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ABSTRACT: 1 

Every few years, larger containerized vessels are introduced to the market to accommodate the 2 

increase in global trade. Although increasing the capacity of vessels results in maximizing the 3 

amount of imported and exported goods per voyage, yet it is accompanied with new challenges to 4 

terminal planners. One of the primary challenges is minimizing the vessel turnaround time with 5 

the least possible cost. In this context, this paper presents the development of a multi-level 6 

optimization model using the elitist non-dominated sorting genetic algorithm (NSGA-II) to 7 

determine the optimal or near-optimal fleet size combination of the different container handling 8 

equipment used in the terminal. The model aims to minimize two conflicting objective functions, 9 

namely, vessel turnaround time and total handling cost. Furthermore, the model considers a 10 

double-cycling strategy for the container handling process to achieve increased productivity and 11 

eventually more reduction in the vessel turnaround time. The model was implemented on a real-12 

life case study to demonstrate its efficiency and the benefit of employing the double-cycling 13 

strategy compared with the traditional single-cycling strategy. The results demonstrated the 14 

efficiency of employing the double-cycling strategy by providing a reduction of above 20% in 15 

both the vessel turnaround time and the total handling cost and an increase of above 25% in the 16 

productivity when compared to the traditional single-cycling strategy.  17 

18 

Keywords: Container Handling, Fleet Size, Multi-level Optimization, NSGA-II, Double-Cycling. 19 

20 

1. INTRODUCTION21 

Since the 1960s, container terminals have always been the most common form of transshipment 22 

points to connect global trades. Global seaborne container trade comprises above 60% of the entire 23 

world seaborne trade, which was valued at around US$12 trillion in 2017 (Statista Research 24 
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Department 2020). Such transported containers generally come in two standard sizes of 20-foot 25 

equivalent units (TEU) or 40-foot equivalent units (2TEU). The quantity of cargo shipped by 26 

containers in vessels had increased from approximately 102 million metric tons in 1980 to 1.83 27 

billion metric tons in 2017. Moreover, the global shipping container market was worth 28 

approximately US$4.6 billion in 2016 and is expected to reach US$11 billion by 2025 (Statista 29 

Research Department 2020). With the increase in the global volume of transported containers, 30 

there has been an increase in the complexity of port logistics (Stahlbock and Voβ 2008). This 31 

increase has forced shipping and port companies to search for strategies to accommodate such 32 

expansion. In addition, an unexpected increase in the demand for global trade requires rapid and 33 

efficient alternatives for shipment cycle. Among these alternatives, increasing the capacity of 34 

container vessels was one of the potential solutions. The recent generation of container vessels had 35 

a capacity of 18,000 TEUs compared to the 2,400 TEUs container vessels used in the 1970s. In 36 

2017, the capacity increased to above 20,000 TEUs, and the latest largest vessel worldwide that 37 

was built in 2019 has a capacity of 23,000 TEUs. 38 

 39 

It can be claimed that increasing the vessels’ capacity can minimize the transportation unit cost as 40 

more containers are transported per voyage. In fact, doubling the maximum container vessel 41 

capacity over the past decade has reduced the total vessel costs per transported container by 42 

roughly a third; however, these cost savings decrease as the capacity of vessels increases (Merk et 43 

al. 2015). The reason for this is that larger vessels require adaptations of the handling equipment 44 

utilized and result in increased container traffic in ports. Additionally, the vessel turnaround time 45 

increases as its capacity increases. To address this issue, researchers started investigating different 46 

container handling strategies to minimize such turnaround time by improving the productivity of 47 
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one or more of the major container handling equipment, namely, quay cranes (QCs), yard cranes 48 

(YCs), and yard trucks (YTs). One of the major strategies proposed was considering QCs “double-49 

cycling” rather than the traditional “single-cycling.” Improving the handling strategy without 50 

deciding upon a suitable balance between the numbers of utilized equipment can result in a loss of 51 

opportunity to achieve even further improvement in the productivity. Considering that there is a 52 

significant number of QCs, YTs, and YCs in the terminal, an optimum allocation of these resources 53 

to serve each arriving vessel becomes essential. Therefore, the main aim of this research is to 54 

develop a multi-objective resource allocation multi-level optimization model for container 55 

terminal handling using the elitist non-dominated sorting genetic algorithm (NSGA-II). The 56 

purpose of this model is to obtain optimal trade-offs between the two conflicting objectives of 57 

minimizing both the vessel turnaround time and the total handling cost. The model considers a 58 

“double-cycling” strategy for the YTs to achieve more improved productivity.  59 

 60 

2. BACKGROUND 61 

2.1 Container Terminals  62 

In general, container terminals are divided into four zones, namely, berth or quay zone, transport 63 

zone, yard zone, and land zone. The berth zone is where the vessels are docked so that their 64 

containers’ unloading and loading can take place by the QCs. Containers on a vessel are stacked 65 

into bays along the length of the vessel. Each bay consists of several rows across the vessel’s width. 66 

Containers in each row are stacked vertically into several tiers above and/or below the vessel’s 67 

hatch. The yard zone is the place where the imported and exported containers are stacked into what 68 

is known as storage yard (SY) by the YCs. The transport zone is the middle zone where the YTs 69 
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transport the containers between the berth and yard zones. Finally, in the land zone, the imported 70 

or exported containers are transferred outside or inside the terminal via external trucks or trains. 71 

 72 

QCs are the most expensive equipment for handling containers at the terminals. At the berth zone, 73 

a QC unloads an imported container from a vessel and loads it onto a YT or unloads an exported 74 

container from a YT and loads it onto a vessel. QCs move parallel to the length of the vessel on a 75 

railway, and each QC can lift two 20-foot containers simultaneously or one 40-foot container. YTs 76 

are used to transport the containers from/to the berth zone to/from the yard zone. Several types of 77 

YTs are available today in different ports, e.g., strudel carriers, truck vehicles, and automated 78 

guided vehicles (AGVs). Strudel carriers load the containers from the ground at the quay side and 79 

transport them to the SY. Consequently, they self-stack the containers at the SY or have their 80 

container unloaded by a YC at the SY. Truck vehicles are operated by drivers and are loaded and 81 

unloaded by QCs and YCs, whereas AGVs are automatically operated and controlled. A YC loads 82 

and unloads containers from or onto trucks going to or from the SY. YCs are designed to move 83 

horizontally along the storage lanes, and their trollies move perpendicular to the lane. They are 84 

designed to reach up to seven tiers of containers from the ground level. Two types of YCs are 85 

traditionally used, the rubber-tired gantry (RTGCS) and the rail-mounted gantry (RMGCs). 86 

RTGCs move on rubber tires and can make 360° turns, whereas RMGCs move along the blocks 87 

of a single row on a fixed rail.  88 

 89 

2.2 Previous Studies 90 

Minimizing vessels’ turnaround time has attracted the attention of several researchers in the past 91 

two decades by solving different assignment/allocation problems and equipment scheduling 92 
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problems. The assignment/allocation problems include allocating berths to the arriving vessels 93 

(i.e., berth allocation problem, BAP), assigning QCs to the vessels (i.e., quay crane assignment 94 

problem, QCAP), and allocating containers to specific blocks of the SY (i.e., storage yard 95 

allocation problem, SYAP). The equipment scheduling problems include scheduling the different 96 

work tasks performed by the QCs, YTs, and YCs, i.e., quay crane scheduling problem (QCSP), 97 

yard truck scheduling problem (YTSP), and yard crane scheduling problem (YCSP). All these 98 

various problems were investigated either separately or by integrating two or more of them under 99 

a single platform.  100 

 101 

With respect to the assignment/allocation problems, Correcher et al. (2019) proposed a mixed 102 

integer linear model and heuristic for optimizing BAP in terminals with irregular layouts. Schepler 103 

et al. (2019) solved the BAP by considering stochastic arrival times of vessels based on iterated 104 

tabu search and stochastic dynamic programming. Similarly, uncertainty in vessel arrival times 105 

was considered by other researchers to solve the dynamic BAP (Budipriyanto et al. 2015; Golias 106 

et al. 2009; Monaco and Sammarra 2007; Imai et al. 2001). Regarding the SYAP, different 107 

heuristics and algorithms were applied to optimize the SY layout and the containers’ arrangements 108 

(Jacomino et al. 2019; Guerra-Olivares et al. 2018; Lin and Chiang 2017; Wang et al. 2014; Chen 109 

and Lu 2012; Bazzazi et al. 2009; Zhang et al. 2003). For QCAP, Lajjam et al. (2014) used the ant 110 

colony optimization technique to optimize the assignment of QCs to the vessels. A two-phase 111 

approach was presented by Karam et al. (2014) to assign QCs considering the availability of the 112 

YTs using mixed integer programming (MIP) and dynamic programming. Integration of both BAP 113 

and QCAP has also been addressed in the literature (Zheng et al. 2019a; Iris et al. 2015; Xiao and 114 

Hu 2014; Zampelli et al. 2013; Raa et al. 2011; Chang et al. 2010). Studies have also addressed 115 
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the integration of both BAP and SYAP (Al-Hammadi and Diabat 2017; Peng et al. 2015; Safaei et 116 

al. 2010). Integration of the three assignment and allocation problems was proposed by Wang et 117 

al. (2018), wherein they used a column generation-based heuristic to optimize simultaneously the 118 

BAP, QCAP, and SYAP. Moreover, the assignment and allocation problems were integrated with 119 

the scheduling problems. Such integrations were investigated in the forms of integrated SYAP-120 

YTSP (Wang et al. 2015; Xue et al. 2013; Lee et al. 2009), integrated SYAP-YCSP (Fan et al. 121 

2017; Tan and He 2016), integrated BAP-QCSP (Jiao et al. 2018; Idris and Zainuddin 2016; Wu 122 

et al. 2014; Lee and Wang 2010), integrated QCAP-QCSP (Olteanu et al. 2018; Alsoufi et al. 2018; 123 

Diabat and Theodorou 2014), and integrated BAP-QCAP-QCSP (Kasm et al. 2019; Agra and 124 

Oliveira 2018; Grubisic and Maglic 2018). 125 

 126 

There are also other efforts that were exerted to solve exclusively the scheduling problems of QCs, 127 

YTs, and YCs. Beginning with the YCSP, He et al. (2019) proposed a model for optimizing the 128 

efficiency of the YC work tasks under uncertainty using GA. An MIP model was developed by 129 

Luo et al. (2018) to achieve a flexible schedule for the YCs to minimize the amount of task 130 

overflow in loading and unloading operations and the distance covered by all the YCs. A two-131 

stage stochastic programming model using the sample average approximation approach and GA 132 

was developed by Zheng et al. (2019b) to minimize the expected total lateness of the YCs work 133 

tasks. Sharif and Huynh (2012) compared centralized and decentralized approaches for modeling 134 

the YCSP to assess their relative performances and the factors affecting them. For the same 135 

problem, other different approaches have also been presented (He et al. 2013; Javanshir et al. 2012; 136 

Ng and Mak 2005). With respect to the QCSP, Hu et al. (2019) presented a stochastic programming 137 

model using the particle swarm optimization (PSO) algorithm to minimize the makespan of QCs 138 
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services considering uncertain conditions. In addition, Msakni et al. (2018) proposed two methods 139 

to optimize the QCSP using MIP and binary search algorithm. Considering the stability constraints, 140 

Zhang et al. (2018) solved the QCSP using the bi-criteria evolutionary algorithm. In another study, 141 

Yu et al. (2017) considered tidal impact and fuel consumption to solve the QCSP using the local 142 

branching-based solution method and PSO. Several other algorithms and heuristics were also used 143 

to solve the QCSP (Al-Dhaheri and Diabat 2015; Sammarra et al. 2007; Ng and Mak 2006). 144 

Goodchild and Daganzo (2006) initiated a different approach to solve the QCSP through a double-145 

cycling strategy for the QCs. This double-cycling strategy considers that the loading and unloading 146 

tasks of the containers onto and from the vessel by a QC occur consecutively. This strategy was 147 

used as an alternative to the traditional single-cycling strategy of starting loading the vessel after 148 

the completion of the entire unloading process. Through this strategy, the empty travel time of the 149 

QC to unload a new container from the vessel is minimized, which in turn increases its productivity 150 

and minimizes the vessel turnaround time. However, for vessels with deck hatches, applying the 151 

QC double-cycling strategy is not useful for the containers above a hatch, as all the containers 152 

above a hatch must be unloaded before applying double-cycling. Therefore, Zhang and Kim (2009) 153 

modified the QC double-cycling strategy in such a manner that it would no longer be limited to 154 

the stacks under a hatch but would also work for above-hatch stacks. For the YTSP, Niu et al. 155 

(2017) applied the PSO algorithm with a cooperative strategy to minimize the YT unload rate and 156 

their makespan. Earlier, Lee (2007) applied the exact dynamic programming algorithm to locate 157 

idle vehicles in tandem-loop AGV systems to minimize the maximum response time for all pickup 158 

requests. Grunow et al. (2006) proposed a simulation study of AGV dispatching strategies in 159 

container terminals where AGVs can be used for single- or double-carrier mode. Similar to the 160 

concept of incorporating the double-cycling strategy for the QCs introduced by Goodchild and 161 
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Daganzo (2006), Nguyen and Kim (2010) introduced a double-cycling strategy, but this time it 162 

was for the YTs. The strategy aimed at minimizing the empty trip times of the YTs with minimum 163 

delay for vessel operations. Again, the integration of these scheduling problems was reported in 164 

the literature in the forms of integrated YCSP-YTSP (Cao et al. 2017; Chen et al. 2014; Cao et al. 165 

2010a), integrated QCSP-YTSP (Zhen et al. 2019; Kaveshgar and Huynh 2015; Cao et al. 2010b), 166 

integrated QCSP-YCSP (Kizilay et al. 2018; Wu and Wang 2018), and integrated QCSP-YTSP-167 

YCSP (Jonker et al. 2019; Yue et al. 2019; Xiao et al. 2016; He et al. 2015). 168 

 169 

Apart from the studies conducted to minimize the vessel turnaround times and the handling costs 170 

by improving the assignment/allocation and equipment scheduling problems, optimizing the fleet 171 

size was another direction to achieve such objectives as summarized in Table 1. For instance, 172 

Jingjing et al. (2018) developed an optimization model and a queuing model to minimize the total 173 

container handling costs and to determine the optimal number of twin-40ft QCs used considering 174 

the random arrival of vessels. Earlier, Pjevcevic et al. (2017) optimized the number of used AGVs 175 

using a decision-making approach based on data envelopment analysis. Furthermore, Said and El-176 

Horbaty (2015) had developed a GA optimization model to minimize the container handling time 177 

by allocating a suitable number of QCs, YTs, and YCs to each of the arriving vessels. 178 

Multiobjective mathematical models were developed by Dkhil et al. (2013) to minimize the vessel 179 

turnaround time and to simultaneously minimize the number of AGVs utilized. A simulation 180 

model was developed by Azimi and Ghanbari (2011) to optimize the number of YTs used that 181 

minimizes the vessel turnaround time and increases the usage of cranes. Similarly, Kulatunga et 182 

al. (2011) determined through simulation the most effective number of YTs to minimize the 183 

handling process time considering the terminal layout. Bish et al. (2005) developed heuristic 184 
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algorithms to minimize the vessel turnaround time by allocating a suitable number of YTs. In 185 

addition, Koo et al. (2004) used the heuristic tabu search algorithm to determine the minimum 186 

number of YTs required and the travel route for each truck while satisfying all the transportation 187 

requirements within the planning horizon. 188 

 189 

Regarding the fleet size optimization models introduced in the literature, four major limitations 190 

were found. First, most of the studies (apart from Said and El-Horbaty 2015) focused only on 191 

determining either the optimal number of YTs or QCs to be utilized. Studies optimizing the number 192 

of YTs, for example, did not consider the effect of varying the number of QCs and YCs utilized 193 

on the vessel turnaround time. In fact, it is essential to examine the effect of varying the number 194 

of the three major handling equipment utilized as it could help in determining more cost-effective 195 

and productive solutions. Such improved solutions can further help in the better allocation of non-196 

utilized equipment – that are already available in the terminal – to other arriving vessels. Second, 197 

the majority of studies (apart from Jingjing et al. 2018, Pjevcevic et al. 2017) did not consider 198 

optimizing the handling costs in their model. Handling costs can be reduced while increasing the 199 

productivity to a certain limit after which it can increase as more equipment is utilized. Therefore, 200 

determining the optimal number of utilized equipment with the aim of minimizing the vessel 201 

turnaround time solely cannot guarantee cost-effectiveness. Third, some studies (Pjevcevic et al. 202 

2017; Said and El-Horbaty 2015; Kulatunga et al. 2011; Bish et al. 2005) considered deterministic 203 

cycle times for the handling equipment. In practice, the duration of the different work tasks 204 

performed by each handling equipment varies from one cycle to the other. Hence, neglecting the 205 

effect of such uncertainty on the duration would somehow result in impractical solutions. Finally, 206 

to the knowledge of the authors, no study was found in the literature that considered a double-207 
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cycling strategy for the handling equipment when optimizing the fleet size. Although determining 208 

the optimal number of utilized equipment can improve the productivity, yet incorporating the 209 

double-cycling strategy in the optimization process can result in further improvement and 210 

eventually a higher reduction in the vessel turnaround time as well as the total handling cost. 211 

 212 

To address the abovementioned limitations, this study proposes a multi-objective multi-level 213 

optimization model to minimize the vessel turnaround time and the total handling costs. The 214 

optimization is achieved by determining the best combination number of QCs, YCs, and YTs to 215 

be utilized simultaneously while serving a given vessel. Furthermore, the model considers 216 

employing a double-cycling strategy for the YTs to further improve the handling process 217 

productivity. The model also considers the uncertainty in the durations of the different work tasks 218 

performed by each handling equipment to add practicality. 219 

 220 

3. RESEARCH METHODOLOGY 221 

As shown in Figure 1, the methodology followed in this research started by conducting an 222 

extensive literature review to identify the major container terminal handling components and the 223 

previous studies conducted with respect to the different terminal operations as well as fleet size 224 

optimization. Consequently, a mathematical modelling for the main objectives to be optimized, 225 

i.e., the vessel turnaround time and the total handling cost, using both the traditional single-cycling 226 

and double-cycling strategies was carried out. This was followed by introducing the optimization 227 

model formulation to identify the decision variables, the objective functions, and the constraints. 228 

Based on that, the development of the multi-level optimization model using NSGA-II was then 229 

presented. The NSGA-II goes through three optimization stages, namely, initialization, fitness 230 
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evaluation, and generation evolution. The optimization takes place at each phase of the handling 231 

process individually to identify the set of the optimal or near-optimal solutions. Such a set 232 

represents different alternatives for fleet size combination, which maximizes the productivity and 233 

minimizes the unit cost at each phase. In the final optimization level, the outcomes of each phase 234 

are used as inputs to optimize the complete handling process. After the model development, the 235 

process of data collection to implement the model was discussed. The data include the durations 236 

of the different work tasks carried by each handling equipment as well as their hourly costs. Thus, 237 

the effect of using the double-cycling strategy was then tested against the single-cycling strategy. 238 

Such testing aims to demonstrate the capability of reducing both the vessel turnaround time and 239 

the total handling cost when using the double-cycling strategy. The model was then implemented 240 

on a real-life case study to demonstrate its capability in optimizing the fleet size. A comparison 241 

between using the traditional single-cycling and double-cycling strategies was conducted. In 242 

addition, another comparison was carried out between utilizing stochastic and deterministic 243 

durations. Since the results are always a set of non-dominated solutions, three approaches were 244 

adopted from the literature to select the best compromise solution. Finally, the conclusion derived 245 

from this study as well as the limitations and future recommendations are discussed. 246 

 247 

4. MODELLING OF HANDLING STRATEGIES 248 

This section presents the determination of the two main objectives to be optimized, i.e., the vessel 249 

turnaround time and the total handling cost, for both the traditional single-cycling and the double-250 

cycling strategies. In summary, it is necessary to first determine the productivities of each handling 251 

equipment used in the handling process to obtain the vessel turnaround time. This is achieved by 252 

identifying the different work tasks carried by each equipment to obtain the cycle time. In each 253 
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cycle, the QC, YT, and YC generally handle either two 20-foot containers simultaneously or one 254 

40-foot container. Thus, each cycle load by any of the handling equipment is defined as 2TEU. By 255 

estimating the cycle time and the cycle load, the productivity of each handling equipment can be 256 

determined. Since the productivity of each type of equipment differs, the system productivity is 257 

defined according to the minimum productivity. Consequently, the vessel turnaround time is 258 

determined by estimating the system productivity and the total number of loads to be handled. On 259 

the other hand, the total handling cost is determined based on the determined vessel turnaround 260 

time in hours together with the estimated hourly cost of the handling process. The following two 261 

subsections explain in detail the modelling of the discussed concept. Table 2 shows the notation 262 

for all the parameters used to model the objectives. 263 

 264 

4.1 Single-Cycling Strategy 265 

Usually in the traditional single-cycling strategy, the arriving loaded vessel is first unloaded 266 

completely after which the loading process begins as illustrated in Figure 2a. Hence, the vessel 267 

turnaround time can be considered starting with the unloading of the first imported container and 268 

ending with the loading of the last exported container. The complete process can be divided into 269 

two phases, namely, unloading (phase A) and loading (phase B), as depicted in Figure 3a. As the 270 

unloading process precedes the loading process, the YT cycle will start by moving empty from the 271 

SY toward the berth side. Simultaneously, the QC starts its cycle by its empty movement toward 272 

the targeted container to be unloaded from the vessel. Once the YT arrives at the berth, the QC 273 

loads the container onto the YT. Subsequently, the YT moves loaded toward the import SY to be 274 

discharged by the YC and then travels back unloaded to the berth side to make another cycle. 275 

Meanwhile, the YC moves the container into the lane at the SY. The other YTs repeat this process 276 



14 
 

until the last imported container is unloaded from the vessel. Consequently, the loading process 277 

starts by loading the containers on the YTs at the export SY by the YC, to be transported to the 278 

berth, where the QC loads the containers onto the vessel. In a manner similar to the unloading 279 

cycle, the QCs, YCs, and YTs will move back and forth repeating the loading cycle until the last 280 

exported container is loaded onto the vessel. 281 

 282 

The cycle time (in minutes) of each equipment type in each phase is considered as the summation 283 

of the durations of the different work tasks carried in each cycle as formulated in Equations (1-6). 284 

Considering that each cycle load is 2TEU as mentioned earlier, the hourly productivity (in 285 

TEUs/hr) for each equipment type in each phase is formulated as shown in Equations (7-12). 286 

Accordingly, the system productivity for each phase is determined based on the minimum 287 

productivity among the three equipment utilized as formulated in Equations 13 and 14. 288 

 289 

𝑄𝐶𝑈 = 𝑡𝑄1 + 𝑡𝑄2 + 𝑡𝑄3 + 𝑡𝑄4…………………………………………………………………...(1) 290 

𝑄𝐶𝐿 = 𝑡𝑄5 + 𝑡𝑄6 + 𝑡𝑄7 + 𝑡𝑄8…………………………………………………………………...(2)  291 

𝑌𝐶𝑈 = 𝑡𝑌1 + 𝑡𝑌2 + 𝑡𝑌3 + 𝑡𝑌4…………………………………………………………………....(3) 292 

𝑌𝐶𝐿 = 𝑡𝑌5 + 𝑡𝑌6 + 𝑡𝑌7 + 𝑡𝑌8………………………………………………………………….....(4) 293 

𝑌𝑇𝑆𝑈 = 𝑡𝑆1 + 𝑡𝑄4 + 𝑡𝑆2 + 𝑡𝑌1……...…………………………………………………………...(5) 294 

𝑌𝑇𝑆𝐿 = 𝑡𝑆3 + 𝑡𝑄5 + 𝑡𝑆4 + 𝑡𝑌8……...…………………………………………………………....(6) 295 

𝑃𝑋𝐴 =
120𝑋𝐴

𝑄𝐶𝑈
……...…………………………………………………………...............................(7) 296 

𝑃𝑋𝐵 =
120𝑋𝐵

𝑄𝐶𝐿
……...…………………………………………………………...............................(8) 297 

𝑃𝑌𝐴 =
120𝑌𝐴

𝑌𝐶𝑈
……...…………………………………………………………................................(9) 298 



15 
 

𝑃𝑌𝐵 =
120𝑌𝐵

𝑌𝐶𝐿
……...…………………………………………………………..............................(10) 299 

𝑃𝑍𝐴 =
120𝑍𝐴

𝑌𝑇𝑆𝑈
……...………………………………………………………….............................(11) 300 

𝑃𝑍𝐵 =
120𝑍𝐵

𝑌𝑇𝑆𝐿
……...………………………………………………………….............................(12) 301 

𝑃𝑉𝐴 = 𝑀𝑖𝑛(𝑃𝑋𝐴, 𝑃𝑌𝐴, 𝑃𝑍𝐴)……...………………………………………………………….....(13) 302 

𝑃𝑉𝐵 = 𝑀𝑖𝑛(𝑃𝑋𝐵, 𝑃𝑌𝐵, 𝑃𝑍𝐵)……..………………………………………………………….....(14) 303 

 304 

With respect to cost, the total hourly cost ($/hr) of each phase is based on the number of each 305 

equipment type utilized as well as the number of operators as formulated in Equations 15 and 16. 306 

Thus, the unit handling cost ($/TEU) of each phase can be determined by dividing the respective 307 

total hourly cost by the system productivity as formulated in Equations 17 and 18. 308 

 309 

𝐻𝐶𝐴 = 𝑋𝐴𝐻𝐶𝑋 + 𝑌𝐴𝐻𝐶𝑌 + 𝑍𝐴𝐻𝐶𝑍 + 𝑂𝐴𝐻𝐶𝑂……………………………………………….....(15) 310 

𝐻𝐶𝐵 = 𝑋𝐵𝐻𝐶𝑋 + 𝑌𝐵𝐻𝐶𝑌 + 𝑍𝐵𝐻𝐶𝑍 + 𝑂𝐵𝐻𝐶𝑂………...…………………………………….....(16) 311 

𝑈𝐶𝐴 =
𝐻𝐶𝐴

𝑃𝑉𝐴
………………………………………………...........................................................(17) 312 

𝑈𝐶𝐵 =
𝐻𝐶𝐵

𝑃𝑉𝐵
………………………………………………...........................................................(18) 313 

 314 

By estimating both the productivity of each phase and the number of loads to be handled in each 315 

phase, the vessel turnaround time using the single-cycling strategy (VTS) can be determined as 316 

depicted in Equation 19. Simultaneously, the total handling cost using the single-cycling strategy 317 

(TCS) can be determined by multiplying the number of loads to be handled in each phase by the 318 

respective unit cost as formulated in Equation 20. The VTS and TCS are considered as the main 319 

two objectives to be optimized from which the overall system productivity (PVS) and the unit cost 320 
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(UCS) using the single-cycling strategy can be also determined as presented in Equations 21 and 321 

22, respectively. 322 

 323 

𝑉𝑇𝑆 =
𝑁𝐴

𝑃𝑉𝐴
+

𝑁𝐵

𝑃𝑉𝐵
……...…………………………………...........................................................(19) 324 

𝑇𝐶𝑆 = 𝑁𝐴𝑈𝐶𝐴 + 𝑁𝐵𝑈𝐶𝐵…………………….……………………………………………….....(20) 325 

𝑃𝑉𝑆 =
𝑁𝐼+𝑁𝐸

𝑉𝑇𝑆
……...………………………………….................................................................(21) 326 

𝑈𝐶𝑆 =
𝑇𝐶𝑆

𝑁𝐼+𝑁𝐸
……...………………………………….................................................................(22) 327 

 328 

4.2 Double-Cycling Strategy 329 

To minimize the number of empty trips travelled by the YTs whether to be loaded or unloaded as 330 

in the single-cycling strategy, the main concept of the YT double-cycling strategy proposed in this 331 

study is to combine two QCs to work as a single unit with one crane discharging the vessel while 332 

the other loading it (Ahmed 2015). In other words, both QCs will serve the same YT where one 333 

will be unloading a container from the YT to be loaded onto the vessel and the other will be 334 

unloading a container from the vessel to be loaded onto the YT. Each YT will transport containers 335 

from the SY to the vessel and from the vessel to the SY in the same cycle. Just as with the QCs, 336 

two YCs will load and discharge the trucks at the SY. Accordingly, the first YC (i.e., YC1) starts 337 

the cycle by loading the YT at the export lane. The loaded YT then moves to the berth side to be 338 

discharged by the first QC (i.e., QC1). After discharging, the YT moves empty to the second QC 339 

(i.e., QC2) to be loaded. Next, it returns to the SY to unload the container at the import lane. Thus, 340 

the second YC (i.e., YC2) will discharge the YT, which will then depart empty to the export lane 341 

to be loaded by the first YC (i.e., YC1), thus starting a new cycle. Based on such complete cycle, 342 

the YT double-cycle time (YTD) will be as formulated in Equation 23. As shown in the equation, 343 
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two new variables are introduced that represent the travel time by the YT between QC1 and QC2 344 

(tS5) and between YC1 and YC2 (tS6). Furthermore, the equation does not include the empty travel 345 

times between the SY and QC zones as both unloading and loading processes are performed in the 346 

same cycle. 347 

  348 

𝑌𝑇𝐷 = 𝑡𝑌8 + 𝑡𝑆3 + 𝑡𝑄5 + 𝑡𝑆5 + 𝑡𝑄4 + 𝑡𝑆2 + 𝑡𝑌1 + 𝑡𝑆6…………………………………...……(26) 349 

 350 

Depending on the vessel size, in the double-cycling strategy, at least a pair of QCs and a pair of 351 

YCs are used and each pair acts as a single unit. Practically speaking, the double-cycling strategy 352 

cannot start immediately once a vessel arrives at the terminal. Since the arriving vessel will be 353 

usually loaded with imported containers, the exported containers will require some space before 354 

being loaded onto the vessel. Thus, the double-cycling strategy starts as a normal unloading single-355 

cycling strategy for a certain time after which the double-cycling strategy will commence ending 356 

with a normal loading single-cycling strategy as depicted in Figure 2b. It is worth mentioning that 357 

based on experts’ opinions, QCs should not cross each other and the clearance between any two 358 

adjacent QCs should be at least 40 ft (i.e., two bays). In this study, to add more safety margin, the 359 

minimum clearance between two adjacent QCs will be assumed to be three bays.  360 

 361 

Three scenarios can be expected in the double-cycling strategy. The first one is when the number 362 

of containers to be imported is equal to that of the exported. The second is when the number of 363 

containers to be imported exceeds the number of containers to be exported, whereas the third 364 

scenario is the vice versa. In the three scenarios, the number of imported and exported containers 365 

to be handled in the double-cycling phase is modelled to be equal. If they are not equal, then the 366 
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phase is not considered as a double-cycle. To explain the handling process in each of these three 367 

scenarios, let us assume that a single pair of QCs and YCs is used. Considering the first scenario, 368 

as shown in Figure 2b and depicted by a timeline in Figure 3b(i), the process begins with a single-369 

cycle unloading mode (phase A) until the first three bays of the imported containers are unloaded 370 

by QC1 from the vessel and loaded at the import SY by YC2. Now, by having three bays’ space 371 

available in the vessel, the double-cycling (phase C) can begin in which QC1 will change from 372 

unloading the imported containers to loading the exported containers on the vessel starting from 373 

the first bay to the last bay. Simultaneously, QC2 will begin unloading the imported containers 374 

from the fourth bay to the last bay. On the SY side, the YC2 will continue unloading the imported 375 

containers while YC1 will start loading the exported containers. Having more than one YT, each 376 

YT will make the double-cycling route as explained earlier (i.e., from YC1 to QC1 to QC2 to YC2 377 

and then back to YC1 to start a new double-cycle). The QCs, YTs, and YCs will continue repeating 378 

their respective cycles until the last imported container is unloaded and transported to the import 379 

SY. At this point, the fleet size will be reduced to one QC (i.e., QC1) and one YC (i.e., YC1) to 380 

complete loading the remaining exported containers on the vessel as a normal single-cycle loading 381 

mode (phase B). 382 

 383 

In the second scenario, the double-cycling phase will be delayed until an additional number of 384 

imported loads (NA’) are unloaded. Thus, as shown in Figure 3b(ii), an additional time is added in 385 

phase A to represent the single-cycle unloading of NA’. This is done for a reason to ensure that no 386 

conflict occurs in the double-cycling phase due to insufficient space on the vessel. The third 387 

scenario, where the number of exported containers is more than that of the imported, is similar to 388 

the first scenario, except that there will be an additional number of exported loads (NB’) to be 389 
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loaded toward the end of the process. Thus, as shown in Figure 3b(iii), there is an additional time 390 

added to phase B to represent the single-cycle loading of NB’. 391 

 392 

Irrespective of the double-cycling scenario that is applied, the cycle times, productivities, handling 393 

costs, and unit costs formulated in Equations (1-18) remain the same in phases A and B as they 394 

represent single-cycling. In phase C, the unloading and loading cycle times of the QCs and YCs 395 

also remain the same as formulated in Equations (1-4). However, in this double-cycle phase, each 396 

pair of QCs and YCs are utilized as a single unit to complete the loading and unloading process of 397 

one load each (i.e., 2TEU loaded and 2TEU unloaded) in one cycle. Accordingly, the productivities 398 

of QCs and YCs in phase C are determined as formulated in Equations 27 and 28, respectively. 399 

Using the YT double-cycle time in Equation 26, the productivity of YTs in phase C can be 400 

determined as formulated in Equation 29. As shown in the equation, the productivity is multiplied 401 

by two as two loads are handled in each cycle. To determine the system productivity and unit cost 402 

of phase C, the same concept applied in Equations (13-18) is repeated as formulated in Equations 403 

(30-32). 404 

 405 

𝑃𝑋𝐶 =
120𝑋𝐶

𝑄𝐶𝑈
+

120𝑋𝐶

𝑄𝐶𝐿
.….…………………………………………………….............................(27) 406 

𝑃𝑌𝐶 =
120𝑌𝐶

𝑌𝐶𝑈
+

120𝑌𝐶

𝑌𝐶𝐿
……...………………………………………………………….................(28) 407 

𝑃𝑍𝐶 =
2×120𝑍𝐶

𝑌𝑇𝐷
…...…………………………………………………………..............................(29) 408 

𝑃𝑉𝐶 = 𝑀𝑖𝑛(𝑃𝑋𝐶 , 𝑃𝑌𝐶 , 𝑃𝑍𝐶)……...………………………………………………………….....(30) 409 

𝐻𝐶𝐶 = 2𝑋𝐶𝐻𝐶𝑋 + 2𝑌𝐶𝐻𝐶𝑌 + 𝑍𝐶𝐻𝐶𝑍 + 𝑂𝐶𝐻𝐶𝑂…......……………………………………......(31) 410 

𝑈𝐶𝐶 =
𝐻𝐶𝐶

𝑃𝑉𝐶
………………………………………………...........................................................(32) 411 
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To generalize modelling the vessel turnaround time and the total handling cost using any of the 412 

three above-discussed scenarios, the additional numbers of loads to be imported (NA’) and exported 413 

(NB’) are first formulated as shown in Equations (33-36).  414 

 415 

𝑁𝐴′ = 0                         𝑖𝑓 𝑁𝐼 = 𝑁𝐸  𝑜𝑟 𝑁𝐼 < 𝑁𝐸………………….………………………...........(33) 416 

𝑁𝐴′ = 𝑁𝐼 − 𝑁𝐸             𝑖𝑓 𝑁𝐼 > 𝑁𝐸…………………………………………………………........(34) 417 

𝑁𝐵′ = 0                         𝑖𝑓 𝑁𝐼 = 𝑁𝐸  𝑜𝑟 𝑁𝐼 > 𝑁𝐸………………….………………………...........(35) 418 

𝑁𝐵′ = 𝑁𝐸 − 𝑁𝐼            𝑖𝑓 𝑁𝐼 < 𝑁𝐸…………………………………………………………........(36) 419 

 420 

Thus, the vessel turnaround time, the total handling cost, the overall system productivity, and the 421 

overall system unit cost using the double-cycling strategy are formulated as shown in Equations 422 

(37-40). 423 

 424 

𝑉𝑇𝐷 =
𝑁𝐴+𝑁𝐴′

𝑃𝑉𝐴
+

𝑁𝐶

𝑃𝑉𝐶
+

𝑁𝐵+𝑁𝐵′

𝑃𝑉𝐵
…….……………………...........................................................(37) 425 

𝑇𝐶𝐷 = (𝑁𝐴 + 𝑁𝐴′)𝑈𝐶𝐴 + 𝑁𝐶𝑈𝐶𝐶 + (𝑁𝐵 + 𝑁𝐵′)𝑈𝐶𝐵……………………………………….....(38) 426 

𝑃𝑉𝐷 =
𝑁𝐼+𝐸

𝑉𝑇𝐷
……...…………………………………...................................................................(39) 427 

𝑈𝐶𝐷 =
𝑇𝐶𝐷

𝑁𝐼+𝑁𝐸
……...…………………………………................................................................(40) 428 

 429 

5. OPTIMIZATION MODEL FORMULATION 430 

Before the development of the optimization model, the decision variables, the objective functions, 431 

and the constraints should be identified and formulated for both handling strategies. As discussed 432 

in details in the next section, the optimization process will be conducted on two levels. The first 433 
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level will optimize each handling phase individually. Based on the non-dominated solutions 434 

obtained from the first level of optimization, the second level will optimize all phases 435 

simultaneously. The complete model formulation of each strategy and each optimization level is 436 

summarized in Table 3. 437 

 438 

5.1 Decision Variables 439 

Employing the single-cycling strategy, six decision variables that have a direct effect on the 440 

optimization objectives will be considered in the first level of optimization. Such decision 441 

variables represent the number of resources (i.e. handling equipment) utilized in phase A (i.e., XA, 442 

YA, ZA) and phase B (i.e., XB, YB, and ZB). The first level of optimization will result in a number 443 

of non-dominated solutions for each phase. Each non-dominated solution represents an optimal or 444 

near-optimal combination of the resources utilized for each phase. As there are only two phases in 445 

the single-cycling strategy, two decision variables will be considered for the second level of 446 

optimization. The first and second decision variables will represent the resource combinations 447 

optimized in the first level of optimization for phases A and B, respectively. Such resource 448 

combinations are defined by integer numbers. For instance, assuming that in the first level of 449 

optimization, 50 and 70 non-dominated solutions were obtained for phases A and B, respectively. 450 

Thus, the first decision variable of the second level of optimization will range from 1 to 50, and 451 

the second will range from 1 to 70. The same concept is applied for the formulation of the double-452 

cycling strategy optimization model. In the first optimization level, there will be nine decision 453 

variables (three for each of phases A, B, and C). However, in the second optimization level, three 454 

decision variables will be considered representing the resource combinations optimized in the first 455 

level of optimization for the three phases.  456 
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5.2 Objective Functions and Constraints 457 

As mentioned earlier, the aim of the current model is to minimize both the vessel turnaround time 458 

(VT) and the total handling cost (TC). To achieve this aim, the productivities and the costs incurred 459 

in each handling phase will be optimized first. As shown in Table 3, in the first optimization level, 460 

the main two objectives to be optimized will be the system productivity and the system unit cost 461 

in each handling phase; the former is to be maximized, whereas the latter is to be minimized. In 462 

the second optimization level, all the handling phases will be optimized simultaneously using the 463 

outcomes of the first optimization level to minimize both the VT and the TC. 464 

 465 

Usually in any container terminal, the availability of QCs, YCs, and YTs is limited due to space 466 

constraints. Moreover, the traffic congestion caused due to the simultaneous use of large number 467 

of YTs can affect the productivity and hence increase the costs. In addition, in practice, sometimes 468 

more than one vessel can be served at the same time, which requires an appropriate planning for 469 

assigning the number of QCs, YCs, and YTs to each vessel. Consequently, the constraints set for 470 

the first optimization level will be such that the number of utilized resources in each handling 471 

phase does not exceed an assigned maximum number set by the terminal planner as shown in Table 472 

3. On the other hand, the decision variables of the second optimization level depend on the number 473 

of non-dominated solutions that were obtained from the first optimization level in each phase as 474 

discussed earlier. Thus, the constraints set for the second optimization level will be such that the 475 

maximum number of non-dominated solutions obtained from the first optimization level is not 476 

exceeded. 477 

 478 

 479 
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6. MULTI-LEVEL OPTIMIZATION MODEL DEVELOPMENT 480 

Two fleet size optimization models are developed using the NSGA-II technique, one for the single-481 

cycling strategy and the other for the double-cycling strategy. The main aim of both models is to 482 

identify a set of optimal or near-optimal resource combinations (solutions) to be utilized in each 483 

phase that will minimize both the objectives of VT and TC simultaneously. Such a set of optimal 484 

or near-optimal solutions is known as the Pareto-optimal front in which they are non-dominated, 485 

i.e., no solution is better than the other with respect to both objectives.  486 

 487 

Since the targeted two main objectives to be minimized are the VT and the TC, the simultaneous 488 

optimization of all the handling phases could have been performed on a single level. However, 489 

doing so would significantly increase the search space for the NSGA-II resulting in a possibility 490 

of losing the optimal or near-optimal solutions and a higher convergence rate. For instance, 491 

considering the double-cycling strategy, let us assume that the maximum number of QCs, YCs, 492 

and YTs assigned for phases A, B, and C are (10, 25, 20), (5, 30, 10), and (10, 25, 20), respectively. 493 

In that manner, the search space will consist of 37.5 billion possible resource combinations for all 494 

the three phases together. However, if each phase would be optimized individually as a first 495 

optimization level, the search space for phases A, B, and C will consist of 5000, 1500, and 5000 496 

possible resource combinations, respectively. Such significant reduction in the search space can 497 

help in efficiently determining the optimal or near-optimal resource combinations for each phase. 498 

Accordingly, the outcomes of the first optimization level can be used as input to the second 499 

optimization level to support the findings of the optimal or near-optimal resource combinations 500 

for the three phases together with a smaller search space. For example, let us assume that the 501 

number of non-dominated solutions obtained from the first optimization level for phases A, B, and 502 
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C are 37, 26, and 41, respectively. Thus, the search space for the second optimization level will 503 

consist of 39,442 possible resource combinations for the three phases together. For that reason, it 504 

is opted in this study to use the discussed multi-level optimization approach as illustrated in Figure 505 

4. As shown in the figure, each phase is first optimized separately to determine the optimal or near-506 

optimal resource combinations that maximize the productivity and minimize the unit cost 507 

simultaneously. Such optimized resource combinations are then randomly integrated and used as 508 

input to the second optimization level to determine the optimal or near-optimal integrated resource 509 

combinations of all the handling phases that minimize both the VT and TC simultaneously. 510 

 511 

For any of the optimization levels, the NSGA-II procedure passes through three stages, namely, 512 

(1) population initialization, (2) fitness evaluation, and (3) generation evolution. Figure 5 513 

illustrates the detailed procedure of these three stages for the optimization of handling phase A as 514 

an example. Beginning with the first stage, the algorithm first identifies the handling phase and 515 

the genetic algorithm parameters. The handling phase parameters include the constraints 516 

represented by the maximum number of QCs, YCs, and YTs (i.e., xA, yA, and zA, respectively) 517 

assigned to such phase as discussed earlier in Table 3. On the other hand, the genetic algorithm 518 

parameters include the defined population size (P), the number of generations (G), the crossover 519 

rate, and the mutation rate. Consequently, based on the population size defined, the algorithm 520 

generates random resource combinations (solutions) by altering the number of QCs, YCs, and YTs. 521 

Through this approach, an initial set of parent population for the first generation (PR1) is created. 522 

Such a set evolves later through successive generations to obtain the optimal or near-optimal 523 

solutions that maximize the productivity and minimize the unit cost.    524 

 525 



25 
 

In the second stage, for each generated solution, both the objective values of PVA and UCA are 526 

determined using Equations 13 and 17, respectively. The determined objective values represent 527 

the fitness of the resource combinations generated for handling phase A by each solution compared 528 

with each other in the generation evolution stage. In the third stage, the non-domination rank and 529 

the crowding distance for each of the solutions generated in the parent population (PRg) are 530 

determined. Consequently, a mating population (MTg) is created by applying the crowded 531 

tournament selection. Then, a new child population (CHg) is created by applying crossover on the 532 

MTg after which mutation is applied on the created CHg. The fitness of the CHg is then evaluated 533 

as discussed in the second stage (i.e., fitness evaluation stage). At this point, two sets of populations 534 

are available, PRg and CHg, each of size P. Both PRg and CHg are combined to generate a new set 535 

of integrated population (INg) of size 2P. Next, the non-domination rank and the crowding distance 536 

for each of the solutions in the INg are determined. Accordingly, the solutions in the INg are ranked 537 

using the fast non-dominated sorting operation. Based on such ranking, the top P solutions in the 538 

INg are selected to be considered as the parent population of the next generation (PRg+1). This 539 

process is repeated until the defined number of generations (G) is reached. 540 

 541 

The expected output of this optimization process is a set of optimized P solutions that are divided 542 

into several fronts, which are ranked from 1 to F based on the non-domination concept. As such, 543 

all the solutions ranked into front 1 are considered as non-dominated among the full population 544 

size and are known as the Pareto-optimal front. These non-dominated solutions comprise the final 545 

result in which each solution represents a unique resource combination of QCs, YCs, and YTs in 546 

phase A with a maximized productivity and a minimized unit cost. As a reminder, none of these 547 
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solutions are better than the other with respect to both objectives simultaneously. Finally, the same 548 

above-discussed NSGA-II optimization process is repeated for the other optimization levels. 549 

 550 

7. DATA COLLECTION 551 

To implement the developed models, different types of data were collected from a container 552 

terminal located in Tangier, Morocco, and operated by APM Terminals, which is a worldwide 553 

container terminal company based in the Netherlands. The terminal has a strategic location in the 554 

southern straits of Gibraltar through which more than 200 cargo vessels pass daily carrying global 555 

trade between Asia, Europe, Africa, and the Americas. It is considered as the third busiest container 556 

terminal port in Africa with direct services to 170 ports in 67 countries around the world and a 557 

capacity of around 1.8 million TEUs/year. The major types of data collected were the actual times 558 

of the different work tasks performed by each container handling equipment as well as their costs 559 

to be considered as an input for the developed models.  560 

 561 

Starting with the times, a breakdown of the work tasks that make a complete cycle of each 562 

equipment individually was conducted. For instance, the QC unloading cycle was divided into (1) 563 

unloaded forward move toward the vessel, (2) container lifting from the vessel, (3) loaded 564 

backward move toward the YT, and (4) container loading on the YT. These four work tasks match 565 

the components of Equation 1 discussed earlier. The same concept was applied for the QC loading 566 

cycle as well as for the other two equipment’s cycles (i.e., YC and YT). Accordingly, over several 567 

visits to the terminal, the times of the different work tasks were recorded using a stopwatch for a 568 

vessel with a capacity of 16,000 TEUs. The time of each work task is generally inconstant and 569 

changes from one cycle to another. Such changes occur due to several reasons such as the container 570 
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location on the vessel or in the SY that varies in each cycle (different row, above hatch, under 571 

hatch, etc.). Human factor is another reason where the proficiency and consistency of equipment 572 

operators are considered. Furthermore, the idle times by any of the handling equipment were 573 

considered in the time recording process. To take into account such variations, the time recording 574 

was conducted more than once for each work task (i.e., over several repeated cycles). Having a set 575 

of different times for the same work task, the EasyFit® (Schittkowski 2002) distribution fitting 576 

software was used to fit the data. Table 4 summarizes the distribution type and the mean and 577 

standard deviation for each work task time for the different equipment and their respective cycle. 578 

The times for the YT loading and unloading work tasks carried whether by the QC or the YC are 579 

not presented in the table for the YT cycles as these work tasks are common and were already 580 

presented in the QC and YC cycles. Moreover, it is worth to mention that the visited terminal 581 

applies the traditional YT single-cycling strategy. As such, two additional work tasks were 582 

considered for the YT double-cycling strategy, the YT travel from QC1 to QC2 and from YC2 to 583 

YC1, i.e., tS5 and tS6, respectively. The times of these two additional work tasks were estimated 584 

based on the distance travelled and the speed of YT and were considered as deterministic as 585 

presented in Table 4. Finally, some work tasks were not considered, such as the movements of the 586 

QCs or the YCs from one bay to another due to their minor values compared with the total cycle 587 

time. 588 

 589 

Based on the collected durations of the different work tasks, the productivity of each equipment 590 

and its respective cycle were determined using Equations (7-12) and (27-29). To incorporate 591 

uncertainty into the productivities, the stochastic productivities were further determined using the 592 
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Monte-Carlo simulation technique. Accordingly, the distribution type and the mean, and standard 593 

deviation of the different productivities are summarized in Table 5. 594 

 595 

Several cost items contribute to the total cost of the container handling process at the terminal, 596 

such as tug services, wharfage charges, berth hire, and the equipment used in handling. Since this 597 

study focuses on only the handling process, the costs of the main resources used to load or unload 598 

a vessel are considered (i.e., the QCs, YCs, and YTs and the operators). For confidentiality reasons, 599 

the financial department at the terminal provided the authors only with an approximate hourly 600 

ownership and operating costs for the handling components without the operators. These hourly 601 

costs were US$105, US$87, and US$60 for a single QC, YC, and YT, respectively. An additional 602 

25% to these costs will be considered in this study to account for the operators’ costs. It should be 603 

pointed out that the developed models are flexible to input different costs based on the terminal 604 

planner estimate considering the different geographical locations, time factors, and any other 605 

unaccounted costs that may contribute to the handling cost. 606 

 607 

8. HANDLING STRATEGIES TESTING 608 

Before implementing the developed optimization models, it is necessary to investigate the validity 609 

of employing the double-cycling strategy to provide reduction in both the VT and the TC compared 610 

with the single-cycling strategy. Thus, the modelling of both handling strategies discussed earlier 611 

is applied on three hypothetical case studies. For the three case studies, a vessel with a capacity of 612 

18,000 TEUs is assumed to be served. Moreover, it is assumed that the number of loads to be 613 

imported (NI) and exported (NE) are equal. Hence, for the single-cycling strategy, both NA and NB 614 

are equal to 18,000 TEUs, resulting in a total of 36,000 TEUs to be handled during the entire 615 
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process. For the double-cycling strategy, NA, NB, and NC will be equal to 2400, 2400, and 31,200 616 

TEUs, respectively. Since NI is equal to NE, both NA’ and NB’ will be equal to zero. To ensure fair 617 

and consistent comparison between both strategies, the equipment productivities shown in Table 618 

5 will be assumed to be deterministic. Furthermore, the number of utilized equipment in each phase 619 

of each strategy in each case study will be assumed to be equal. This is to emphasize on illustrating 620 

the effect of employing the different handling strategies rather than the effect of utilizing different 621 

fleet sizes. As a reminder, the number of utilized QCs and YCs in phase C of the double-cycling 622 

strategy (i.e., XC and YC, respectively) is defined as a pair of units. 623 

 624 

Table 6 shows the results of using both strategies on the three case studies. The table shows the 625 

number of utilized equipment in each phase and their respective hourly productivity and unit cost. 626 

By applying the modelling equations of both strategies, the last four columns of the table present 627 

the VT, TC, PV, and UC for each strategy in each case study. It can be observed from the results 628 

that employing the double-cycling strategy provided a significant reduction in both the VT and the 629 

TC. Such reduction varies from 23 to 99 hrs for the VT (i.e., a reduction of 17%–22%) compared 630 

with the single-cycling strategy, given that the same number of equipment were utilized in both 631 

strategies. The same improvement trend is noticed when comparing the TC of both strategies 632 

where the cost savings varied from US$ 68,705 to 92,186. Furthermore, the productivity 633 

improvement reached up to 28% when employing the double-cycling strategy. These results 634 

validate the potential of accelerating the handling process while minimizing the costs 635 

simultaneously when applying the double-cycling strategy. 636 

 637 

 638 
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9. OPTIMIZATION MODEL IMPLEMENTATION 639 

Three implementations were conducted on a real-life case study to demonstrate the capabilities of 640 

the developed optimization models in minimizing both the VT and TC. The first two 641 

implementations considered the optimization of each handling strategy using the stochastic 642 

productivities presented in Table 5. The third implementation considered optimizing the double-643 

cycling strategy using deterministic productivities for comparison purposes. The case study 644 

considered is the 16,000 TEUs vessel from which the required data were collected as explained 645 

earlier. In the case study, NI was equal to NE (i.e., scenario 1). In any of the three implementations, 646 

three types of inputs were required. The first type of inputs are the equipment’s productivities and 647 

the hourly costs collected. The second type of inputs consist of the genetic algorithm parameters 648 

(i.e., population size, number of generations, crossover rate, and mutation rate) for each 649 

optimization level as presented in Table 7. The final type of inputs are the constraints of each 650 

optimization level as presented in Table 7. As shown in the table, the constraints of the second 651 

optimization level depend on the number of non-dominated solutions obtained from each phase in 652 

the first optimization level. On the other hand, the output of each implementation will be a set of 653 

non-dominated solutions (Pareto-optimal front) that minimizes both the VT and TC. Each non-654 

dominated solution determines the optimal or near-optimal assigned number of utilized equipment 655 

in each phase.  656 

 657 

9.1 Single-Cycling Vs Double-Cycling 658 

The implementation conducted using the stochastic productivities resulted in 12 and 18 non-659 

dominated solutions for the single- and double-cycling strategies, respectively. The assigned 660 

number of equipment to be utilized in each phase for each solution and their corresponding 661 
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optimized objectives for the single- and double-cycling strategies are shown in Tables 8 and 9, 662 

respectively. These results are also plotted in Figure 6 for a better illustration of the Pareto-optimal 663 

front of each strategy. At first sight of the figure, the optimization of both strategies resulted into 664 

almost a similar range of vessel turnaround times (approximately between 105 and 130 hrs) and 665 

system productivities (approximately between 250 and 300 TEUs/hr). This demonstrates the 666 

capability of the optimization model in minimizing the VT or maximizing the PV using the single-667 

cycling strategy to a level almost similar to that of the double-cycling strategy. This is despite the 668 

fact that the latter strategy is more efficient than the former as tested earlier. To prove such 669 

efficiency, on a closer look, it is clear that employing the double-cycling strategy resulted in a 670 

significant cost reduction for almost similar vessel turnaround times compared with the single-671 

cycling strategy. This can be explained in the view of using less number of equipment in each 672 

phase when employing the double-cycling strategy to achieve similar vessel turnaround times to 673 

those of the single-cycling strategy. For example, the non-dominated solution numbers 11 and 18 674 

of the single- and double-cycling strategies, respectively (shown in Tables 8 and 9, respectively), 675 

resulted in an identical VT of 127.8 hrs. For these two solutions, the average numbers of QCs, 676 

YCs, and YTs utilized among the phases of the single-cycling strategy were 5, 5, and 19, 677 

respectively. On the other hand, the approximate average numbers of QCs, YCs, and YTs utilized 678 

among the phases of the double-cycling strategy were 4, 4, and 10, respectively. This implies that 679 

employing the double-cycling strategy reduced the fleet size by one QC, one YC, and nine YTs 680 

while achieving the same VT. Thus, a cost saving of US$ 70,924.3 was achieved. Another merit 681 

of reducing the fleet size using the double-cycling strategy is in having the opportunity to assign 682 

the additional non-utilized equipment to another arriving vessel while serving the existing vessel. 683 

 684 
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9.2 Stochastic Vs Deterministic 685 

The third implementation conducted using the deterministic productivities for the double-cycling 686 

strategy resulted in 20 non-dominated solutions as shown in Table 10. As such, the Pareto-optimal 687 

front comparison between using the stochastic and the deterministic productivities for the double-688 

cycling strategy is depicted in Figure 7. As shown in the figure, it can be observed that using the 689 

deterministic productivities resulted in some non-dominated solutions with lower vessel 690 

turnaround times or higher productivities than those obtained using the stochastic productivities. 691 

This is due to the fact that the use of deterministic productivities does not consider the probable 692 

worst-case scenarios that may arise in a certain cycle when the productivities of all or some of the 693 

equipment utilized are less than the average. On the other hand, the deterministic productivities 694 

also neglect the probable best-case scenarios that could occur when the equipment’s productivities 695 

are more than average. This can be observed by having lower total handling costs using the 696 

stochastic productivities. For instance, solution number 1 using the stochastic productivities and 697 

solution number 8 using the deterministic productivities shown in Tables 9 and 10, respectively, 698 

provide the same VT of 105.2 hrs. Although the average number of utilized equipment among the 699 

three phases using the deterministic productivities is less than that in the stochastic productivities 700 

for these two solutions, the latter provides a lower total handling cost. This is because in phase C, 701 

the number of utilized equipment was more when using the deterministic productivities. In fact, 702 

phase C is the most critical as this is where the double-cycling takes place and hence the majority 703 

of loads are handled. Therefore, the stochastic productivities considered in phase C for solution 1 704 

shown in Table 9 were higher than the average productivities considered in phase C for solution 8 705 

shown in Table 10.  706 

 707 
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The fact of having some solutions with a lower VT using the deterministic productivities and a 708 

lower TC using the stochastic productivities cannot be generalized. After all, the Monte-Carlo 709 

simulation is a random process where a set of productivity values is available for each handling 710 

equipment and in each run a different value is considered. However, using the stochastic 711 

productivities can be deemed as a more practical option to consider real-life uncertainties. 712 

 713 

9.3 Computational Efficiency 714 

The three implementations were run on a laptop with a processor speed of 2.60 GHz and 6 GB 715 

RAM. The running time for implementation 1, 2, and 3 was 28 seconds, 73 seconds, and 46 716 

seconds, respectively. To examine the computational efficiency of applying multi-level 717 

optimization, the three implementations were run again, however, as a single level optimization. 718 

As discussed before, the search space of applying single level optimization to our problem is huge. 719 

Accordingly, the population size and number of generations were increased and assumed to be 720 

5,000 and 10,000, respectively, for the three implementations. The resulted Pareto-optimal fronts 721 

of the three implementations using the single level optimization were dominated by their 722 

counterparts using the multi-level optimization. Moreover, the number of non-dominated solutions 723 

obtained in the three implementations were less due to the high convergence rate. This is despite 724 

the fact that the population size and number of generations were increased. In other words, due to 725 

the significant large search space, the population size and number of generations still need to be 726 

increased to avoid being trapped in local optima. Finally, the running time for implementation 1, 727 

2, and 3 using the single level optimization was 719 seconds, 1317 seconds, and 904 seconds, 728 

respectively. This demonstration shows the better and faster performance of the optimization 729 

process when it is carried out on multi-level.      730 
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9.4 Best Compromise Solution Selection 731 

Since the results of the developed optimization models are a set of non-dominated solutions, the 732 

decision-maker has several options to select the solution that will satisfy his/her preference. Should 733 

the decision-maker’s ultimate preference be minimizing TC, then the solution with the minimum 734 

cost among the non-dominated solutions set shall be selected. The same concept is applied if the 735 

decision-maker’s main concern is minimizing the VT regardless of the cost. Besides these two 736 

extreme options, a third option is available that provides the best balance between the two 737 

conflicting objectives of VT and TC. This option will be known as the best compromise solution 738 

(BCS). Several approaches are available in the literature to rank a set of different non-dominated 739 

alternatives (or solutions). Three of these approaches were used in this study, i.e., the technique of 740 

order preference by similarity to ideal solution (TOPSIS), the decision index, and the fuzzy 741 

approach. 742 

 743 

TOPSIS, which was first developed by Hwang and Yoon (1981), ranks a set of alternatives based 744 

on the concept that the best alternative would have the shortest and longest geometric distances 745 

from the positive and negative ideal solutions, respectively. Hence, for each alternative, a “T-746 

Score” value is determined and the ranking is performed on the basis of this value from the largest 747 

to the smallest. The decision index approach that was introduced by Zayed and Halpin (2001) is 748 

based on the difference between the unit costs of different solutions and the differences in 749 

productivity. If a solution has a unit cost difference that is less than the productivity difference 750 

referenced to the lowest unit cost solution, this solution is better than the lowest unit cost solution 751 

and vice versa. In this manner, for each solution, a “D-Score” value is calculated and accordingly 752 

the solutions are ranked based on such value from the smallest to the largest. Finally, the fuzzy 753 
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approach was proposed by Dhillon et al. (1993) is based on first determining a normalized 754 

membership function value for each objective of each solution and then adding them up to obtain 755 

an “F-Score” for each solution. The normalized membership function value measures the relative 756 

deviation of the value of each objective in each solution from the maximum objective value among 757 

all the solutions. Since our problem is to minimize both the VT and TC, the less the value of any 758 

of these two objectives is, the more their corresponding normalized membership function will be 759 

and hence the higher the “F-Score” of the solution will be. Therefore, similar to the TOPSIS 760 

approach, the solutions are ranked from the largest to the smallest based on the “F-Score” value. 761 

 762 

The above-discussed three approaches were applied on the three implementations carried and the 763 

score results are presented in Table 11. Accordingly, as shown in the table, the ranking of the non-764 

dominated solution set of each implementation was determined. It is obvious that the three 765 

approaches provide almost similar ranking. For the stochastic and deterministic double-cycling 766 

implementations, the three approaches agree on the first ranked solutions (BCSs), i.e., solutions 9 767 

and 11, respectively. However, for the stochastic single-cycling implementation, both the TOPSIS 768 

and fuzzy approaches consider that solution 6 is the BCS, whereas the decision index approach 769 

considers solution 8 as the BCS. Finally, it is obvious that the BCS will always somehow come in 770 

a mid-point to satisfy both objectives should the non-dominated solutions be uniformly distributed 771 

as shown in Figures 6 and 7. 772 

 773 

10. MODEL LIMITATIONS 774 

Although promising results were achieved by the developed optimization model, there is room for 775 

further improvement. For instance, the developed optimization model is limited only to the 776 
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allocation of the fleet size required for serving one vessel at a time. Practically speaking, it may 777 

happen that more than one vessel with different capacities arrives simultaneously or at different 778 

overlapped times to the terminal. In such cases, the model should be extended to consider the 779 

allocation of the handling equipment to serve different vessels arriving simultaneously or at 780 

overlapped times. Moreover, to add practicality and consider more uncertainty in the model, 781 

additional work tasks should be included that consider the breakdown, repair, and/or periodical 782 

minor maintenance for the equipment used in the handling process. 783 

 784 

11. CONCLUSIONS 785 

A double-cycling strategy was introduced in this study for improving the container handling 786 

productivity. The modelling of the VT and TC was accordingly presented using both the traditional 787 

single-cycling and double-cycling strategies. Consequently, for both strategies, a multi-level fleet 788 

size optimization model for container terminal handling using the NSGA-II was developed. The 789 

optimization model aimed at optimizing the number of QCs, YCs, and YTs used such that both 790 

the VT and TC are minimized. The stochastic productivities were considered for the different 791 

utilized handling equipment to mimic the real-life situation by considering uncertainty.  792 

 793 

Both handling strategies were applied on three hypothetical case studies, and it was found that the 794 

double-cycling strategy provided up to 22% reduction in both the VT and TC and up to 28% 795 

improvement in PV. The implementation of the optimization model disclosed that the use of the 796 

double-cycling strategy significantly saves cost for almost similar VT compared with the single-797 

cycling strategy. This is due to the less number of handling equipment utilized, particularly the 798 

YTs, when adopting the double-cycling strategy to achieve VT comparable to that of the single-799 
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cycling strategy. This demonstrates the potential of the double-cycling strategy in providing an 800 

opportunity to use the additional unneeded handling equipment available at the terminal to serve 801 

other arriving vessel(s) simultaneously. Apart from the handling strategy used, the results of the 802 

model implementation using the deterministic productivities revealed how considering the 803 

uncertainty in the equipment’s productivities provides more realistic VT and TC because both the 804 

best- and worst-case scenarios are considered throughout the optimization process. Finally, to 805 

select the BCS among the set of obtained non-dominated solutions, the TOPSIS, the decision 806 

index, and the fuzzy approaches adopted from the literature were applied to rank the different 807 

feasible alternatives. 808 

 809 
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Table 1: Fleet Size Optimization Literature Summary 

Citation Technique Used 

Vessel 

Turnaround 

Minimized 

Handling 

Cost 

Minimized 

Number 

of 

Yard 

Trucks 

Optimized 

Number 

of 

Quay 

Cranes 

Optimized 

Number 

of 

Yard 

Cranes 

Optimized 

Uncertainty 

Considered 

Double-

Cycling 

Strategy 

Jingjing et al. (2018) Queueing Modelling Yes Yes No Yes No Yes No 

Pjevcevic et al. (2017) Data Envelopment Analysis Yes Yes Yes No No No No 

Said and El-Horbaty (2015) Genetic Algorithm Yes No Yes Yes Yes No No 

Dkhil et al. (2013) Mathematical Modelling Yes No Yes No No Yes No 

Azimi and Ghanbari (2011) Simulation Yes No Yes No No Yes No 

Kulatunga et al. (2011) Simulation Yes No Yes No No No No 

Bish et al. (2005) Heuristic Algorithms Yes No Yes No No No No 

Koo et al. (2004) Heuristic Tabu Search Algorithm Yes No Yes No No Yes No 

Current Research Elitist Non-dominated Sorting Genetic Algorithm Yes Yes Yes Yes Yes Yes Yes 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Notations used in Handling Strategies Modelling 

Notation Description 

QCU QC unloading cycle time 

QCL QC loading cycle time 

tQ1 Time for QC to make an unloaded forward move towards the vessel 

tQ2 Time for QC to lift the container from the vessel 

tQ3 Time for QC to make a loaded backward move towards the YT 

tQ4 Time for QC to load the container on the YT 

tQ5 Time for QC to lift the container from the YT 

tQ6 Time for QC to make a loaded forward move towards the vessel 

tQ7 Time for QC to load the container on the vessel 

tQ8 Time for QC to make an unloaded backward move towards the YT 

XA and XB Number of QCs utilized in phases A and B, respectively  

XC Number of QC pairs utilized in phase C  

PXA, PXB, and PXC  Productivity of the QCs utilized in phases A, B, and C, respectively 

YCU YC unloading cycle time 

YCL YC loading cycle time 

tY1 Time for YC to lift the container from the YT 

tY2 Time for YC to make a loaded forward move towards the SY 

tY3 Time for YC to load the container in the SY 

tY4 Time for YC to make an unloaded backward move towards the YT 

tY5 Time for YC to make an unloaded forward move towards the SY 

tY6 Time for YC to lift the container from the SY 

tY7 Time for YC to make a loaded backward move towards the YT 

tY8 Time for YC to load the container on the YT 

YA and YB Number of YCs utilized in phases A and B, respectively  

YC Number of YC pairs utilized in phase C  

PYA, PYB, and PYC  Productivity of the YCs utilized in phases A, B, and C, respectively 

YTSU YT unloading single-cycle time 

YTSL YT loading single-cycle time 

YTD YT double-cycle time 

tS1 Time for YT to travel unloaded from the SY area to the QC area 

tS2 Time for YT to travel loaded from the QC area to the SY area 

tS3 Time for YT to travel loaded from the SY area to the QC area 

tS4 Time for YT to travel unloaded from the QC area to the SY area 

tS5 Time for YT to travel unloaded from QC1 to QC2 

tS6 Time for YT to travel unloaded from YC2 to YC1 

ZA, ZB, and ZC Number of YTs utilized in phases A, B, and C, respectively  

PZA, PZB, and PZC  Productivity of the YTs utilized in phases A, B, and C, respectively 

PVA, PVB, and PVC System productivity of phases A, B, and C, respectively 

OA, OB, and OC Number of operators utilized in phases A, B, and C, respectively  

HCX, HCY, HCZ, and HCO Hourly cost of one QC, one YC, one YT, and one operator respectively 

HCA, HCB, and HCC Hourly cost of phases A, B, and C, respectively 

UCA, UCB, and UCC Unit cost of phases A, B, and C, respectively 

NA, NB, and NC Number of loads handled in phases A, B, and C, respectively 

NA’ and NB’ Number of additional imported and exported loads, respectively 

NI and NE Total number of imported and exported loads, respectively 

VTS and VTD Vessel turnaround time using the single-cycling and double-cycling strategies, respectively 

TCS and TCD Total handling cost using the single-cycling and double-cycling strategies, respectively 

PVS and PVD Overall system productivity using the single-cycling and double-cycling strategies, respectively 

UCS and UCD Overall system unit cost using the single-cycling and double-cycling strategies, respectively 

 

 

 



Table 3: Optimization Model Formulation 

Optimization Level Single-Cycling Strategy Double-Cycling Strategy 

Level 1A 

Decision Variables: 
 

   A = {XA, YA, ZA} 
 

Maximize/Minimize: 
 

   f1 = PVA 

   f2 = UCA 
 

Subject to: 
 

   1 ≤ XA ≤ xA 

   1 ≤ YA ≤ yA 

   1 ≤ ZA ≤ zA 

Decision Variables: 
 

   A = {XA, YA, ZA} 
 

Maximize/Minimize: 
 

   f1 = PVA 

   f2 = UCA 
 

Subject to: 
 

   1 ≤ XA ≤ xA 

   1 ≤ YA ≤ yA 

   1 ≤ ZA ≤ zA 

Level 1B 

Decision Variables: 
 

   B = {XB, YB, ZB} 
 

Maximize/Minimize: 
 

   f3 = PVB 

   f4 = UCB 
 

Subject to: 
 

   1 ≤ XB ≤ xB 

   1 ≤ YB ≤ yB 

   1 ≤ ZB ≤ zB 

Decision Variables: 
 

   B = {XB, YB, ZB} 
 

Maximize/Minimize: 
 

   f3 = PVB 

   f4 = UCB 
 

Subject to: 
 

   1 ≤ XB ≤ xB 

   1 ≤ YB ≤ yB 

   1 ≤ ZB ≤ zB 

Level 1C NA 

Decision Variables: 
 

   C = {XC, YC, ZC} 
 

Maximize/Minimize: 
 

   f5 = PVC 

   f6 = UCC 
 

Subject to: 
 

   1 ≤ XC ≤ xC 

   1 ≤ YC ≤ yC 

   1 ≤ ZC ≤ zC 

Level 2 

Decision Variables: 
 

   S = {ndA, ndB} 
 

Minimize: 
 

   f5 = VTS 

   f6 = TCS 
 

Subject to: 
 

   1 ≤ ndA ≤ NDA 

   1 ≤ ndB ≤ NDB 

Decision Variables: 
 

   D = {ndA, ndB, ndC} 
 

Minimize: 
 

   f7 = VTD 

   f8 = TCD 
 

Subject to: 
 

   1 ≤ ndA ≤ NDA 

   1 ≤ ndB ≤ NDB 

   1 ≤ ndC ≤ NDC 
Where; A, B, and C = number sets of handling equipment utilized in phases A, B, and C, respectively; fi = ith objective; 

xA, yA, and zA = maximum number of QCs, YCs, and YTs, respectively, assigned in phase A; xB, yB, and zB = maximum 

number of QCs, YCs, and YTs, respectively, assigned in phase B; xC, yC, and zC = maximum number of QCs, YCs, and 

YTs, respectively, assigned in phase C; S = number sets of non-dominated solutions obtained individually for phases A 

and B using the single-cycling strategy; D = number sets of non-dominated solutions obtained individually for phases 

A, B, and C using the double-cycling strategy; ndA, ndB, and ndC = non-dominated solutions obtained in phases A, B, 

and C, respectively; NDA, NDB, NDC = maximum number of non-dominated solutions obtained in phases A, B, and C, 

respectively.    



Table 4: Work Tasks’ Times Collected Data 

Handling 

Component 
Cycle Type Work Task Distribution 

Mean 

Time 

(min) 

Standard 

Deviation 

(min) 

Quay Crane 

Unloading 

Unloaded forward move (tQ1) Normal 0.84 0.22 

Container lifting from the vessel (tQ2) Normal 0.36 0.30 

Loaded backward move (tQ3) Normal 0.87 0.33 

Container loading on the YT (tQ4) Normal 0.30 0.36 

Loading 

Container lifting from the YT (tQ5) Normal 0.20 0.11 

Loaded forward move (tQ6) Normal 0.64 0.25 

Container loading on the vessel (tQ7) Normal 0.21 0.16 

Unloaded backward move (tQ8) Normal 0.66 0.11 

Yard Crane 

Unloading 

Container lifting from the YT (tY1) Normal 0.34 0.13 

Loaded forward move (tY2) Normal 0.77 0.25 

Container loading in the SY (tY3) Normal 0.28 0.21 

Unloaded backward move (tY4) Normal 0.62 0.28 

Loading 

Unloaded forward move (tY5) Normal 0.67 0.16 

Container lifting from the SY (tY6) Normal 0.18 0.07 

Loaded backward move (tY7) Normal 1.12 0.33 

Container loading on the YT (tY8) Normal 0.23 0.11 

Yard Truck 

Unloading 

(Single-Cycle) 

Unloaded travel from SY to QC (tS1) Normal 4.43 1.04 

Loaded travel from QC to SY (tS2) Normal 4.38 0.53 

Loading 

(Single-Cycle) 

Loaded travel from SY to QC (tS3) Normal 4.79 1.06 

Unloaded travel from QC to SY (tS4) Normal 3.65 0.54 

Double-Cycle 
Unloaded travel from QC1 to QC2 (tS5) Deterministic 0.16 - 

Unloaded travel from YC2 to YC1 (tS6) Deterministic 0.75 - 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5: Stochastic Productivity Rates 

Handling 

Equipment 

Statistical 

Parameter 

Single-Cycling Productivity Rate 

(TEUs/hr) 

Double-Cycling 

Productivity 

Rate (TEUs/hr) Unloading  Loading  

Quay 

Crane 

Distribution Normal Normal Normal 
Mean 55.33 68.03 110.86 

Standard Deviation 15.53 9.58 30.37 

Yard 

Crane 

Distribution Normal Normal Normal 
Mean 61.86 53.59 113.11 

Standard Deviation 13.93 13.24 27.85 

Yard 

Truck 

Distribution Normal Normal Normal 
Mean 12.85 13.81 17.84 

Standard Deviation 3.43 3.91 4.38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6: Handling Strategies Testing Results 

Case 

# 
Strategy 

Number of Utilized Equipment Productivity and Unit Cost Vessel 

Turnaround 

Time 

(hrs) 

Total 

Handling 

Cost 

(US$) 

Overall 

System 

Productivity 

(TEUs/hr) 

Overall 

System 

Unit Cost 

(US$/TEU) 

Phase (A) Phase (C) Phase (B) Phase (A) Phase (C) Phase (B) 

XA YA ZA XC YC ZC XB YB ZB 
PVA 

(TEUs/hr) 

UCA 

(US$/TEU) 

PVC 

(TEUs/hr) 

UCC 

(US$/TEU) 

PVB 

(TEUs/hr) 

UCB 

(US$/TEU) 

1 

Single-

Cycling 
2 2 6 - - - 2 2 6 77.1 12.1 - - 82.9 11.2 450.7 419,148 79.9 11.64 

Double-

Cycling 
2 2 6 1 1 6 2 2 6 77.1 12.1 107.0 8.7 82.9 11.2 351.6 326,963 102.4 9.08 

Improvement - - - - - - - - - - - - - - - 
99.1  

(22%) 

92,186 

(22%) 

22.5 

(28%) 

2.56 

(22%) 

2 

Single-

Cycling 
4 4 13 - - - 4 4 13 167.1 11.6 - - 179.5 10.8 208.0 402,507 173.1 11.18 

Double-

Cycling 
4 4 13 2 2 13 4 4 13 167.1 11.6 221.7 8.7 179.5 10.8 168.5 325,957 213.7 9.05 

Improvement - - - - - - - - - - - - - - - 
39.6  

(19%) 

76,550 

(19%) 

40.6 

(23%) 

2.13 

(19%) 

3 

Single-

Cycling 
6 6 20 - - - 6 6 20 257.0 11.4 - - 276.2 10.6 135.2 397,515 266.3 11.04 

Double-

Cycling 
6 6 20 3 3 20 6 6 20 257.0 11.4 332.6 8.8 276.2 10.6 111.8 328,809 321.9 9.13 

Improvement - - - - - - - - - - - - - - - 
23.4  

(17%) 

68,705 

(17%) 

55.6 

(21%) 

1.91 

(17%) 

 

 

 

 

 

 

 

 



Table 7: Model Implementation Inputs 

Input Type Parameter 
Optimization Level 

Level 1A Level 1B Level 1C Level 2 

Genetic  

Algorithm 

Population Size 500 500 500 1000 

No. of Generations 1000 1000 1000 2000 

Crossover Rate 0.9 0.9 0.9 0.9 

Mutation Rate 0.1 0.1 0.1 0.1 

Constraints 

Maximum QCs 6 6 3 NA* 

Maximum YCs 10 10 5 NA* 

Maximum YTs 30 30 30 NA* 

Maximum NDA NA* NA* NA* TBD** 

Maximum NDB NA* NA* NA* TBD** 

Maximum NDC NA* NA* NA* TBD** 
*Not Applicable 

**To be determined from the first optimization level 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 8: Single-Cycling Strategy Non-dominated Solutions (Stochastic Productivities) 

Non-

Dominated 

Solution # 

Number of Utilized Equipment Vessel 

Turnaround 

Time 

(hrs) 

Total 

Handling 

Cost 

(US$) 

Overall 

System 

Productivity 

(TEUs/hr) 

Overall 

System 

Unit Cost 

(US$/TEU) 

Phase (A) Phase (B) 

XA YA ZA XB YB ZB 

1 6 30 10 6 25 10 106.9 424,597.2 299.4 13.27 

2 6 22 10 6 30 6 108.8 390,982.6 294.1 12.22 

3 6 22 10 6 23 7 110.6 378,155.5 289.2 11.82 

4 6 22 10 6 22 6 112.8 376,118.5 283.8 11.75 

5 6 21 9 5 21 6 115.1 361,044.8 278.0 11.28 

6 6 18 4 6 30 6 116.8 350,991.3 274.0 10.97 

7 5 17 4 6 25 10 119.6 342,862.6 267.6 10.71 

8 6 18 4 6 22 6 120.8 336,127.1 265.0 10.50 

9 6 18 4 5 21 6 123.1 332,736.7 259.9 10.40 

10 6 18 4 5 20 5 125.8 330,643.0 254.3 10.33 

11 5 17 4 5 21 6 127.8 329,142.6 250.3 10.29 

12 5 17 4 5 20 5 130.6 327,048.9 245.1 10.22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 9: Double-Cycling Strategy Non-dominated Solutions (Stochastic Productivities) 

Non-

Dominated 

Solution # 

Number of Utilized Equipment Vessel 

Turnaround 

Time 

(hrs) 

Total 

Handling 

Cost 

(US$) 

Overall 

System 

Productivity 

(TEUs/hr) 

Overall 

System 

Unit Cost 

(US$/TEU) 

Phase (A) Phase (C) Phase (B) 

XA YA ZA XC YC ZC XB YB ZB 

1 6 19 6 3 17 4 6 30 7 105.2 313,865.9 304.2 9.81 

2 6 16 5 3 17 4 6 30 7 105.9 312,287.0 302.2 9.76 

3 5 16 5 3 16 4 6 30 7 107.2 307,406.3 298.5 9.61 

4 5 15 4 3 16 4 5 25 6 108.4 304,596.6 295.3 9.52 

5 5 13 4 3 15 4 5 28 6 109.6 300,437.9 292.1 9.39 

6 5 15 4 3 15 4 4 19 5 110.0 296,426.8 290.9 9.26 

7 5 15 4 3 15 4 3 14 4 111.0 292,348.1 288.2 9.14 

8 5 16 5 3 15 3 4 19 4 112.5 284,245.3 284.6 8.88 

9 4 11 3 3 15 3 5 23 5 113.6 280,962.6 281.7 8.78 

10 4 10 3 3 15 3 4 19 5 115.2 278,077.5 277.9 8.69 

11 4 13 4 3 14 3 3 17 4 115.9 275,352.3 276.1 8.60 

12 6 16 5 3 14 3 2 10 3 117.9 272,184.2 271.4 8.51 

13 4 12 4 3 13 3 3 14 3 119.5 269,812.2 267.7 8.43 

14 3 9 3 3 13 3 3 17 4 120.9 267,609.0 264.6 8.36 

15 6 19 5 3 11 3 2 10 3 122.7 265,234.2 260.8 8.29 

16 3 9 3 3 12 3 3 13 3 124.6 261,978.8 256.9 8.19 

17 2 6 2 3 12 3 5 24 6 126.5 259,685.9 253.0 8.12 

18 5 13 4 3 12 3 2 6 2 127.8 258,218.3 250.3 8.07 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 10: Double-Cycling Strategy Non-dominated Solutions (Deterministic Productivities) 

Non-

Dominated 

Solution # 

Number of Utilized Equipment Vessel 

Turnaround 

Time 

(hrs) 

Total 

Handling 

Cost 

(US$) 

Overall 

System 

Productivity 

(TEUs/hr) 

Overall 

System 

Unit Cost 

(US$/TEU) 

Phase (A) Phase (C) Phase (B) 

XA YA ZA XC YC ZC XB YB ZB 

1 6 19 8 3 26 5 6 25 7 98.5 366,845.4 324.7 11.46 

2 6 18 5 3 28 4 6 25 8 99.1 359,598.4 322.9 11.24 

3 4 16 8 3 30 3 6 25 7 100.4 355,799.2 318.7 11.12 

4 5 16 5 3 29 3 6 23 7 101.0 348,323.2 316.8 10.89 

5 4 17 3 3 23 5 5 22 6 102.7 345,387.3 311.6 10.79 

6 4 16 6 3 28 3 4 18 5 103.1 340,545.8 310.4 10.64 

7 4 16 4 3 22 5 4 17 5 103.7 337,383.2 308.7 10.54 

8 6 16 5 3 27 3 3 15 4 105.2 335,851.1 304.2 10.50 

9 3 13 4 3 21 5 4 18 7 105.9 333,569.9 302.3 10.42 

10 4 12 3 3 26 3 5 18 5 107.0 329,051.9 299.1 10.28 

11 4 17 4 3 18 5 3 14 4 108.1 321,066.7 296.0 10.03 

12 4 14 3 3 19 5 3 12 3 110.0 319,379.9 290.8 9.98 

13 5 13 3 3 24 3 3 11 3 111.9 317,446.0 285.9 9.92 

14 3 12 3 3 23 3 3 11 3 113.1 308,400.5 282.9 9.64 

15 4 13 3 3 18 4 3 11 4 114.9 307,132.9 278.6 9.60 

16 4 12 3 3 19 4 3 9 3 116.6 306,227.6 274.3 9.57 

17 4 12 3 3 21 3 3 8 3 119.1 302,445.8 268.8 9.45 

18 4 11 3 3 20 3 2 8 2 121.2 293,049.9 264.1 9.16 

19 4 11 3 3 18 3 2 9 2 124.1 290,691.5 257.9 9.08 

20 2 9 3 3 19 3 2 9 2 125.8 287,500.3 254.3 8.98 

 

 

 

 

 

 

 

 

 

 

 

 



Table 11: Best Compromise Solution Selection 

Implementation 
Non-Dominated 

Solution # 
T-Score D-Score F-Score 

TOPSIS 

Rank 

Decision 

Index 

Rank 

Fuzzy 

Approach 

Rank 

Single-Cycling 

(Stochastic 

Productivities) 

1 0.423 1.063 1.000 12 12 11 

2 0.531 0.996 1.263 11 10 6 

3 0.585 0.980 1.317 8 7 3 

4 0.569 0.993 1.248 10 9 8 

5 0.635 0.973 1.304 5 5 4 

6 0.668 0.960 1.335 1 3 1 

7 0.660 0.960 1.301 3 4 5 

8 0.666 0.951 1.320 2 1 2 

9 0.643 0.959 1.256 4 2 7 

10 0.614 0.974 1.162 6 6 9 

11 0.597 0.985 1.094 7 8 10 

12 0.577 1.000 1.000 9 11 12 

Double-Cycling 

(Stochastic 

Productivities) 

1 0.496 1.000 1.000 17 17 16 

2 0.494 1.002 0.997 18 18 18 

3 0.499 0.999 1.027 15 14 14 

4 0.497 1.000 1.026 16 16 15 

5 0.503 0.997 1.049 14 13 12 

6 0.525 0.988 1.101 10 10 9 

7 0.538 0.983 1.129 8 8 8 

8 0.582 0.968 1.212 3 3 3 

9 0.587 0.967 1.220 1 1 1 

10 0.577 0.970 1.203 4 4 4 

11 0.583 0.967 1.218 2 2 2 

12 0.564 0.972 1.187 5 5 5 

13 0.549 0.977 1.157 6 6 6 

14 0.539 0.981 1.135 7 7 7 

15 0.527 0.986 1.101 9 9 10 

16 0.520 0.989 1.076 11 11 11 

17 0.510 0.995 1.032 12 12 13 

18 0.504 1.000 1.000 13 15 17 

Double-Cycling 

(Deterministic 

Productivities) 

1 0.496 0.999 1.000 20 19 19 

2 0.514 0.985 1.071 15 14 16 

3 0.513 0.987 1.072 16 16 15 

4 0.539 0.972 1.144 10 6 10 

5 0.529 0.980 1.119 12 11 12 

6 0.549 0.970 1.165 6 4 6 

7 0.559 0.967 1.184 3 3 3 

8 0.542 0.977 1.147 9 10 9 

9 0.545 0.976 1.151 7 9 8 

10 0.553 0.973 1.167 5 7 5 

11 0.584 0.959 1.226 1 1 1 

12 0.559 0.971 1.177 4 5 4 

13 0.536 0.982 1.132 11 13 11 

14 0.566 0.964 1.202 2 2 2 

15 0.545 0.975 1.154 8 8 7 

16 0.523 0.987 1.101 14 15 14 

17 0.510 0.995 1.060 17 17 17 

18 0.526 0.981 1.102 13 12 13 

19 0.507 0.997 1.023 18 18 18 

20 0.504 1.000 1.000 19 20 20 
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Figure 1: Research Methodology Framework 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Single- and Double-Cycling Handling Sequence 
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Figure 3: Single- and Double-Cycling Handling Timeline 
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Figure 4: Multi-level Optimization Framework 
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Figure 5: NSGA-II Optimization Process for Phase (A) 



 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

Figure 6: Single-Cycling VS Double-Cycling Pareto-Optimal Front 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 7: Stochastic VS Deterministic Pareto-Optimal Front 

 




