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Abstract: An improved real option pricing model that incorporates the depreciation effect for two-stage redevelopment projects will be 
demonstrated to estimate the redevelopment project values in a wide range of scenarios. Based on a stochastic differential equation, 
numerical analyses will focus on new factors that influence the expected exercise time, that is, depreciation rate, the annual increase in 
average building age, building age of the targeted property, and the average building ages in the same region. The depreciation rate is the 
most influential factor in this model. More importantly, this study will summarize three exercise strategies that cover all combination of the 
parameters. In some cases, with a low capital return rate, or high depreciation rate, or both, the traditional simultaneous exercise strategy 
based on the optimal demolition price-to-cost ratio is not feasible. Instead, either a sequential exercise or simultaneous exercise that is based 
on the optimal rebuilding price-to-cost ratio is the best choice. Detailed procedures on how to adopt the best strategy will be demonstrated. 
The acquisition price of the old property proved to be sensitive to the depreciation rate and the capital return rate within a certain range. To 
apply this model properly, the feasible time interval for the traditional simultaneous exercise strategy and the depreciation rate should be 
estimated accurately. DOI: 10.1061/(ASCE)UP.1943-5444.0000686. © 2021 American Society of Civil Engineers. 
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Introduction 

Redevelopment is one of the effective urban renewal measures to achieve the goals of sustainable urban development and land use efficiency 
(Chan and Yung 2004). As a city grows to a certain scale, limited vacant land is available for new developments. In addition, this problem 
is urgent in Hong Kong. Residential and commercial building stocks will become insufficient if only new developments are relied on, which 
threatens the city’s sustainability (Ho et al. 2012). Urban renewal activities, which include redevelopment, rehabilitation, regeneration, and 
preservation, are major measures that ensure housing supply in highly developed cities. Among these measures, redevelopment is sometimes 
required to replace the old-fashioned, low-density buildings. Excluding a large proportion of old buildings, which could be repaired to extend 
their lives, for the remaining buildings, a problem exists: what is the optimal timing to start redevelopment when the future market price is 
uncertain. 

The real option approach is applied to solve this problem, to determine the redevelopment option value or the optimal exercise strategy 
(Capozza and Sick 1991; Rosenthal and Helsley 1994; Williams 1997; Sing and Lim 2004; Hui and Ng 2008; Chen and Lai 2013). However, 
few pricing models have addressed the depreciation effect of building structures during the option period. The property value is composed 
of the building structure value and the value of the land on which the property is built. The building structure value of a new building 
depreciates on its completion. This depreciation effect is crucial for multiple ownership buildings, because the residents in this type of 
property usually have separated ownership and seldom consider redeveloping these buildings themselves. Then, the depreciation effect 
increases the price difference between old properties to be demolished and new ones to be rebuilt. A reason to introduce the depreciation 
effect is the diversification of acquisition standards in actual projects. Redevelopers tend to acquire old properties at their current value and 
the residents aim to sell their properties at a higher value, which includes the redevelopment potential (Yau and Chan 2008). The negotiation 
between redevelopers and residents becomes more complicated when the number of owners is large, or if some residents ask for increased 
potential appreciation due to redevelopment. This negotiation process depends on the acquisition standards for old properties. 

Because the development history, population density, land ownership system, economic conditions, and building aging conditions are 
not the same in different cities and different countries, the acquisition (or compensation) standards implemented by different governments 
are diverse. The Urban Renewal Authority in Hong Kong summarized related policies in several Asian cities (Law et al. 2009). In Japan and 
South Korea, where land is usually freehold, land right conversion, replacement lots with discounted prices (or even for free), and monetary 
compensation are major compensation methods. In mainland China, where land is state-owned, monetary compensation that is based on 
prices adjusted from market value is a major method. In addition, Hong Kong offers a flat-to-flat compensation scheme that allows residents 
to purchase relocation flats that have fixed prices. 

Although the policies for acquisitions diverge significantly in these examples, monetary compensation that is based on the market prices 
of old or new properties is the most common policy. Then, the acquisition price should be determined by the uncertain market price and 
predictable depreciation status. To compare the policy influence on redevelopment timing, an improved real options model with depreciation 
effect is required. This continuous-time model should include the concept of average building age in the surrounding region and should 
account for the impact of previous developments in the same region (Zhong and Hui 2020). 

Another reason to include the depreciation effect is the availability of new property price index. In mainland China, the statistical 
department offers the newly built property price index and the second-hand property price index. The depreciation effect could be completely 
removed when estimating the future value of a new property. In Singapore, Private Residential Properties Price Index (released by Urban 
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Redevelopment Authority, 2021) includes new units that are sold by developers. The basic model by Chen and Lai (2013) could be adopted 
directly in these cases. 

However, in some property markets, the proportion of newly built properties is very low. For example, single-family housing stock grew 
<20% from 2000 to 2010 in 13 out of the 20 major cities in the US, based on US Census Bureau data (S&P Dow Jones Indices 2017). The 
most popular property indices in the US, S&P CoreLogic Case-Shiller Home Price Indices, announced that the sample sale prices excluded 
new construction cases. Some other examples, such as House Price Indices in the US (published by Office of Federal Housing Enterprise 
Oversight), House Price Indices in the UK (published by Land Registry, Land and Property Services Northern Ireland, Office for National 
Statistics and Registers of Scotland), Private Domestic Price Indices in Hong Kong (published by Rating and Valuation Department 2017) 
and Centa-City Indices in Hong Kong (published by Centaline Property Agency Limited) include either old properties as the majority, or 
only include old properties. The basic model might not be used based on these indices. 

One solution is to reconstruct an age-effect-adjusted property index to capture the market return rate and volatility for option pricing. 
However, this would require a large number of original transaction records and a strict calculation standard to guarantee the reliability, 
which would incur significant time and money costs for a developer. Another approach would be to improve the option pricing model to 
adjust the depreciation effect in an approximate way, which is the objective of this study. 

The contents of this study is structured as follows. The next section, “Literature Review,” is a summary of the major findings in real 
option models that were applied for redevelopment, and depreciation effects related to redevelopment option value. The section that follows, 
“Methodology,” provides details of the model construction, solutions for continuous-time option pricing models with depreciation effects, 
and model properties on the influential factors. In “Numerical Analysis,” the model properties were verified through a series of numerical 
analyses. Finally, the concluding section summarizes the major findings, implications for policymakers and investors, and potential 
improvements in future studies. 

Literature Review 

A real option approach and depreciation effect are major components in this study of redevelopment projects. Before the development of 
formal models, the redevelopment condition was proposed by Brueckner (1980) and Wheaton (1982), which is satisfied when the potential 
income from a rebuilt property exceeds the present income from an old property. Munneke (1996) provided evidence to support this condition. 
The crucial problem in the real options approach is choosing the appropriate model assumptions based on targeted scenarios. 

The first important research into the real option in the real estate field was conducted by Titman (1985). Titman highlighted that the 
uncertainty in future revenue would reduce the incentive to construct in the current period. Then, 10 years after Titman’s work, Capozza and 
Helsley (1990), Capozza and Sick (1991, 1994), Williams (1991), Quigg (1993), Capozza and Li (1994), Rosenthal and Helsley (1994), and 
Williams (1997) developed different real options models that could be applied to specific development or redevelopment situations. 

The well-known continuous-time development models were developed by Williams (1991) and Quigg (1993). In their models, property 
price and construction costs follow geometric Brownian motions. In addition, building density was a variable. The optimal exercise strategy 
included the optimal price-to-cost ratio and optimal building density, to maximize project profits. This strategy was extended to a two-stage 
redevelopment model by Chen and Lai (2013), which investigated the impact of potential factors on the expected exercise time. The major 
contribution was that the optimal strategy for an infinite-time redevelopment option was to exercise demolition and rebuild options 
simultaneously. In addition, this study discussed the finite-time scenarios. 

The mainstream real option research into real estate redevelopment was mainly based on the previous models and achieved various 
empirical findings (Sing and Lim 2004; Hui and Ng 2008; Ho et al. 2009; Hui et al. 2011; Downing and Wallace 2002; McMillen and 
O’Sullivan 2013; Krause 2015). However, these studies did not take the unit value difference between new and old properties in the same 
location into account, which was caused by the depreciation effect. The old property value, average market value, and new property value 
were assumed to change synchronously at the same rate. This assumption might indicate that redevelopment was due to the land value 
increase and was related to the aging of buildings. 

The main reason to take the depreciation effect into account is that the depreciation of building structure and the appreciation of land 
value are two different subjects. When the property market expands due to an increase in housing demand, the aging building structure will 
cause higher maintenance cost and then a lower net cash flow from renters. Williams (1997) focused on the deterioration of building structure 
during redevelopment. This research discussed the multiple redevelopment cases and assumed that property quality depreciated at a constant 
rate after each redevelopment. The actual rent was a product of exogenous rent and property quality. The redevelopment occurred when the 
quality decreased to a predetermined level. Therefore, when the property value decreases to a certain percentage of the value of a new 
property with the same structural, location, and other factors, it will be demolished and rebuilt. The quality of building to be redeveloped 
and rebuilt are assumed to be variables when maximizing the project value. This model assumed that the owner made the redevelopment 
decision based on the residual value of the property, instead of a profit maximization standard. 

Dixit and Pindyck (1994) proposed a depreciation model in corporate finance; however, this study does not assume a survival function 
for a property as they did for a machine. Compared with machines in a factory, the life expectancy of a property is usually much longer. A 
small portion of buildings must be replaced within a certain period. Except for this case, the holder of a redevelopment option seldom 
accounts for the survival function of a property. Without the survival function assumption, the derivation of a real option pricing model will 
be different. 

Some theoretical and empirical studies have proved the existence of this type of depreciation (Hulten and Wykoff 1981; Baum and 
McElhinney 2000; Jeffrey et al. 2005; Bokhari and Geltner 2018; Francke and van de Minne 2017). Based on Rosen’s (1974) basic hedonic 



model, new hedonic pricing models that are combined with redevelopment options or special terms related to age effects have been developed 
(Clapp and Giaccotto 1998; Clapp and Salavei 2010; Clapp et al. 2010, 2012a, b, 2013; Munneke and Womack 2013). Exponentially 
depreciated hedonic factors (Clapp and Salavei 2010; Munneke and Womack 2013), and the impact of building age on redevelopment option 
values (Clapp et al. 2012a, 2013), provided explanations on the downward bias that exists in the traditional hedonic pricing model when 
valuing an old property. In these studies, finite-time models focus on the factors that influence compound option values and infinite-time 
models focus on factors that influence optimal exercise timing. For the latter case, the volatility of market price and construction cost, risk-
free interest rate, capitalization rate (or average rent rate), maximum density, the correlation coefficient between market price and 
construction cost, the depreciation rate, the price elasticity of scale, the cost elasticity of scale, and the redevelopment limitation in density 
or timing have demonstrated their impact on the optimal exercise timing in different models (Williams 1991; Capozza and Li 1994; Williams 
1997; Cunningham 2006; Hui and Ng 2008; Bulan et al. 2009; Hui et al. 2011; Chen and Lai 2013). 

However, these models did not explore the inside structure of redevelopment options. Therefore, these models only investigated the 
existing influences that were caused by the depreciation effect. Neither the redevelopment option value nor its expected exercise time could 
be predicted if some market conditions were changed in the future. 

To address the knowledge gaps in previous research, this study will embed the property value depreciation term into a continuoustime 
real options model that is based on a stochastic differential equation. A profit maximization standard is chosen to reflect a developer’s rational 
behaviors. An infinite-time real option is developed to discuss the potential influence of different economic factors on redevelopment 
decisions by changing the values of these factors. Therefore, the investigation into the depreciation effect focuses on its influence on the 
expected exercise time, instead of the real option value. However, it is impossible to derive the value for a permanent US option using a 
backward algorithm. There are two major concepts in Zhong and Hui’s (2020) work: (1) constant depreciation rate that affects the demolition 
and rebuild option; and (2) annual increase of average building age in the same region, which is applied to develop a new continuous-time 
model. A general solution is generated for all possible exercise strategies. In addition, the proposed new model is used to compare the 
expected exercise time under different acquisition standards for old properties. 

Methodology 

Model Assumptions 

A redevelopment project consists of two stages. According to the traditional continuous-time real option frameworks (Williams 1991; Quigg 
1993; Dixit and Pindyck 1994), in both stages, the unit market price S(t) and the unit construction cost K(t) follow geometric Brownian 
motion. 

Assume that the option maturities in both stages are infinite. This assumption suggested a suitable time, which ensured that the optimal 
exercise timing was not bound by the option maturities. 
First, the developer acquires an old property from the original owners and then demolishes it. Then, a new building is constructed on vacant 
land. In addition, the demolition of the targeted old property and the rebuilding of the new one does not change the market demand. To 
simplify, the time to demolish old properties and to rebuild new ones was assumed to be close to zero and was ignored. 

In Hong Kong, the government does not require the developer to start the rebuilding process within a predetermined period when the 
redevelopment project is not directed by the government. Therefore, an infinite-maturity real option could be constructed to achieve the 
optimal strategy in this example and could be applied to other cities with the same instructions. 

Assume that S(t) is a stochastic variable, which has a constant and risk-neutral growth rate (or drift rate) (νS) and constant variance (σS). 
The risk-neutral growth rate is a theoretical measure. It is used to derive the option value of equilibrium between different investors, such 
as risk-averse investors and risk-loving investors. The risk-neutral growth rate is then an expected value of the future growth rate. S(t) 
follows a geometric Brownian motion. This is the most classical assumption to describe the random changes in market prices, with a fixed 
drift term and a random term, which follows Brownian motion. The geometric Brownian motion is written as 

 dS(t) = νSSdt + σSSdZS (1) 

where ZS =a Wiener process. It satisfies E(dZS)=0 and Var(dZS)= dt. 
Similarly, K(t) follows a geometric Brownian motion as: 

 dK(t) = νKKdt + σKKdZK (2) 

The correlation coefficient between ZS and ZK =ρ. Cov(ZS, ZK)= ρσSσK 
Then, define the rate of risk-adjusted capital return as r(r>0). This is constant and risk-adjusted. To prevent the option value from being 

unbounded, assume νS <r and νK <r. 
Then, define the annual increase in average building age in the same region y(0≤y≤1). Redevelopments of old properties or new 

developments decrease the average building age. Therefore, the higher the proportion of redevelopments or new developments in the sample 
period [to determine the drift rates and volatilities of S(t) and K(t)], the smaller y is. 

Assume the constant annual depreciation rate is ξ(0 < eξ ≤ 1, or ξ≤ 0). For two properties that have the same structural and locational 

characteristics, if they age g and g + z at time t respectively, the relationship between their S(t) is 



g+z 

(t) g  = zξ,for anyinteger t, g > 0, z ≥ 0 (3)  ln S

S(t) 

In the infinite time model, a quadratic depreciation term, that is, ln(S(t)g+z/S(t)g)=zξ1 +z2ξ2 leads to biased estimations of market volatility. 
Then, assume the price information in n periods is included to derive the square of market volatility 

The first term is the square of market volatility when the depreciation effect is ignored. The second term is an increasing function of n. 
The third term depends on the trend S(t+i)g/S(t+i−1)g. Increasing the number of sampling periods (n) cannot reduce the values of the second 
and the third terms. Therefore, the quadratic depreciation effect is not applied in this model. 

This depreciation rate was based on the total property value instead of the building structure value. The main reason was that the 

depreciation rate must be estimated from previous transaction records. These records only contain total property values, instead of structure 
values and land values individually. Subjective assumptions on land leverage and the growth rate of land value must be included in the 
model to estimate the structure values and land values in all the transaction records. To reduce the number of subjective assumptions, the 
depreciation rate was based on the total property value in this study. 

Option Period and Two Redevelopment Stages 

The solution process assumed an infinite option period, with a sufficient observation period (in this study it was assumed to be 100 years). 
Although we assume a destination of the observation period (100 years), this compound option was not a finite redevelopment option. In 
Chen and Lai’s (2013) study, the finite period model was adopted because of the length of the land lease. There are two reasons why the 
compound option as an infinite redevelopment option is valued. 

First, the development density usually increases after the redevelopment. Some redevelopment projects include a change of land use, that 
is, from residential use to residential-commercial mixed use. In some urban renewal projects, the government requires the developer to 
embed several community facilities in the new building plan. All the previous examples required that a new land lease was signed after the 
demolition stage, which included a new lease period. In this case, the developer would be limited to rebuilding a new property in the second 
stage within a fixed period. If the redevelopment option was exercised simultaneously, the construction process must start when the 
demolition is finished. Then, the maximum construction period has a negligible impact on exercise decisions. If Type 2 (simultaneous) 
exercise was used as the major optimal decision (Chen and Lai 2013), the limitation of construction time for the land lease was not important. 

Second, the land lease of the old property could be extended automatically, or after some extension fee has been paid in many countries, 
which include mainland China. If the land was taken over by the landowner when the lease expired, the developer could negotiate with the 
landowner to redevelop the old property. Therefore, the expiry date of a land lease for an old property was not an actual time restriction for 
redevelopment. Therefore, an infinite redevelopment option is more common. 

The following model for the construction process is based on previous assumptions. 
In the second stage, at a specific time, because the risk-neutral growth rate is derived from nearby properties, which depreciate over time, 

the new property to be built is over-depreciated. Therefore, the adjusted market unit price [S(t)] is 

 S(t)*L2 *e−Taveξ *e−ξyt (5) 

where L2 =the plot ratio of the new property to be built. At the start of the compound option, the age difference between nearby properties 
and the new property to be built is Tave. In addition, this difference increases by y annually. Therefore, the term e−Taveξ offsets the over-
depreciation section before t=0 and the term e−ξyt offsets the over-depreciation section from t=0 to the exercise time of the rebuild option. 

If the rebuild option is exercised at time t, the option value equals 

n S(t + i) n S(t 

= −1 i n1 ln S(+t +−i)g g− 1i n1 ln S(+t +i −i)1)g g + nξ2
2−z41 2n(n + 1)(23 n + 1) − n(1 + n)2 n 1 =

 S(t i 1) n = S(t 

 + n −1 1i=
n1 2lnS(St (+t +i −i)1)g g− 1ni n1 ln S(+t +i −i)1)g gξ2z2(2i − 1 − n) (4) 
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V2(S(t), K(t)) = S(t)*L2 *e−Taveξ *e−ξyt − K(t)*L2 

Then, if S2(t)=S(t)*e−ξyt 

dS2(t) = d[S(t)*e−ξyt] 

= e−ξytdS(t) − S(t)ξye−ξytdt 

= e−ξyt(νSS(t)dt + σSS(t)dZS) − S(t)ξye−ξytdt 

(6) 

= S2(t)[νS −ξy]dt + S2(t)σSdZS (7) 
In addition, S2(t) follows a geometric Brownian motion, with a constant and risk-neutral growth rate νS −ξy, and a constant variance σS. The 
remaining part, L2 *e−Taveξ, is a constant. The value of this rebuild option, which is defined as V2(S(t), K(t))is obtained from the following 
partial differential equation: 

Then 

f2(φ*2) = V2 * = L2 *e−Taveξφ*2 − L2 (14) K 

and define 
f2(0) = 0 

The smooth-pasting condition requires that 

(15) 

f ′2(φ*2) = L2 *e−Taveξ (16) 

f2(φ*2) −φ*2 f ′2(φ*2) = −L2 (17) 
and stochastic Eq. (8) becomes 

1(σ2S − 2ρσSσK + σ2K)φ22 f ′′2(φ2) 
2 

 + [νS −ξy −νK]φ2 f ′2(φ2
) − (r −νK)f2(φ2) = 0 (18) 

The general solution to this second-order differential Eq. (18) is 

 

∂2 ∂   (8) 

 

Assume at the optimal exercise timing the critical boundary of 
V2 is V2(S2*, K*)then, Eq. (6) becomes 

 V2(S2*, K*) = L2 *e−TaveξS2* − L2K* (9) 

This is the value-matching condition. The smooth-pasting 
conditions are 

To derive the real option value with price and cost uncertainty, 
the introduction of a stochastic variable that stands for the ratio of 
these two variables is necessary (McDonald and Siegel 1986; 
Williams 1991; Dixit and Pindyck 1994). 

Then, define φ2 =(S2/K). Of note, the ratio of S(t) and K(t) is not 
chosen directly. Instead, combine the time-dependent depreciation 
term into the price variable as S2. Then 

, 
 ∂VV2(S2 K) 
 (10) f2(φ2) =  (12) 

∂SK 

dφ2 = (νS −ξy −νK + σ2K −ρσSσK)φ2dt 

∂V 
 L2 (11) + σ2S + σ2K − 2ρσSσKφ2dZ(13) 

  * 2   *  

  



 * 2  

    2       2   2   2       

 f2(φ2) = C2φλ2 (19) 

Combined with the value-matching condition Eq. (14), boundary condition Eq. (15), and smooth-pasting conditions Eqs. (16) and (17), 
based on Øksendal’s work (1998), the solution is 

 f2(φ2) = CL22φ*λ2e,−Taveξφ*2 −L,2 ifif  (20) 
where  

L2 *e−T ξ 
 C2 = ave*λ L2 

φ2 

The optimal rebuilding ratio is 

(21) 

 φ*2 = eTaveξ (22) 

where the rebuilding option elasticity (λ) is 

 λ = − νS −ξy −νK   

 +  − νS −ξy −νK  2 + 2(r −νK) 
2 

(23) 
K 

Only λ>1is discussed, or the option would not be exercised in the second stage. 
In the first stage, f2(φ2) and φ*2 are known parameters. Assume the age of the old property to be demolished is Told when the compound 

option becomes valid 

 S(t)*L1 *e(Told−Tave)ξ *eξ(1−y)t (24) 

where L1 = the plot ratio of the old property. At the start of the compound option, the age difference between nearby properties and the old 
property to be demolished is Told −Tave. Then, the old property depreciates faster than its estimated market price that was derived from nearby 
properties. Therefore, the term e(Told−Tave)ξ offsets the under-depreciation section before t = 0 and eξ(1−y)t offsets the under-depreciation section 
from t = 0 to the exercise time of demolition option. 

If the demolition option is exercised at time t, the option value equals 

V1(S(t),K(t))=Max[V2(S(t),K(t))] 

−S(t)*L1*e(Told−Tave)ξ*eξ(1−y)t −K(t)*L1*DEM 

(25) 

where DEM=a constant ratio of demolition cost to construction cost for the same building area in the same period. 
Similar to Eq. (8), the value of V1(S(t), K(t)) should satisfy the following partial differential equation: 

1V 
 σ2 2 1   

 S K 
 ∂V ∂V 
 + S= 0 (26) 

1 

where S1 =S(t)*eξ(1−y)t. 
Assume at the optimal exercise timing, from Eq. (25) that the critical boundary (value-matching condition) of V1 is V1(S1*, K*) 
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V1(S1*,K*)=V2(S2*,K*)−L1*e(Told−Tave)ξS1* −L1*DEM*K* (27) Then, define φ1 =(S1/K) and 
 V , 

f1(φ1) = 1(S1 

K) K 

dφ1 = (νS + ξ(1 − y) −νK + σK
2
 −ρσSσK)φ1dt 

(28) 

+ σ2S + σ2K − 2ρσSσKφ1dZ 

Then, the value-matching condition becomes f1(φ*1) = 

V1 K* = f2(φ2(φ*1)) 

(29) 

− L2 − L1 *e(Told−Tave)ξφ*1 − L1 *DEM 

and define 

(30) 

f1(0) = 0 (31) 
Of note, although φ2 is a different variable to φ1, it is linearly correlated to φ1 when φ1(t) is observed with time t. For a specific t 

φ1(t)) = SS12((tt)) = eeξ(1−ξ−yty)t = eξt 

≤ 1 φ2(t 

The smooth-pasting condition requires that 

(32) 

f ′1(φ*1) = f ′2(φ2(φ*1)) − L1 *e(Told−Tave)ξ (33) 

f1(φ*1) −φ*1 f ′1(φ*1) = −L1 (34) 
Stochastic Eq. (25) becomes 

1 (σ2S − 2ρσSσK + σ2K)φ21 f ′′1(φ1) 
2 

 + [νS + ξ(1 − y) −νK]φ1 f ′1(φ1) − (r −νK)f1(φ1) = 0 (35) 

The general solution to this second-order differential Eq. (35) is 

 f1(φ1) = C1φθ1 (36) 
Derivation of Solutions 

To determine C1 and θ, it is necessary to compare the critical value φ*2 in the second stage with φ*1 in the first stage. From the solution of 

f2(φ2), the relationship between φ*1 and φ*2 will determine the value of f2(φ*1e−ξt), which is an important term to solve the value of φ*1. To 

avoid ignoring any possible solution for φ*1, the following section will discuss three different cases. Case 1. Assume φ*1 < φ*2, and φ*1e−ξt < 

φ*2. φ*1 should satisfy 

(θ−λ)C2(φ*1e−ξt)λ = (θ− 1)L1 *e(Told−Tave)ξφ1* + θL1 *DEM 

(37) 

φ*1, as a function of t, satisfies Eq. (37) where 

 θ = 1 −νS + ξ(1 − y) −νK2   

K 

  *    *  

2     2       



           2   2   2       

           2   2   2       

 + −νS + ξ(1 − y) −νK 2 
+2(r −νK) 

2 
(38) 

K 

Here, θ>1. 
Case 2. Assume . 
The optimal ratio is 

φ*1=θ−θ 1*L2e−TaveL2ξe+−ξLt 1−*LDEM1e(Told−Tave)ξ (39) where 

 θ = −νS + ξ(1 − y) −νK  

 + −νS + ξ(1 − y) −νK 2 +2(r −νK) 
2 

(40) 
K 

Here, θ>1. 
Of note, φ*1 is a function of t, which means that for different t, the optimal exercise ratio calculated from (S(t)*eξ(1−y)t)/K(t) should be 

different. 
Case 3. Assume . 
The solution is the same as Case 2 when . 
In the following discussions, the conditions in Case 1 will be written as Type 1 (sequential exercise), and the conditions in Cases 2 and 

3 will be written as Type 2 (simultaneous exercise) for short. Of note, in Type 1 and 2 strategies, φ*1 is a function of t. This indicates that in 
some scenarios, the solution for φ*1 might not exist in some time intervals. Therefore, in these scenarios, despite the size of the initial price-
to-cost ratio is, the optimal exercise strategies in Type 1 or 2 were only feasible in parts of the time intervals. 

The appreciation of property value due to urban expansion, or increasing housing demand, or both was assumed to be measured in νS, in 
the geometric Brownian motion of S(t). In addition, νS indicates the assumption that the appreciation of property value is based on the total 
property value, that is, the building structure value and the land value. The same argument as Bokhari and Geltner (2018) was applied in 
this study, and the estimate of the land value appreciation rate was not determined individually, although the major component of property 
value appreciation should be the land value appreciation. Bokhari and Geltner (2018) claimed that the land value appraisal contained 
subjective assumptions, or even some type of depreciation method, which led to an unforeseeable bias in the property value estimation. 
Numerical Analysis 

Potential Important Factors 

A Monte–Carlo simulation method was introduced to investigate the potential factors that influenced the redevelopment option. In the 
redevelopment option model, only S(t) and K(t) were assumed to follow geometric Brownian motion. The remaining parameters, which 
include the depreciation rate and price volatility based on total property values, were assumed to be constant during the pricing period. All 
the parameters (νS, νK, σS, σK, ρ, ξ, r, y, Tave, Told, L1, and L2) were assigned the baseline values (Table 1). Most of these baseline values refer 
to Chen and Lai’s (2013) study for comparison. L1, L2 were set based on the Hong Kong government’s instructions (ARCADIS 2016). In 
the following analysis, several groups of scenarios were designed to illustrate different market conditions or building factors on the expected 
waiting time. Except for the parameter to be discussed, the other parameters remained at the baseline values. 

To describe the model properties more accurately, three statistics were introduced, the conditional expected exercise time, the percentage 
of exercised paths, and the censored expected exercise time. These statistics could provide more accurate estimations for the Monte–Carlo 
simulations, because the option value and exercise timing might vary significantly under different simulation paths. Because the optimal 
exercise strategy in a redevelopment option with depreciation effect is time-dependent, a fixed expected exercise time cannot be directly 
derived as in normal cases (Øksendal 1998; Chen and Lai 2013). Instead, a large set of sample paths were simulated over a long period (in 
this study 100 years). It was observed whether the variable φ1 was larger than the optimal exercise strategy φ*1 in each minimum time interval 
(dt). In addition, it was confirmed whether the compound option value was positive when φ1 > φ*1. Only the paths where the redevelopment 
option was exercised were accounted for to calculate the conditionally expected exercise time. In addition, the percentage of 

Table 1. Baseline for different factors 
Parameters Baseline values 

Drift rate of market price (νS) 4% 

 

    2       2  

 



Drift rate of construction cost (νK) 2% 
Volatility of market price (σS) 10% 
Volatility of construction cost (σK) 10% 
Correlation coefficient between S and K (ρ) 0 
Depreciation rate (ξ) Log(0.99) (1% annual 

depreciation rate) 
Annual expected capital return rate (r) 10% 
Annual increase of average building age (y) 0.5 
Average building age in the same region at the 
beginning of the option (Tave) (year) 

30 

Building age of the targeted property at the 
beginning of the option (Told) (year) 

50 

Plot ratio of the new property to be built (L1) 9.0a 
Plot ratio of the old property to be 
demolished (L2) 

5.2a 

Initial ratio of market price to construction cost 
[S(0)/K(0)] 

1.5 

Ratio of demolition cost to construction 
cost (DEM) 

0.03 

Source: Data from ARCADIS (2016). 
Note: According to Building (Planning) Regulations in Hong Kong (Cap. 123, Laws of Hong Kong SAR), “Class B Site means a corner site that abuts on 
two specified streets, as defined under B(P)R, neither of which is less than 4.5 m wide.” 
a 
In Hong Kong, when the Class B Site building height is <30 m (but >27 m), the maximum domestic plot ratio is 5.2. When the Class B Site building higher 

is >61 m, the maximum domestic plot ratio is 9.0. 
exercised paths was estimated to explain the coverage of this conditional expected exercise time. The censored expected exercise time 
included the paths where the option was not exercised within this period. In these cases, the exercise time was recorded as the maximum 
period plus a dt. Therefore, it was called the censored expected exercise time. The conditional expected exercise time was <the censored 
expected exercise time and <the actual expected exercise time. 

Then, (θ−λ)C2(φ*1e−ξt)λ were compared (φ*1 is the optimal exercise strategy in Type 2). If (θ−λ)C2(φ*1e−ξt)λ < (θ− 1) L1 *e(Told−Tave)ξφ*1 + θL1 

*DEM for any t, φ*1 was the unique optimal strategy for all possible cases within 100 years. 

The following subsections will discuss the impacts on conditional or censored expected exercise time from different parameters. These 
simulations include some extreme cases that might exist in practice but were ignored in previous studies. Special phenomena were detected 
when some parameters had more extreme variations. 

Influential Factors on Expected Exercise Time 

The simulations in the subsections of “Influential Factors on Expected Exercise Time,” “Feasible Time Intervals for Different Exercise 
Strategies”, and “Sensitivity Test for the Acquired Property Value” were conducted us statistical software MATLAB R2018b. The main 
findings from simulations of different scenarios were summarized as follows: 
1. When the market price was more volatile, the conditional and censored expected exercise time was larger (Table 2). However, when 

market price volatility was high enough (20%) as given in Table 2, the conditional and censored expected exercise time increased first 
as construction cost volatility increased but decreased later. 

2. A higher capital return rate encouraged the developer to postpone their redevelopment decision, and therefore, reduced the conditional 
or censored expected exercise time (Table 3). However, a capital return rate that was too close to the market price drift rate impeded the 
exercise of the option. 

3. The higher correlation coefficient indicated higher potential when the market price and construction cost moved in the same direction. 
The uncertainty of both parameters was partially offset, and therefore, the conditional and censored expected exercise time reduced 
(Table 3). 

Table 2. Conditional expected exercise time (years), percentage of exercised paths (%), and censored expected exercise time (years) with various volatilities 
(other parameters were set as baseline values) 
Parameters σS=0.02 σS=0.05 σS=0.10 σS=0.15 σS=0.20 

σK=0.02 <0.01 0.7848 5.3663 10.2758 13.3490 
 100% 100% 99.85% 97.49% 90.99% 

 <0.01 0.7848 5.5045 12.5281 21.1607 

σK=0.05 0.7347 2.0353 5.9823 10.4824 13.4440 



 100% 100% 99.81% 97.44% 91.52% 

 0.7347 2.0353 6.1610 12.7744 20.7813 

σK=0.10 3.9466 4.7722 7.5086 10.9764 13.3941 

 99.99% 99.98% 99.63% 97.65% 92.52% 

 3.9562 4.7950 7.8527 13.0687 19.8712 

σK=0.15 6.3045 6.8667 8.6346 11.1341 13.3716 

 99.92% 99.88% 99.48% 98.10% 94.15% 

 6.3776 6.9748 9.1079 12.8227 18.4382 

σK=0.20 7.6878 8.0791 9.2796 11.2258 13.1954 

 99.86% 99.74% 99.43% 98.35% 95.75% 

 7.8189 8.3218 9.7968 12.6907 16.8833 

Note: All paths were exercised in Type 2 strategy in all scenarios. Type 2 strategy was the optimal choice for t in all scenarios. 
These findings agree with previous results (McDonald and Siegel 1986; Williams 1991; Chen and Lai 2013). Different from the previous 

traditional factors, several new factors were investigated and discussed in detail. 
4. The depreciation rate was the most influential factor in this redevelopment option model (Table 4). A high depreciation rate shortened 

the expected waiting time significantly. As the depreciation rate increased, the future value fluctuations of the current old property and 
the future new property reduced following the depreciation adjustments. Both types of predictable value change reduced the proportion 
of market uncertainty in the total market fluctuations. Therefore, a downward adjustment in the expected exercise time existed when the 
depreciation effect was embedded in the model. 

To further investigate the impact of the depreciation effect, the exercise criteria was calculated in both types when ξ=ln(0.98) (2% per 
annum) and ξ=ln(0.985) (1.5% per annum). In some scenarios, the time interval when the option was exercised in Type 2 standard was zero. 
Then, the option might be exercised sequentially, or in other strategies, this was different from Types 1 or 2. Further discussions on the 
optimal exercise strategy in a high depreciation rate environment are presented in the subsection of “Feasible Time Intervals for Different 
Exercise Strategies.” 

The annual increase in average building age appears with the depreciation rate in pricing models. Therefore, the effect of y is influenced 
by the changes in depreciation rate. When the depreciation rate is higher, a larger y indicates a smaller time interval for possible optimal 
Type 1 and 2 strategies. The optimal exercise time could increase significantly when the optimal Type 2 strategy was not feasible (the first 
column when y=0.5). If both exercises were not feasible, the option was never exercised optimally in both strategies. 

When the annual depreciation rate became 1%, a larger y indicated a longer waiting time to redevelop. This trend was insignificant when 
ξ=ln(0.995) (0.5% per annum). When the depreciation rate was close to zero, the option exercise time was rarely influenced by y. If y was 
close to zero, this indicated that many new properties had been completed in the sample period y (and some might have 

Table 3. Conditional expected exercise time (years), percentage of exercised paths (%), and censored expected exercise time (years) with various capital 
return rates and correlation coefficients (other parameters were set as baseline values) 
Parameters r=0.06 r=0.08 r=0.10 r=0.12 r=0.14 

ρ=−0.5 1.0821 11.8885 9.4412 7.1519 5.5680 
 0.04% 97.06% 98.90% 99.33% 99.50% 

 99.9724 14.4793 10.4357 7.7778 6.0421 

ρ=−0.25 0.8200 11.2681 8.5146 6.2338 4.8270 

 0.01% 97.79% 99.39% 99.51% 99.70% 

 >100 13.2311 9.0726 6.6933 5.1088 

ρ=0 >100 10.4196 7.5086 5.3828 3.9009 

 0.00% 98.35% 99.63% 99.80% 99.84% 

 >100a 11.8942 7.8527 5.5702 4.0527 

ρ=0.25 >100 9.1169 6.1279 4.0710 2.6830 

 0.00% 99.20% 99.84% 99.93% 99.97% 



 >100a 9.8440 6.2819 4.1404 2.7161 

ρ=0.5 >100 7.5814 4.4243 2.4177 1.1335 

 0.00% 99.73% 99.99% 99.98% 100% 

 >100a 7.8310 4.4376 2.4392 1.1354 

a 
Except for these 3 unexercised scenarios, all paths were exercised in a Type 2 strategy since a Type 1 strategy was never the optimal choice for any t when 

r=0.06. A Type 2 strategy was the optimal choice for all t in the remaining scenarios. 
Table 4. Conditional expected exercise time (years), percentage of exercised paths (%), and censored expected exercise time (years) with various depreciation 
rates and an annual increase of average building ages (other parameters were set as baseline values) 

Parameters 

ξ= 
ln(0.98) 
2% per 
annum 

ξ= 
ln(0.985) 
1.5% per 
annum 

ξ= 
ln(0.99) 
1% per 
annum 

ξ= 
ln(0.995) 
0.5% per 
annum 

ξ=ln(1) 
=0 

y=0 <0.01 <0.01 6.6467 19.8786 36.5919 
 100.00% 100.00% 99.32% 96.99% 87.94% 

 <0.01 <0.01 7.2816 22.2921 44.2414 

y=0.25 <0.01 <0.01 7.0696 19.8957 36.8157 

 100.00% 100.00% 99.50% 97.45% 87.95% 

 <0.01 <0.01 7.5380 21.9354 44.4281 

y=0.5 39.8202 <0.01 7.4919 19.7384 36.7821 

 99.92% 100.00% 99.62% 97.56% 87.86% 

 39.8708a <0.01 7.8454 21.6954 44.4554 

y=0.75 53.1990 0.0243 7.9559 19.6025 36.5239 

 99.91% 99.99% 99.76% 98.03% 87.93% 

 53.2402a 0.0303 8.1408 21.1882 44.1879 

y=1 >100 0.5980 8.3386 19.6489 36.6858 

 0.00% 99.59% 99.82% 98.25% 87.89% 

 >100 1.0017 8.5054 21.0537 44.3544 

a 
These scenarios could not be exercised in a Type 2 strategy. The expected exercise time was from a Type 1 strategy, which stands for a sequential exercise. 

The option was never exercised when ξ=ln(0.98) and y=1. The remaining scenarios were all exercised in a Type 2 strategy, which stands for a simultaneous 
exercise. 

replaced other old properties). This successful development and redevelopment experiences reduced the uncertainty of proposed new 
buildings, and therefore, the expected waiting time to start. 
5. A higher building age of the old property and a higher average building age reduced the expected waiting time to redevelop (Table 5). 

The high average building age increased the depreciation adjustment between the new property to be built and the nearby buildings, and 
then decreased the uncertainty of the new property value (compared with the total depreciation-adjusted value). 

Feasible Time Intervals for Different Exercise Strategies 

This section will focus on a special issue in the depreciation-adjusted model: the feasible time intervals for different optimal exercise 
strategies. 

In the original model, if the depreciation rate was assumed to be zero, θ=λ. Then, Eq. (37) should have no solution for φ*1 (i.e., θ>1). 
Therefore, if the depreciation effect could be ignored, or could be completely excluded by introducing a newly built property index, the 
compound option was never exercised optimally in a sequential strategy. The only optimal exercise strategy must be a simultaneous exercise. 
In addition, in the traditional model, the optimal exercise ratio in stages 1 and 2 are constants. The relationship between φ*1 and φ*2 is 
independent of t. If φ*1 > φ*2 when t = 0 this inequality holds for all t. 



However, as mentioned in the “Introduction,” the depreciation adjusted model is a superior choice in some markets. The developer must 
consider the depreciation adjustments if no newly built property market index is available. This adjustment has two consequences. First, the 
Type 1 strategy becomes possible in some scenarios. Second, the relationship between φ*1e−ξt and φ*2 depends on t. Therefore, Type 1 or 2 
strategies might only feasible for some time intervals. 
Table 5. Conditional expected exercise time (years), percentage of exercised paths (%), and censored expected exercise time (years) with various average 
building ages and building ages of old property (other parameters were set as baseline values) 
Parameters Told =40 Told =50 Told =60 

Tave =25 10.6527 9.1307 7.7151 
 99.43% 99.55% 99.56% 

 11.1656 9.5360 8.1231 

Tave =30 9.2232 7.4919 6.0920 

 99.54% 99.62% 99.68% 

 9.6391 7.8454 6.3907 

Tave =40 6.0660 4.3103 2.7885 

 99.77% 99.81% 99.89% 

 6.2783 4.4959 2.8993 

Note: All paths were exercised in a Type 2 strategy in all scenarios. A Type 2 strategy was the optimal choice for t in all these scenarios. 

In the discussions of the previous potential factors, the Type 2 strategy (traditional optimal simultaneous exercise) was feasible and the 
previous choice for all t in most scenarios. As mentioned in the subsection of “Influential Factors on Expected Exercise Time”, three 
parameters, that is, capital return rate, depreciation rate, and an annual increase of average building age influenced the feasible time intervals 
for Type 1 and 2 strategies. To further illustrate their impacts on the ranges of feasible time intervals, the feasible time intervals in 45 
scenarios (5×3×3) were calculated (Table 6). 

The term φ*1e−ξt was a strictly decreasing function of t for Type 2 strategy. However, for Type 1 strategy, it was a decreasing function of 
t first, and then an increasing function of t. The turning point is usually large, which means that φ*1e−ξt decreased over a long period. 

Several trends in the ranges of feasible time intervals are available in Table 6. 
1. When the capital return rate and an annual increase of average building age were fixed, a smaller depreciation rate leads to a higher 

lower-bound of feasible time intervals for Type 1 strategy, and a higher upper-bound of valid time intervals of Type 2 exercise. Therefore, 
a lower depreciation rate derived a smaller range of feasible time intervals for the Type 1 strategy, and a larger range of feasible time 
intervals for the Type 2 strategy. 

2. When the capital return rate and depreciation rate were fixed, a larger annual increase of average building age resulted in a lower upper-
bound (and a smaller range) of feasible time intervals for the Type 2 strategy. There was no consistent trend between the annual increase 
of average building age and the range of feasible time intervals for the Type 1 strategy. 

3. When the depreciation rate and annual increase of average building age were fixed, a larger capital return rate caused a higher upper-
bound (and a larger range) of feasible time intervals for the Type 2 strategy. The relationship between the capital return rate and the range 
of feasible time intervals for the Type 1 strategy was much more complicated. When the depreciation rate was 2% annually, the lower-
bound of feasible time intervals increased as capital return rate increased. When the depreciation rate was 1.5% annually, no consistent 
trend was found. 

4. Within the three parameters, the depreciation rate had the greatest impact on the range of feasible time intervals. 
Table 6 reveals that a Type 2 strategy might be partially or completely unfeasible during the observation period. Instead, a Type 1 strategy 

becomes attainable in some scenarios. Then, the problem to determine a superior strategy over a long observation period exists. To 
comprehensively discuss this problem, a 



b In these scenarios, the option could not be exercised in Type 2 strategy. 
The option was exercised in a Type 2 strategy in the remaining scenarios. 

Table 6. Available time intervals for 2 types of exercise from 45 selected scenarios 

Capital return rate 
The annual increase of 
average building age 

ξ=ln(0.98) 
2% per annum 

ξ=ln(0.985) 
1.5% per annum 

ξ=ln(0.99) 
1% per annum 

r=0.06 y=0 Type 1: [0, 100] Type 1: [18.72, 100] Type 1: Null 
  Type 2: Nullb Type 2: Nullb Type 2: [0, 25.98] 

 y=0.5 Type 1: [0, 100] Type 1: [0, 100] Type 1: Null 

  Type 2: Nullb Type 2: Nullb Type 2: [0, 0.41] 

 y=1 λ<1 Type 1: [0, 100] Type 1: [0, 100] 

   Type 2: Nullb Type 2: Null 

r=0.07 y=0 Type 1: [2.44, 100] Type 1: Null Type 1: Null 
  Type 2: Nullb Type 2: [0, 4.83] Type 2: [0, 61.83] 

 y=0.5 Type 1: [0, 100] Type 1: Null Type 1: Null 

  Type 2: Nullb Type 2: Nulla Type 2: [0, 41.05] 

 y=1 Type 1: [0, 100] Type 1: [0, 100] Type 1: Null 

  Type 2: Nullb Type 2: Nullb Type 2: [0, 19.45] 

r=0.08 y=0 Type 1: [19.34, 100] Type 1: [90.16, 100] Type 1: Null 
  Type 2: Nullb Type 2: [0, 21.75] Type 2: [0, 90.32] 

 y=0.5 Type 1: [6.39, 100] Type 1: Null Type 1: Null 

  Type 2: Nullb Type 2: [0, 5.02] Type 2: [0, 72.29] 

 y=1 Type 1: [0, 100] Type 1: Null Type 1: Null 

  Type 2: Nullb Type 2: Nulla Type 2: [0, 54.16] 

r=0.09 y=0 Type 1: [23.62, 100] Type 1: [79.06, 100] Type 1: Null 

  Type 2: [0, 3.59] Type 2: [0, 35.99] Type 2: [0, 100] 

 y=0.5 Type 1: [34.36, 100] Type 1: Null Type 1: Null 

  Type 2: Nullb Type 2: [0, 20.89] Type 2: [0, 97.93] 

 y=1 Type 1: [15.00, 81.61] Type 1: Null Type 1: Null 

  Type 2: Nullb Type 2: [0, 6.05] Type 2: [0, 81.90] 

r=0.10 y=0 Type 1: [23.83, 100] Type 1: [70.45, 100] Type 1: Null 

  Type 2: [0, 12.13] Type 2: [0, 48.34] Type 2: [0, 100] 

 y=0.5 Type 1: [39.42, 100] Type 1: Null Type 1: Null 

  Type 2: Nullb Type 2: [0, 34.42] Type 2: [0, 100] 

 y=1 Type 1: Null Type 1: Null Type 1: Null 

  Type 2: Nulla Type 2: [0, 20.96] Type 2: [0, 100] 

Note: The periods were the available time intervals when a Type 1 and 2 strategy was feasible. 
a 
In these scenarios, the option could not be exercised in Type 1 or 2 strategies. 



new comparison strategy was introduced. In this comparison strategy, the compound option was exercised simultaneously if the inequality 

S(t) *e−ξyt > φ*2 (41) K(t) 

held for the first t, that is, if the optimal rebuilding ratio in Stage 2 was achieved, the compound option was exercised simultaneously. In 
total, 9 out of the 15 scenarios when the annual depreciation rate was 1.5% as given in Table 6 were chosen to compare the three different 
strategies. The numbers of exercised paths in 100,000 simulations were collected for Type 1 and 2 strategies. For comparison, the numbers 
of paths where the option values in the comparison strategy were higher than those in Type 1 (or Type 2) strategy were generated. The 
conditional expected option values for the comparison strategy, Type 1, or 2, or both were calculated. The term conditional assumed that 
the option value after the observation period was ignored. If a path was not exercised until 100 years, the option value of this path was zero. 
All the previous statistics are summarized in Table 7. To obtain a more diversified view, the initial price-to-cost ratio was 1.2 to avoid 
immediate exercise at t=0. 

The first set provides three scenarios when a Type 2 strategy was not feasible. However, the range of feasible time intervals for a Type 1 
strategy was long. Although a high percentage of paths were exercised with positive values based on the optimal Type 1 strategy, a significant 
proportion of paths (46%–65%) had higher values when they were exercised based on the comparison strategy. The conditional expected 
option value in the comparison strategy was higher than that in a Type 1 strategy in two scenarios. This suggested that even when a Type 2 
strategy was not feasible, the comparison strategy, which is a type of simultaneous exercise strategy, was still usually a superior choice. 
When the capital return rate was very low, and the annual increase of average building age was small, a Type 1 strategy had a higher 
conditional expected option value. 

The second set provided three scenarios when a Type 1 strategy was not feasible, and the feasible time intervals for a Type 2 strategy are 
small. When the feasible time intervals were <10 years, approximately ⅓ of the paths were not exercised based on a Type 2 strategy. The 
proportion of paths exercised in the comparison strategy was relatively small; however, the conditional expected option values of these paths 
were higher than those exercised in a Type 2 strategy. When a significant proportion of paths could not be exercised in a Type 2 strategy, 
the comparison strategy might be a superior choice. 

The third set provided three scenarios when Type 1 and 2 strategies were partially feasible during the observation period. In these 
scenarios, a Type 2 strategy was the most valuable solution. The number of paths with higher option values and the conditional expected 
option value supported the choice of a Type 2 strategy. A Type 1 strategy was much worse than the comparison one. 
Table 7. Numbers of exercised paths and conditional expected option value based on different strategies (with 100,000 simulations in each scenario) 

Scenarios 
r=0.06 

y=0 

Set (I) 

 
r=0.06 y=0.5 r=0.07 

y=1 
r=0.07 

y=0 

Set (II) 

 
r=0.09 y=0.5 r=0.09 

y=1 

 Set (III)  

r=0.08 
y=0 

r=0.09 
y=0 

r=0.10 
y=0 

Type 1 boundary [18.72, 100] [0, 100] [0, 100] Null Null Null [90.16, 100] [79.06, 100] [70.45, 
100] 

# of paths exercised in Type 
1 

96,750 98,642 99,439 — — — 94,672 96,398 97,546 

# of paths exercised in Type 
1 
(positive option value) 

96,265 92,045 96,730 — — — 94,534 96,059 97,045 

# of paths where the 
intrinsic option value in the 
comparison strategy was 
larger than that in Type 1 

45,961 65,111 59,055 — — — 99,110 99,891 99,988 

Conditional expected option 
value in 
Type 1 strategy 

572.8155 670.3719 682.7291 — — — 38.8775 26.6141 19.4356 

Type 2 boundary Null Null Null [0, 4.83] [0, 20.89] [0, 6.05] [0, 21.75] [0, 35.99] [0, 48.34] 
# of paths exercised in Type 
2 

— — — 62,671 93,116 61,275 92,992 97,292 98,711 

# of paths exercised in Type 
2 
(positive option value) 

— — — 62,671 93,116 61,275 92,992 97,292 98,711 

# of paths where the 
intrinsic option value in the 
comparison strategy was 
larger than that in Type 2 

— — — 36,425 6,748 38,589 6,710 2,754 1,400 

Conditional expected option 
value in 
Type 2 strategy 

— — — 370.8524 597.5184 457.3479 523.7142 503.5282 468.9839 



Note: The depreciation rate was 1.5% per annum for all scenarios. 

Based on the discussions obtained from Tables 6 and 7, a comprehensive procedure to select the optimal exercise strategy was derived: 
1. Find the feasible time intervals for a Type 2 strategy. If a Type 2 strategy was completely feasible during the observation period, take it 

as the optimal exercise strategy. This is the most general case. 
2. If a Type 2 strategy is partially feasible during the observation period, compare the conditional expected option values based on a Type 

2 strategy and the comparison strategy. Take the strategy that has a higher conditional expected option value. 
3. If a Type 2 strategy is completely unfeasible during the observation period, find the feasible time intervals for a Type 1 strategy. Compare 

the conditional expected option values based on a Type 1 strategy and the comparison strategy. Take the strategy that has a higher 
conditional expected option value. 
In general, a Type 2 strategy was the most valuable choice in most scenarios. In a limited number of scenarios, a Type 1 strategy should 

be considered following a comparison with a simultaneous exercise strategy that was based on the optimal rebuilding ratio. A Type 2 strategy 
was no longer the only possible strategy in all scenarios, which was an extended conclusion in this depreciation-adjusted model. In this 
study, when a Type 2 strategy was not feasible, as given in Tables 3 and 4, the optimal strategy was the comparison strategy (based on the 
optimal rebuilding ratio). 

A higher depreciation rate, a lower capital return rate, and a higher annual increase in the average building age all caused a smaller range 
of feasible time intervals for a Type 2 strategy, and then there was a lower probability to choose a Type 2 strategy as the optimal strategy. 
These factors have the same type of impacts on the option pricing process, that is, to increase the newly built property value in future. If the 
depreciation rate is taken as representative then, the optimal ratio of the compound option is shown in Eqs. (39) and (40). 

The optimal ratio of the rebuilding option is shown in Eqs. (22) and (23). 
As the depreciation rate increased, the value of φ*1(t) decreased much faster than that of φ*2. Therefore, the optimal ratio to demolish the 

old property decreased much faster than the optimal ratio to rebuild a new one. However, based on the derivation of a Type 2 strategy, 
t, this becomes a contradiction. Therefore, a high depreciation rate induced a smaller range of feasible time intervals for a Type 

2 strategy. Similarly, as the capital return rate decreased, or as the annual increase in average building age increased, the value of φ*2 

increased much faster than that of φ*1(t). When the building age of the old property was high, the optimal demolition ratio might be lower 
than the optimal rebuilding ratio. The other parameters, such as the volatilities, the correlation coefficient, and the average building age did 

not have similar impacts. If the condition of t became false, using the optimal rebuilding ratio  as the trigger for the whole 
compound option was a better choice. 

Sensitivity Test for the Acquired Property Value 

In addition to the average exercise time and compound option value, the owners of old properties that are acquired will be concerned about 
the sensitivity of old property values and other parameters. The discussion of this acquisition value is a good example that demonstrates the 
scope of application for this compound option. Fig. 1 shows the relationships between old property values and the main parameters in this 
compound option. As shown in each graph in this figure, only one target parameter changes and the rest remain the baseline values given in 
Table 1. The range of the target parameter (x-axis) was divided into 100 equal parts. Then, the compound option was exercised in the optimal 
strategy, which contained the acquisition value of the old property during the first stage. The y-axis is the present value of the acquisition 
price that is discounted by the annual expected capital using return rate (r). In addition, simulations were first conducted using MATLAB 
R2018b. Then, the curves were generated by Stata 15. The compound option was exercised in all scenarios shown in Fig. 1. 

As shown in Figs. 1(a–d), the optimal strategy was the Type 2 strategy for the whole range. As shown in Fig. 1(e), the option could not 
be an exercise in a Type 2 strategy for the first two data points, where the comparison strategy was adopted to fill the graph. Fig. 1(f) shows 
the most complicated case, although the option could be exercised in a Type 2 strategy for the first 14 data points, the option values were 
smaller than those if the option was exercised during the comparison strategy. Therefore, the acquisition values of old properties under two 
different strategies are provided, as shown in Fig. 1(f). The upper curve represents the acquisition value in the comparison strategy. 

Conditional expected option 
value in the comparison 
strategy 

544.2152 731.4694 718.9531 437.6559 391.3815 479.9780 364.4314 323.0678 322.8327 

 



 (c)

( a ) ( d ) 

( b ) ( e ) 



The acquisition value was not sensitive to the correlation coefficient between market price and construction cost, and slightly  

 (f) 

Fig. 1. The sensitivity test for the acquisition price of old property at the current value: (a) volatility of market price; (b) volatility of construction 
cost; (c) correlation coefficient between market price and construction cost; (d) annual increase of average building age; (e) depreciation rate; and 
(f) annual capital return rate. The upper curve stands for the present value of acquisition price in the comparison strategy; and the lower curve stands 
for the present value in the Type 2 strategy. 

 



sensitive to the annual increase in average building age (Fig. 1(c) and 1(d)). As the compound option value, the acquisition value was 
sensitive to volatilities of market price and construction cost (Figs. 1(a) and 1(b)). The most interesting cases are presented in the Figs. 1(e) 
and 1(f). In Fig. 1(e), the acquisition value was not sensitive to the depreciation rate when the depreciation rate was >1.5%. However, this 
sensitivity increased rapidly as the depreciation rate decreased. The acquisition value when the depreciation rate is zero becomes as large as 
that when the depreciation rate is 1%. As shown in Fig. 1(f), the sensitivity level was median when the capital return rate was >8% per 
annum. However, the sensitivity increased dramatically, because the comparison strategy became the optimal choice. 

In addition to the volatilities of market price and construction cost, the acquisition price of old properties was sensitive to the depreciation 
rate and the capital return rate. When the depreciation rate was low, or the capital return rate was low, or both this sensitivity increased 
dramatically. These results correspond with the findings in the subsection of “Influential Factors on Expected Exercise Time.” The difference 
of estimated values between a Type 2 and comparison strategies was presented in this sensitivity test, which provided visible evidence to 
explain the importance of adopting the correct exercise strategy. 

Advantages and Limitations of This Model 

This model is suitable for cities that do not announce restrictions on the maximum rebuilding period, such as Hong Kong. Two main 
advantages of this new model were summarized from the previous data analysis process. First, this new model is a further extension to Chen 
and Lai’s (2013) model, to release the restriction that no depreciation effect was embedded in the existing two-stage redevelopment option. 
This covered most redevelopment cases when only two participants (developer and owner) were involved. By adjusting the depreciation 
rate and the annual increase in average building age, this new model could be adapted for a wide range of scenarios. 

Second, the solution of this new model has high operability by the provision of detailed procedures that adopt the optimal exercise strategy 
in the subsection of “Feasible Time Intervals for Different Exercise Strategies.” These strategies covered the cases when some parameters 
had extreme values, such as a low capital return rate and a high depreciation rate. This solution could help the developer and the owner to 
estimate the sensitivity of the acquisition price for the old property. 

However, two limitations should be highlighted when this new model is applied in practical use. First, the optimal exercise strategy was 
more complicated than the existing one or two-stage redevelopment models. A simple analytical solution for the exercise standard for all 
scenarios does not exist. Instead, the detailed procedures suggested that the user could initially calculate the feasible time interval for a Type 
2 strategy. If this time interval covered the overall option period, the simple analytical solution would hold, which is the most common case. 
This major limitation could occur in some extreme scenarios. Second, the estimation of depreciation rate must be accurate. The sensitivity 
test in the subsection of “Sensitivity Test for the Acquired Property Value” emphasized that the option value and acquisition price were 
sensitive to the depreciation rate that was based on the total property value. Then, the developer needs to determine an accurate estimation 
of the depreciation rate based on the transaction records in this region. This is the most important new parameter compared with existing 
redevelopment models. The developer should build a comprehensive estimation model that excludes the potential disturbances from other 
housing factors. Although the annual increase in average building age is another new parameter, it could be generated accurately from the 
building ages of nearby properties with less effort. 
 

Conclusions 

This study provided an extension to the traditional redevelopment option model with a permanent exercise period, by the introduction of the 
depreciation rate and annual increase in average building age. Its main contribution was to help estimate the optimal exercise time and the 
value of a certain redevelopment option more accurately, which does not ignore the upward bias from the lack of depreciation effect. 

This study investigated in detail the influential factors on optimal exercise timing in the new model. Three new statistics were applied to 
describe the impact of potential factors on redevelopment decisions: (1) the conditional expected exercise time within a certain period; (2) 
the percentage of exercised options in all simulation paths; and (3) the censored expected exercise time. Higher price and cost volatilities, 
lower capital return rate, and lower correlation coefficient were related to a longer waiting time to exercise the redevelopment option. In 
addition, older targeted property, older buildings in the same region, and larger depreciation rates contributed to the shorter waiting time to 
redevelop. The depreciation rate had the largest influence. Because the property value depreciation indicated a time-varying critical value to 
exercise the option, many new characteristics were observed. 

The traditional simultaneous exercise strategy, which was to demolish the old property and then rebuild a new property as soon as possible, 
was re-examined under the new conditions. A high depreciation rate, low capital return rate, and a large annual increase of the average 
building age, or a high building age of the old property, or both might lead to the phenomenon that the optimal demolition ratio was lower 
than the optimal rebuilding ratio. This led to the contradiction in the condition for the traditional optimal simultaneous exercise strategy 
(defined as a Type 2 strategy in this study), which assumed that the trigger ratio should be no less than the optimal rebuilding ratio. A solution 
could be to adopt the optimal rebuilding ratio as the trigger of the whole compound option. In some extreme scenarios (e.g., depreciation 
rate is 2% per annum and capital return rate is 7% per annum), the optimal sequential exercise strategy (defined as a Type 1 strategy) had a 
higher expected option value than the previous two optimal simultaneous exercise strategies. When a Type 2 strategy was not feasible, it is 
necessary to compare the remaining strategies. 

In addition, this study summarized the sensitivity analysis between the acquisition value of old properties and model parameters. The 
acquisition value was sensitive to the depreciation rate and the capital return rate. 

This new model could be applied to estimate the optimal exercise timing more comprehensively and more accurately than the previous 
two-stage redevelopment option model under all the different scenarios. To achieve reliable results, the depreciation rate should be accurately 



estimated. This model could help the government to review the compensation standard for future redevelopment projects. A satisfactory 
acquisition standard should be accepted by the affected residents to reduce potential social conflicts. It should help developers maintain their 
incentive to operate redevelopment projects. In addition, it could lead to a reasonable expected exercise time to redevelop, and a proper 
market price for the new housing units. Further studies should be conducted to improve this model in two ways. First, introduce a new 
assumption to predict the depreciation rate in property markets, which would reduce the complexity of model solutions. Second, suggest a 
more appropriate method for the estimation of regional depreciation rates. 
Data Availability Statement 

Some or all data, models, or codes generated or used during the study are available in a repository online following funder data retention 
policies, including plot ratio information used in the data analysis, which is open data from the ARCADIS’ Annual Construction Cost 
Handbook. Downloaded from: https://www.arcadis .com/en/asia/our-perspectives/research-and-publications/arcadis -construction-cost-
handbook/. 

Some or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable 
request, including the program code for this continuous-time redevelopment option model. 
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