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Abstract  4 

Water distribution networks (WDNs) confront momentous challenges including the need to meet 5 

continuously increased demand, combat unforeseen disruptions, and reduce carbon emissions. 6 

Developing efficient plans for resilience enhancement of WDNs is thus essential recognizing the 7 

ubiquitous nature of WDNs and increased frequency and destructive severity of hazardous events. 8 

This paper presents a resilience-driven multi-objective optimization model to maximize the 9 

resilience of WDNs while minimizing the life cycle cost and carbon emissions. Enhancement 10 

actions are firstly determined and clustered into work packages before an optimized schedule is 11 

generated considering various operational and managerial factors. A real WDN in the City of 12 

London, Ontario, was utilized to demonstrate the proposed model's practicality. The resilience 13 

increased by 24% with 1.6 Million CAD investment. Additionally, a cost-saving around 33% is 14 

achievable if the proposed model is employed instead of a current utilized practice. The developed 15 

model is expected to help City managers establish optimal resilience enhancement plans, 16 

considering tight available budgets and limited workforce. 17 
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Introduction  21 

Water distribution networks (WDNs) are complex critical infrastructure systems that are vital to 22 

the health and safety of any society. Over decades, water utility managers have been trying to 23 

sustain functionality of WDNs to endure stresses imposed by service requirements, natural and 24 

human-made disruptions, and limited renewal expenditures. Classical approaches to manage 25 

WDNs have focused on minimizing the cost of these systems (Wu et al. 2010). However, 26 

increasing attention has been recently directed to consider the concepts of resilience and 27 

sustainability. While both resilience and sustainability encompass technical, social, and economic 28 

aspects, they emphasize distinct concepts. Sustainability is the ability to meet the present’s needs 29 

without compromising future ones (WCED 1987). Resilience is the ability to mitigate risks and 30 

restore services after hazardous events (Ayyub 2014). Sustainability of WDNs can be achieved by 31 

maximizing service life, minimizing rehabilitation and lifecycle cost, minimizing emissions and 32 

energy requirements, and addressing the social criticality of different zones and segments. On the 33 

other hand, resilient WDNs shall be prepared to withstand disruptions with minimum degradation 34 

and to rapidly recover in case of service interruption (Assad et al. 2019). Municipalities are 35 

required to develop optimal rehabilitation plans to uphold the resilience and sustainability of 36 

WDNs. Such programs are essential acknowledging the ubiquitous nature of WDNs, continuous 37 

deterioration of their components, increased frequency and destructive consequences of disruptive 38 

events, and more compelling need to cut down carbon emissions. The development of such optimal 39 

plans shall consider various repair options, distinct targeted performance levels for different zones 40 

across the network, and clustering required actions into work packages based on shared 41 

commonalities. In Addition, scheduling tools are necessary considering the scarcity in resources 42 

and budgets. As such, this paper presents a comprehensive resilience enhancement framework for 43 



sustainable WDNs. The developed model suggests an optimal rehabilitation action for each water 44 

pipe segment along with the implementation time.  45 

Literature Review  46 

In recent years, many researchers have developed resilience-based asset management tools for 47 

WDNs. Most of those researchers focused their attention on developing metrics for assessing 48 

resilience of WDNs and on incorporating these metrics in the restoration phase of WDNs. (Assad 49 

et al. 2020; Bałut et al. 2019). These approaches are generally classified as either qualitative or 50 

quantitative approaches (Klise et al. 2015). Qualitative approaches can be either conceptual 51 

frameworks or semi-quantitative indices (Faust and Kaminsky 2017; Hosseini et al. 2016; Fiksel 52 

et al.  2014). Most of these approaches are subjective such that obtained results cannot be 53 

generalized on a large scale. On the other hand, quantitative approaches aim at identifying some 54 

quantifiable performance functions that can be observed before and after disruptive events. These 55 

approaches can be either probabilistic or deterministic based on whether the system's stochastic 56 

nature is considered. In addition, some of these approaches are dynamic as they consider time-57 

dependent system performance functions (Cutter et al. 2008; Pant et al. 2014; Dessavre et al. 2016). 58 

Some researchers employed various hydraulic indicators as the system performance function to 59 

assess resilience of WDNs, flow-based metrics (Todini 2000; Suribabu 2017). Resilience of 60 

WDNs was also assessed utilizing graph-based methods, structural-based metrics (Yazdani et al. 61 

2011; Meng et al. 2018; Shuang et al. 2019).  62 

Nonetheless, fewer researchers presented holistic rehabilitation frameworks as means to enhance 63 

the resilience of existing WDNs. For example, Cimorelli et al. (2018) developed a rehabilitation 64 

methodology to improve resilience of WDNs subject to a limited budget. The authors utilized 65 

genetic algorithm, GA, and pressure-driven hydraulic simulation to investigate a flow-based 66 



resilience index's practicality in rehabilitation planning. They considered only one rehabilitation 67 

method, replacement, and analyzed one single failure. Other researchers focused on improving 68 

resilience of WDNs against seismic hazards such as (Zhao et al. 2015; Farahmandfar and Piratla 69 

2017). Farahmandfar and Piratla (2017) considered two main rehabilitation actions, relining and 70 

replacement, to enhance resilience of WDNs to seismic hazards. GA was employed to determine 71 

the pipe segments that require rehabilitation considering their current condition and an expected 72 

earthquake scenario. However, the analysis was limited to one year, a snapshot in time, without 73 

considering the effect of deterioration and life cycle cost on the rehabilitation planning decisions. 74 

Zhao et al. (2015) compared the effects of two strategies for enhancing resilience of WDNs. They 75 

analyzed the impact of ductile retrofitting and meshed expansion on the seismic resilience of an 76 

actual WDN in China. The authors found that ductile retrofitting was a preferred resilience 77 

improvement strategy in cases of fund scarcity. In a different effort, Suribabu et al. (2016) 78 

proposed a model to enhance resilience of WDNs considering pipe diameter’s increase and parallel 79 

piping. The authors modeled two benchmark networks and iteratively increased the segments' 80 

diameters that have maximum flow velocity to the next available commercial size. Similarly, pipes 81 

were added parallel to those through which water flows with maximum velocity. This simplified 82 

approach is however not feasible for large networks. In addition, some scholars attempted to 83 

determine the rehabilitation priority of water segments to enhance their robustness against future 84 

hazards. Based Yoo et al. (2014) introduced a multi-criteria methodology for determining the 85 

rehabilitation priority of pipe segments to withstand seismic hazards. The authors ranked the needs 86 

of rehabilitations based on the importance of each segment. However, they did not investigate 87 

different types of rehabilitation actions or their impact on the overall network robustness. Earlier, 88 

Jayaram and Srinivasan (2008) developed a resilience-based rehabilitation model for WDNs using 89 



life cycle cost. The authors modeled the deterioration of pipe segments by simulating a sample 90 

network with an increasing roughness coefficient over an extended period. Their main finding was 91 

a significant cost saving when considering design and rehabilitation in a single analysis rather than 92 

solely focusing on overdesigning. However, the roughness increase rate was arbitrary assumed 93 

without considering an accurate deterioration estimation.  94 

On the other hand, environmental aspects were not considered despite extensive research on 95 

rehabilitation of WDNs until recently (Roshani and Filion 2015). Some researchers compared the 96 

emissions associated with regular open-cut and trenchless rehabilitation techniques (Alsadi and 97 

Matthews 2020; Tavakoli et al. 2017; Lueke et al. 2015). For example, Alsadi and Matthews 98 

(2020)  evaluated the carbon emissions during the entire life cycle of water pipelines. The authors 99 

analyzed different material types and installation methods to determine those that release the 100 

lowest amount of carbon emissions. They found that polyvinyl chloride, PVC, pipe segments 101 

installed using pipe bursting generate the least amount of carbon dioxide, CO2. However, the 102 

authors did not consider the maintenance and repair needs in their analysis. Similarly, Lueke et al. 103 

(2015) compared the carbon footprint of two common water trenchless renewal techniques: pipe 104 

bursting and cured-in-place pipe. The study observed two actual projects in the United States to 105 

gather required data about the types of equipment utilized, cycle times, crews’ productivities, and 106 

performed activities. In a different effort, Beale et al. (2013) investigated the impact of various 107 

rehabilitation strategies on the cost and carbon emissions of three networks in Australia. The 108 

authors reported an insignificant monetized value of carbon emissions released by rehabilitation 109 

works. However, they recommended expanding the application to include trenchless technologies, 110 

given the direct and indirect potential cost reduction that can be achieved. Roshani and Filion 111 

(2015) studied the influence of carbon-abatement polices during water pipe segments' 112 



rehabilitation process. The authors did not report considerable impacts of adopting a low discount 113 

rate and imposing a low carbon tax in reducing greenhouse gas, GHG, emissions. However, 114 

applying carbon tax enhanced rehabilitation during the early stages to avoid the accumulated costs 115 

of repairs, energy, and GHG emissions. In a previous effort, Roshani et al. (2012) investigated the 116 

impact of the same policies on the expansion design of a real network in Canada. They had also 117 

found no significant effect of such policies on the expansion design outputs. Earlier, Wu et al. 118 

(2010) proposed a multi-objective model that explicitly minimizes the life cycle GHG emissions 119 

in determining the optimal design of WDNs. Their work represented an enhanced version of the 120 

first multi-objective optimization model that considered GHG emissions and life cycle costs in 121 

designing WDNs proposed by (Dandy and Engelhardt 2006; Dandy et al. 2008). In a different 122 

effort, Meng et al. (2018) studied the relationship between national culture and infrastructure 123 

sustainability. Through qualitative comparative analysis, the authors identified the most critical 124 

cultural factors that influence the infrastructure sustainability projects (Meng et al. 2018).  In 125 

addition to these studies, rehabilitation optimization of WDNs was investigated by many authors 126 

such as ( Elshaboury 2020; Așchilean and Giurca 2018; D’Ercole et al. 2018; Muhammed et al. 127 

2017).   128 

Most of the previous studies employed hydraulic simulation in evaluating resilience enhancement 129 

of WDNs. However, this may not be an ideal choice in strategic planning of WDNs rehabilitation 130 

due to the extended computational time compared to other topology-based metrics. The reduction 131 

in computational time gained from utilizing such metrics is expected to grow as the network's size 132 

and complexity increase (Farahmandfar and Piratla 2018; Shuang et al. 2019). Previous studies on 133 

sustainability also attempted to include environmental aspects during the design or expansion of 134 

water networks with little efforts directed towards the operation phase. Some crucial issues were 135 



also disregarded in models that investigated resilience enhancement, rehabilitation, and 136 

sustainability of WDNs such as 1) integrating both sustainability and resilience objectives into one 137 

single analysis; 2) considering various repair methods along with their extended impact on the 138 

network resilience, lacking explicit models that estimate the updated deterioration behavior after 139 

rehabilitation actions are taken; 3) addressing the uncertainty in estimating repair time and cost; 4) 140 

accounting for distinct levels of importance of different zones when considering resilience 141 

planning of large networks; 5) clustering scattered required enhancement actions into deliverable 142 

work packages to facilitate efficient resource allocation and scheduling. To this end, this paper 143 

aims to develop an optimization model for determining and scheduling resilience enhancement 144 

interventions of WDNs. Sustainability objectives are also considered by minimizing both the cost 145 

and carbon emissions of the resilience enhancement actions. The output is an optimal intervention 146 

action for each segment. A schedule is also established to visualize rehabilitation work packages 147 

of the enhancement process.  148 

Methodology  149 

This paper introduces a newly developed model for resilience enhancement planning of WDNs. 150 

This work presents the third component of a holistic resilience-driven management framework of 151 

WDNs. The first work presented in Assad et al. (2019) introduced a newly developed multi-152 

attribute metric for assessing and evaluating resilience of WDNs. Next, Assad et al. (2020) utilized 153 

this metric in a stochastic study to analyze the resilience restorative capacity of WDNs. Several 154 

hazardous scenarios were studied, performance impact was analyzed, and various restoration 155 

strategies were examined to select the most optimal one that minimizes the time and cost of 156 

recovery process under uncertainty. This paper extends the analysis to investigate the resilience 157 

enhancement process before disruption occurrence, absorptive capacity. It captures the resilience 158 



degradation due to aging and resilience improvement due to rehabilitation interventions actions. 159 

The resilience enhancement model developed in this paper encompasses two main phases: 1) 160 

determining enhancement actions, and 2) scheduling these actions. In the first phase, segments 161 

selected for enhancement along with the enhancement actions and their timings are determined. 162 

The second phase aims at clustering the resulted actions into work packages based on specific 163 

similarities before scheduling them. Resilience absorptive capacity is the resilience objective that 164 

is aimed to be improved in this work. Absorptive capacity is the ability of WDNs to withstand 165 

disruptions without significant degradation. It can be boosted through proactive mitigation 166 

measures that strengthen the current condition of WDNs and shorten the time of recovery 167 

following a disruptive event. In addition, life cycle cost and carbon emissions associated with 168 

various enhancement actions are considered to account for the sustainability of WDNs. Life cycle 169 

cost includes the costs of any minor or major rehabilitation actions taken at any time along the 170 

planning horizon. Additionally, the costs of replacing severely deteriorated segments by installing 171 

new ones are included. Costs of breaks and leaks in various pipe segments are not included in this 172 

formulation.  173 

The developed method encompasses three main modules plus a previously developed one by 174 

Assad et al. (2019), as shown in Figure 1. The details of each module are presented subsequently. 175 

Figure 1 depicts the components of the proposed framework and the interactions between them.  176 

Insert Figure 1 177 

Resilience Assessment Module   178 

Resilience of WDNs in this work is assessed based on a resilience metric proposed by (Assad et 179 

al. 2019). This metric integrates robustness and redundancy of WDNs in assessing resilience, as 180 



shown in Equation 1. Robustness is the ability of water networks to withstand disruptive events 181 

without significant degradation. It is measured by integrating the reliability and criticality of water 182 

segments. A deteriorated pipe segment, low reliability, is more susceptible to failure when 183 

subjected to various disruptions.   184 

Я = w1 ×
∑ R i×C i

P
i=1

∑ C i
n
i=1

+ w2 ×
m−n−1

2n−5
          (1) 185 

Where Я is the resilience metric, Ri, Ci are the reliability and criticality index of segment i, P is the 186 

number of pipe segments, n and m are the network size and order, and w1, and w2 are relative 187 

weights of importance. This metric presents a measure of the network structural performance, 188 

structural reliability. The criticality index considers various economic, social, and environmental 189 

factors of pipe segments. These factors aim at assessing the expected economic, social, and 190 

environmental consequences of each pipe segment’s failure. Stochastic modeling was employed 191 

to estimate the reliability and to establish deterioration curves for each water segment considering 192 

its age, material type, size, and previous number of failures. Redundancy is measured based on the 193 

intensity of loops available in the network, meshed-ness coefficient. More details about this metric 194 

and its practicality to be used in resilience assessments, enhancement, and restoration applications 195 

can be found at (Assad et al. 2019). This study focuses on enhancing resilience of water segments 196 

by improving its robustness. Rehabilitation of deteriorated segments can increase the reliability 197 

and robustness of water networks. The novelty of the employed metric is in its ability to 198 

dynamically update reliability of segments, and thus network resilience, based on their 199 

characteristics and the type of intervention actions they may undergo. For example, when a pipe 200 

segment is replaced, its reliability is increased to a value of 0.99. This value is less than a 201 

theoretical benchmark of 1.0 to account for factors that compromise the installation quality (Assad 202 



et al. 2020). In addition, its reliability along the subsequent years is calculated based on its age and 203 

the deterioration curve of newly installed segments that share the same size and material cohort. 204 

Similarly, major and minor actions increase the current reliability level of a segment and change 205 

its deterioration behavior along the following years. Resilience improvement realized due to major 206 

and minor interventions are assumed to be 0.5 and 0.25, respectively. Improvement values were 207 

elicited after analyzing the gathered maintenance reports of previous rehabilitation actions. These 208 

values match the expected improvement due to various rehabilitation types in other infrastructure 209 

systems (Elbehairy 2007).  Subsequent deterioration of these segments is updated based on the 210 

deterioration curves of segments that were subjected to similar intervention actions and share the 211 

same characteristics. More details about the dynamic calculation and update of segments’ 212 

reliabilities and deteriorations can be found at (Assad et al. 2019).   213 

Weights in Equation 1 are user-defined values which allows decision makers to specify the relative 214 

weights of importance of each resilience quality: robustness and redundancy. In this analysis, they 215 

were set as at 0.75 and 0.25 for robustness and redundancy, respectively. Sensitivity analysis was 216 

performed and documented in a previous publication where the authors first introduced this metric 217 

(Ahmed et al. 2019). 218 

Enhancement Module   219 

This module investigates various types of interventions along with their associated costs, 220 

durations, and carbon emissions. Intervention actions can be broadly classified into four 221 

categories: do nothing, minor actions, major actions, and full replacement. In this analysis, two 222 

methods are considered under each intervention category, as shown in Table 1. As previously 223 

mentioned, reliability, and resilience, improvement is estimated based on the category of the 224 

intervention action. However, costs, durations, and associated CO2 emissions are different for 225 



various methods within the same category. In addition, these methods are different in their range 226 

of applicability and suitability for various segment’s characteristics.  227 

Insert Table 1 228 

For example, while both pipe bursting, PB, and pipe splitting, PS, are possible methods for full 229 

replacement, only PS is suitable for ductile iron segments as they do not easily fracture when 230 

utilizing classical PB (Atalah 2009). Also, epoxy lining, EL, is preferred over cement mortar 231 

lining, CML, as a minor action when the pipe segment is of a low thickness, less than 5mm 232 

(Yazdekhasti et al. 2014). Furthermore, slip lining, SL, is a more cost-effective option for major 233 

actions; however, it can be only be applied to segments that are made of PVC and polyethylene, 234 

PE, (Yazdekhasti et al. 2014). It shall be noted that other methods can be added based on the 235 

preference of the responsible municipality.  236 

Costs and durations of intervention methods are then computed according to the method type and 237 

segment size. Unit costs and times were collected from different practitioners working in the water 238 

industry across Canada in 2019 and early 2020.  The minimum, maximum, and average estimates 239 

were used to sample probability distribution functions for unit costs and durations. PERT 240 

distribution was selected to sample the associated uncertainties. Unlike uniform and triangular 241 

distribution, PERT distribution asserts more significance on the most probable estimate, which is 242 

better known with for decision makers. This fits the situation where municipalities constantly 243 

respond to failures and thus accumulate better experience in estimating the most probable values 244 

than the limit ones (Peters 2016; Assad et al. 2020). Furthermore, PERT distribution has a 245 

smoother shape than the angular shape of triangular distribution which offers a better fit for the 246 

limit values (Law et al. 2000). Cost and time inputs to the optimization model are thus 247 



stochastically sampled values rather than arbitrarily assumed estimates. The model also allows 248 

users to assign these values based on their preferences without effecting the proposed calculations. 249 

Carbon emissions were then calculated for each enhancement method utilizing a calculator tool 250 

initially developed by the North American Society of Trenchless Technology, NASTT, 251 

(O’Sullivan 2010). The calculator has been updated by the British Columbia chapter, NASTT-BC, 252 

and approved by the province of British Columbia, Canada (Beale et al. 2013; O’Sullivan 2010). 253 

This tool estimates the carbon emission profile associated with various pipeline replacement and 254 

renovation techniques based on the project dimensions, pipeline size, material, surface type, and 255 

others. The estimated emission profile considers site and transportation operations including 256 

mobilization, excavation, disposal, backfilling, and pipe installation or rehabilitation works. For 257 

example, the estimated CO2 emissions resulting from replacing a pipe segment of 200mm in 258 

diameter, 200m in length, and buried at 2.5m depth utilizing PB technique is 2.5 (CO2-e tonne). 259 

Similar results were calculated for all other segments and intervention methods. These results were 260 

used as inputs to the enhancement optimization model.  261 

Enhancement Actions Optimization  262 

As previously mentioned, the developed enhancement model aims at optimizing three conflicting 263 

objectives: 1) minimizing cost; 2) minimizing emissions; 3) and maximizing resilience after 264 

adopting all enhancement actions, as shown in Equations 2-4, respectively.   265 

Minimize  𝑇. 𝐶. =   ∑ ∑ ∑
1

(1+𝑟)𝑡 (𝑥𝑖,𝑗
𝑡 ∗ 𝐶𝑖,𝑗

𝑡 )𝑗∈𝑀𝑖∈𝑃𝑡∈𝑇              (2) 266 

Where TC = total cost; 𝑥𝑖,𝑗
𝑡  = decision variable that takes a value of 1 when pipe segment i is 267 

enhanced using repair method j during year t and 0 otherwise; 𝐶𝑖,𝑗
𝑡  = enhancement cost of pipe 268 



segment i using method j during year t; r = discount rate; P; M; and T = the number of pipe 269 

segments, enhancement methods, and years respectively. 270 

Minimize  𝑇. 𝐸. =  ∑ ∑ ∑ (𝑥𝑖,𝑗
𝑡 ∗ 𝐸𝑖,𝑗

𝑡 )𝑗∈𝑀𝑖∈𝑃𝑡∈𝑇                                 (3) 271 

Where TE = total CO2 emissions; 𝐸𝑖,𝑗
𝑡  = CO2 emissions resulting from the enhancement of pipe 272 

segment i using method j during year t. 273 

Maximize  Я𝑇  =  
∑ (Я𝑘

𝑇 ×𝐿𝑘 )𝑘∈𝑆

∑ (𝐿𝑘 )𝑘∈𝑆
                                  (4) 274 

  Я𝑘
𝑡 =  Я𝑘

𝑡−1 + Я𝐼𝑘
𝑡 − Я𝐷𝑘

𝑡                                    (5) 275 

Я𝐼𝑘
𝑡 =  ∑ ∑ (𝑥𝑖,𝑗

𝑡 ∗ Я𝐼𝑖,𝑗
𝑡 )𝑗∈𝑀𝑖∈𝑃                                               (6) 276 

Where Я𝑇  = resilience at year T, the end of the planning horizon. When several subnetworks are 277 

considered, their lengths, 𝐿𝑘 , are used to get a weighted average resilience. Я𝑘
𝑡  = resilience level 278 

of subnetwork k at year t; Я𝐷𝑘
𝑡  = resilience deterioration of subnetwork k at year t due to aging; 279 

Я𝐼𝑘
𝑡  = resilience improvement of subnetwork k at year t due to enhancement actions, Я𝐼𝑖,𝑗

𝑡  = 280 

resilience improvement resulting from the enhancement of pipe segment i using method j during 281 

year t; and S = the total number of subnetworks. Equation 5 suggests that resilience at any year 282 

equals the resilience of the previous year plus any resilience improvement realized by enhancement 283 

actions minus the resilience deterioration due to aging during that year. A budgetary constraint is 284 

added to guarantee that annual enhancement costs do not surpass the annual available budget, 285 

Equation 7. A constraint is also added in Equation 8 to ensure that any subnetwork's resilience 286 

along the planning horizon is always more than a minimum threshold value. This value can be 287 

specified individually for each subnetwork based on its importance. In addition, enhancement 288 

actions are usually accompanied by significant disruption. Hence, another constraint is added, 289 



Equation 9, to limit the number of visits for each specific segment along the planning horizon to a 290 

user-defined value. A visit is featured by each time a crew is dispatched to implement a particular 291 

rehabilitation action on a specific pipe segment.  292 

Subject to  293 

∑ ∑ (𝐶𝑖,𝑗
𝑡 )𝑗∈𝑀𝑖∈𝑃 ≤  𝐴𝐵𝑡  (7) 294 

min
𝑡∈𝑇

(Я𝑘
𝑡 )  ≥   Я 𝑘,𝑇ℎ (8) 295 

𝑉𝑖 ≤  𝑉𝑚𝑎𝑥  (9) 296 

𝑥𝑖,𝑗
𝑡 , =  {0,1} (10) 297 

∀  𝑖 ∈  𝑃, 𝑗 ∈ 𝑀, 𝑘 ∈ 𝑆, 𝑡 ∈ 𝑇  298 

Where 𝐴𝐵𝑡 = annual budget allocated for enhancement actions;  Я 𝑘,𝑇ℎ = minimum resilience 299 

threshold for each subnetwork; and 𝑉𝑖 = number of visits for segment 𝑖 .  300 

Once enhancement actions of individual segments are determined along with their implementation 301 

year, the framework proceeds with the scheduling process. A set of actions during a specific year 302 

is scheduled on two main stages: 1) Clustering the actions into work packages, and 2) Determining 303 

the optimal enhancement schedule. In the first stage, pipe segments are divided into work packages 304 

(WPs) based on their geographical location and intervention method. These WPs are formulated 305 

to facilitate monitoring and control of the enhancement process based on the number of pipe 306 

segments, type of enhancement work and its complexity, available budget, outsourcing versus in-307 

house rehabilitation, and other factors. Different clustering techniques are utilized to cluster the 308 

pipe segments on groups based on their geographical location.  309 



Clustering is the process of portioning a set of objects into homogenous groups based on shared 310 

similarities. In this analysis, clustering techniques are utilized to divide the selected network into 311 

a set of clusters based on the geographical location. K-means and K-medoid algorithms are 312 

investigated and compared to select the best performing algorithm to cluster the chosen network. 313 

The objective in K-means clustering is to minimize the squared error between the empirical mean 314 

of a cluster, clusters’ centroids, and the cluster's points.  In this algorithm, the cluster’s centroid 315 

can, but do not have to, be one of the data points. This is the main distinction that differentiates K-316 

means clustering algorithm from K-medoids, where the cluster’s centroid is always one of the 317 

points in that cluster. The steps of K-means algorithms are shown below (Jain 2010):  318 

1. Specify a certain number of clusters and a matching number random initial points, K, to 319 

serve as the preliminary clusters’ centroids.  320 

2. Compute the Euclidean distance between each data pint and the centroids. Euclidean 321 

distance is the square root of the sum of squared differences between components of two 322 

pattern vectors Xi = Xi1; Xi2; …, Xid and Xj = Xj1; Xj2; … Xjd, as shown in Equation 11 323 

(Sawant 2015):  324 

𝑑𝑖𝑗 = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2𝑑

𝑘=1  (11) 325 

3. Assign data points to clusters based on the minimum distance between the data points and 326 

clusters’ centroids, and recalculate the clusters’ centroids.  327 

4. Repeat steps 2-3 until convergence which is evidenced by no further observed changes 328 

regarding the centroid and data points.  329 

The clustering algorithms were run using RapidMiner 9.6 platform (Rapid-Miner Inc. 2016). Since 330 

clustering is an unsupervised machine learning process, evaluating the generated clusters' quality 331 



may not be trivial. Clustering aims to minimize the intra-cluster distance, distance within the same 332 

cluster, and maximize the inter-cluster distance between clusters. To attain that, the Davies–333 

Bouldin Index is employed to compare the clustering quality of K-means and K-medoids. Davies–334 

Bouldin Index is a ratio between the sum of intra-cluster scatter to the inter-cluster separation, as 335 

shown in Equation 12 (Davies and Bouldin 1979): 336 

𝐷𝐵𝐼 =   
1

𝑁
 ∑ max

𝑖≠𝑗
(

𝐷𝑖 + 𝐷𝑗

𝑑𝑖,𝑗
)

𝑁

𝑖,𝑗=1

  (12) 337 

Where D and d are the in the intra-cluster and the inter-cluster distances. The intra-cluster distance 338 

is measured as the average distance between the cluster centroid and data points, Equation 13.  The 339 

inter-cluster distance is the distance between the centroids of the two clusters, Equations 11, by 340 

replacing Xi and Xj with Ci and Cj.  341 

𝐷 =  
∑ ‖𝑋𝑎 − 𝐶𝑖‖𝑖

𝑁𝑖
  (13) 342 

Where 𝑋𝑎 is an arbitrary point in cluster i; 𝐶𝑖 and 𝑁𝑖are the centroid and is the total number of 343 

points in cluster i. A lower value of Davies–Bouldin index implies compact clusters with centroids 344 

far from each other, thus a better cluster (Sahani and Bhuyan 2017).  345 

Packaging and Scheduling Module 346 

An optimization model is then formulated to determine the best distribution of enhancement 347 

actions into WPs. The aim is to efficiently cluster the rehabilitation actions into works packages. 348 

Adding as many segments as possible while respecting a set of constraints ensures maximizing 349 

each WP's resilience improvement. This approach avoids the generation of numerous packages 350 

that would need to be furtherly merged in subsequent steps. Th objective function is formulated to 351 



maximize the resilience improvement of the WP that has the minimum resilience improvement, as 352 

shown in Equation 14. A constraint is added in Equation 16 to specify the minimum size of WPs. 353 

Two more constraints are added in Equations 17 and 18 to determine the maximum size of WPs 354 

and to ensure that each WP consists of segments that share the same enhancement method. These 355 

are defined as soft constraints to account for exceptional solutions where segments of different 356 

enhancement methods, hybrid WP, or more actions than the maximum size, over-sized WP, need 357 

to be clustered in a WP. However, these solutions would imply penalties (𝛼) and (𝛽) in the 358 

objective function, Equation 14. Constraint 19 is included to ensure that segments in each WP 359 

share the same geographical zone. 360 

Maximize   Я =  min
𝑣∈𝑊𝑃

( Я. I𝑣) −  𝛼 − 𝛽             (14) 361 

 Я. I𝑣 = ∑ ∑ (𝑦𝑖,𝑣 ∗  Я. 𝐼𝑖)𝑖∈𝑃𝑣∈𝑊𝑃               (15) 362 

Subject to  363 

 C𝑣 ≥ C𝑚𝑖𝑛 (16) 364 

 C𝑣 − 𝛼 ≤  C𝑚𝑎𝑥 (17) 365 

 MT𝑣 − 𝛽 = 1 (18) 366 

 Z𝑣 = 1 (19) 367 

𝛼, 𝛽 ≥ 0  (20) 368 

Where 𝑦𝑖,𝑣 = decision variable that takes a value of 1 when pipe segment i is clustered in WP v; 369 

 Я. I𝑣= resilience improvement of work package v;  C𝑣 = cost of work package v, the summation 370 

of the individual enhancements actions’ costs in work package v;  C𝑚𝑖𝑛 and  C𝑚𝑎𝑥= minimum and 371 

maximum costs WPs representing the minimum and maximum possible size of a WP; MT𝑣 = 372 



number of different enhancement methods’ types in WP v;  Z𝑣 = number of location zones in work 373 

package v; and WP is the number of work packages.  374 

Finally, an optimization model is formulated to schedule the resulted WPs. Inputs include WPs, 375 

their total costs and durations, number of contractors, and maximum contract value. The objective 376 

of this scheduling model is to minimize the time of resilience enhancement process, as shown in 377 

Equation 21.  378 

Minimize   𝑇 =  max
𝑤∈𝐶

(𝑇𝑤)                          (21)        379 

𝑇𝑇𝑤  =  ∑ ∑ (𝑧𝑣,𝑤 ∗ 𝑇𝑣)𝑣∈𝑊𝑃𝑤∈𝐶                           (22) 380 

Where 𝑇= time of resilience enhancement; 𝑇𝑤 = total time for contractor w; 𝑇𝑣 = duration of work 381 

package v, the summation of the individual enhancements actions’ durations in work package v; 382 

and 𝑧𝑣,𝑤 = decision variable that takes a value of 1 when work package v is assigned to contractor 383 

w. A maximum contract price constraint is added to comply with the City’s regulations, Equation 384 

23. 385 

 C𝑤 ≤  CP𝑚𝑎𝑥  (23) 386 

Where  C𝑤= the total cost of work packages assigned to contractor w; and  CP𝑚𝑎𝑥 = the maximum 387 

allowable contract price to assure fair business practices.  388 

It is worth mentioning that packaging and scheduling represent a preceding step before launching 389 

the bidding process. In this step, a municipality determines the size and type of each rehabilitation 390 

package before calling for technical and financial proposals. This would enhance the contractors’ 391 

selection process since only those capable of executing the rehabilitation type of a specific package 392 

can apply. In addition, the maximum contract price assures fair business practices by allowing 393 

more contractors to receive works. The price calculated in this step, along with the suggested 394 



schedule, represents guidelines on the maximum expected cost and duration given the market 395 

conditions. This is essential in strategic planning and budgeting. The municipality may get better 396 

prices from the qualified contractors during the bidding process. 397 

The resilience-driven sustainability-based rehabilitation planning model developed in this study 398 

was evaluated through a three-tire verification and validation process. Firstly, two optimization 399 

algorithms were assessed to compare their computational capabilities in solving the formulated 400 

problem. Secondly, the enhancement optimization results were compared to those determined by 401 

a heuristic model utilized by several cities in Canada. Finally, the solution quality and 402 

computational gains resulting from employing the proposed metric was demonstrated by a 403 

comparison with the performance a previous metric reported in literature. The remaining f this 404 

paper is arranges such that the utilized algorithms and decision-making techniques are briefly 405 

presented in the next section. Subsequently, implementation and validation of the proposed models 406 

are detailed. Concluding remarks and future extensions are finally elicited.  407 

Optimization algorithms 408 

Genetic algorithm, GA, and ant colony optimization, ACO are commonly utilized in asset 409 

management and resilience applications. In this paper, GA and a modified version of ACO are 410 

investigated to identify the best performing to solve the formulated optimization problem. GA is 411 

frequently utilized in asset management applications due to its efficiency and availability in many 412 

commercial packages (El-Ghandour and Elbeltagi 2017). The modified version of ACO utilized 413 

in this paper was not previously employed, at least to the authors' knowledge, in resilience-based 414 

asset management applications. Below is a brief description of each algorithm followed by an 415 

explanation of the metric used to compare their performances.    416 



The first algorithm is an extension of the classical ant colony optimization proposed by (Schlüter 417 

et al. 2009). Initially, the basic idea of ACO is to mimic the biological behavior of ants trying to 418 

reach a food source. By using pheromone concentration, a substance that ants deposit while 419 

traveling, ants choose a path to the food source. The set of vertices on a path represent the solution 420 

components. Pheromone values, usually within a pheromone table, are continuously updated based 421 

on information gained during the search process. The procedure iteratively is repeated until 422 

meeting stopping criteria (Dorigo et al. 2006). Schlüter et al. (2009) exploit an aggregated 423 

weighted sum of several multi-kernel Gaussian probability density functions instead of pheromone 424 

tables to guide the search process. A discretization of this continuous function is introduced to 425 

allow intuitive handling of integer variables. Solution archive, SA, is suggested to continuously 426 

store and rank the most promising solutions investigated so far. In this extension, the mean and 427 

deviation of the Gaussian probability density functions, PDFs, are updated based on solutions 428 

stored in the SA. Each time a solution is created, its attractiveness is calculated and compared to 429 

those in the SA archive. A solution will be placed in the jth position only if it has a better 430 

attractiveness than solution j. This way updating the SA implies updating the characteristics of the 431 

PDF, pheromone update, and thus the process of creating new solutions. The number of kernels 432 

within the multi-kernel Gauss PDF corresponds to the size of the SA, in this study taken as 40. In 433 

Addition, the algorithm is fortified with a robust penalty method for constraints handling and a 434 

local heuristic, sequential quadratic programming, to guide searching around the best-known 435 

solution (Exler and Schittkowski 2007). More details about this modified version of ACO and its 436 

implementation on real-world problems can be found at (Schlüter et al. 2009; Schlüter et al. 2012).  437 

Genetic Algorithm (GA) is a search heuristic that was introduced in the 1970s by John Holland ( 438 

1975) inspired by the natural evolution theory. The first step in this algorithm is to initialize a set 439 



of random solutions; each represents a possible combination of the decision variables. Each 440 

solution's fitness is then calculated and used to rank each solution against other candidates in a 441 

population. Best solutions are selected utilizing specific selection strategies to reproduce by 442 

undergoing further genetic crossover and mutation genetic operators. Tournament selection is the 443 

parent selection strategy employed in this study. In crossover, genes in two parents are exchanged 444 

until reaching the randomly selected crossover point. In this study, the crossover point was 445 

randomly selected with a probability of 0.75. To prevent premature convergence, genes are 446 

randomly flipped with a low probability, taken as 0.015, in the mutation step. The process is 447 

iteratively repeated until meeting the stopping criteria (Whitley 1994). The two algorithms were 448 

run in a Matlab environment, and parameters’ values were calibrated through trial and error.  449 

Hypervolume indicator is the most common utilized metric to compare the performance of multi-450 

objective optimization algorithms (Zitzler et al. 2003). It measures the m-dimensional volume of 451 

the region in objective space enclosed by the obtained non-dominated solutions and a reference 452 

point. Hypervolume indicator is the only indicator that can consider accuracy, cardinality, and 453 

diversity of the optimal solution (Riquelme et al. 2015).  Accuracy is a closeness measure of the 454 

obtained solutions to the true non-dominated solutions. Cardinality is the number of points in the 455 

obtained solution. Diversity indicates the spread of the obtained solutions in the search space 456 

(Riquelme et al. 2015). Equation 24 is used to compute the hypervolume indicator (Nebro et al. 457 

2013): 458 

𝐼𝐻𝑉 = volume (⋃ 𝑣𝑖

|𝑄|

𝑖=1

) (24) 459 



Where 𝐼𝐻𝑉 is the hypervolume indicator; 𝑣𝑖is the hypercube of non-dominated solution i; and Q is 460 

the set of non-dominated solutions. A higher value of Hypervolume indicator suggests a larger 461 

distance between the obtained solution and the reference point, nadir point, hence a better solution.  462 

Multi-criterion decision-making  463 

The result of multi-objective optimization is a set of Pareto optimal solutions. Multi-criterion 464 

decision-making (MCDM) techniques can assist in selecting the most appropriate solution among 465 

the set of Pareto solutions. In this analysis, the Shannon Entropy and Preference Ranking 466 

Organization Method for Enrichment of Evaluations (PROMETHEE II) are utilized to determine 467 

the best solution of the Pareto frontier points. Shannon entropy is based on the informational theory 468 

that assigns smaller weights to those attributes that assume similar values across various 469 

alternatives. In this work, weights of objectives are calculated based on the degree of index 470 

dispersion as detailed by (Akyene 2012). The PROMETHEE method is an interactive MCDM 471 

technique that can handle quantitative and qualitative criteria with discrete alternatives (Brans et 472 

al. 1986). Recently, the PROMETTE method has been successfully applied to real-life planning 473 

problems to rank alternatives which are difficult to be compared because of the conflicting trade-474 

off relation between the evaluation criteria. (Abdullah et al. 2019). In this method, a preference 475 

function for each criterion is selected. A preference index for alternative “a” over “b” is computed 476 

based on this function. This index represents a measure to support the hypothesis that alternative 477 

“a” is preferred to “b”. The steps of applying the PROMETH II method can be reviewed at (Brans 478 

et al. 1986; Polat 2016)  479 

Data Collection 480 

Data needed for development and implementation purposes were gathered as geographic 481 

information systems, GIS, shapefiles of an actual WDN in the City London, Ontario. Different 482 



segments’ characteristics, such as sizes, material types, ages, and installation depths were 483 

extracted. Street categories, traffic volume, and population density were also gathered from 484 

separate layers. These details were used along with data regarding each segment's installation date 485 

and failure history to assess the network resilience as per Equation 1. Coordinates of pipe segments 486 

were utilized to cluster the network into distinct geographical zones. Additionally, unit costs and 487 

durations of the considered rehabilitation methods were gathered to be utilized as inputs to the 488 

optimization model. Table 2 depicts the unit cost and times of the considered rehabilitation 489 

methods.   490 

Insert Table 2 491 

Optimization Model Implementation to a Case Study 492 

The developed model was implemented on a section of the water network in London, Ontario. The 493 

selected section comprises 369 pipe segments of diameters ranging between 40mm and 450 mm 494 

that amount to approximately 34 km of length. The material types available are cast iron (CI), 495 

ductile iron (DI), and PVC. The selected section consists of three subnetworks covering a wide 496 

variation in land use, serviced facilities, and road types, as shown in Figures 2 and 3. Figure 2 497 

shows the overall water network in the City of London with the land use zones superimposed. 498 

Distinct residential zones reflect variation in population size and tax base. Figure 3 depicts three 499 

subnetworks that form the selected case study of this paper. Each network is assigned a distinct 500 

minimum resilience threshold reflecting its importance to the decision-makers as previously 501 

explained.   502 

Insert Figure 2 503 

Insert Figure 3 504 



Next, the multi-objective optimization problem was solved using the modified ACO and GA to 505 

determine their respective capabilities. To ensure the consistency of the algorithms’ results, the 506 

problem was solved several times utilizing each algorithm (Dao et al. 2016). To provide a fair 507 

comparison, the number of iterations within each algorithm was set to 200, with a population size 508 

of 150. All optimization runs were performed on an 8GB 343 RAM, 3.60 GHz i7 core CPU, and 509 

Windows 7 with a 64-bit operating system. Table 3 illustrates the comparison between the 510 

modified ACO and GA. The modified ACO achieved the best values for the cost, resilience, and 511 

emissions objectives. Similarly, the worst values for the cost, resilience, and emissions objectives 512 

obtained by the modified ACO are better than those obtained GA. The modified ACO has a lower 513 

standard deviation regarding all the considered objective functions, indicating a higher stability of 514 

the algorithm. Additionally, modified ACO has a larger hypervolume indicator (78.68%) than GA. 515 

GA has a longer computational time (8.15 min) than the modified ACO (5.41 min).  516 

Insert Table 3 517 

Next, a two-tailed student’s t-tests were performed to statistically assess the optimal solutions' 518 

significance level. The student’s t-test investigates the null hypothesis (H0) that assumes an 519 

insignificant difference between the optimal solutions achieved by the optimization algorithms. 520 

The alternative hypothesis (H1) implies that there is a significant difference between the obtained 521 

optimal solutions. The P-value needs to be less than the significance level (alpha =0.05) to reject 522 

the null hypothesis in favor of the alternative hypothesis. The computed P-value was found to be 523 

6.802 X 10-6, which indicates that the modified ACO's performance is statistically significantly 524 

better than GA. From the previous analysis, the modified ACO is recommended to solve the 525 

formulated problem in this paper.  526 



The model then proceeds with the MCDM process to determine the best solution among the Pareto 527 

frontier points obtained from the multi-objective optimization. First, the Shannon entropy method 528 

was exploited to compute the weights of the objective functions. The weights of the cost, resilience, 529 

and emissions attributes are 53.01%, 29.80%, and 17.19%, respectively, as shown in Table 4.  530 

Insert Table 4 531 

Once the objectives’ weights are found, PROMETHEE II is utilized to determine the best solution. 532 

Figure 4 depicts a sample of the Pareto frontier points obtained by the modified ACO algorithm 533 

for one of the runs with the selected optimal solution highlighted in red. Table 5 illustrates some 534 

of these candidate solutions and their rankings based on the net outranking.   535 

Insert Table 5 536 

Solution number 23 in Table 5, encompasses interventions actions for around 58%, a total of 217, 537 

of the pipe segments to achieve the reported objective values while satisfying the set of defined 538 

constraints. Figure 5 illustrates the distribution of these segments based on their subnetwork, 539 

diameter, and age. 540 

Insert Figure 4 541 

It can be observed from Figure 5 that most of the segments selected for enhancements are in 542 

subnetwork 3. This is because subnetwork 3 has the most deteriorated segments, as evidenced by 543 

the average age of its segments. The segments' average ages in subnetworks 1, 2, and 3 are 24, 34, 544 

and 50 years, respectively. The attained resilience improvement with CAD 1.57 Million 545 

investment represents around 24% increase in resilience compared to the case where no 546 

enhancement actions are taken over the five subsequent years.  547 

Insert Figure 5 548 



A comparison between the obtained results and an in-house portfolio management plan followed 549 

by some cities in Canada, referred herein as City’s approach, was then performed to assess the 550 

quality of the obtained results. The optimization objectives: resilience, cost, and emissions, were 551 

calculated using the same unit cost, expected CO2 emission, and expected improvement detailed 552 

in this paper. Table 6 shows that the developed model resulted in a 33% cost savings, a 6% increase 553 

in resilience improvement, and a 7% carbon emissions reduction. The plans differ in the selection 554 

criteria of individual segments set to be enhanced. While the City’s approach focuses on the age 555 

and reliability of segments, the developed method integrates segments' criticality in the selection 556 

process. Thus, asserting more weights to the most critical segments. In addition, the dynamic 557 

nature of reliability computation yields a more accurate deterioration estimation of various 558 

segments.  559 

Insert Table 6 560 

The optimization problem was then solved again utilizing a previously developed resilience metric. 561 

This topology-based metric also integrates robustness and redundancy of water networks in 562 

estimating their resilience; however, the formulation is different. Readers may refer to 563 

Farahmandfar et al. (2016) for the mathematical formulation and underlying concepts of this 564 

metric. In a later study, this metric's performance was compared against another flow-based 565 

resilience metric's performance. The authors reported 55% less computational time when utilizing 566 

the topology-based metric in rehabilitation planning problems. This benefit in computational time 567 

was accompanied by resilience improvement underestimating by around 20% (Farahmandfar and 568 

Piratla 2018). In this step, a two-tier comparison between this metric's performance and the utilized 569 

one’s was carried out. Firstly, the multi-objective optimization problem was solved utilizing the 570 

resilience metric developed by Farahmandfar et al. ( 2016). Table 7 illustrates the results of this 571 



comparison. The proposed metric in Equation 1 showed superiority in solution quality, as 572 

evidenced by the three objective functions' values. Additionally, the computational time required 573 

for utilizing the proposed metric is 20% less than the previously developed topology-based metric 574 

for rehabilitation planning.  575 

Insert Table 7 576 

Secondly, the resilience improvement due to applying the enhancement actions resulted from 577 

utilizing the metric in Equation 1 was estimated again using the previously developed metric. 578 

While these actions resulted in around 24% resilience improvement over the five subsequent years, 579 

this increase was only 19% using the previously developed metric. This suggests another 580 

superiority of the newly developed resilience metric, Equation 1, in estimating resilience 581 

improvement due to rehabilitation actions. The observed superior performance can be attributed 582 

to the deterioration and improvement estimation model integrated within the metric in Equation 1. 583 

The obtained superior performance justifies the practicality of utilizing this metric in strategic 584 

rehabilitation planning of WDNs.  585 

Next, resilience enhancement actions of year one are selected to be scheduled. The first step is to 586 

cluster them into work packages based on the intervention method and geographical location. The 587 

area of the considered networks has been divided into two zones to speed up the travel time. K-588 

means yielded a lower Davies–Bouldin index, 0.850, than K-medoids. Thus, it was selected for 589 

the geographical clustering. Enhancement actions were then clustered into work packages as per 590 

Equation 14. Table 8 illustrates the output of this clustering process. It shows nine packages, each 591 

composed of segments that share the same geographical zone and intervention method except for 592 

package two, which is a mixed one. These work packages were then scheduled, assuming three 593 

contractors will perform enhancements actions along three time steps. A time step denotes the 594 



order at which a work package is being performed. The scheduling process aims to minimize the 595 

cumulative time of the resilience enhancement process while satisfying each contractor's 596 

maximum contract price. Figure 6 depicts the incremental increase of resilience with time. 597 

According to this plan, it is possible to achieve a total of 0.0334 resilience enhancement from the 598 

first year’s actions during a period of 25.58 days. The assignments of contractors among the 599 

different time steps are also shown in Table 8. The total price values for contractors 1, 2, and 3 are 600 

CAD $236,851, $209,670, and $141,520 respectively.  601 

Insert Table 8 602 

Cities in Canada and US employ an in-house model to determine the importance of each section 603 

of their WDNs. Factors that usually influence such estimation include land use, type of serviced 604 

facilities, population density, tax base, and others. Specifying the exact importance of each section 605 

within a network is beyond the scope of this work. However, this important parameter, and widely 606 

implemented practice, does affect the enhancement decisions. As such, users are given the option 607 

to specify minimum resilience thresholds that sought to be satisfied upon realizing all the 608 

enhancement actions for each section. These thresholds values are estimated based on of the 609 

importance metric of each section. A sensitivity analysis was conducted to investigate the effects 610 

of these resilience thresholds on the overall optimization objectives. Due to the space limitation, a 611 

sample of this analysis is illustrated in Figure 7. In this analysis, the optimization problem was 612 

iteratively solved while repetitively changing the minimum resilience threshold of subnetwork 3 613 

from 0.55 to 0.75, with an increment of 0.05. Optimal solutions were determined and plotted 614 

against the minimum resilience threshold. Figure 7 shows that the cost and resilience improvement 615 

objectives change by around 13% and 24%, respectively, with a 36% change in the resilience 616 

threshold of subnetwork 3. This analysis provides a thorough understanding of resilience threshold 617 



impacts on the optimization objectives. Thus, it helps in determining the optimal set of 618 

enhancement actions that best fit the preferences of the decision-makers.  619 

Insert Figure 6 620 

Insert Figure 7 621 

Summary and Conclusions  622 

Maintaining sustainable functionality of WDNs after events is rather challenging. This paper 623 

presented a multi-objective resilience-driven enhancement model to optimize three competing 624 

objectives: resilience improvement, life cycle cost, and carbon emissions. The model encompasses 625 

two phases where the intervention actions are fist determined along with their timing before being 626 

clustered into work packages and scheduled. The final output is an optimal schedule of 627 

rehabilitation work packages, with each work package consists of segments sharing the same 628 

enhancement type and geographical location. The model considers pipe segments' reliability and 629 

criticality, variant objectives target for different network zones, contract size, and planning 630 

horizon. The formulated optimization model was solved using modified ACO, which 631 

outperformed GA. An actual WDN in the City of London, Ontario was leveraged to demonstrate 632 

the practicality of the developed model . The obtained plan resulted in a 24% resilience 633 

improvement with around 1. 57$ million investment. The plan also resulted in a 33% cost savings, 634 

a 6% increase in resilience improvement, and a 7% reduction in carbon emissions compared to a 635 

plan suggested by the City. This developed framework is expected to help city managers and other 636 

governmental agencies better manage WDNs by preparing more efficiently for hazardous events. 637 

The model can determine the optimal type and sequence of mitigation actions that maximize 638 

resilience and sustainability of WDNs while respecting managerial and operational constraints.  639 

Main contributions of this work include:  640 



• Integrating resilience and sustainability of WDNs in a single holistic rehabilitation 641 

planning model.  642 

• Developing a dynamic reliability model to estimate the level of improvement due to 643 

various intervention actions.  644 

• Developing an optimization model to enhance the resilience absorptive capacity for 645 

WDNs considering uncertainty and distinct zones requirements.  646 

• Developing a novel optimization-based model to cluster the set of optimal enhancement 647 

actions into homogeneous work packages based on a set of defined commonalities. 648 

The developed model has some limitations that can be enhanced in upcoming studies. This model 649 

tackled resilience enhancement through robustness improvement exclusively. However, 650 

considering redundancy improvement can noticeably contribute to resilience enhancement. 651 

Estimating resilience improvement due to various rehabilitation actions can be further enhanced 652 

by analyzing more previous rehabilitation events. The model can also be modified to include more 653 

sustainability objectives such as energy requirements. This paper considered exclusively pipe 654 

segments as they constitute the largest components of WDNs. This analysis be extended to 655 

incorporate more assets such as pumps and water tanks. Moreover, estimates about the segment’s 656 

criticality can be fortified by capturing dependencies with other critical infrastructure systems. 657 

Finally, automating the developed optimization model to make more user-friendly is 658 

recommended before being utilized by municipalities. 659 
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 828 

Table 1. Set of Considered Rehabilitation Methods 829 

Intervention 

Category 

Method Description 

Minor 

Epoxy lining 

(EL) 

A non-structural renewal method for rehabilitation aging 

yet structurally strong segments through spraying a thin 

coating of liquid epoxy on the pipe's internal wall. A 

smoother surface that is easier to be maintained, faster 

curing, and applicability on smaller pipes are some 

advantages of EL over regular cement mortar lining 

(Yazdekhasti et al. 2014).   

Cement Mortar 

lining (EL) 

A non-structural renewal method in which a smooth 

placing cement mortar is placed on a structurally sound 

segment's inner surface. Minimum thickness required is 

5mm to avoid significant reduction in hydraulic capacity 

(Yazdekhasti et al. 2014).   

Major 

Cured in Place 

Pipe (CIPP) 

A structural rehabilitation method in which a resin-coated 

fiber tube, liner, is inserted into a structurally deteriorated 

host pipe. This method results in the least diameter 

reduction with significant smoother surface among other 

structural rehabilitation techniques (Yazdekhasti et al. 

2014).  

Close-fit- Slip 

lining (SL) 

A structural rehabilitation method in which a new pipe is 

inserted by pulling or pushing into an existing pipe. 

Diameter of the new pipe is temporarily reduced to 

facilitate its insertion. The original diameter is then 

retrieved by pressurization (Yazdekhasti et al. 2014).  

Full 

Replacement 

Pipe Bursting 

(PB) 

A replacement method in which a bursting head is 

inserted to break a host pipe and pull along a new pipe of 

a similar or larger diameter. The most common trenchless 

technique utilized to replace segments of various sizes 

and material types (Yazdekhasti et al. 2014).  

Pipe Splitting 

A replacement method in which longitudinal splitting and 

drawing in a new pipe of a similar or larger diameter 

occur. A special variation of PB to replace segments that 

do not fracture using regular PB such as ductile iron pipes 

(Alan Atalah 2009). 
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Table 2. Costs and Durations of Rehabilitation Methods 831 

Intervention Method 
Unit Cost 

(CAD/mm2/m) 
Unit time (days/m) 

Cement Mortar Lining (CML) 59.75* 0.0100 

Epoxy lining (EL) 66.39* 0.0103 

Cured in Place Pipe (CIPP) 2.04 0.0162 

Close-fit Slip Lining (SL) 1.88 0.0155 

Pipe Bursting (PB) 3.02 0.0202 

Pipe Splitting (PS) 3.17 0. 0216 

          * Cost is in CAD/m. 832 

Table 3. Comparison between results of the modified ACO and GA 833 
 Objective function Modified ACO GA 

Minimum 

Cost (Million CAD) 1.5504 1.6709 

Resilience 0.6533 0.6290 

Emissions (CO2-e tonne) 134.25 137.37 

Maximum 

Cost (Million CAD) 1.7878 2.1314 

Resilience 0.6657 0.6368 

Emissions 142.14 144.56 

Mean 

Cost (Million CAD) 1.6153 1.957 

Resilience 0.6628 0.6321 

Emissions (CO2-e tonne) 138.74 141.38 

Standard deviation 

Cost (Million) 0.0418 0.1841 

Resilience 0.0028 0.0053 

Emissions (CO2-e tonne) 2.09 3.98 

Hypervolume indicator (HV) 78.68% 59.97% 

Computational time (min) 5.41 8.16 

 834 

Table 4. Calculation of Objectives’ Weights based on Shannon Entropy 835 

Criterion Cost  Resilience  Emissions 

Entropy value (ej) 0.232 0.5682 0.751 

Variation coefficient (dj) 0.768 0.4318 0.249 

Weight (wj) 53.01% 29.80% 17.19% 

 836 

  837 



Table 5. Different Optimal Solution Resulting from the modified ACO 838 

Solution 
Cost 

(x106 CAD) 
Resilience 

Emissions 

(CO2-e tonne) 
ϕ (a) Rank 

1 1.596 0.6537 142.1 -0.1181 24 

2 1.617 0.6643 142.0 -0.3489 32 

3 1.564 0.6572 141.7 0.0571 14 

…
 

…
 

…
 

…
 

…
 

…
 

23 1.572 0.6648 135.2 0.5241 1 

…
 

…
 

…
 

…
 

…
 

…
 

35 1.663 0.6654 134.25 0.0022 18 

Note: The bold row represents the selected optimal solution for the optimization problem. 839 

 840 

Table 6. Comparison between the Obtained Results 841 

Criterion 
Optimization 

Model 

City’s 

Approach 
Enhancement  

Cost (x106 CAD) 1,572 2,351 33.13% 

Resilience  0.6648 0.6297 5.57% 

Emissions (CO2-e tonne) 135.2 145.3 6.95% 

 842 

Table 7. Comparison between the Performance of Resilience Metrics 843 

Criterion 
Proposed 

Metric, Eq 1 

Previous 

Metric 
Enhancement  

Cost (x106 CAD) 1,572 2,081 24.44% 

Resilience  0.6648 0.6317 5.24% 

Emissions (CO2-e tonne) 135.2 142.2 4.95% 

 844 

Table 8. Packaging and Scheduling of Enhancement Actions of Year 1 845 

Package 

No. 

Cost 

(x103 CAD) 
Resilience Time (day) 

Enhancement 

Action 
Time Step Contractor 

1 96.39 0.0034 6.78 PB 1 C1 

2 80.10 0.0038 5.47 PS & SL 1 C2 

3 88.48 0.0054 9.59 CIPP 1 C3 

4 46.33 0.0041 13.56 CML 2 C2 

5 93.01 0.0036 4.46 SL 2 C1 

6 83.24 0.0030 6.04 CIPP 3 C2 

7 47.45 0.0046 14.35 EL 3 C1 

8 53.04 0.0055 15.96 CML 2 C3 
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Figure Captions: 847 

Figure 1. Methodology framework 848 

Figure 2. Layout of the water network in the City of London, Ontario. 849 

Figure 3. Layout of the selected subnetworks. 850 

Figure 4. Pareto Frontier Points of the modified ACO algorithm 851 

Figure 5. Distribution of Rehabilitated Segments based on a) sub-network; b) age; and c) size. 852 

Figure 6. Optimum scheduling Results 853 

Figure 7. Sensitivity of Total Cost and Resilience Improvement to Variation in Minimum 854 

Resilience Threshold of Sub-Network 3.  855 




