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Abstract 11 

The development of decision support tools for use in the maintenance management and renewal 12 

prioritization of healthcare facility assets is considered a highly challenging task due to the 13 

multiplicity of uncertainties and subjectivity levels available in such a decision-making process. 14 

Accordingly, this study utilizes a combination of Neutrosophic logic, Analytic Network Process 15 

(ANP) and Multi-Attribute Utility Theory (MAUT) to reduce the subjectivity pertaining to expert-16 

driven decisions and produce a reliable ranking of hospital building assets based on their variable 17 

criticality levels and performance deficiencies. This is further integrated with the novel use of 18 

machine learning algorithms in this field, namely: Decision Trees, K-Nearest Neighbors and Naïve 19 

Bayes to automate the priority setting process and make it reproducible diminishing the need for 20 

additional expert judgments. The developed model was applied to Canadian healthcare facilities, 21 

and its corresponding predictive performance was validated by means of comparison against a 22 
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previously established model, and its excelling capability was clearly demonstrated. Accordingly, 23 

the developed integrated framework is expected to aid in creating a consistent, unbiased and 24 

automated prioritization scheme for hospital asset renewals, which in turn is expected to contribute 25 

to an efficient, informed and sound resources allocation process. 26 
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1 Introduction 30 

Asset Management can be defined as the process of evaluating the value of assets within an 31 

organizational hierarchy. Maintenance and capital renewals are considered the most crucial 32 

functions of an asset management framework and are described by the International Organization 33 

for Standardization (ISO 2014) as a mixture of administrative and technical procedures undertaken 34 

to allow a building facility along with its underlying components to play the role they are designed 35 

for throughout their lifecycle. Thus, the disregard or untimely implementation of such maintenance 36 

activities can possibly result in significant process failures that can impose risks to people, revenue 37 

losses, or operational interruptions (da Silva et al. 2020). 38 

In healthcare facilities, the traditional maintenance strategies that are used for the upkeep of the 39 

building assets and components are either preventive or reactive maintenance. As part of a 40 

preventive maintenance program, interventions are done on a timely-based manner. Although this 41 

strategy can contribute to the extension of the service life of the assets, it is rather labor-intensive 42 

and requires a large initial investment for the maintenance activities to take place on the designated 43 

time. Also, this maintenance strategy often leads to the implementation of redundant and/or 44 

unnecessary activities that could possibly be omitted without compromising the reliability or 45 
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performance of the building assets. On the other hand, reactive maintenance is less costly in the 46 

beginning as it does not require initial investments to be made, however, it is considered a short-47 

sighted and unsustainable maintenance approach as unexpected failures are highly possible in such 48 

a maintenance program which can cause a substantial disruption in a hospital operation as well as 49 

elevated cost for maintenance activities due to the ill-planned resources and budget allocation 50 

(Ahmed et al. 2020). This led to the evolvement of an updated maintenance program by the Joint 51 

Commission on Accreditation of Healthcare Organization (JCAHO 2014), which emphasized on 52 

the need for more accurate planning and scheduling of maintenance activities in a healthcare 53 

facility taking the variability of asset criticality and risk levels into account. This approach is 54 

expected to reduce the cost and labor hours associated with unneeded maintenance activities by 55 

reducing the frequency of time-based maintenance and shifting towards a more predictive 56 

maintenance approach (Shamayleh et al. 2019). 57 

Moreover, as stated by Elsawah et al. (2014), the estimation of the consequences and probability 58 

of failure of the asset components as part of an asset management framework can act as a beneficial 59 

aiding tool for municipalities and governments in order to make objective comparisons and 60 

prioritize assets with a higher potential failure impact for renewal purposes. The process of 61 

predicting the possible consequences and probability of failure is referred to as a Risk Assessment 62 

framework (Shahata and Zayed 2015). Risk assessment models that are developed as part of asset 63 

management frameworks have recently become a capital mission in healthcare organizations 64 

(Jamshidi et al. 2015). 65 

However, the incorporation of such risk-based assessment approaches within healthcare facilities 66 

to prioritize the underlying assets has taken a rather subjective form in which experts are required 67 

to rank assets’ priority levels according to their corresponding expertise and judgement. This can 68 
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possibly lead to inconsistencies between different experts’ opinions as well as uncertainties found 69 

as a result of the absence of a systematic methodology for ranking hospital building assets and 70 

components. 71 

Accordingly, this paper is realized to provide a systematic means of quantifying the priority levels 72 

for different hospital building components depending on the deficiencies detected within their 73 

course of operation, as well as their variable risk tendency or failure history experienced. This 74 

approach is also enhanced by the use of machine learning algorithms in order to automate the 75 

priority setting process reducing the reliance on further expert-based subjective techniques, which 76 

improves the overall prioritization process and makes it more consistent and reliable. The proposed 77 

framework also aims at providing a fair allocation mechanism of the limited resources and budgets 78 

available within healthcare organizations. 79 

2 Literature Review 80 

In the context of healthcare facilities, the asset prioritization topic has been tackled in numerous 81 

studies in the literature utilizing variant methodologies as elaborated as part of this section. First, 82 

a study by Joseph and Madhukumar (2010) assessed the urgency for conducting the maintenance 83 

interventions on medical equipment on the basis of three main criteria, namely: physical condition, 84 

function of equipment usage as well as the hazards expected if equipment is kept as is. In their 85 

study, the various identified criteria were equally weighted, and the final scores for the equipment 86 

were derived based on direct rating. The previous three criteria were also used by Sweis et al. 87 

(2014) to determine the priority level of medical equipment as well, however, they evaluated the 88 

weights of the criteria on an AHP basis to decrease the subjectivity associated with the ranking 89 

process. The previously outlined factors have been expanded by Faisal and Sharawi (2015) where 90 

the age of medical equipment since installation was included in the evaluation process, as well as 91 
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the maintenance cost required to rectify the asset’s performance. In their study, the criteria weights 92 

were derived on an AHP basis which was found to provide a more objective representation of the 93 

real maintenance triggers and drivers. Diverging from the previous frameworks, Shamayleh et al. 94 

(2019) omitted the physical condition and the age parameters from their prioritization model and 95 

consequently stated that the only indicative factors of the urgency level of the medical equipment 96 

to receive a proper maintenance intervention is their relative function within the facility, their 97 

failure history, as well as the associated hazards and implications of their breakdown or failure. 98 

Adopting a similar understanding, Ahmed and Zayed (2019) assessed the priority level of hospital 99 

building components on an AHP basis considering only criticality and risk factors, without 100 

including the physical condition into the prioritization process. 101 

On the other hand, Hamdi et al. (2012) and Moscato et al. (2017) determined a different ranking 102 

scheme for the assessment of the importance level of assets and their underlying components, 103 

namely: function and maintenance requirements. Hamdi et al. assumed that both criteria are of 104 

equal importance to the evaluation process of medical equipment, while Moscato et al. analyzed 105 

the evaluation criteria for hospital HVAC equipment on a risk matrix format, where the asset 106 

maintenance urgency receives a rating ranging from Minimum, Medium, High to Maximum risk 107 

level and thus a maximum maintenance consideration is required. Both studies concluded that the 108 

equipment’s need for maintenance should be included in the priority evaluation process of hospital 109 

assets, which entails the quantification of all maintenance and renewal activities employed for the 110 

equipment under study in a given period of time illustrating the assets’ performance deficiency or 111 

vulnerability levels. 112 

Moving forward, Ali and Hegazy (2014) created a different ranking scheme for the prioritization 113 

of hospital building assets’ renewal. In their framework, multiple rounds of expert surveys were 114 
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undertaken to arrive at a convenient ranking of the zones, systems and subsystems’ importance 115 

within a hospital. This was followed by visual inspection to determine the physical condition, 116 

sustainability level, risk and level of service associated with the usage of each hospital asset. The 117 

priority level was then calculated based on the weighted sum between the weights and scores for 118 

the different indicators with respect to each hospital asset. 119 

In the recent years, Salem and ElWakil (2018) introduced a prioritization framework for hospital 120 

MEP equipment based on the evaluation of the assets’ respective physical condition, safety and 121 

infection hazards as well as revenue loss associated with the operation and maintenance of the 122 

assets per year. They evaluated the importance of the different criteria as opposed to one another 123 

on an AHP basis. Utilizing the same AHP weighting methodology, Abirami and Sudheesh (2020) 124 

analyzed the significance level of the medical equipment according to their age, function of usage 125 

and the hazards expected in the case maintenance interventions were delayed or disregarded. 126 

Similarly, Hernández-López et al. (2020) analyzed the priority of medical equipment using the 127 

exact criteria but utilizing a more simplistic approach to the weighting of the prioritization factors 128 

where the weights were determined by maintenance personnel on a direct rating basis and a 129 

combined score was consequently obtained on a SAW approach. 130 

As previously presented, an extensive number of studies is observable within the asset 131 

prioritization field in healthcare facilities, however, the utilization of subjectively deterministic 132 

methodologies to arrive at a convenient and representative priority level for assets along with their 133 

underlying components is greatly evident. Also, the dearth of an integrated mechanism that 134 

combines and agglomerates all the different prioritization factors demonstrating high advantages 135 

to the overall prediction process is another limitation realized from reviewing previous studies. In 136 

addition to that, the incorporation of multiple-valued logics to facilitate the group-decision-making 137 
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process has not been explored before in the literature, despite the fact that healthcare facilities are 138 

typically referred to as environments involving multiple experts with different views and 139 

judgements brought together to arrive at a certain decision. This makes the inclusion of multiple-140 

valued logics in the decision-making process a prospective topic to tackle in future studies. Finally, 141 

an important drawback of the previous studies is that the overall healthcare asset prioritization 142 

process is judgment-based and experience-dependent. This in turn prevents prospective 143 

advantages from employing progressive methodologies like machine learning algorithms to 144 

produce a more automated prioritization scheme for assets in healthcare facilities. This observation 145 

triggered the exploration of the machine learning utilization within the field of asset maintenance 146 

decision-making. Being the largest multidisciplinary database of peer-reviewed literature (Bonato 147 

2016), Scopus was employed for a non-exhaustive search including the following keywords 148 

presented in Table 1. The search focused on the studies conducted in the past two decades from 149 

the years 2000-2020 as illustrated below to draw conclusions about the sufficiency of machine 150 

learning utilization within this field. 151 

Table 1. Number of studies retrieved from Scopus search from the year 2000 to 2020 152 

Search Keywords No. of Studies 
Machine Learning 286,177 
Maintenance Management 86,366 
Healthcare Maintenance Management 2,088 
Maintenance Prioritization 1,474 
Maintenance Management AND Machine Learning 836 
Maintenance Prioritization AND Machine Learning 27 
Healthcare Maintenance Prioritization 23 
Healthcare Maintenance Management AND Machine Learning 18 
Healthcare Maintenance Prioritization AND Machine Learning 0 

The previous table gives a broad overview of the research status within areas falling under the 153 

scope of this paper. First, as it can be noted, the healthcare-related studies can safely be considered 154 
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limitedly tackled within the areas of maintenance management and prioritization. Moreover, the 155 

applications of machine learning techniques for maintenance purposes are evidently scarce with 156 

respect to all types of facilities or assets. However, the most obvious drawback in the literature lies 157 

within the scarce utilization of machine learning methods to facilitate the maintenance of 158 

healthcare assets, which is a gap this paper is aiming to fill and contribute towards its investigation. 159 

3 Methodology 160 

Analyzing the gaps and limitations of the previous literature, this study presents a novel 161 

classification-based automated priority setting tool for assets in healthcare facilities. Three 162 

algorithms were selected due to their demonstrated popularity and capability in the previous 163 

literature, namely: Decision Trees (DT), K-Nearest Neighbors (KNN) and Naïve Bayes (NB). The 164 

scope of this study covers the building assets within a healthcare facility including civil, 165 

architectural, mechanical, electrical and plumbing systems along with their underlying 166 

components. The proposed tool is set to identify the corresponding priority level for the assets 167 

based on their criticality or risk rank as well as their performance deficiency with respect to their 168 

physical and functionality conditions. Also, for the purpose of minimizing the subjectivity within 169 

the decision-making process, an integration between Neutrosophic Logic and Multi-Criteria 170 

Decision-Making (MCDM) methods has been employed to arrive at a suitable benchmarking for 171 

the hospital building assets. This in turn rectifies the limitations identified within previous studies 172 

where most of the studies relied on a direct rating and an equal weighting for all evaluation criteria 173 

identified. The detailed steps undertaken within this study are illustrated in Fig. 1. 174 
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 175 

Figure 1 Methodology undertaken to fulfill study objectives 176 

3.1 Multi-Criteria Decision-Making (MCDM) 177 

The first stage is the utilization of MCDM methods to assess the criticality and performance 178 

evaluation criteria weights by means of the N-ANP process discussed below, followed by the 179 

exploitation of a MAUT to derive the corresponding indices of the hospital building assets. 180 

3.1.1 Neutrosophic Analytic Hierarchy Process (N-ANP) 181 

Neutrosophic logic was introduced by Smarandache (1999) as an extension for intuitionistic and 182 

fuzzy logics. Intuitionistic logic is the generalization of Fuzzy logic where two degrees of 183 

memberships are involved, namely: degree of Truth (membership) and degree of Falseness (non-184 

membership). However, given that intuitionistic logic can only handle incomplete information, it 185 

can be insufficient to deal with inherent inconsistency or indeterminacy levels that are often present 186 
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in fuzzy systems. Therefore, Neutrosophic sets evolved to overcome this drawback and are 187 

represented in the form of a Truth, Indeterminacy, and Falseness degrees of membership. Those 188 

three values are independent, and their sum lies between 0 and 3. 189 

Neutrosophic sets are based on a relatively new philosophical branch named Neutrosophy, and are 190 

capable of mimicking human knowledge, preference and evaluation scheme by dealing with 191 

inherent uncertainties, inconsistencies and indeterminacies in a given set of information. A special 192 

case of Neutrosophic sets is a Single Valued Neutrosophic Set (SVNS), which was also proposed 193 

by Smarandache (1999) to facilitate the use of Neutrosophic sets in real world applications. 194 

Accordingly, this study uses SVNSs to apply the Neutrosophic-based ANP methodology into the 195 

assessment and ranking of identified criteria and sub-criteria to measure the criticality, risk and 196 

performance levels of hospital building components. The classical form of ANP is regarded as a 197 

generalization of the Analytic Hierarchy Process (AHP) and is considered the most comprehensive 198 

technique for use in strategic decisions due to its proven capability to handle all tangible and 199 

intangible criteria of influence (Saaty 2004). ANP forms a network structure of clusters and nodes 200 

to facilitate the decision-making process allowing the existence of complex dependencies and 201 

interrelationships between different levels and attributes (Otay and Kahraman 2019).  202 

Decision-makers perform several levels of pair-wise comparisons to derive inner and outer 203 

dependencies and preferences of elements in a problem, and priorities derived are accumulated 204 

both vertically and horizontally into a matrix known as the Unweighted Super Matrix. 205 

Accordingly, a Weighted Super Matrix can be derived from the calculated Unweighted Super 206 

Matrix by normalizing each column in the matrix to make it equal to “1.0”. Finally, the priorities 207 

for each of the identified elements within the ANP problem can be obtained from the Limit Super 208 

Matrix which is attainable upon raising the Weighted Super Matrix to “k” powers. 209 
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Therefore, the steps adopted to assess the criteria preferences on an N-ANP basis were adopted 210 

from Otay and Kahraman (2019) as described below. 211 

1) Determine the weight given to each of the experts surveyed ewt as per Eq. 1 212 

ewt=	y+a+c   ( 1 ) 213 

where t is the counter for experts surveyed, y represents the years of experience of the expert, a 214 

describes the area of expertise of the expert, and c is the country where the expert gained most of 215 

his experience.  216 

2) Design the Influence Matrix of the problem’s network composed of 0’s and 1’s indicating the 217 

absence and presence of relationships between factors respectively. 218 

3) Form a comparison matrix for each group of clusters or criteria to represent the preference or 219 

influence given by the experts of one element on another. 220 

4) Translate the linguistic terms assigned by experts surveyed to illustrate their inner and outer 221 

relationships between different criteria and sub-criteria according to the scale given in Table 2. 222 

Table 2 Linguistic scale, the corresponding Neutrosophic values and Crisp values 223 

Crisp Scale Linguistic Term Neutrosophic Set 
9 Extremely More Important (0.90, 0.10, 0.10) 
7 Very Strongly More Important (0.80, 0.25, 0.20) 
5 Strongly More Important (0.70, 0.30, 0.30) 
3 Moderately More Important (0.60, 0.35, 0.40) 
1 Equally Important (0.50, 0.50, 0.50) 

1/3 Moderately Less Important (0.40, 0.65, 0.60) 
1/5 Strongly Less Important (0.30, 0.70, 0.70) 
1/7 Very Strongly Less Important (0.20, 0.75, 0.80) 
1/9 Extremely Less Important (0.10, 0.90, 0.90) 

5) Verify the consistency of each of the expert responses by formulating a perfectly consistent 224 

Neutrosophic matrix (T’ik, I’ik, F’ik), and then comparing it with the actual responses.  225 
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 226 

6) Aggregate all expert responses into one single group decision-making matrix using the Eq. 3. 227 

This aggregated matrix is the Unweighted Super Matrix. 228 

For Aj (j=1, 2, 3, … n): 229 

Yw=(1-∏ (1-TAj)wjn
j=1 ,1- ∏ (1-IAj)wjn

j=1 ,1-∏ (1-FAj)wjn
j=1 )  ( 3 ) 230 

where j represents the experts’ counter; w = (w1, w2, w3, …wn) is the weight vector of experts 231 

respectively; and ∑ wjn
j=1 =1 232 

7) Calculate the Weighted Super Matrix by normalizing each column in the Unweighted Super 233 

Matrix by means of Eq. 4. 234 

xncr=
xcr
∑ xc

        ( 4 ) 235 

where 𝑥𝑛'( is the notation for the normalized element “x” in column “c” and row “r”, 𝑥'( 236 

represents the corresponding element with the same position in the Unweighted Super Matrix 237 

which is divided by the sum of all the elements in the same column to obtain the normalized value.  238 

8) De-neutrosophy the three-components weights derived for each element in the Weighted Super 239 

Matrix into single crisp numbers Wc using Eq. 5. 240 

Wc = 3	+	Ti	-	2Ii	-	Fi
4

       ( 5 ) 241 

9) Obtain the Limit Super Matrix in which the element weights in the Weighted Super Matrix are 242 

raised to power “z” as shown in Eq. 6. 243 

Consistency Ratio (CR) = 
1

2(n-1)(n-2)
∑ ∑ (0T'ik-Tik0+0I'ik-Iik0+0F'ik-Fik0)n

k=1
n
i=1            ( 2 ) 
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Wc∞=limz→∞Wcz       ( 6 ) 244 

10) Prioritize the different criteria based on the ranking obtained from the Limit Super Matrix 245 

calculated in Step 9. 246 

3.1.2 Multi-Attribute Utility Theory (MAUT) 247 

Consequently, an MAUT method is utilized in order to formulate utility functions used for scoring 248 

different alternatives with regards to pre-defined criteria. In a typical MAUT problem, weights for 249 

criteria identified are obtained by means of a subjective preference of experts, however, as part of 250 

this study, the criteria weights utilized are obtained by means of a Neutrosophic-based ANP as per 251 

the previously illustrated methodology. This procedure is performed to reduce the relative 252 

subjectivity associated with the typical MAUT and take the uncertainty associated with expert 253 

judgements into consideration. 254 

The MAUT is employed in the developed framework to derive a single Criticality Index (CI) or 255 

Performance Deficiency Index (PDI) for each asset studied as per Eq. 7 (Kaddoura et al. 2018). 256 

CImor	PDIm=∑ Wc	×	Ucn
c=1       ( 7 ) 257 

where Wc is the weight for criterion c obtained by means of the N-ANP methodology, Uc is the 258 

utility score given by experts in the hospital building inspection process, n is the total number of 259 

criteria for assessing either Criticality or Performance Deficiency of building assets represented 260 

by the counter m. 261 

3.2 Machine Learning (ML) 262 

In this stage, the performance of three machine learning algorithms in classifying the correct 263 

priority levels of assets as per their corresponding CI and PDI is compared to select the most 264 

appropriate methodology for future applications on hospital building assets. 265 



 14 

3.2.1 Decision Trees (DT) 266 

Decision Trees are supervised machine learning models capable of predicting variable representing 267 

a target by analyzing a set of given input variables through a tree-like structure of rules governing 268 

the input-output relationship. Training this tree-based model type is first initiated by a root node 269 

representing all observations primarily assigned. After that, this initial root node is further divided 270 

and split into decision nodes built upon values of variables used for prediction purposes. Those 271 

decision nodes are normally represented by a set of branches where the upper branch illustrates 272 

the observations count representing cases to be distributed to a lower branch/node. This branching 273 

process is carried on repeatedly until a point where all observations within a decision node carry a 274 

similar classification is reached (Syachrani et al. 2013). The point that stops the branching and 275 

splitting process of decision nodes is called a leaf node as shown in Fig. 2. 276 

 277 

Figure 2 Components of a typical decision tree model  278 

The branching process starts by selecting the most suitable variable from the given input 279 

parameters to act as a splitting variable based on a comparison of their relative splitting quality. In 280 

the case of a continuous-based predictor variable, all variables can be used as part of the splitting 281 
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process. On the other hand, in a model with a categorial-based predictor variable, values of target 282 

variables present in each category is utilized for the splitting of branches. 283 

The splitting process is performed based on the value obtained from Eq. 8 representing the Pearson 284 

Chi-Squared (χ2) statistical test of predictor variables.  285 

χ2=∑ (Oi-Ei)
2

Ei
k
i=1         ( 8 ) 286 

where χ2 represents the Chi-Squared distribution with k – 1 degrees of freedom; Oi is the observed 287 

frequency; and Ei is the expected frequency. A larger value for χ2 indicates a better split between 288 

the left and right branches. 289 

The value obtained for χ2 is consequently converted into a probability value (Pv) by means of 290 

comparison of the χ2 distribution. The Pv represents the likelihood of deriving the observed value 291 

with the assumption of having identical target proportions in every direction of the branches. This 292 

Pv value can be highly close to 0 if the dataset is largely sized. To facilitate the reporting of the 293 

probability value, the logworth of the Pv is used instead of its actual value as shown in Eq. 9. 294 

logworth=− log (Pv)       ( 9 ) 295 

The previously elaborated splitting process is recursively repeated until all available variables are 296 

surpassed by either of the logworth value or the value of Pv.  297 

The larger size of a decision tree increases its overall complexity and can increase the likelihood 298 

of the model’s overfitting thus decreasing its robustness. Accordingly, pruning can be applied to 299 

the developed model in order to simplify it without sacrificing the overall accuracy by removing 300 

unnecessary leaves from trees to sustain a high accuracy level.  301 
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3.2.2 K-Nearest Neighbors (KNN) 302 

KNN is a supervised machine learning algorithm utilized for regression and classification 303 

purposes. In general, the KNN is an algorithm of low complexity, and high applicability due to its 304 

ability to produce a highly accurate prediction with a little training requirement, and few 305 

parameters to tune (Ran et al. 2019). 306 

A typical KNN classification process comprises of the following steps to determine the class of 307 

the testing instance by obtaining the class of its neighboring peer instances as demonstrated in Fig. 308 

3. 309 

 310 

Figure 3 Steps followed as part of a typical KNN classification model 311 

The initial step in a KNN classification is to set a K value that is used to compute distances between 312 

a testing instance and all the available input training datapoints. These distances are used to yield 313 

the K training instances exhibiting minimal distance calculations in order to assign the testing 314 

instance to the most common class demonstrated by its K neighboring points. Furthermore, the 315 

assignment of a class to the testing instance is done by calculating the ratio of the different classes 316 

available within the neighboring K instances, and the testing instance takes the highest voted class. 317 

On a different note, the distances’ calculation process in a typical KNN scenario often uses the 318 

Minkowski Distance which can take different forms of the generalized form shown in Eq. 10. 319 
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D= >∑ 0xi-yi0
fn

i=1 ?
1
f        ( 10 ) 320 

where D is the absolute sum of difference between coordinates; n is the total number of variables; 321 

xi and yi are the ith variables in the two-dimensional vector space; and f can take three values 322 

corresponding to the form of the distance calculated, either 1 for Manhattan Distance, 2 for 323 

Euclidean Distance, or ∞ for Chebychev Distance.  324 

Moreover, the choice of the value of K is either data-driven, where a cross validation approach can 325 

result in the selection of the most accurate and representative number of K where higher values 326 

can decrease the noise effect but result in a less distinct boundaries within classes (Ran et al. 2019). 327 

A more accommodating approach is to experiment the performance of the model using different 328 

K values and select the value with the highest performance (Martinez et al. 2019).  329 

3.2.3 Naïve Bayes 330 

A Naïve Bayesian classification is a supervised learning methodology that belongs to the family 331 

of probabilistic classification models. The main benefit associated with the utilization of this 332 

methodology is its low sensitivity to outliers due to its probabilistic nature, lowering the chances 333 

of skewness within the prediction process resulting in a reliable analysis for the given data. Another 334 

advantage of this algorithm is the reduced amount of data required for building and training the 335 

model due to the exploitation of a utility function that minimizes the relearning process of the 336 

conditional probability. Thus, the Naïve Bayesian model is a robust classification tool that involves 337 

simple assumptions and algorithms to accordingly produce powerful predictions (Jang et al. 2015). 338 

The Bayesian theory was developed by the English Reverend Thomas Ferguson in 1763 (Bayes 339 

1763). The established theory suggests that a certain likelihood level for a target event Y is 340 
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expected to occur given that a certain feature event X has been formerly observed. The variable X 341 

is represented by Eq. 11. 342 

X=(x1,x2,x3,…,xn)       ( 11 ) 343 

where the values of x1:n represent all features included in building the predictor model 344 

A simple form of the Bayesian equation is thus given in Eq. 12. 345 

P(Y|X)= P(Y)P1X2Y3
P(X)

       ( 12 ) 346 

where P(Y|X) is the probability of observing event Y after the occurrence of event X; P(Y) is the 347 

probability of occurrence of event Y; P(X|Y) is the probability of occurrence of event X if Y had 348 

already occurred; and P(X) is the probability of event X being observed.  349 

And P(X) can be written as: 350 

P(X)=∑ P(X,Y)Y∈Υ =∑ P(X|Y)P(Y)Y∈Υ     ( 13 ) 351 

where P(X) is considered a normalizing constant for the term P(X|Y) guaranteeing that the sum of 352 

P(Y|X) equals to 1 for all possible values of Y belonging to ϒ 353 

The optimal target class YG can thus be derived based on the values of features or input predictors 354 

by using Eq. 14.  355 

YG=argmaxYP(Y)∏ P(Xi|Y)n
i=1      ( 14 ) 356 

where YG can either consist of two outcomes in which case the problem is called a “binary” 357 

classification problem, or more than two outcomes in which the problem becomes a 358 

“multiclass/multilabel” classification problem. 359 
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There are three main types of Naïve Bayesian Classifiers, namely: Multinomial, Gaussian and 360 

Bernoulli. The Multinomial type is the most popular type of Naïve Bayesian algorithms and is 361 

mainly utilized in cases where the features or model predictors are represented in the form of 362 

categorial values (i.e. like in rating scales 1 – 5). The Bernoulli type is utilized for the target 363 

prediction in problems where the features are illustrated on a Boolean pattern. Finally, Gaussian-364 

based Naïve Bayes is employed where continuous or non-discrete values for predictors are 365 

available in a machine learning problem.  366 

3.2.4 Model Performance Evaluation 367 

In order to validate the performance of the machine learning algorithms in accordance with the 368 

actual priorities obtained for the hospital building assets, the following tests are deployed. The 369 

algorithm with the highest performance is selected as the automated tool for priority setting. 370 

The first test is the Area Under Receiver Operating Characteristic Curve (AUC-ROC). The ROC 371 

is utilized to determine the model’s capacity to determine classification classes for given assets 372 

(Davis and Goadrich 2006), while the AUC is a representation of the aggregated predictive 373 

performance of the model across all thresholds. Two parameters are thus evaluated as per Eq. 15 374 

and 16, namely: True Positive Rate (TPR) and False Positive Rate (FPR). 375 

TPR= TP
TP+FN

        ( 15 ) 376 

FPR= FP
FP+TN

        ( 16 ) 377 

where TP, TN, FP and FP represent the numbers of True Positives, True Negatives, False Positives 378 

and False Negatives respectively. 379 
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The second testing parameter is the Accuracy of prediction exhibited by the model, calculated as 380 

a ratio between correct predictions made and the total number of predictions by means of Eq. 17. 381 

AP= TP+TN
TP+TN+FP+FN

       ( 17 ) 382 

Additionally, the Precision (P) and Recall (R) provide the relevance of the retrieved values 383 

resulting from the model’s implementation, as per Eq. 18 and 19. 384 

P= TP
TP+FP

        ( 18 ) 385 

R= TP
TP+FN

        ( 19 ) 386 

Upon calculating the values of P and R for every model included, their respective F-Scores are 387 

calculated as part of their performance testing. An inverse relationship is often observed between 388 

P and R values; therefore, the F-Score measure provides a harmonic mean between P and R as 389 

shown in Eq. 20. 390 

F=2× P×R
P+R

        ( 20 ) 391 

4 Implementation 392 

The preliminary step to achieve the sought-after objectives is the identification of criteria and 393 

categories used to evaluate the criticality and performance deficiency levels of hospital building 394 

assets. The categories and criteria were collected from the literature review formerly presented. 395 

Upon criteria identification, their relative importance is validated and weighted by means of the 396 

N-ANP expert surveying methodology. 397 

Experts involved within the current study add up to a total of thirty-one sharing similar 398 

professional backgrounds relevant to the healthcare facility management fields including hospital 399 
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operation and maintenance management personnel (30%), maintenance engineers (60%), as well 400 

as government officials involved with the planning, auditing and prioritization of infrastructure 401 

needs and investments (10%). 58% of the respondents to the developed survey were affiliated with 402 

Canadian healthcare facilities with more than 10 years of experience in healthcare organizations 403 

in Canada, while the rest were from other parts of the world. Experts were asked to confirm the 404 

influence of the identified criteria and factors on the prioritization process of healthcare building 405 

assets, and thus were invited for weighting and ranking the superiority of criticality and 406 

performance deficiency factors on a pair-wise comparison basis.      407 

4.1 Criticality and Performance Deficiency Criteria Evaluation 408 

In order to assess the levels of criticality and risk associated with hospital building assets, four 409 

categories were identified and included in the surveying process of the experts in the fields of 410 

facility and maintenance management of healthcare facilities to assess their respective priorities 411 

and rankings. The four categories describing the vulnerability aspects of the hospital building 412 

assets are: Significance of Component (SC) which includes factors that rank the importance level 413 

of the asset within the hospital hierarchy and operation, Operational Criticality (OC) which 414 

quantifies the risks associated with the failure of the asset on an operational level as well as the 415 

previously experienced failure trend of components based on historical records and work orders, 416 

the Environmental and Social Criticality (ESF) which is an indicator of the extent of risks and 417 

severity of the component’s failure to the surrounding environment and hospital building 418 

occupants, and finally the Economic Criticality (EC) which includes aspects illustrating the 419 

average resources consumed as part of failures experienced within the studied component. Within 420 

the aforementioned categories, fourteen criteria were identified and confirmed by experts for their 421 

relative importance and influence on ranking the urgency or priority levels of hospital building 422 
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components as shown in the following table. Table 3 shows the criteria used to evaluate the 423 

criticality level of hospital building assets as well as the weights given to them as per the expert 424 

survey process previously discussed where more weight was given to responses of experts with 425 

more years of experience and higher experience relevance to Canadian-based organizations and 426 

facilities. 427 

Table 3 Expert-derived weights for criticality evaluation criteria 428 

Categories Criteria Weights 

Significance 
of Component 

(0.3117) 

Purpose of Component Usage (PU) 0.0825 
Location of Component (LC) 0.0971 

Relative Age of Component (RA) 0.0708 
Redundancy Available for Component (RD) 0.0613 

Operational 
Criticality 

(0.3136) 

Presence of Dependent Systems/Components 
(DS) 

0.0673 

Mission Criticality of Component (MC) 0.0898 
Failure Occurrence Rate (OR) 0.0873 

Failure Detectability Level (DL) 0.0692 

Environmental 
and Social 
Criticality 

(0.1556) 

Failure Effect on Indoor Air Quality (IEQ) 0.0477 
Emissions, Toxic Releases or Contamination 

Accompanying Failure (ETC) 
0.0453 

Failure Effect on Health, Safety and Sanitation 
of Hospital Occupants (HSS) 

0.0626 

Economic 
Criticality 

(0.2195) 

Repair Cost (RC) 0.0670 
Resources Required (RR) 0.0653 

Downtime (DT) 0.0872 
According to the gathered responses, the five criteria receiving the highest rating in assessing the 429 

criticality level of the hospital building component are: The Location of the building asset within 430 

the hospital hierarchy, its Mission Criticality level, the failure Occurrence Rate experienced for 431 

that asset, the average Downtime resulting from asset failure, and the Purpose of component usage 432 

within the hospital operation. 433 
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On the other hand, for the purpose of evaluating the performance deficiency levels of hospital 434 

building assets and components, four criteria were identified that are calculated as an inverse of 435 

the actual observable condition and performance rating during inspections and facility audit cycles, 436 

namely: Physical Condition Deficiency (PC) which is based on the physical observable condition 437 

rating received by the component as per the latest inspection or testing, Code Incompliance (CC) 438 

which evaluates the level of agreement or disagreement of the component’s configuration and 439 

usage with the current or future code requirements, Energy and Water Inefficiency (EE) that 440 

evaluates the current state of energy and water efficiency within the operation of component being 441 

studied, and Capacity Inappropriateness (CA) used to measure the adequacy of the component 442 

sizing to serve and maintain the current and seasonal operational condition within the hospital 443 

facility. In summary, the PDI is the inverse of the Performance Index (PI) observable within 444 

hospital building assets. Table 4 shows the weighting given by the experts to each of the four 445 

criteria identified. 446 

Table 4 Performance assessment criteria and their respective weights 447 

Performance Deficiency Criteria Weights 
Physical Condition Deficiency (PC) 0.3761 

Code Incompliance (CC) 0.1499 
Energy and Water Inefficiency (EE) 0.3418 

Capacity Inappropriateness (CA) 0.1321 

4.2 CI and PDI Calculation 448 

The succeeding stage is calculating the overall Criticality Index (CI) and Performance Deficiency 449 

Index (PDI) for every hospital component studied following the aforementioned MAUT 450 

methodology. 451 

The utility scores given to components utilize the weights derived in the previous step, as well as 452 

the measuring scales shown in Table 5 to derive the overall indices. The indices are based on the 453 
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data collected from the inspection records attained from five healthcare facilities in the province 454 

of Alberta, Canada. Table 5 shows the measuring scales given to the identified criteria in order to 455 

derive their corresponding scores.  456 

Table 5 Measuring scales for the criteria within the Component Significance category 457 

Criteria Purpose Location Relative Age Redundancy 

Measuring Scale 
 

(Most to Least 
Critical) 

Life Support and 
Safety (LSS) 

Hospital-Wide 
(HWD) > 1 None 

Environmental 
and Infection 
Control (EIC) 

Acute Care and 
Emergency 

(ACE) 
0.75 – 1 Partial 

Mobility (MOB) InPatient Wards 
(IPW) 0.50 – 0.74 Full 

Communication 
(COM) 

Diagnostics and 
OutPatient 

Clinics (DOC) 
0.25 – 0.49 Double or More 

Shell and 
Structure (SST) 

Ancillary and 
Support 

Departments 
(ASD) 

< 0.25 --- 

Furthermore, Table 6 demonstrates the calculation methodology of the Component Significance 458 

for a group of components and the overall normalized weighted scores given for each evaluation 459 

criterion.  460 

Table 6 Component Significance scoring methodology for hospital components 461 

Criteria                    Systems Roofing Medical Gas HVAC 

Purpose (PU) SST LSS EIC 
Location (LC) HWD IPW ASD 

Relative Age (RA) 0.5 0.35 1.1 
Redundancy Available (RD) None Partial Full 

Weighted Score 

=0.0825×0.01 
+0.0971×1.00 
+0.0708×0.50 
+0.0613×1.00 

=0.1946 

=0.0825×1.00 
+0.0971×0.50 
+0.0708×0.25 
+0.0613×0.67 

=0.1896 

=0.0825×0.75 
+0.0971×0.01 
+0.0708×1.00 
+0.0613×0.33 

=0.1541 
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Moreover, a similar approach is undertaken to calculate the overall Performance Deficiency Index 462 

(PDI) as shown in the following Table 7 that illustrates the calculation procedure of the PI of a 463 

sample of hospital building components. 464 

Table 7 Calculation methodology for the Performance evaluation criteria for hospital components 465 

Criteria                    Systems              Smoke Control Chiller Elevator 

Physical Condition 
Deficiency (PC) Excellent Poor Marginal 

Code Incompliance (CC) Compliant Modifications 
Required 

Non-Compliant 

Energy and Water 
Inefficiency (EE) High Efficiency Substantial 

Upgrades Required 
Minimal Upgrades 

Required 
Capacity Inappropriateness 

(CA) Adequately Sized Occasional Issues Inadequately Sized 

Overall PDI 

=1 – PI 
=1 – (0.3761×1.00 

+0.1499×1.00 
+0.3418×1.00 
+0.1321×1.00) 

=0.0000 

=1 – (0.3761×0.21 
+0.1499×0.50 
+0.3418×0.01 
+0.1321×0.50) 

=0.7766 

=1 – (0.3761×0.41 
+0.1499×0.01 
+0.3418×0.50 
+0.1321×0.01) 

=0.6721 

4.3 Machine Learning Methods Implementation 466 

Upon gathering all relevant datasets associated with the 394 different asset types that are present 467 

in 5 hospital buildings in the province of Alberta, the methodology was applied for all datapoints 468 

to derive the individual CI and PDI of all assets. An overall visualization of the final dataset 469 

obtained is shown in Fig. 4.  470 
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 471 

Figure 4 Visualization of the collected datasets 472 

Decision Tree, K-NN and Naïve Bayesian analyses codes were consequently built on a Python 473 

environment in order to evaluate their respective performance in predicting a correct priority level 474 

for hospital building assets based on their criticality and deficiency levels. 475 

For the purpose of building optimal classification models, all possible parameter combinations 476 

were investigated by means of an integration between Grid Search and Ten-Fold Cross-Validation. 477 

This was performed to obtain the highest Information Gain that represents a successful 478 

splitting/classification scheme. In each fold, the AUC-ROC is calculated, and the average is then 479 

used to indicate the overall model performance.  480 

For the decision tree model, the optimal combination of parameters derived from the search 481 

process resulted in an AUC-ROC score of 0.917339 on the training portion of the dataset. The 482 

effect of each of the CI and PDI of assets on the overall assigned priority level was also evaluated, 483 

and their relative importance levels were 0.563194 and 0.436806 respectively. Fig. 5 shows the 484 

developed tree as per the pruned parameters chosen. 485 
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 486 

Figure 5 Decision Tree classification model visualization 487 

Accordingly, the predictor model was formed, and it received an overall AUC-ROC score of 488 

0.862709 based on weighting the results of the One-vs-One and One-vs-Rest tests by prevalence. 489 

Moreover, the overall Accuracy was calculated to be 0.90 which indicates a high performing 490 

model. Precision, Recall and F-Scores were calculated for each individual class, and their weighted 491 

average was obtained as per Table 8. 492 

Table 8 Decision Tree model performance evaluation results 493 

Class Precision Recall F-Score 
High Priority 0.93 0.83 0.88 

Medium Priority 1.00 0.91 0.95 
Low Priority 0.71 1.00 0.83 

Weighted Average 0.92 0.90 0.90 
 494 

Secondly, the best estimator model parameters for the K-NN algorithm resulted in an AUC-ROC 495 

score of 0.947011. A visualization of the KNN with the chosen number of neighbors is provided 496 

in Fig.6. 497 



 28 

 498 

Figure 6 K-Nearest Neighbors classification model visualization 499 

Accordingly, the predictor model was built by using the best combination of parameters and the 500 

corresponding AUC-ROC scores of 0.825764 and 0.825234 for the One-vs-One and One-vs-Rest 501 

methodologies were obtained respectively. The overall Accuracy was then calculated it received a 502 

value of 0.86 which is less than the score achieved by the Decision Tree Analysis, however it also 503 

indicates a high performing model. Precision, Recall and F-Scores were calculated for each 504 

individual class, and their weighted average was obtained as per Table 9. 505 

Table 9 KNN model performance evaluation results 506 

Class Precision Recall F-Score 
High Priority 0.76 0.83 0.79 

Medium Priority 0.80 0.77 0.78 
Low Priority 1.00 0.97 0.98 

Weighted Average 0.88 0.87 0.87 
 507 

Lastly, for the purpose of building a Naïve Bayes-based classification model, a Grid Search 508 

methodology is found inapplicable, due to the absence of parameters to tune within Naïve-Bayes 509 

models. Accordingly, considering the nature of data features included within the datasets, a 510 

Gaussian Naïve Bayes (GNB) model was formulated, and a label encoding was applied to the 511 
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classes to transform string class labels, namely: High, Medium and Low priority levels into 512 

numerical ones, namely: 0, 1 and 2. This process was performed using the Label Encoder library 513 

in Scikit-Learn in Python. The preliminary AUC-ROC is found to be 0.855329. Visualizing the 514 

estimator model, Fig. 7 was generated.  515 

 516 

Figure 7 Naive Bayes classification model visualization 517 

Consequently, the modified AUC-ROC scores were derived for the predictor model upon 518 

employing One-vs-One and One-vs-Rest evaluation procedures resulting in scores of 0.669037 519 

and 0.625558 respectively and the overall Accuracy was found to be 0.49. This score is 520 

outperformed by both the Decision Tree Analysis and K-Nearest Neighbors models. Furthermore, 521 

the Precision, Recall and F-Scores were calculated for each class as per Table 10. 522 

Table 10 Naive Bayes model performance evaluation results 523 

Class Precision Recall F-Score 
High Priority 1.00 0.33 0.50 

Medium Priority 0.00 0.00 0.00 
Low Priority 0.46 1.00 0.63 

Weighted Average 0.39 0.49 0.37 
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As illustrated by the previously presented investigation results of the three machine learning 524 

algorithms employed, two conclusions were deduced which are: 1) Criticality and Performance 525 

Deficiency levels of hospital building components provide a valid foundation for predicting the 526 

appropriate components’ priority level; which was verified by the high capability demonstrated by 527 

the algorithms given the CI and PDI scores as input parameters, and 2) Decision Tree was the 528 

highest performing algorithm in predicting the appropriate priority level; which suggests that 529 

further future predictions would best be made using the developed N-ANP-MAUT Decision Tree 530 

methodology for an automated, less-subjective and more data-driven prioritization mechanism.  531 

4.4 Model Validation 532 

For the purpose of providing a further validation of the proposed model, the capability of the 533 

proposed Decision Tree model was compared to results derived from applying a previously 534 

established model in the literature. The model chosen for verification is the one by Ali and Hegazy 535 

(2014), due to its relative popularity and applicability in the case study hospital chosen within the 536 

scope of this study. Assuming the accuracy of expert judgemeents regarding the prioritization of 537 

hospital assets, the developed model and the verification model were both compared against 538 

expert-driven decisions. 539 

Applying the methodology of Ali and Hegazy (2014), the same weights for systems, subsystems 540 

and zones were utilized in the case study hospital to arrive at the relative Overall System 541 

Importance (OSI) for every asset analyzed. Moreover, this value was multiplied by the Overall 542 

System Deficiency (OSD) scores calculated following the exact pattern outlined as part of their 543 

study. Since their weighted sum-based final score ranged from 0 to 10000, a “Low” priority was 544 

assumed for scores less than 3333, “Medium” priority for scores less than 6666 and “High” priority 545 

was for assets receiving higher score values. Consequently, the level of agreement between their 546 
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ranking scheme, the proposed model as part of this study and the actual priority level arrived at by 547 

means of expert opinions was calculated as shown in Table. The conformance level represents the 548 

accuracy of the models in identifying correct priority levels for given instances. 549 

Table 11 Level of conformance between proposed model, model from the literature and actual priority levels 550 

Class Actual Priority 
Levels 

Proposed N-ANP-DT 
Model 

Ali and Hegazy 
(2014) 

High Priority 117 111 115 
Medium Priority 129 120 98 

Low Priority 148 125 99 
Conformance Level 0.9058% 0.7937% 

As it can be noted from Table 11, the model from the literature exceeded the proposed model in 551 

correctly identifying the high priority instances. However, the proposed model’s capability 552 

significantly surpassed the model from the literature in the two other priority classes. Also, the 553 

overall conformance level of the proposed model outweighed the model by Ali and Hegazy (2014) 554 

by almost 11% in correctly identifying priority classes which validates the proposed model as a 555 

beneficial tool for the automated priority setting of hospital building assets for renewal purposes. 556 

5 Conclusion 557 

As proved by the recent COVID-19 pandemic, the continuous availability and operability of 558 

healthcare facilities and their underlying assets are considered of utmost importance. This triggered 559 

the need to develop efficient methodologies to prioritize the healthcare assets’ renewal to face the 560 

continuously deteriorating condition levels of facilities as well as the limited budgets and resources 561 

available to meet their corresponding maintenance and renewal requirements. In this study, a 562 

prioritization model is developed where the variable asset failure consequences and mission-563 

dependability influence their priority level as opposed to the models in the literature mostly relying 564 

on physical condition for such purpose. The developed model utilizes an integration between 565 

Neutrosophic Logic and Multi-Criteria Decision-Making techniques to result in an objective and 566 
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reliable priority level for hospital assets. A combination of machine learning algorithms was also 567 

introduced for the first time in the asset prioritization field where Decision Trees, K-Nearest 568 

Neighbors and Naïve Bayesian classification algorithms were experimented, and the highest 569 

performing algorithm was outlined. Furthermore, the developed model was validated by means of 570 

a comparison with a previously established model against the actual priority levels derived for 571 

components and it exhibited a higher predictive performance by around 11% which makes it 572 

suitable for the automated and efficient prioritization of hospital building assets for renewal 573 

purposes. The proposed model was applied on Canadian healthcare facilities which proposes a 574 

possible path for further research by expanding the application of the model on different parts of 575 

the world mimicking their respective prioritization mechanisms. The criticality and performance 576 

deficiency-based priority levels derived can also be used in future models to rank and evaluate the 577 

applicability of different maintenance strategies to each building asset. The identification and 578 

analysis of more criteria to evaluate the priority and urgency of hospital assets, as well as the 579 

experimentation of different algorithms can also work as an interesting expansion endeavor.  580 
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