝐈𝐖𝐎 2 

model for bridge defects recognition 3 
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 1 

Figure 14: Receiver operating characteristics curves of Elman neural network for bridge 2 

defects recognition 3 

7.2 Dataset II 4 

7.2.1 Dataset description  5 

A further analysis is conducted to study the performance of the developed model capitalizing on 6 

a larger dataset. The SDNET2018 dataset is composed of 56,000 annotated images of non-7 

cracked and cracked images of pavement, walls and concrete bridge decks. In the present study, 8 

2,921 images are utilized to train and test the prediction models. In this context, dataset II is 9 

composed of 306 cracked images and 2,615 non-cracked images. The present study utilizes 10 

2,338 and 583 images for training and testing the prediction models, respectively.  11 

7.2.2 Baseline implementation  12 

This study utilizes the same previous architecture of CONVNET. The number of epochs is 13 

assumed 100 for CONVNET and all pre-trained networks. A sample of the training performance 14 

of VGG16 for bridge defects detection is reported in Table 11. 15 

 16 
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Table 11: Sample of training performance of VGG16 for bridge defects detection based on 1 

dataset II 2 

Epoch Iteration Time Elapsed (seconds) 
Mini-batch 

loss 

Mini-

batch 

accuracy 

Base 

learning 

rate 

1 1 0.01 8.8105 20% 1.00e-06 

20 4450 139.16 0.9557 80% 1.00e-06 

50 11450 366.62 0 100% 1.00e-06 

80 18550 599.1 0 100% 1.00e-06 

100 23300 761.72 0 100% 1.00e-06 

 3 

7.2.3 Proposed model implementation  4 

The developed SVD − ENN − IWO model utilizes a maximum number of hidden layers, context 5 

layers, hidden neurons and context neurons of five. The number of iterations and initial 6 

population size are assumed 100 and 20, respectively. In this context, the maximum length of the 7 

optimization model is 759. The convergence of the developed SVD − ENN − IWO model for 8 

bridge defects detection based on dataset II is displayed in Figure 15. As can be seen, the 9 

developed model is capable of accomplishing a low training misclassification error of 0.56%. 10 

The optimum topology encompasses two hidden layers, two context layers, one hidden neuron 11 

and one context neuron. Hyperbolic tangent sigmoid is the optimum transfer function.      12 
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 1 

Figure 15: Convergence of the 𝐒𝐕𝐃 − 𝐄𝐍𝐍 − 𝐈𝐖𝐎 model for defects detection based on 2 

dataset II 3 

7.2.4 Analysis and Discussion  4 

The confusion matrices of the prediction models for bridge defects detection based on testing 5 

dataset II are presented in Table 12. It can be deduced that SVD − ENN − IWO achieved the 6 

highest correctly classified cracked images with 39 instances. Additionally, it provided the 7 

second highest correctly classified non-cracked images with 528 instances after 8 

CONVNET. AlexNet provided the lowest correctly classified cracked images with 39 instances 9 

while CaffeNet yielded the lowest successful detection rate of non-cracked images with 413 10 

instances. Table 13 and Table 14 report the performance evaluations of the prediction models for 11 

bridge defects detection based on testing dataset II using split validation and entire dataset II 12 

using 10-fold cross validation. With regards to split validation, it can be observed that the 13 

developed model generated the highest classification accuracies accomplishing overall accuracy, 14 

F-measure, Kappa coefficient, balanced accuracy, Matthews’s correlation coefficient and area 15 

under curve of 0.997, 0.982, 0.98, 0.998, 0.99 and 0.998, respectively. CONVNET  outperformed 16 

the pre-trained networks achieving overall accuracy, F-measure, Kappa coefficient, balanced 17 

accuracy, Matthews’s correlation coefficient and area under curve of 0.976, 0.848, 0.835, 0.868, 18 
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0.847 and 0.868, respectively. In this regard, the developed model established an average 1 

enhancement in the classification indicators of 13.68% when compared against the trained from 2 

scratch network.         3 

With respect to the cross validation, the developed model outperformed other prediction models 4 

such that it achieved overall accuracy, F-measure, Kappa coefficient, balanced accuracy, 5 

Matthews’s correlation coefficient and area under curve of 0.995, 0.973, 0.969, 0.981, 0.97 and 6 

0.981, respectively. VGG19 outperformed CONVNET  and other pre-trained networks yielding 7 

overall accuracy, F-measure, Kappa coefficient, balanced accuracy, Matthews’s correlation 8 

coefficient and area under curve of 0.954, 0.814, 0.788, 0.957, 0.8 and 0.957, respectively. In 9 

this context, the developed model generated an average improvement in the classification 10 

performance evaluation of 12.18% with reference to VGG16. The ROC curves of the prediction 11 

models for bridge defects detection are presented in Figure 16. As can be seen, the ROC curve of 12 

the developed model lies above other prediction models while the ROC curve of CONVNET lies 13 

beneath other prediction models. This implies that the developed model provides a higher area 14 

under curve with respect to other prediction models, which in return indicates that it provided 15 

higher detection accuracy.  16 

Table 12: Confusion matrices of the prediction models for bridge defects detection based 17 

on testing dataset II 18 

 19 

Prediction model Predicted class 
Actual class 

No defect Defect 

𝐂𝐎𝐍𝐕𝐍𝐄𝐓 
No defect 39 0 

Defect 14 530 

AlexNet 
No defect 38 115 

Defect 15 415 

VGG16 
No defect 42 115 

Defect 11 415 

VGG19 
No defect 45 116 

Defect 8 414 

CaffeNet 
No defect 41 117 

Defect 12 413 

𝐒𝐕𝐃 − 𝐄𝐍𝐍 − 𝐈𝐖𝐎 
No defect 53 2 

Defect 0 528 



50 

 

Table 13: Performance evaluation of the prediction models for defects detection based on 1 

testing dataset II 2 

Prediction 

model 

overall 

accuracy 

F-

measure 

Kappa 

coefficient 

Balanced 

accuracy 

Matthews 

correlation 

coefficient 

Area 

under 

curve 

𝐂𝐎𝐍𝐕𝐍𝐄𝐓 0.976 0.848 0.835 0.868 0.847 0.868 

AlexNet 0.777 0.369 0.27 0.75 0.327 0.75 

VGG16 0.784 0.4 0.306 0.788 0.373 0.788 

VGG19 0.787 0.421 0.329 0.815 0.405 0.915 

CaffeNet 0.779 0.389 0.292 0.776 0.358 0.776 

𝐒𝐕𝐃 − 𝐄𝐍𝐍

− 𝐈𝐖𝐎 
0.997 0.982 0.98 0.998 0.99 0.998 

Table 14: Performance evaluation of the prediction models for defects detection based on 3 

entire dataset II using 10-fold cross validation 4 

Prediction 

model 

overall 

accuracy 

F-

measure 

Kappa 

coefficient 

Balanced 

accuracy 

Matthews 

correlation 

coefficient 

Area 

under 

curve 

𝐂𝐎𝐍𝐕𝐍𝐄𝐓 0.924 0.422 0.397 0.642 0.485 0.642 

AlexNet 0.954 0.811 0.786 0.951 0.796 0.951 

VGG16 0.953 0.811 0.785 0.957 0.798 0.956 

VGG19 0.954 0.814 0.788 0.957 0.8 0.957 

CaffeNet 0.953 0.811 0.785 0.959 0.798 0.958 

𝐒𝐕𝐃 − 𝐄𝐍𝐍

− 𝐈𝐖𝐎 0.995 0.973 0.969 0.981 0.97 0.981 

 5 

 6 

 7 

 8 
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 1 

Figure 16: Receiver operating characteristics curves of the prediction models for defects 2 

detection based on entire dataset II 3 

The box plots of the overall accuracies achieved by the prediction models are depicted in Figure 4 

17. They enable to synthesize the robustness of the prediction models capitalizing on mapping 5 

the distribution and skewness of the numerical data of overall accuracies. Figure 17 displays the 6 

minimum, first quartile, third quartile and maximum values of the multiple runs of the prediction 7 

models. The height of the box signifies the robustness of the prediction model, whereas lower 8 

spread implies a more robust prediction model. It can be observed that the developed model 9 

alongside the transfer learning-based deep neural network provides more stable and highly 10 

consistent prediction accuracies within the different folds. Conversely, CONVNET experiences 11 

more perturbations in the prediction accuracies across the multiple runs.     12 
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 1 

Figure 17: Box plots of the overall accuracy obtained by the prediction models 2 

A further comparison is carried out to evaluate the statistical significance levels of the generated 3 

prediction accuracies. In this context, Shapiro-Wilk test is performed to study the normality of 4 

the overall prediction accuracies produced by the different folds of the prediction models at 5 

significance level of 0.05. It analyzes the null hypothesis (H0), which implies that the random 6 

variable follows a normal distribution. On the other hand, the alternative hypothesis (H1) implies 7 

that the random variable doesn’t follow a normal distribution. Hence, if the P − value is less 8 

than the significance level, then the overall prediction accuracies don’t follow normal 9 

distribution. Nonetheless, if the P − value is more than the significance level, then the overall 10 

prediction accuracies follow normal distribution. P − values of the overall accuracies of the 11 

prediction models using Shapiro-Wilk test are recorded in Table 15. As can be seen, all the P −12 

values are less than 0.05, which indicate that the null hypothesis is rejected and therefore overall 13 

accuracies of the prediction models don’t follow normal distributions.  14 

In this regard, non-parametric testing needs to be applied for their statistical significance analysis 15 

at significance level of 0.05. Table 16 reports the P − values of the developed model against 16 

other prediction models using a set of non-parametric tests. The comparison is carried out based 17 

on the overall accuracies of the different folds. Additionally, the non-parametric tests encompass 18 

Wilcoxn test, Mann-Whitney-U test, Kruskal–Wallis test, binomial sign test and Mood’s median 19 

test. The conducted tests examine the null hypothesis (H0), which is that there is no significant 20 
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difference between the classification capacities of the prediction models. On the other hand, the 1 

alternative hypothesis (H1) assumes that there is a significant difference between the 2 

classification performances of the prediction models. As shown in Table 16, the P − values of 3 

the pairs (SVD − ENN − IWO, CONVNET), (SVD − ENN − IWO, AlexNet), (SVD − ENN −4 

IWO, VGG16), (SVD − ENN − IWO, VGG19) and (SVD − ENN − IWO, CaffeNet) are less than 5 

0.05. This demonstrates that the developed model significantly outperformed CONVNET and 6 

other pre-trained deep networks.   7 

Table 15: 𝐏 − 𝐯𝐚𝐥𝐮𝐞𝐬 of the overall accuracies of the prediction models using Shapiro-Wilk 8 

test for normality  9 

Prediction model 𝐏 − 𝐯𝐚𝐥𝐮𝐞 

CONVNET 4.53×10-2 (H1) 

AlexNet 9×10-5 (H1) 

VGG16 2.6×10-4 (H1) 

VGG19 0 (H1) 

CaffeNet 6.9×10-4 (H1) 

SVD − ENN − IWO 0 (H1) 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 
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Table 16: Statistical comparison of the developed  𝐒𝐕𝐃 − 𝐄𝐍𝐍 − 𝐈𝐖𝐎 against other 1 

prediction models using non-parametric tests 2 

Pair of prediction 

learning models 
Wilcoxn 

Mann-

Whitney-U 

Kruskal–

Wallis 
Binomial sign 

Mood’s 

median 

(SVD − ENN −

IWO,  

CONVNET) 

H1 

(P − value 

=4.7×10-3) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value 

=1.01×10-4) 

H1 

(P − value =0) 

(SVD − ENN −

IWO,  

AlexNet) 

H1 

(P − value 

=3.58×10-3) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value 

=4.73×10-5) 

H1 

(P − value =0) 

(SVD − ENN −

IWO,  

VGG16) 

H1 

(P − value 

=4.92×10-3) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value 

=1.01×10-4) 

H1 

(P − value =0) 

(SVD − ENN −

IWO,  

VGG19) 

H1 

(P − value 

=4.7×10-3) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value 

=8.63×10-5) 

H1 

(P − value =0) 

(SVD − ENN −

IWO,  

CaffeNet) 

H1 

(P − value 

=4.7×10-3) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value 

=8.63×10-5) 

H1 

(P − value =0) 

Sample of the correctly and wrongly classified images is depicted in Figure 18. Figure 18.a 3 

describes the correctly classified images by the developed SVD − ENN − IWO method for bridge 4 

defects detection and recognition. As can be seen, the developed method succeeded in detecting 5 

the defects and recognizing their type under various lighting conditions. However, few images 6 

are misclassified by the developed method, which are displayed in Figure 18.b. In this regard, 7 

versatile lighting conditions sometimes create wide variations in the intensity values and 8 

illuminance across the image pixels such as the first one to the left imported from dataset I. This 9 

caused the incapability of the developed method to detect the presence of defects in the image. 10 

The second and third images obtained from dataset II encompassed light and thin cracks which 11 

generated low contrast between them and background which lead the developed detection 12 

method to wrongly misclassify them as non-defected images. The failure of the developed 13 

recognition method in the accurate identification of the type of defect in the fourth image can be 14 
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explained by the nature of dataset I which is imbalanced towards spalling and scaling in addition 1 

to the presence of wide irregularities on the surface.   2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

Figure 18: Sample of the correctly and wrongly classified images 14 

The average ranking method is adopted for the sake of establishing an integrative representation 15 

of the performances of the prediction models for bridge defects detection and recognition based 16 

on datasets I and II. The mean and standard deviation of rankings of the prediction models are 17 

reported in Table 17. It is revealed that the developed model achieved the highest rank and 18 

satisfactory standard deviation of rankings. In this regard, its mean and standard deviation are 19 

equal to 1.22 and 0.92, respectively. Results also demonstrate that VGG16 achieved the second 20 

ranking followed by AlexNet and then CaffeNet. It is also found that the transfer learning-based 21 

deep neural networks generated an overall prediction performance better than the trained from 22 

scratch network. In the light of the previous analysis, it is revealed that the developed method 23 

was capable of providing a holistic and significant better classification scheme than other 24 

prediction models for both defects detection and recognition. Thus it can aid in establishing more 25 

efficient image-based condition assessment models and more reliable maintenance planning 26 

actions.  27 

 28 

 29 

(a) Correctly classified images 

(b) Wrongly classified images 
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Table 17: Mean and standard deviation of rankings obtained by the prediction models 1 

Prediction model Mean of rankings 
Standard deviation of 

rankings 

CONVNET 4.39 1.74 

AlexNet 3.61 0.68 

VGG16 3 0.94 

VGG19 4.28 1.66 

CaffeNet 3.67 1 

SVD − ENN − IWO 1.22 0.92 

 2 

8. CONCLUSION  3 

Routine inspections are diagnostic methods to quantity the degradation of the bridges. However, 4 

current visual inspection-based methods are labour-intensive and exhibit subjective and 5 

imprecise judgments, which eventually lead to error-prone deterioration models and maintenance 6 

actions. As such, the present study proposes a newly-developed  7 

SVD − ENN − IWO method for the purpose of automated detection and recognition of surface 8 

defects. The first tier is envisioned on singular value decomposition which aims at 9 

dimensionality reduction of the image through capturing the most significant spatial domain 10 

features. In the second tier, invasive weed optimization algorithm is deployed for the purpose of 11 

fine-tuning the hyper parameters of Elman neural network in an attempt to alleviate the 12 

shortcomings of gradient descent algorithm. In this context, a variable-length optimization model 13 

is designed for the purpose of both parameter and structural learning of the Elman neural 14 

network. The third tier is designated for evaluating the developed method stepping on a set of 15 

performance prediction and statistical significance comparisons. These comparisons encompass a 16 

set of conventional machine learning and deep neural networks well-known for their higher 17 

classification accuracies. Non-parametric statistical testing involves five type, namely Wilcoxn 18 

test, Mann-Whitney-U test, Kruskal–Wallis test, binomial sign test and Mood’s median test.   19 

Results demonstrated that the developed method significantly outperformed other prediction 20 

models based on split validation and cross validation. With respect to the bridge defects 21 

recognition, it was found that the developed method achieved overall accuracy, F-measure, 22 

Kappa coefficient, balanced accuracy, Matthews’s correlation coefficient and area under curve of 23 

0.955, 0.955, 0.914, 0.965, 0.937 and 0.904, respectively. This demonstrated that the developed 24 

model was capable of improving the classification accuracies by values ranging from 10.7% to 25 

37.44% with reference to the back propagation artificial neural network. It was also found that 26 

the developed method managed to provide an average improvement in the detection accuracies 27 

of 13.68% with respect to CONVNET based on dataset II. A holistic evaluation of the prediction 28 
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models was carried out using average ranking method. In this regard, it was derived that the 1 

developed method could provide a better and robust prediction performance achieving mean and 2 

standard deviation for rankings of 1.22 and 0.92, respectively. As such, it is expected that the 3 

developed method can lead to better evaluation of severities of surface defects, which eventually 4 

aids in establishing more reliable bridge maintenance intervention actions.  5 
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