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ABSTRACT 

Recently, the number of deteriorating bridges has drastically increased. As such, enormous 

amount of resources are invested yearly to maintain the performance of bridges within 

acceptable levels. This entails the development of bridge management systems to manage the 

imbalance between the extensive needs for maintenance, repair and rehabilitation actions, and 

the limited available funds. In this regard, the present study introduces three-tier platform to 

model and allocate limited resources in bridge deck replacement projects. The first model 

involves building a discrete event simulation model to mimic the bridge deck replacement 

process. The second encompasses structuring an efficient and straightforward surrogate machine 

learning model for mimicking the computationally expensive discrete event simulation model. In 

the second phase, a novel hybrid Elman neural network-Invasive weed optimization model is 

developed for predicting time, cost, greenhouse gases and utilization rates of resource allocation 

plans using database generated from the previous model. The third constitutes formulation of a 

multi-objective differential evolution optimization model subject to the utilization rates of the 

involved resources and their dispersion. Results manifest superiority in cost prediction 

accuracies; achieving mean absolute percentage error, mean absolute error and root-mean 

squared error of 4.873%, 78.466 and 39.515, respectively. Additionally, the developed multi-

objective optimization model significantly outperformed a set well-performing meta-heuristics; 
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yielding hypervolume indicator, generational distance, spacing, diversity, spread and coverage of 

81.721%, 0.029, 0.1881, 0.5229, 0.9618 and 0.4087, respectively. Results also demonstrate the 

developed multi-objective optimization model accomplished an improvement in minimization 

time, cost and greenhouse gases by 71.01%, 27.87% and 39.29%respectively when compared 

against genetic algorithm. The developed models are automated through hybrid programming of 

C#.net and Matlab. It is expected that the developed method can enable the practitioners and 

transportation agencies in establishing timely-efficient, cost-effective and sustainable resource 

allocation plans while accommodating efficacious utilization of resources  

 Keywords: Bridge deck replacement; Discrete event simulation; Surrogate machine learning; 

Elman neural network; Invasive weed optimization; Multi-objective differential evolution 

optimization    

1. INTRODUCTION  

Bridges are vital links in transportation networks, and it is crucial to maintain them within 

acceptable performance limits despite the harsh operating conditions. In the recent years, the 

number of worldwide deficient bridges has increased (Rojob and El-Hacha, 2018). Owing to the 

fact there are limited available funds for maintenance, repair and rehabilitation actions. This 

motivated researchers and decision-makers to pay more attention for the maintenance planning 

of deteriorating bridges, which is demonstrated in the form of efficient bridge management 

systems (Tesfamariamet al., 2018). The American Association of State Highway and 

Transportation Officials (AASHTO) defined Bridge Management System (BMS) as “a system 

designed to optimize the use of available resources for inspection, maintenance, rehabilitation 

and replacement of bridges” (AASHTO, 2011). Bridge management systems assist in 

overcoming the backlog in maintaining the bridge structures, whereas the backlog of 

maintenance activities can result in the increase of repair costs to the extent that repairing the 

deteriorating bridges is more expensive than building new ones (Miyamoto et al., 2001).  



In Canada, the instantaneous and serious economic and environmental impacts of bridge 

collapses alongside their high owner and user costs have drawn the public attention towards the 

importance of bridge management systems (Ali et al., 2019). Bridges experience accelerated 

aging and extensive deterioration and larger portion of them require urgent rehabilitation or 

replacement. They consumed approximately 57% of their useful time, whereas their average age 

is considered as the second highest among the five main assets, namely roads, bridges, water 

supply systems, wastewater treatment facilities and sewer systems (Statistics Canada, 2009). It 

was also reported that 26% of the bridges are either in a “Fair”, “Severe” or “Very Severe” 

condition categories (Felio, 2016). 

Bridges in Quebec experienced higher levels of deterioration such that they reached 72% of their 

useful lifetime, which is regarded as the highest average age among all the provinces of Canada. 

On the other hand, bridges in Prince Edward Island have the smallest average age, which is 15.6 

years. This can be attributed to that about 70% of the bridges in Quebec were built between the 

1960s and 1980s (Farzam et al., 2016; Viami International Inc. and the Technology Strategies 

Group, 2013). The backlog of bridge maintenance, rehabilitation and replacement is estimated to 

be equal to $10 billion. The continuous increase in the backlog results in a significant 

deterioration in the condition of the bridge elements (Sennah et al., 2011). As such, expeditious 

deteriorating condition coupled with increase in public demands for safe, functional and 

serviceable transportation networks in the light of squeezed maintenance and intervention 

budgets constitute an escalating challenge for the departments of transportation to optimize the 

allocation of resources consumed in bridge maintenance activities. In this regard, the primary 

aim of this research study is to develop an automated integrative evolutionary-based paradigm, 

which aids decision makers to model and optimize the performance aspects and utilization rates 



of resource allocation plans in bridge deck replacement projects based on technical, economic 

and environmental aspects while ensuring the efficacy in the utilization of resources. This is 

achieved through the following group of objectives:  

1- Develop a discrete event simulation model to emulate the bridge deck replacement process. 

2- Build a data-driven surrogate machine learning model to simulate automatically the 

performance aspects and utilization rates of different resource allocation plans. 

3- Formulate a multi-objective optimization model for resource allocation that accommodates 

the competing objectives of time, cost and greenhouse gas emissions while satisfying 

utilization requirements. 

4- Validate the developed models through a set of performance and statistical comparisons.   

2. LITERATURE REVIEW 

The literature review encompasses two sections namely, resource-based planning and 

maintenance allocation.  

2.1 Resource-based Panning  

Resource-based planning and scheduling is essential for the cost-effective and reliable 

delivery of construction projects. Several research studies were carried out to analyze and solve 

the problems pertinent to resource allocation in different types of construction projects. Osman et 

al. (2017) proposed a simulation-based multi-objective optimization model to schedule repair 

costs in water network break sites. Results demonstrated that the developed genetic algorithm-

based model was able to reduce repair time by 21% with respect to the developed optimization 

model by the water municipality. Vand Xavier (2017) introduced a resource driven scheduling 

model that utilized genetic algorithm to optimally allocate resources to repetitive activities of 



high rise buildings. The generated schedule encompassed number of days required to complete 

needed activities, their sequential order and the required material and equipment. 

Podolski and Sroka (2019) introduced a cost optimization model for multi-unit construction 

projects. The optimal work schedule was generated using simulated annealing-based model that 

aimed at minimizing direct costs, indirect costs, costs of misleading deadlines and costs of work 

group discontinuities. Tomczak and Jaśkowski (2020) presented a deterministic mathematical 

model that incorporated the use of mixed integer programming to minimize the downtime days 

of general contractor’s crews in repetitive construction projects. The developed model was able 

to consider project deadlines, limited budget and limited availability of crews.  Limsawasd and 

Athigakunagorn (2017) proposed a discrete event simulation-based model to manually optimize 

resource allocation and enhance work productivity in scaffolding work of building projects. 

Different crew configurations were generated and analyzed according to the total construction 

time, total construction cost and total awaiting time of workers in an attempt to obtain the 

optimal resource allocation strategy.  

Zou et al. (2018) developed a bi-optimization model that comprised the use of mixed integer 

programming for the purpose of minimizing total number of crews and maximizing work 

discontinuity in repetitive projects. The developed model was based on line of balance 

scheduling to monitor work continuity in highway projects. It also encompassed an additional 

module to minimize work interruptions while maintaining the pre-defined objective functions. 

Jaskowski and Biruk (2020) introduced an optimization model for the minimization of idle time 

of crews while satisfying the contractual project duration in school buildings. In it, mixed binary 

linear programming was adopted to generate an optimal schedule that included the start and 



finishing dates for the different processes of the zones based on the optimum configuration of 

resources and optimum routing of crews.  

The literature lacks studies that dealt with resource-based planning of bridge maintenance 

projects. Few studies were proposed to optimize resource allocation plans in bridge deck 

maintenance projects. Zhang et al. (2008) introduced a discrete event simulation model to 

analyze resource combinations of bridge deck rehabilitation. In this context, sensitivity analysis 

was conducted to select the optimum resource combination that yielded less unit cost and higher 

productivity. It was also found that most of the previous studies pertinent to bridge maintenance 

management focused on project level or network level maintenance budget allocation rather than 

investigating the optimization of the rehabilitation work at the element level, which is primarily 

concerned with resource allocation under multiple conflicting objective functions. Several 

attempts have been conducted to develop multi-objective optimization and prioritization models 

for the purpose of bridge maintenance management, which provide bridge managers with several 

optimal plans. They are described in the following lines.  

2.2 Maintenance Allocation  

2.2.1 Optimization-based models  

Bukhsh et al. (2020) developed a multi-year maintenance planning framework for bridges 

at a network level. They utilized discrete Markov decision process to model the bridge 

deterioration process, whereas percentage prediction method was applied to calibrate the 

transition probability matrices. They employed multi-attribute utility theory to sort the bridges by 

capturing the different defining attributes and decision makers’ preferences. Genetic algorithm 

was applied to find the optimal maintenance plans by accommodating the performance 

requirements and tight budget constraints. Mao et al. (2020) designed an optimal maintenance 



scheduling strategy that was formulated in the form of two levels. The upper level incorporated a 

multi-objective non-linear programming model, which aimed at minimizing the total traffic 

delays during the maintenance period and maximizing the total number of bridges to be repaired. 

The lower level comprised simulating users’ route choice using a modified user equilibrium 

model, whereas simulated annealing algorithm was deployed to solve the optimization model.  

Mahdi et al. (2019) developed a decision support system to prioritize the maintenance strategies 

of concrete bridges using dynamic programming. The evaluation criteria of the bridges depended 

on some performance indicators which included: structural performance, functional performance 

and external factors. They highlighted that the developed model can compute the optimal 

maintenance plan for each bridge within the network while taking the budget constraints within 

limitations. Wu et al. (2017) designed an optimization model to enable the transportation 

agencies to allocate the funds of the bridge maintenance based on minimizing the life cycle costs 

and maximizing the structural performance of the whole lifespan bridge. The 2012 National 

Bridge Inventory (NBI) of the state of Texas was used as an input to build the optimization 

model.  

Shim and Lee (2017) constructed a multi-objective optimization model with linearly weighted 

sum method to define the optimum maintenance, repair and rehabilitation (MR&R) activities for 

a network of bridge decks. The developed optimization model encompassed minimizing the area 

percentages of structurally deficient decks and minimizing the annual MR&R budget. The beta 

distribution was used to model the uncertainties of the unit cost of the intervention actions rather 

than employing deterministic values. Badawy (2017) developed an optimization model to select 

the optimum MR&R activities for expansion joints. The optimum intervention actions were 

defined using genetic algorithm based on maximizing the overall condition of the expansion 



joints given a certain budget constraint. Additionally, the transition probability matrix was 

calibrated stepping on minimizing the differences between the predicted condition and the 

inspected condition. 

2.2.2 Multi-criteria decision making-based models  

Contreras-Nieto et al. (2019) introduced a geographical information system (GIS)-based 

multi-criteria decision making model for bridge maintenance prioritization. They established a 

weighted bridge rating system using analytical hierarchy process by analyzing responses from 

local bridge experts. The bridge rating system was designed as per weighted average of deck, 

substructure, superstructure and scour with respect to resiliency, riding comfort, safety and 

serviceability. They concluded that the developed model could visualize the prioritization of 

bridges for maintenance, which improves the decision-making process in the departments of 

transportation. Yossyafra et al. (2019) presented a hybrid multi-criteria decision making model 

for maintenance prioritization of bridges in West Sumatra Province. They utilized fuzzy 

analytical hierarchy process to compute the weights of attributes, which were technical 

condition, age, average daily traffic, economic benefits, road function, budget fund, disaster 

impact and spatial conditions. Then, a multi-criteria ranking index was calculated using VIKOR 

method, which mapped the priority order of bridges to be repaired prior to others.  

Bukhsh et al. (2019) presented an approach for network level maintenance planning using multi-

attribute utility theory. The proposed approach prioritized the bridges by accommodating 

different attributes which were: improving assets’ reliability, minimizing agency cost, 

minimizing impact on users and maintaining the bridge network safety. They suggested that the 

proposed approach can improve the decision-making of maintenance planning through modeling 

performance, economic and social aspects. Markiz and Jrade (2018) presented a fuzzy-based 



decision support system integrated with bridge information management system to model the 

bridge deterioration modeling and to prioritize the maintenance, repair and rehabilitation actions 

at the conceptual design stage. They applied time-dependent gamma shock model to forecast the 

bridge deterioration. Furthermore, technique of order preference by similarity to ideal solution 

(TOPSIS) was deployed to design the maintenance prioritization platform of bridges. They 

highlighted that the developed model was capable of attaining approximately 10%-15% error in 

the prediction accuracy of bridge deterioration.  

Rashidi et al. (2017) presented a decision support system to rank the remedial actions of steel 

bridges using analytical hierarchy process. They considered a set of attributes to model the 

remedial actions such as safety, service life, remediation cost, traffic disruption, environmental 

impact and heritage significance. They modeled four alternatives of rehabilitation actions which 

were: splice plates, steel plate strengthening, fiberglass reinforced plastic strengthening and 

partial member replacement. They concluded that the presented model can enable asset managers 

to manage the bridges through balanced modeling of multiple attributes. Yoon and Hastak (2017) 

presented a multi-tiered prioritization method for ranking bridge deck rehabilitation projects as 

per urgency scale and total prioritization scale. The urgency scale was defined according to the 

physical condition of the bridge deck while the total prioritization scale was constructed as a 

result of integration of the normalized values of performance, economic and criticality scales.   

Nurdin et al. (2017) developed a multi-criteria decision making model to set a priority scale for 

bridge maintenance and rehabilitation. Three attributes were introduced to set the maintenance 

prioritization index, whereas the criteria for condition of damage represented the largest weight 

followed by the volume traffic and criteria policy. The weights of attributes were computed 

based on analytical hierarchy process by aggregating the feedback of 27 respondents using 



geometric mean. ArcGIS was utilized to visualize the output of the maintenance prioritization 

model. Amini et al. (2016) proposed a decision-making model to prioritize the urban roadway 

bridges for maintenance and rehabilitation actions based on multi-attribute utility theory. Four 

main factors were defined for the bridge maintenance prioritization model. These factors 

involved destruction and environmental, destruction losses, funds, logistic and information, and 

strategic and condition. The weights of the sub-factors of the structural condition indicator were 

computed based on the analytical hierarchy process.  

It is worth mentioning that most of the prioritization and maintenance optimization models are 

deterministic and don’t model the inherent uncertainties of the construction process, which 

usually don’t lead to optimal solutions (Mao et al., 2020; Wu et al., 2017). Also, some of the 

maintenance prioritization models were mainly driven by preferences of domain experts and 

subjective rankings, which may not be necessarily applicable to be generalized to be applied 

elsewhere (Safa et al., 2014; Jahan et al., 2012). Most of the previous studies relied on historical 

records to determine the cost of the maintenance actions, which are not necessarily accurate and 

may not fit the case in hand (Bukhsh et al., 2020; Mahdi et al., 2019). The absence of precise and 

resource-driven cost estimation models can heavily influence the decision-making process at 

different levels of management (Zhang et al., 2008). It is noted that bridge deck replacement has 

been rarely investigated within the state of the art despite its criticality from technical, economic 

and social aspects.    

Although environmentally conscious construction has been explored in the last decade (Hansen 

and Sadeghian, 2020; Ozcan-Deniz and Zhu, 2015), there is lack of studies which analyzed the 

multi-objective optimization of construction projects accounting for time, cost and 

environmental impact perspectives during the initial planning phases. These models are required 



to provide efficient planning, evaluation and selection of the construction equipment. In the last 

two decades, several simulation-based optimization frameworks were designed for resource 

allocation of different construction processes. The simulation-based models are characterized by 

their complex nature and the presence of large number of activities coupled with the presence of 

wide resource combinations exhibit a more complex behavior. This high computational 

complexity results in a highly computational expensive model. Additionally, it may lead to slow 

convergence and inferior solutions resulting from the need to explore this large hyper search 

space (Parnianifard et al., 2019; Chen et al., 2019). Another shortcoming of some of the 

simulation-based optimization models is the lack of practicality as a result of the absence of user 

friendly and computational efficient automated paradigm to facilitate its implementation by 

users. Another aspect to consider is that the most of the resource allocation models employed 

genetic algorithm to search for the optimum solutions. Nevertheless, the use of genetic algorithm 

is often criticized by the low exploration and exploitation capacity, which leads to the 

entrapment in local minima rather than the true optimal solutions (Jin 2011; AlSukker et al., 

2010).  

3. PROPOSED METHOD 

The main objective of the present study is to introduce an automated platform for 

modeling and optimizing the performance aspects and utilization rates of limited resources in 

bridged deck replacement projects. The developed integrative evolutionary-based method is 

divided into three models namely, discrete event simulation, machine learning and multi-

objective optimization (see Figure 1). In the first model, the bridge deck replacement is modeled 

using STROBOSCOPE simulation platform. The outcomes of this model encompass the 

performance aspects of time, cost and greenhouse gases for the different resource allocation 



plans alongside the utilization rates of resources in the different phases. This output depends on 

the different input scenarios of resource allocation plans that include diverse and wide-ranging 

combinations for the numbers of each type of resources. Martinez (1996) introduced 

STROBOSCOPE simulation engine to model resourced-based complex operations in diverse 

fields based on discrete event simulation. It is advised by many researchers because of its 

programming-based nature, which gives the elements a unique behaviour that provides higher 

degree of flexibility and extensibility than graph-based simulation platform such as EZStrobe. 

The first step is to define the logic, constraints, resources and the activities that support the 

logical sequence required for the bridge deck replacement.  

STROBOSCOPE is capable of accommodating both deterministic and stochastic input variables. 

Stochastic modeling of the input variables in simulation models is an acceptable approach that 

have widely used by several research studies to mimic and approximate the actual performance 

(Khetwal et al., 2020; ; Zhang, 2015; Thipparat et al., 2013; Lee et al., 2012), especially when 

taking into consideration that there are lack of models reported in the literature which can look at 

the actual performance of different combinations of resources in bridge deck replacement 

projects as highlighted in the “Literature Review” section. The productivity rates and direct costs 

are based on the historical data published in the RSMeans Building Construction Cost Data 2017 

(Gordian RSMeans Data, 2017). The fuel consumption rates of the involved construction 

equipment are adopted from Caterpillar Inc. (2013). Rsmeans Building Construction Cost Data 

2017 is used to capture the average and most commonly experienced productivity rates under 

normal conditions and eight-hour work day (Yun et al., 2012; Lewis and Hajji, 2012). They are 

based on actual data collected from wide range of projects, common construction practices and 

international construction manuals. RSmeans is a widely accepted resource to retrieve the most 



likely values of the crew-based productivity data. It has been successfully utilized as an input for 

simulation-based models in several applications such as cost and time analysis of digital 

fabrication (García de Soto et al., 2018), assessment of workers’ muscles fatigue on construction 

operations (Seo et al., 2016), studying environmental emissions in buildings (Inyim et al., 2016; 

Rasdorf et al., 2012), analyzing learning curve on productivity rates (Shehwaro et al., 2016), and 

modeling construction earthmoving operations (Zankoul et al., 2015). Caterpillar performance 

books have been adopted by researchers to obtain the hourly fuel consumption rates of different 

equipment models (Hasan et al., 2020; Yi et al., 2017; Dindarloo and Siami-Irdemoosa, 2016; 

Jassim et al., 2016).     

The captured productivity rates and fuel consumptions are then modelled as stochastic 

distributions in order to capture the inherent uncertainties, unforeseen conditions and 

impreciseness associated with the construction processes at the operational level. The 

productivity rates of the resources and the hourly fuel consumption rates are assumed to follow 

normal distribution (Kim et al., 2018; Younes et al., 2020; Puri et al., 2013; Marzouk and 

Younes, 2013) and triangular distribution (Poonthalir and Nadarajan, 2018; Kim et al., 2016), 

respectively. The distributions are used by previous studies due to their simplicity in analytical 

computations, generality and efficient representation of the stochastic nature of the input 

variables in the discrete event simulation model. After running the STROBOSCOPE simulation 

engine, the designated fields from the output report are stored in applicable readable Microsoft 

Excel format for further analysis. This comprises the involved resources in each phase, average 

utilization factor, standard deviation factor, time, cost and greenhouse gases. The resulting output 

variables of the performance aspects and utilization rates of resource allocation are represented 

in the form of normal distributions. In this regard, mean is acceptable in terms of computational 



complexity and accuracy. The mean of the output distributions is computed to be used as an 

input for the subsequent computational procedures. The simulation was run 328 times with 

different resource combination scenarios yielding 328 output files. The Microsoft Excel output 

files were combined, mapped and appended into the relevant database field.  

The main objective of the second model is to design an efficient, practical and straightforward 

surrogate machine learning model to mimic the computationally exhaustive discrete event 

simulation model within an acceptable accuracy. In this regard, the data-driven machine learning 

is designated for simulating automatically the performance aspects of time, cost and greenhouse 

gases for the different resource allocation plans in addition to their utilization rates. This 

comprises two stages, whereas the first surrogate model aims at predicting the efficiency and 

balance in the utilization of resources based on the number of utilized resources. In the first 

machine learning model, the numbers of resources are the input neurons while the output 

neurons are the utilization rates of resources in each phase. The efficiency and uniformity of 

utilization of resources is evaluated according to unified metrics that aggregate the utilization 

rate of resources used in each phase. Then in the second stage, the utilization rates alongside with 

the number of resources are fed into another machine learning model to forecast the time, cost 

and greenhouse gases. In the second machine learning model, the input neurons are the number 

and utilization rates of resources in each phase. The output neurons are the time, cost and 

greenhouse gases associated with each resource allocation plan. In this manner, the performance 

aspects of the resource allocation are evaluated based on the number and time spent by resources 

in their respective activities.    

The proposed model utilizes a hybridization of Elman recurrent neural network (ENN) and 

invasive weed optimization (IWO) algorithm to enhance the prediction accuracy of simulating 



the afore-mentioned predictors. Training Elman neural networks with meta-heuristic 

optimization algorithms is a powerful mechanism to improve the search engine of the Elman 

neural network by addressing the exploration-exploitation trade-off dilemma. The proposed 

model utilizes invasive weed optimization algorithm for both parametric and structural learning, 

i.e., to automatically optimize the weights and define the best possible architecture of the Elman 

recurrent neural network. Invasive weed optimization algorithm is selected as a training 

mechanism because it manifested its efficacy in dealing with different and complex problems 

including operation of reservoir systems (Azizipour et al., 2016), waste management (Tirkolaee 

et al., 2019), and surface defects detection (Mohammed Abdelkader et al., 2020). Additionally, it 

outperformed a set of widely-acknowledged meta-heuristics such as genetic algorithm, particle 

swarm optimization algorithm, improved particle swarm optimization and shuffled frog-leaping 

(Prabha et al., 2016; Saravanan et al., 2014).  The Elman neural network is trained by designing a 

variable-length single-objective optimization problem which encompasses a fitness function of 

minimization of mean absolute percentage error. The steps of the invasive weed optimization 

algorithm are repeated until satisfying the convergence criteria, i.e., reaching maximum number 

of iterations. The optimized Elman neural network is appended and utilized to simulate the 

testing dataset.  

The surrogate machine learning model is validated through three phases. The purpose of the first 

phase is to evaluate the statistical significance of the output of the discrete event simulation 

model and the machine learning model using Shapiro-Wilk test of normality and Mann-Whitney-

U test. This is done to experiment if the machine learning model can efficiently mimic the 

discrete event simulation model. The second phase involves its comparison with nine 

conventional prediction models reported for their higher accuracies, namely back-propagation 



artificial neural network (ANN), radial basis neural network (RBNN), generalized regression 

neural network (GRNN), convolutional neural network (CNN), linear kernel support vector 

machines (LSVM), radial kernel support vector machines (RSVM), gradient boosted decision 

trees (GBDT), Gaussian process (GP) and K-nearest neighbors (K − NN). Their performances 

were evaluated as per mean absolute error (MAE), root-mean squared error (RMSE) and mean 

absolute percentage error (MAPE). These performance measures are normally used as metrics to 

evaluate the suitability and accuracy of the predication models (Fayaz et al., 2019; Le et al., 

2019; Yahya et al., 2019). Lower values of MAE, RMSE and MAPE imply a better prediction 

model. It is worth mentioning that the performances were assessed using split validation and 10-

fold cross validation. The K-fold cross validation is used to ensure the training and testing of the 

entire dataset, which truncates any possibility of over-fitting or over-learning in the pattern 

recognition phase. The third phase incorporates utilizing non-parametric testing to evaluate the 

statistical significance level of the outcome of prediction models using the performances of the 

different folds. Non-parametric tests include Wilcoxn test, Mann-Whitney-U test, Kruskal–

Wallis test, binomial sign test and Mood’s median test. 

The third model incorporates building a multi-objective differential evolution paradigm to 

optimize the resources based on the total project duration, total project cost and total greenhouse 

gases, and subject to the targeted average and dispersion in the utilization of the consumed 

resources. In this model, the calibrated machine learning models of the previous stage are 

utilized herein as fitness functions and terms of objective functions. Differential evolution 

algorithm is exhaustive search engine that demonstrated higher exploration and exploitation 

capacities in investigating higher-dimension and multi-local spaces (Yagiz et al., 2020; Yu et al., 

2018). Furthermore, it proved its efficiency in dealing with various and exhaustive search 



problems such as design of reinforced concrete continuous foundation (Kamal and Inel, 2019), 

stream flow simulation (Al-Sudani et al., 2019) and design of net zero buildings (Chai et al., 

2020). It is validated through comparisons with a set of well-performing state of the art meta-

heuristics, namely multi-objective genetic algorithm (MOGA), multi-objective particle swarm 

optimization algorithm (MOPSO), multi-objective dragonfly algorithm (MODA), multi-objective 

grey wolf optimization algorithm (MOGWO), multi-objective Jaya algorithm (MOJAYA) and 

multi-objective shuffled frog-leaping algorithm (MOSFL). Additionally, the developed multi-

objective optimization model is compared against non-linear programming that uses Levenberg-

Marquardt algorithm.     

The comparisons of optimization models were conducted as per a set of performance indicators, 

which included average fitness function values, coefficient of variation of fitness function values, 

hypervolume indicator, generational distance, spacing, diversity, spread and coverage. These 

performance metrics are capable of evaluating three main aspects which are: diversity, accuracy 

and cardinality (Cui et al., 2020; Falahiazar and Shah-Hosseini, 2018; Chen et al., 2018). Then, 

the significance levels of the optimal solutions of the different meta-heuristic optimization 

algorithms are evaluated using non-parametric testing. Multi-criteria decision making is 

performed to identify the most feasible solution among the set of Pareto optimal solutions. 

Shannon entropy is employed to compute the weights of the attributes. Subsequently, Preference 

Ranking Organization Method for Enrichment Evaluations (PROMETHEE II) is utilized to rank 

the Pareto optimal solutions according to the net outranking flow. The net outranking flow 

evaluates the different resource allocation plans collectively according to their time, cost and 

greenhouse gases. PROMETHEE II is selected over other multi-criteria decision making 

approaches because of its robustness and efficiency in solving multi-attribute decision problems 



in diverse fields including optimal site selection of parabolic tough concentrating solar power 

plant (Wu et al., 2019), sustainability assessment of large scale composite technologies (Makan 

and Fadili, 2020), and  ranking of sub-watersheds threatened by erosion process (Vulević and 

Dragović, 2017). The previous models are automated using a computerized platform that 

encompasses a hybridization of C#.net and Matlab programming languages. It is expected that 

the automated platform is capable of exploiting the compatibility and versatility capabilities of 

C#.net and the superior computational capacity of the Matlab.  

INSERT FIGURE 1 

4. METHOD DEVELOPMENT  

This section describes in detail the three main models reported in the “Proposed Method” 

section.  

4.1 Discrete Event Simulation Model 

As early mentioned, the proposed simulation model is developed using STROBOSCOPE 

in order to capture the sequences of the involved tasks in the bridge deck replacement process. 

Figure 2 depicts the simulation network of the bridge deck replacement process. The 

STROBOSCOPE simulation elements, which are used to model the involved tasks in the 

simulation process, are depicted in Table 1. The simulation elements include: Queue, Link, 

Normal, Combi and Consolidator. The simulation model starts by demolishing the existing 

bridge deck. Then, the demolished segment is loaded into the trucks by the loaders. The trucks 

then travel and dump the demolished segment and travel back to be loaded again by the loaders. 

This process continues until reaching the desired number of segments to be demolished. The 

second phase is the construction phase, whereas the stepping shuttering system is assembled then 



it is pushed hydraulically until erected on an existing bridge pier. Afterwards, the stepping 

shuttering advances into its position using a group of hydraulic jacks.  

The utilized construction method is for a pre-stressed concrete bridge, in which the tendons are 

tensioned before the concrete is placed. The bridge deck is casted on two stages: the first stage is 

casting the bottom slab and the second stage is casting the web and top slab. The formwork of 

the bottom slab is erected then the tendons are placed in a prescribed pattern on the casting bed 

between two anchorage systems. After that, the tendons are tensioned using hydraulic jacks to a 

value that should not exceed 94% of the specified yield strength nor 80% of the strength of the 

pre-stressing steel nor the maximum value recommended by the manufacturer of the steel. 

Finally, the concrete is casted and allowed to cure. The same previous steps are repeated for 

casting the web and the top slab. The whole construction process is replicated till reaching the 

desired number of segments to be casted.       

The final phase is the finishing phase, which starts by installing the curbs then laying the asphalt 

layers. The first layer of the asphalt is the aggregate base course layer, which is compacted and 

spread on two layers, whereas each one of them is 15 cm. Then, the aggregate base course layer 

is tested to ensure that it meets the desired specifications. Subsequently, the prime coat (MC-30) 

is spread using tankers and tested. Then, the asphalt binder course is spread using finishers and 

compacted using rollers and then tested. The tack coat (RC-70) is then spread using tankers and 

tested. Finally, the final asphalt pavement course layer is spread, compacted and tested. The 

sidewalks are then installed and finally the epoxy pavement markings are placed  

The total duration, cost, greenhouse gases of the project in addition to the utilization factors of 

the different resources are computed in the STROBOSCOPE simulation engine to build the 



machine learning database. These performance aspects and utilization rates are computed 

according to the values of productivity rates of resources, hourly fuel consumption rates, daily 

direct cost of the resource, average consumption of equipment, carbon emission factor and 

density of diesel. Different and wide-ranging combinations of resources are created and their 

respective performance aspects and utilization rates are computed. These values are appended 

and used as an input to the subsequent surrogate machine learning model.  

INSERT FIGURE 2 

INSERT TABLE 1 

4.2 Surrogate Machine Learning  

Simulation models usually invoke numerous iterations, which result in lengthy processing 

times and CPU intensive simulation process. As such, a surrogate model needs to be developed 

and calibrated to circumvent the shortcomings of the computational time-expensive nature of the 

discrete event simulation model. Surrogate models are sometimes known as emulators, meta 

models, proxy models, low fidelity models, reduced models or response surface models. The 

main advantage of the surrogate models is that it capitalizes on the empirical relationships to 

imitate the input-output behavior of the discrete event simulation process within less 

computational time and acceptable computational accuracy. In this regard, the developed 

surrogate machine learning model is trained and tested using the output generated from the 

discrete event simulation model. Once the surrogate model is calibrated and validated, the input 

variables can be directly fed into it to generate the model outcomes within faster computational 

time. These outcomes are invoked as the multi-objective optimization functions and the set of 

condition constraints (Mahmoodian et al., 2018; Song et al., 2018).  



In the present study, a novel hybrid ENN − IWO is introduced as a surrogate model to evaluate 

the resource allocation plans of bridge deck replacement process. The developed computer aided 

application enables their automated assessment from time, cost and environmental perspectives 

alongside their utilization rates. The developed data-driven machine learning model encompasses 

two stages. In the first stage, the numbers of resources in each phase are used as an input to 

forecast the average and standard deviation of utilization rates of resources. In the second stage,  

the number and utilization rates of resources serve as an input to the machine leaning model for 

the purpose of predicting the time, cost and amount of greenhouses gases of the different 

resource allocation plans. In this regard, the utilization rates are adopted for the purpose of 

capturing the time consumed by resources in a certain construction activity. It should be 

mentioned that the two stages involves nine ENN − IWO models designated for the prediction of 

average and standard deviation of utilization of resources alongside the performance aspects of 

the different resource allocation plans.  

Each one of the nine ENN − IWO models is composed of different architecture in terms of 

numbers of input neurons, hidden and context layers, hidden and context neurons and output 

neuron. In this context, number of input neurons is equal to the number of input variables. Figure 

3 depicts the architecture of the developed ENN − IWO model for the prediction of average 

utilization rate of resources in the demolition phase (AVG_UTILDEM). It is composed of three 

input neurons for the numbers of hydraulic hammers, loaders and trucks. It is worth mentioning 

that the developed ENN − IWO model for the prediction of the performance aspects of resources 

allocation plans is composed of 20 input variables. The input variables are adopted from the 

literature so that they cover all utilized resources alongside the average and standard deviation of 

utilization of resources in each phase separately of bridge deck replacement process. In this 



manner, the selection of input variables is capable of considering both the number of resources 

and the time spent by them. The input variables encompass numbers of hydraulic hammers, 

loaders, trucks, form crews, rebar crews, stress crews, concrete crews, finishing crews, graders, 

rollers, tankers, finishers, sidewalk finishing crews and painting crews. They also include 

average and standard deviation in the utilization of resources in demolition phase, construction 

phase and finishing phase.       

 INSERT FIGURE 3 

In the developed surrogate machine learning model, invasive weed optimization is used as a 

training engine in an attempt to amplify the search capacity of the training mechanism through 

deriving the optimum weights and configuration of the Elman neural network. The Elman neural 

network is coupled with invasive weed optimization algorithm to alleviate the drawbacks of the 

derivative-based back propagation training algorithms and low computational efficiency 

resulting from the manual tuning of the parameters of Elman neural network. The training 

process based on the gradient descent usually gets trapped in a local minima or premature 

convergence and sometimes causes over-fitting problems mostly in the presence of multilayer 

neural network (Shreyas and Dai, 2020; Jabin, 2014). The second reason is the existence of wide 

range of parameters, which substantially affect the performance of the neural network. This 

includes initial setting of weights, numbers of hidden and context layers, number of hidden and 

context neurons and types of transfer function. These parameters are sensitive to their initial 

values, whereas their initial setting is always variable from one case to the other. In this context, 

the blindness in the determination of such parameters can result in the network to be trapped in 

an inferior solution and subsequently a long computational time of the training process and slow 

convergence (Zhang et al., 2020). Thus, a self-adaptive model is designed in order to tune 



automatically and dynamically its parameters and hyper parameters based on the available 

dataset generated from the discrete event simulation model. 

The developed ENN − IWO model involves both structural and parametric learning. In this 

regard, an invasive weed optimization algorithm is adopted to optimize the hyper parameters of 

Elman neural network and the weight connections between neurons. The structural learning 

involves find the optimum architecture of Elman neural network, which encompasses optimum 

number of hidden layers, number of context layers, number of hidden neurons, number of 

context neurons and transfer function. The present research study investigates eight types of 

transfer activation functions, namely hyperbolic tangent sigmoid transfer function, Elliot 

symmetric sigmoid transfer function, log-sigmoid transfer function, linear transfer function, 

positive linear transfer function, radial basis transfer function, triangular basis transfer function 

and normalized radial basis transfer function. 

Elman neural network is one of the recurrent neural networks (RNNs), which was proposed by 

Jeffrey Locke Elman in 1990. Elman neural network is characterized by additional context 

layers, which helps in providing a memory about the results of the computations done so far. 

This behaviour enables the neural network to maintain short term memory, which improves the 

network performance (Köker, 2013; Wang et al., 2014). The training process of the Elman neural 

network is performed based on a single objective function which minimizes the mean absolute 

percentage error of the different performance indicators as shown in Equation (1).  

MAPE =
100

k
× ∑

|PRi − ACi|

ACi

K

i=1

                                                                                                               (1) 

Where; 



ACi, PRi stand for the actual and predicted values, respectively. The actual and predicted values 

are either duration, cost, greenhouse gases or the unified utilization factor of resources. K  

represents the number of data points. It is worth noting that the mean absolute percentage error is 

selected because it is a well-recognized good performing performance indicator, unitless, and un-

biased performance metric. Additionally, it is usually more practical and efficient to deal with 

cost functions, i.e., error functions.  

The developed ENN − IWO model involves structural learning. As such, the number of weights 

and bias terms vary iteratively during each training epoch as per the numbers of hidden layers, 

hidden neurons, context layers and context neurons. As mentioned earlier, IWO algorithm is 

employed to train the Elman neural network. In this regard, the length of the optimization model 

is varying according to the Elman neural network’s hyper parameters. In this context, an 

estimator is designed for the purpose of modeling the dynamism and the variability in the length 

of the optimization model taking into consideration the possibility of presence of multi-hidden 

layer and multi-context layer Elman neural network. This estimator enables the computation of 

number of weights and bias terms in each training epoch as follows.  

 Num = ((I + 1) × N) + ((N × C × P + ((N + 1) × N × (P − 1)) + ((N + 1) × O)                (2) 

Where; 

Num represents the total number of weights and bias terms. I represents the number of input 

neurons. N indicates the number of hidden neurons. C represents the number of neurons in the 

context layer. P represents number of hidden and context layers. O depicts the number of output 

neurons. For simplification purposes, the number of context layers is assumed to be equal to the 

number of hidden layers. 



4.3 Multi-objective Optimization Model  

In the bridge deck replacement process, so many resources, decision variables and 

constraints are involved. In this regard, a multi-objective differential evolution model is 

formulated to identify the optimum number of each resource type such as number of 

reinforcement crews, number of graders, number of compactors, number of tankers, number of 

finishers, etc. The nine ENN − IWO models established and calibrated from the previous stage, 

serve as objective functions, terms of objective functions and constraints. The input and output of 

the developed multi-objective optimization model are recorded in Table 2. The developed 

computer aided application gives the user the flexibility to adjust some of the values of the input 

variable. The optimal resource allocation plan encompasses the optimum number of each type of 

resources. The solution structure of the multi-objective resource allocation model is depicted in 

Figure 4. As shown in Figure 4, the search agent or the candidate solution is structured in the 

form of a string or vector of elements, whose length denotes the number of decision variables of 

the multi-objective optimization model. The variable Xij takes integer values range from the 

minimum allowable number of resources to the maximum allowable number of resources. The 

length of the vector of decision variables is equal to fourteen, such that this vector encompasses 

numbers of hydraulic hammers, loaders and trucks in the demolition phase. It also involves 

numbers of form crews, rebar crews, stress crews and concrete crews in the construction phase. 

For the finishing phase, it incorporates numbers of finishing crews, graders, rollers, tankers, 

finishers, sidewalk finishing crews and painting crews. The optimal number of each type of 

resources is represented as vector of solutions. In this regard, it is obtained capitalizing on 

minimizing the project duration, project cost and project greenhouse gases as shown in Equations 

(3), (4) and (5), respectively and satisfying the explicit boundary constraints. The constraints are 



added to ensure the appropriate efficiency and uniformity (balance) in the utilization of resources 

as presented in Equations (6) and (7).  

TS = Min [ξ (Rr, Pr)], for all r ∈ {1,2,3,4 … … . . C_R}                                                                           (3) 

Cm = Min ∑ Rr × DCr × Tr

R

r=1

, for all r ∈ {1,2,3,4 … … . . C_R}                                                            (4) 

GHGm = Min ∑ Cons_Avge × γDiesel × CEF

E

e=1

× Re × T𝑒 , for all e ∈ {1,2,3,4 … … . . E}              (5) 

Subject to; 

UNIAVG_UTIL =
∑ ∑ UT_Frp

N
r=1

PH
p=1

C_R
≥ C                                                                                                    (6) 

UNISTD_UTIL =
∑ STD_UTILp

PH
p=1

PH
≤ B                                                                                                      (7) 

Such that; 

STD_UTILp = √
∑ (AVG_UTILp − UT_Fr)

2N
r=1

P_R
                                                                                     (8) 

Where; 

TS, Cm and GHGm stand for the normalized time, normalized cost and normalized greenhouse gas 

emissions. The time is measured per span while cost and greenhouse gases are measured per 

square meter. ξ is an operator which represents the STROBOSCOPE simulation engine. Rr and 

Pr represent the number of each type of resource and productivity rate of resources, respectively. 

DCr indicates the daily direct cost of the resource. T𝑒 represents the actual time spent by the 

resources in order to consider the idle periods consumed in construction site. E refers the fuel-



based resources. Re stands for the number of each fuel-based type of resources. Cons_Avge is 

hourly fuel consumption of certain equipment (liters/hour). γDiesel is density of diesel such that it 

is assumed 0.832 Kg/l. CEFe represents the carbon emission factor for diesel, whereas is 

assumed 3 Kg CO2-Eq/Kg (Flower and Sanjayan, 2007). UT_Frp stands for the utilization rate of 

the resource r in the phase p. UNIAVG_UTIL represents the unified average utilization rate of 

resources. STD_UTILp stands for the standard utilization rate of phase p. UNISTD_UTIL represents 

the unified standard deviation of utilization rate of resources  and it is computed as the average 

of standard deviation of resources in each phase. AVG_UTILp and STD_UTILp are the average 

utilization rate and standard deviation of utilization rate of resources in phase p, respectively. 

They are computed based on the idle time of crews. C_R indicates total number of type of 

resources in the project. In the present study, fourteen different types of resources are utilized. N 

and PH stand for the total number of resources in each phase and total number of phases, 

respectively. P_R stands for number of types of resources involved in phase p. For instance, 

demolition phase involves three different types of resources. C and B are threshold values to 

manage the utilization of resources on site. The developed computer aided application gives the 

user the flexibility to determine the lower and upper bounds of resources alongside the threshold 

values. The optimum resource allocation plan is the one which attains least time per span, unit 

cost and greenhouse gases footprint while maintaining efficient and balanced utilization of 

resources.     

INSERT TABLE 2 

INSERT FIGURE 4 



Differential evolution (DE) algorithm is an optimization algorithm that was introduced by Storn 

and Price back in 1997 to search for the global solution of non-linear problems with non-

differentiable objective functions (Storn and Prince, 1997). The framework of the differential 

evolution algorithm is similar to the genetic algorithm. However, the classical mutation and 

crossover in the genetic algorithm are replaced by alternative mutation and crossover operators. 

Differential evolution algorithm encompasses five main stages which are: initialization, 

mutation, crossover, selection, and convergence criteria. Differential evolution algorithm starts 

by generating a population of D-dimensional parameter vectors (candidate solutions) of size NP. 

The basic computational procedures of the DE algorithm are as follows (Storn and Prince, 1997; 

Hamza et al., 2018; Seyedpoor et  al., 2015). The generation of individuals can be obtained using 

the following Equation.   

Xi,G = LB + rand[0, 1] × (UB − LB)                                                                                                       (9) 

Where; 

i denotes the population. G denotes the generation to which the population belongs to. LB, and 

UB represent two vectors of upper and lower bound for any decision variable, respectively. 

rand[0, 1] represent a uniformly distributed random number between 0 and 1. 

The next step is the mutation, whereas the mutation vector is defined based on the combination 

of three randomly selected vectors. A vector in the current population is selected to be the target 

vector (parent). For each target vector (Xi,G) in the population, a mutant vector is created using 

the following Equation.    

Vi,G+1 = Xr1,G + F(Xr2,G − Xr3,G)           r1 ≠ r2 ≠  r3                                                                      (10) 



Where; 

r1, r2, and r3 represent three random and different indices between 1 and NP. The three random 

chosen vectors have to be different than the target vector. Vi,G+1 is the newly created mutant 

vector. F represents a mutation scale factor that control the amplification of differential variation 

between Xr2,G, and Xr3,G. Mutation scale factor is a real number between [0, 1]. 

Crossover is performed to diversify the current population by exchanging components of the 

target vector and the mutant vector. The trial vector (offspring) can be obtained using Equation 

(11). If the crossover rate is smaller than the random number, Vj,i,G+1 in the mutant vector is 

copied to the trial vector. Otherwise, Xj,i,G in the target vector is copied to the trial vector.  

Uj,i,G+1 = {
Vj,i,G+1            if CR ≥ randj 

Xj,i,G,                 if CR < randj   
                                                                                            (11) 

Where; 

CR represents crossover probability. Uj,i,G+1 represents trial vector. j represents index element for 

any vector. randj denotes uniform random number between [0,1].  

In the selection stage, the trial vector is compared with the target vector to determine if trial 

vector should be a member of the next generation G + 1 as shown in Equation (12). Assume the 

objective function to be minimized. The vector with lower objective function survives to the next 

generation. If the trial vector yields a lower objective function than the target vector, then the 

trial vector replaces the target vector in the next generation.  

Xi,G+1 = {
Ui,G+1       if f(Ui,G+1) ≤ f(Xi,G) 

Xi,G,          if(Ui,G+1) > f(Xi,G)   
                                                                                           (12) 



Mutation, crossover, and selection are repeated in each generation until stopping criterion is 

satisfied, i.e., reaching maximum number of generations. 

4.4 Multi-criteria Decision Making  

The objective of the multi-criteria decision making model is to select the best resource 

allocation plan among Pareto optimal solutions obtained from the multi-objective optimization 

model. In this regard, Shannon entropy algorithm is applied for the computation of the weighted 

importance vector of time, cost and greenhouse gases. PROMETHEE II is then employed to rank 

the resource allocation plans capitalizing on their duration, cost and produced greenhouse gas 

emissions. Shannon entropy is an objective weighting algorithm that relies on the decision matrix 

to derive the weighting importance of attributes in an attempt to alleviate the limitations of 

subjective preference-based weighting algorithms. Entropy is a measure of randomness and 

uncertainties of information demonstrated by discrete probability distribution, whereas larger 

amount of information implies smaller uncertainties and entropy values, which indicates that the 

attribute has higher importance. Entropy can be also utilized to evaluate the degree of dispersion 

of alternatives associated with a given attribute. In this regard, a higher degree of dispersion 

implies a greater relative importance of the attribute. The computational procedures of the 

Shannon entropy algorithm can be summarized as follows (Wu and Hu, 2020; Hafezalkotob and 

Hafezalkotob, 2015).    

The first procedure is the normalization of the performance indices in the decision matrix which 

is accomplished using Equation (13). 

Pij =
xij

∑ xij
m
i=1

     (1 ≤ i ≤ m, 1 ≤ j ≤ n)                                                                                                  (13)                                                                         

Where; 



Pij represents the projection value of the i − th alternative with respect to j − th attribute. xij 

represents the measure of performance of the i − th  alternative with respect to j − th attribute. 

The terms m and n indicate the number of alternatives and number of attributes, respectively.  

The second procedure involves the computation of entropy value for each criteria using Equation 

(14) 

ej =   −k ∗ ∑ Pij
m
i=1 ∗  lnPij  (1 ≤ i ≤ m, 1 ≤ j ≤ n)                                                                           (14)                                                      

Where; 

ej refers to the entropy value of the j − th attribute, and k =
1

ln (m)
.  

The third procedure encompasses the computation of the degree of dispersion of intrinsic 

information for different attributes using Equation (15).  

dj  = 1 − ej                                                                                                                                                  (15)      

Where; 

dj denotes the inherent contrast intensity or dispersion of  attribute j, whereas a higher value of  

dj indicates more relative importance assigned to the attribute j.             

The objective weigh of each attribute can be computed using Equation (16). 

wj =
dj

∑ dj
n
j=1

                                                                                                                                                   (16)            

Where; 

wj denotes the relative importance weighting of the j − th attribute.      



The family of PROMETHEE approaches were developed by Brans and Vincke (1985) to enable 

decision makers to establish a ranking of a finite set of alternatives. It is an outranking multi-

criteria decision analysis approach that can be applied to generate partial ranking of alternatives 

(PROMETHEE I) or full ranking of alternatives (PROMETHEE II). A preference function is 

assigned for each attribute, which enables to determine how much alternative a is preferred over 

alternative b through mapping the differences in the evaluation of the two alternatives. The 

preference degrees in the preference functions are represented in a numerical scale ranging from 

zero to one, whereas one indicates that alternative a is strongly preferred over alternative b while 

zero implies indifference preference value between the two alternatives a and b. There are six 

different types of preference functions including usual criterion, U-shaped (Quasi) criterion, V-

shaped criterion, level criterion, V-shaped with indifference (linear) criterion and Gaussian 

criterion. 

 In these preference functions, the indifference threshold and preference threshold need to be 

identified. Indifference threshold (Q) represents the largest deviation that is considered as 

negligible by the decision maker. Preference threshold (P) denotes the smallest deviation that is 

regarded as sufficient to generate full preference for the decision maker. A Gaussian threshold 

(S) is used only in the case of Gaussian preference function. The Gaussian threshold is usually an 

intermediate value between the indifference threshold and preference threshold. In the present 

study, V-shaped preference function is selected for the attributes of time, cost and greenhouse 

gases. It is selected because of its efficiency in dealing with quantitative nature of the present 

data, which enables to establish a clearer distinction between the evaluations of alternatives. 

Furthermore, it requires less parameters to be tuned (Brankovic et al., 2018; Kolios et al., 2016). 

The preference threshold value of each attribute is assumed 60% of the difference between the 



maximum and minimum performance evaluation (Gervásio and Simões da Silva, 2012). The 

basic procedures of applying PROMETHEE II are adopted from Brans et al. (1986). In it, the 

ranking of the resource allocation plans is carried out using the net outranking flow. A higher 

value of net ranking outranking flow implies a better resource allocation based on a collective 

evaluation performance of their respective time, cost and greenhouse gases.      

5. MODEL IMPLEMENTATION  

The case study is for a bridge that is composed of 8 lanes and 20 spans. The length of the 

span and width of the lane are 20 and 3.75 metres, respectively. The width of the sidewalk is 3 

metres. All the computations took place on a laptop with an Intel Core i7 CPU, 2.2 GHz and 16 

GB of memory. Table 3 describes the lower and upper bounds for the output variables of the 

discrete event simulation model that were used to generate the machine learning surrogate 

model. The output variables include: time per span (TS), cost per square meter (Cm), greenhouse 

gases per square meter (GHGm), average utilization rate of demolition phase (AVG_UTILDEM), 

and standard deviation of utilization rate of demolition phase (STD_UTILDEM), average 

utilization rate of construction phase (AVG_UTILCONST), standard deviation of utilization rate of 

construction phase (STD_UTILCONST), average utilization rate of finishing phase 

(AVG_UTILFINISH) and standard deviation of utilization rate of finishing phase 

(STD_UTILFINISH). For instance, the lower and upper bounds of the output variable GHGm are 

11.214 and 24.047, respectively.  

INSERT TABLE 3 

The next phase is to build the surrogate machine learning model using the simulation dataset to 

construct a reliable approximation of the STROBOSCOPE model. It is worth mentioning that the 

output variables TS, Cm and GHGmare computed using the number of involved resources in 



addition to the variables AVG_UTILDEM, STD_UTILDEM, AVG_UTILCONST, STD_UTILCONST, 

AVG_UTILFINISH, and STD_UTILFINISH in order to account for both the number of resources and 

the time spent by them. The surrogate model is the ENN − IWO that capitalizes on the invasive 

weed optimization algorithm to identify the optimum topology of the Elman neural network 

alongside its optimum characteristics. With respect to the prediction of cost and greenhouse 

gases, the user can specify the lower and upper bounds for the different structural and parametric 

learning parameters in addition to the parameters of the invasive weed optimization algorithm. 

The user interface of the automated prediction of greenhouse gases footprint is depicted in Figure 

5. As shown in Figure 5, the maximum numbers of hidden layers and hidden neurons are equal 

to 10. Thus, the maximum lengths of the optimization problem are 2214 for both cost and 

greenhouse gases. This is considered as a large search space that substantiates the employment of 

exhaustive training mechanism. The parameters of the IWO algorithm are as follows: the number 

of iterations and the initial population size are assumed 500 and 250, respectively. The maximum 

and minimum numbers of seeds are 5 and 0, respectively. The initial and final standard 

deviations are assumed 0.5 and 0.001, respectively. The non-linear modulation index is two.  

INSERT FIGURE 5 

For the cost prediction model, the optimum numbers of hidden and context layers are four while 

their optimum numbers of hidden and context neurons are four also. Elliot symmetric sigmoid is 

the optimum transfer function. In the cases of greenhouse gases prediction model, the optimum 

structure is composed of three hidden and context layers in addition to six hidden and context 

neurons. Furthermore, Elliot symmetric sigmoid is the optimum transfer function. The 

convergence curves of the mean absolute percentage error for greenhouse gases and cost are 

depicted in Figures 6 and 7, respectively. As shown in Figures 6 and 7, the least mean absolute 



percentage errors achieved by the invasive weed optimization algorithm for greenhouse gases 

and cost are 6.333% and 2.359%, respectively. This manifests the superior capacity of the 

invasive weed optimization algorithm in solving complex and variable-length optimization 

problems.   

INSERT FIGURE 6 

INSERT FIGURE 7 

The validation process of the surrogate model is three-folded. The first fold is to ensure that the 

surrogate machine learning model can efficiently substitute the discrete event simulation model. 

Shapiro-Wilk test is applied to study the normality of the data at significance level (α) of 0.05. It 

examines the null hypothesis (H0), which is that the random variable follows a normal 

distribution. On the other hand, the alternative hypothesis (H1) assumes that the random variable 

doesn’t follow a normal distribution. As such, if the P − value is less than the significance level, 

then the null hypothesis is rejected in favor of the alternative hypothesis. Nevertheless, if the P −

value is more than the significance level, thus the null hypothesis is accepted. Table 4describes 

the P − values of the simulation and machine learning models for the different output variables. 

As presented in Table 4, all the P − values of the discrete event simulation and machine learning 

models are less than 0.05, which imply that the null hypothesis is rejected and therefore the 

output variables of both models don’t follow normal distribution.  

INSERT TABLE 4 

In the light of foregoing, a non-parametric Mann-Whitney-U is applied to evaluate the statistical 

significant differences between the discrete event simulation and machine learning models at a 

significance level of 0.05 (see Table 5). The performed Mann-Whitney-U test investigates the 

null hypothesis (H0), which implies that there are no significant differences between the discrete 



event simulation and machine learning models. The alternate hypothesis (H1) indicates that there 

are statistical significant differences between the discrete event simulation and machine learning 

models. The P − values of the pairs (Discrete event simulation, machine learning) for all the 

prediction models are more than 0.05. This means that the null hypothesis is accepted. Thus, 

there is no statistical significant difference between the discrete event simulation model and 

machine learning model. Hence, the machine learning model can efficiently substitute the 

discrete event simulation model for all the output variables.         

INSERT TABLE5 

The second fold comprises a comprehensive performance comparison between the proposed 

ENN − IWO model and other conventional machine learning prediction models. Table 6 and 

Table 7 report performance comparisons between the machine learning models as per split 

validation for the prediction of cost and greenhouse gases, respectively. Additionally, Table 8 

records the performance evaluation metrics of greenhouse gases as per 10-fold cross validation. 

It is important to mention that 80% (262) and 20% (66) of the dataset are utilized for training and 

testing the prediction models, respectively. For cost prediction, the proposed model attained the 

highest prediction accuracy when compared to other prediction models reported in the literature, 

whereas the MAPE, MAE and RMSE are equal to 4.873%, 78.466 and 39.515, respectively. CNN 

achieved the second lowest MAPE while ANN had the second lowest MAE and RMSE. LSVM 

provided the least performance, whereas MAPE, MAE and RMSE equal to 18.361%, 214.525 and 

111.639, respectively.  

In terms of greenhouse gases, the proposed ENN − IWO model provided the highest 

performance, such that MAPE, MAE and RMSE are equal to 4.873%, 78.466 and 39.515, 

respectively. K − NN, GBDT and RSVM provided the second highest performance according to 



MAPE, MAE and RMSE, respectively. GP provided the lowest prediction accuracies, whereas 

MAPE, MAE and RMSE equal to 24.879%, 5.713 and 4.117, respectively. Back-propagation 

artificial neural network is the most widely-used algorithm in machine learning applications. 

when compared against the ANN model in greenhouse gases prediction, the ENN − IWO 

accomplished an enhancement in the reduction of MAPE, MAE and RMSE by 44.421%, 46.203% 

and 40.298%, respectively. With respect to the cross validation, It can be inferred that the 

proposed ENN − IWO outperformed the remainder of the machine learning models with respect 

to three performance indicators attaining; MAPE, MAE and RMSE 7.417%, 1.701 and 1.293, 

respectively. On the contrary, GP provided the lowest prediction accuracies, such that MAPE, 

MAE and RMSE  are equal to 28.113%, 6.473 and 4.669, respectively. This highlights that the 

proposed prediction model outperformed other machine learning models by accomplishing lower 

prediction errors for the different output variables according to split validation and 10-fold cross 

validation.  

INSERT TABLE 6 

INSERT TABLE 7 

INSERT TABLE 8 

The third fold in the validation process is to evaluate the statistical significant differences 

between the different prediction models based on the output of the different ten folds according 

to the MAPE. Wilcoxn test, Mann-Whitney-U test, Kruskal–Wallis test, binomial sign test, and 

Mood’s median test of the different cost and greenhouse gases prediction models are shown in 

Tables 9 and 10, respectively. As can be seen, P − values of the pairs (ENN − IWO, ANN), 

(ENN − IWO, RBNN), (ENN − IWO, GRNN), (ENN − IWO, CNN), (ENN − IWO, LSVM), 

(ENN − IWO, RSVM), (ENN − IWO, GBDT), (ENN − IWO, GP) and (ENN − IWO, K − NN) are 



less than 0.05 for all the previously-mentioned statistical tests in both predicting the cost and 

greenhouse gases. This reveals that there are significant differences in the prediction capacities 

of the proposed model with respect to other machine learning and deep learning models. In view 

of the above, it can be stated that the proposed ENN − IWO significantly outperformed other 

nine prediction models.  

INSERT TABLE 9 

INSERT TABLE 10 

The third model is multi-objective differential evolution to find the optimum combinations of 

resources. Figure 8 depicts the user interface of the multi-objective differential evolution 

optimization model. In it, the user is asked to define the maximum and minimum number of 

resources as well as setting the parameters of the differential evolution algorithm. By clicking 

“View: button, the output of the model is displayed which comprises the optimum solutions 

(performance design space) and the optimum objective function values (feasible performance 

space). The maximum number of resources for its different types is set to be 15.. The minimum 

allowable average utilization rate and maximum allowable standard deviation of utilization rate 

of resources are assumed 85% and 10%, respectively. This state of affairs necessitates the 

implementation of efficient meta-heuristic for the purpose of exhaustive search of possible 

resource allocation plans while accommodating the allowable utilization constraints.  

In order to provide a fair comparison between the different meta-heuristic optimization 

algorithms, the population size and number of iterations are assumed 100 and 100, respectively. 

Different initializations of parameters were experimented for the different meta-heuristics in 

order to search for their optimum values. Each meta-heuristic was run ten times independently in 

order to avoid unstable solutions due to random initialization of population. In the developed 



model, the crossover probability is assumed 0.2 while the mutation is assumed to follow a 

uniform distribution between 0.2 and 0.8. In the genetic algorithm, tournament selection is the 

parent selection strategy. Two-point crossover is utilized, and the crossover rate is assumed 0.8. 

Mutation rate is assumed 0.1. For the particle swarm optimization algorithm, the cognitive 

learning and social parameters are assumed two. The inertia weight is assumed 0.5. For the 

shuffled frog leaping algorithm, the number of memeplexes is assumed 20, i.e., 5 frogs per each 

memeplex. In the grey wolf optimization algorithm, the trade-off parameter which controls the 

balance between exploration and exploitation is assumed to be linearly decreasing from 2 to 0. 

The constant used to manage the Levy’s flight mechanism in the dragonfly algorithm is assumed 

1.5. In the Jaya algorithm, the random number utilized to generate new solutions is assumed to 

be between 0 and 1.  

INSERT FIGURE 8 

The set of optimal solutions obtained from the multi-objective particle swarm optimization 

model and multi-objective differential evolution optimization model are depicted in Figures 9 

and 10, respectively. The performance design space is defined as the set of all design points 

represented by the design (decision) variables that satisfy the constraints. The feasible 

performance space represents the set of objective function values elicited from every feasible 

design. The non-dominated Pareto optimal solutions attained from the multi-objective particle 

swarm optimization model and multi-objective differential evolution optimization model are 

shown in Figures 11.a and 11.b, respectively. As can be seen, the differential evolution algorithm 

attained notable lower TS, Cm and GHGm compared to the particle swarm optimization algorithm.  

INSERT FIGURE 9 

INSERT FIGURE 10 



INSERT FIGURE 11 

In order to provide a rigorous and robust comparison between the different multi-objective meta-

heuristics, they are evaluated with respect to the average objective function values, coefficient of 

variation of objective function values hypervolume indicator, generational distance, spacing, 

diversity, spread and coverage based on the performance of ten independent runs (see Table 11). 

The values mentioned herein represent the average values for the different performance 

indicators. The bolded values represent the best achieved performance by the meta-heuristics 

used in this study. The best performing meta-heuristic optimization algorithm is the one which 

yields higher values of hypervolume indicator, lower values of generational distance, lower 

values of spacing, lower values of diversity, higher values of spread and lower values of 

coverage. Furthermore, a lower coefficient of variation implies more accuracy and higher 

stability of the meta-heuristic optimization algorithm. 

It can be interpreted from Table 11 that non-linear programming (NLP) provided TS, Cm and 

GHGm of 59.026, 1444.287 and 19.549, respectively. This demonstrates that NLP failed to find 

optimum solutions since it provided higher objective function values than the ones achieved by  

MODE and other meta-heuristics. In this regard, the current resource allocation optimization 

problem is NP − hard which stands for non-deterministic polynomial time. This is due to 

presence of computationally expensive search space resulting from the large number of possible 

combinations, large number of objective functions, combinatorial nature of optimization 

problem, and existence of hard constraints that cannot be violated (Le et al., 2019; Su et al., 

2018). It is worth mentioning that the search space size of the developed optimization model is 

computed based on the maximum allowable number of resources in the computer aided 

application. In this regard, the number of possible solutions as 1514 = 2.92 × 1016, which 



demonstrates that the search space of the developed optimization model is computationally 

expensive. In this context, exact optimization methods to fail to solve the present NP − hard 

problem and meta-heuristics are applied to search for the near-exact optimal solutions (Petroodi 

et al., 2019; Bagloee and Sarvi, 2018).    

It can be also inferred that MODE achieved the lowest average objective functions values for TS, 

Cm and GHGm. MODE had the lowest coefficient of variation for all objective functions. On the 

other hand, MOJAYA had the highest coefficient of variation for TS, and MOPSO had the highest 

coefficient of variation for Cm and GHGm. MODE provided the largest hypervolume indicator 

(81.721%) followed by MOSFL while MODA provided the least hypervolume indicator 

(20.112%). In terms of the generational distance, MODE achieved the smallest generational 

distance (0.029). Nevertheless, MOJAYA attained the largest generational distance (5.482). With 

respect to the spacing metric, MODE attained the lowest spacing (0.1881) while MOJAYA 

attained the highest spacing (157.4636). MODE attained the smallest diversity (0.5229) while 

MODA attained the largest diversity (1.5615). For the spread, MODE achieved the highest value 

(0.9618). Nevertheless, MOPSO yielded the least value (0.4394). MODE achieved the lowest 

values of coverage (0.4087) while MOGWO provided the highest value (0.9997). Genetic 

algorithm is considered as the most commonly-utilized meta-heuristic in resource allocation 

problems. In this context, the average values of  TS, Cm and GHGm achieved by  MOGA are 

105.382, 904.482 and 16.447, respectively. As such, compared to the MOGA the developed 

MODE accomplished an improvement in the reduction of time, cost and greenhouse by 71.01%, 

27.87% and 39.29%, respectively. In the view of the afore-comparisons, it can be inferred that 

the proposed MODE outperformed other meta-heuristic optimization algorithms with respect to 

the accuracy, diversity and cardinality performance indicators.   



INSERT TABLE 11 

In order to elaborate more about the performance of the meta-heuristic optimization algorithms, 

the box plots based on the diversity metric and generational distance of them are presented in 

Figures 12.a and 12.b, respectively. The box plots enable assessment of robustness of the 

different meta-heuristics through mapping the distribution and skewness of the numerical data. It 

displays the minimum, first quartile, third quartile and maximum values of the multiple runs. The 

solid line in the box encodes the second quartile or the median value. The height of the box 

(space between the first and third quartiles) delineates the robustness of the algorithm, which is 

one of the main aspects to judge the performance of meta-heuristics. Lower spread in the box 

plot signifies more robustness performance of the model. By comparing the box plots, it can be 

observed that  MODE provides more stable and consistent results while MOJAYA and MOGA 

yielded unsteady performances. Figures 12.a and 12.b also demonstrate that MODE sustains 

significant lower diversity and generational distance with respect to other algorithms over the 

course of the different runs. As such, MODE  provides superior and more robust performance in 

comparison to the state of art meta-heuristics. Wilcoxn test, Mann-Whitney-U test, Kruskal–

Wallis test, binomial sign test, and Mood’s median test of the multi-objective optimization 

models are shown in Table 12. As can be seen, P − values of the pairs (MODE, MOGA), (MODE, 

MOPSO), (MODE, MODA), (MODE, MOGWO), (MODE, MOJAYA) and (MODE, MOSFL) are less 

than 0.05. This evinces that there are significant differences in the search capacities of the 

proposed multi-objective optimization model with respect to the state of art meta heuristics.   

INSERT FIGURE 12 

INSERT TABLE 12 



The multi-criteria decision making model is employed to select the best solution among the 

Pareto optimal resource allocation plans obtained from the multi-objective optimization model. It 

constitutes three attributes, namely TS, Cm and GHGm, whereas the weights of the attributes are 

calculated based on the Shannon entropy method. The calculations of the weights of the 

attributes are presented in Table 13. As shown in Table 13, the weights of TS, Cm and GHGm are 

44.588%, 27.102% and 28.31%, respectively. PROMETHEE II is employed to generate a full 

ranking of the resource allocation plans. The preference threshold values of TS, Cm and GHGm 

are equal to 73.51, 490.134 and 8.058, respectively. A sample of the solution ranking obtained 

from the PROMETHEE II is depicted in Table 14. The best solution is the one which provides the 

highest net flow. As can be seen, the solution [5, 1, 5, 4, 10, 7, 10, 5, 5, 8, 10, 6, 5, 1] is selected 

as the best solution. It yields TS, Cm and GHGm of 29.742, 652.918 and 9.719, respectively and a 

net flow ø(a) of 0.2213. Furthermore, this solution achieved UNIAVG_UTIL and UNISTD_UTIL of 

95.133% and 9.533%, respectively. This demonstrates that the developed resource allocation 

method is capable of minimizing time, cost and greenhouse gases while accommodating the 

uniformity in the utilization of resources. 

 The solution [5, 2, 5, 4, 6, 7, 7, 1, 4, 9, 7, 4, 4, 5] achieved the fourteenth rank such that, it 

attained TS, Cm and GHGm of 30.469, 652.567 and 10.208, respectively and a net flow ø(a) of 

0.2123. It is expected that the developed integrative evolutionary-based method can provide an 

efficient multi-objective optimization platform that aids decision-makers to allocate limited 

resources efficiently through integrating different alternatives and activities in a comprehensive 

paradigm that the enables the fulfilment of targeted objectives and satisfaction of project 

constraints. It can be also used by the contractors when planning for the resources needed for the 

bridge deck replacement in an attempt to minimize time, cost and environmental emissions while 



accommodating the efficiency and uniformity in the utilization of resources. Additionally, it can 

serve as a template to be used by construction firms in other different construction operations for 

the purpose of accomplishing better utilization of resources and for minimizing their duration, 

cost and environmental impact in the delivery of their projects.   

INSERT TABLE 13 

INSERT TABLE 14 

CONCLUSION  

The number of deteriorating bridges is increasing dramatically, and the presence of 

limited funding for repairing and replacing the degraded bridges stand as a significant challenge 

that is further complicated by the increase in construction costs. As such, bridge management 

systems are developed to aid decision makers in maximizing the safety, functionality and 

serviceability of bridge networks while maintaining cost-effective repair, rehabilitation and 

replacement plans within available budget. The present study introduces an automated 

integrative evolutionary-based platform to simulate and optimize performance aspects and 

utilization rate of resource allocation plans in bridge deck replacement projects. It houses three 

models namely, discrete event simulation, machine learning and multi-objective optimization. 

STROBOSCOPE simulation engine is adopted to model the bridge deck replacement process. A 

novel surrogate machine learning model is then developed to build an efficient prediction model 

that can alleviate the shortcomings of timely and computationally expensive simulation. The 

data-driven surrogate machine learning model is established for the purpose of emulating 

automatically the performance aspects of time, cost, greenhouse gases and utilization rates for 

the different resource allocation plans. In it, invasive weed optimization algorithm is utilized to 

train the Elman neural network to overcome the drawbacks of the gradient descent algorithm, 



such that a variable-length optimization model is designed for the purpose of parameter and 

structural learning of the Elman neural network. The third tier involves a multi-objective 

differential evolution model to identify the optimum number of resources according to 

minimizing the project duration, cost and greenhouse gases, and subject to the utilization rates of 

the resources and their dispersion.  

The validation of the surrogate machine learning model is envisioned on three stages. In the first 

stage, results declared that there are no statistical significant difference between the machine 

learning model and discrete event simulation model based on Mann-Whitney-U test. In the 

second stage, the developed model was compared with nine state of art prediction models 

reported for their high recognition capacities namely, back-propagation artificial neural network, 

radial basis neural network, generalized regression neural network, convolutional neural 

network, linear kernel support vector machines, radial kernel support vector machines, gradient 

boosted decision trees, Gaussian process and K-nearest neighbors. It outperformed the 

previously-mentioned regression models as per several performance diagnostics. For instance, 

ENN − IWO attained MAPE, MAE and RMSE of 4.873%, 78.466 and 39.515, respectively in cost 

prediction based on split validation. In third stage, the proposed ENN − IWO demonstrated 

significant superior performance exemplified through a set of non-parametric tests.  

The developed multi-objective optimization model is validated through comparisons against a set 

of well-performing meta-heuristics namely, genetic algorithm, particle swarm optimization 

algorithm, dragonfly algorithm, grey wolf optimization algorithm, Jaya algorithm and shuffled 

frog-leaping algorithm and non-linear programming. It significantly outperformed them such 

that, it achieved hypervolume indicator, generational distance, spacing, diversity, spread and 

coverage of 81.721%, 0.029, 0.1881, 0.5229, 0.9618 and 0.4087, respectively. Additionally, the 



developed optimization model accomplished an improvement in the reduction of time, cost and 

greenhouse gases by 71.01%, 27.87% and 39.29%, respectively when compared against the 

commonly-used genetic algorithm. PROMETHEE II is then applied to select the best alternative 

among the set of Pareto optimal solutions. Results clearly demonstrated the efficiency of the 

developed method in modeling the bridge deck replacement, simulating the performance aspects 

and utilization rates of resource allocation plans, and optimal allocation of resources while 

satisfying the pre-defined constraints. As such, the developed integrative evolutionary-based 

method can be deployed as an efficient mechanism that enables decision makers to design cost-

effective and sustainable resource allocation plans meanwhile ensuring the efficient utilization of 

their resources.      

Data Availability Statement 

Some or all data, models or code that support the findings of this study are available from the 

corresponding author upon request.  
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Table 1: STROBOSCOPE Simulation Elements  

Simulation Element 

Name 

Description 

Queue  
Queues hold resources that are idle to be utilized by the Combi 

activities. Each Queue is associated with a particular resource type 

Combi 

Combi activities represent activities that start when certain conditions 

are satisfied (the required resources are available in the preceding 

queue). In case it doesn’t have a condition, it will be similar to Normal 

activity.    

Normal  

Normal activities represent activities that start immediately after other 

activities have ended. A Normal activity acquires the resources from 

the activity that has just finished.  

Link 
Links connect the network nodes and indicates the type and direction 

of resources flowing between the nodes 

Consolidator  
Consolidators represent a condition to release or hold the resources 

flow  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Input and output of the developed multi-objective optimization model  

Input  Output  

Parameters of differential evolution algorithm Minimum time per span 

Threshold of minimum average utilization 

rate 

Minimum unit cost 

Threshold of maximum standard deviation of 

utilization rate 

Minimum greenhouse gases footprint  

Lower and upper bound of decision variables Optimum number of hydraulic hammers 

Productivity rates of the crews Optimum number of loaders 

Hourly fuel consumption rates Optimum number of trucks 

Daily direct cost of the resource Optimum number of form crews 

Carbon emission factor Optimum number of rebar crews 

Density of diesel Optimum number of stress crews 

 Optimum number of concrete crews 

 Optimum number of finishing crews 

 Optimum number of graders 

 Optimum number of rollers 

 Optimum number of tankers 

 Optimum number of finishers 

 Optimum number of sidewalk finishing crews 

 Optimum number of painting crews 

 Optimum number of hydraulic hammers 

 

 

 

 

 

 

 

 

 

 

 



Table 3: Boundary condition of the output variables from discrete event simulation model  

Output variable Boundary 

conditions 

Time per span (𝐓𝐒,days/span) 4.572-50.909 

Cost per square meter (𝐂𝐦,$/square meter) 344.351-794.027 

Greenhouse gases per square meter (𝐆𝐇𝐆𝐦,Kg CO2-Eq./square meter) 11.214-24.047 

Average utilization rate of demolition phase (𝐀𝐕𝐆_𝐔𝐓𝐈𝐋𝐃𝐄𝐌, %) 72.931-99.989 

Standard deviation of utilization rate of demolition phase 

(𝐒𝐓𝐃_𝐔𝐓𝐈𝐋𝐃𝐄𝐌, %) 

2.01-38.142 

Average utilization rate of construction phase (𝐀𝐕𝐆_𝐔𝐓𝐈𝐋𝐂𝐎𝐍𝐒𝐓, %) 60.451-90.141 

Standard deviation of utilization rate of construction phase 

(𝐒𝐓𝐃_𝐔𝐓𝐈𝐋𝐂𝐎𝐍𝐒𝐓, %) 

10.408-43.543 

Average utilization rate of finishing phase (𝐀𝐕𝐆_𝐔𝐓𝐈𝐋𝐅𝐈𝐍𝐈𝐒𝐇, %) 84.91-99.958 

Standard deviation of utilization rate of finishing phase 

(𝐒𝐓𝐃_𝐔𝐓𝐈𝐋𝐅𝐈𝐍𝐈𝐒𝐇, %) 

3.018-12.365 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4: 𝐏 − 𝐯𝐚𝐥𝐮𝐞𝐬 of the simulation and machine learning models using Shapiro-Wilk 

test for normality  

Model Description 𝐏 − 𝐯𝐚𝐥𝐮𝐞 

TS Discrete event simulation 0 (H1) 

TS Machine learning 0 (H1) 

Cm Discrete event simulation 0 (H1) 

Cm Machine learning 0 (H1) 

GHGm Discrete event simulation 1.54×10-3 (H1) 

GHGm Machine learning 0 (H1) 

AVG_UTILDEM Discrete event simulation 0 (H1) 

AVG_UTILDEM Machine learning 0 (H1) 

STD_UTILDEM Discrete event simulation 0 (H1) 

STD_UTILDEM Machine learning 0 (H1) 

AVG_UTILCONST Discrete event simulation 0 (H1) 

AVG_UTILCONST Machine learning 0 (H1) 

STD_UTILCONST Discrete event simulation 0 (H1) 

STD_UTILCONST Machine learning 0 (H1) 

AVG_UTILFINISH Discrete event simulation 0 (H1) 

AVG_UTILFINISH Machine learning 0 (H1) 

STD_UTILFINISH Discrete event simulation 0 (H1) 

STD_UTILFINISH Machine learning 0 (H1) 

 

 

 

 

 

 

 



Table 5: Statistical comparison between the different discrete event simulation and 

machine learning models based on Mann-Whitney-U test  

Model 𝐏 − 𝐯𝐚𝐥𝐮𝐞 

TS 8.31×10-1 (H0) 

Cm 5.41×10-1 (H0) 

GHGm 9.09×10-1 (H0) 

AVG_UTILDEM 1.6×10-1 (H0) 

STD_UTILDEM 6.09×10-1 (H0) 

AVG_UTILCONST 1.45×10-1 (H0) 

STD_UTILCONST 8.43×10-1 (H0) 

AVG_UTILFINISH 5.89×10-2 (H0) 

STD_UTILFINISH 3.11×10-1 (H0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6: Performance comparison between the different machine learning models for the 

prediction of cost based on split validation   

Type of machine learning 

model 

Mean absolute 

percentage error 

(𝐌𝐀𝐏𝐄) 

Mean absolute 

error           

(𝐌𝐀𝐄) 

Root-mean 

squared error 

(𝐑𝐌𝐒𝐄) 

ENN − IWO 4.873% 78.466 39.515 

ANN 8.290% 78.927 49.097 

RBNN 8.003% 129.842 61.409 

GRNN 8.278% 89.205 51.976 

CNN 7.839% 80.102 63.901 

LSVM 18.361% 214.525 111.639 

RSVM 17.990% 212.867 110.144 

GBDT 8.134% 81.006 60.037 

GP 20.223% 269.505 173.650 

K − NN 7.903% 86.572 51.242 

 

 

 

 

 

 

 

 

 

 

 



Table 7: Performance comparison between the different machine learning models for the 

prediction of greenhouse gases based on split validation   

Type of machine learning 

model 

Mean absolute 

percentage error 

(𝐌𝐀𝐏𝐄) 

Mean absolute 

error           

(𝐌𝐀𝐄) 

Root-mean 

squared error 

(𝐑𝐌𝐒𝐄) 

ENN − IWO 6.67% 1.53 1.163 

ANN 12.001% 2.844 1.948 

RBNN 11.725% 3.055 2.038 

GRNN 10.939% 3.006 2.127 

CNN 8.753% 1.772 1.436 

LSVM 9.104% 1.869 1.490 

RSVM 8.406% 1.949 1.293 

GBDT 8.277% 1.638 1.346 

GP 24.879% 5.713 4.117 

K − NN 8.118% 1.672 1.333 

 

 

 

 

 

 

 

 

 

 

 



Table 8: Performance comparison between the different machine learning models for the 

prediction of greenhouse gases based on 10-fold cross validation 

Type of machine learning 

model 

Mean absolute 

percentage error  

Mean absolute 

error            

Root-mean 

squared error  

ENN − IWO 7.417% 1.701 1.293 

ANN 13.501% 3.202 2.191 

RBNN 13.132% 3.425 2.283 

GRNN 12.284% 3.385 2.391 

CNN 9.813% 1.988 1.612 

LSVM 10.218% 2.105 1.681 

RSVM 9.457% 2.196 1.458 

GBDT 9.302% 1.841 1.514 

GP 28.113% 6.473 4.669 

K − NN 9.096% 1.874 1.497 

 



Table 9: Statistical comparison for the developed cost prediction model against other 

models based on non-parametric tests 

Pair of prediction 

models 

Wilcoxn Mann-Whitney-U Kruskal–Wallis Binomial sign Mood’s median 

ENN − IWO, ANN 
H1 

(P − value 

=4.48×10-3) 

H1 

(P − value 

=1.83×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

ENN − IWO, 

RBNN 

H1 

(P − value 

=3.87×10-3) 

H1 

(P − value 

=1.83×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

ENN − IWO, 

GRNN 

H1 

(P − value 

=4.81×10-3) 

H1 

(P − value 

=1.83×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

ENN − IWO, CNN 
H1 

(P − value 

=4.07×10-3) 

H1 

(P − value 

=4.4×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

ENN −
IWO, LSVM 

H1 

(P − value 

=1.57×10-3) 

H1 

(P − value 

=1.83×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

ENN − IWO, 

RSVM 

H1 

(P − value 

=4.25×10-3) 

H1 

(P − value 

=1.83×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

ENN − IWO, 

GBDT 

H1 

(P − value 

=4.4×10-3) 

H1 

(P − value 

=1.83×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

ENN − IWO, GP 
H1 

(P − value 

=4.38×10-3) 

H1 

(P − value 

=1.83×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

ENN − IWO, K −
NN 

H1 

(P − value 

=4.48×10-3) 

H1 

(P − value 

=1.83×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 



Table 10: Statistical comparison for the developed greenhouse gases prediction model 

against other models based on non-parametric tests 

Pair of prediction 

models 

Wilcoxn Mann-Whitney-U Kruskal–Wallis Binomial sign Mood’s median 

ENN − IWO, ANN 
H1 

(P − value 

=4.38×10-3) 

H1 

(P − value 

=1.83×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

ENN − IWO, 

RBNN 

H1 

(P − value 

=4.4×10-3) 

H1 

(P − value 

=1.83×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

ENN − IWO, 

GRNN 

H1 

(P − value 

=4.51×10-3) 

H1 

(P − value 

=1.83×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

ENN − IWO, CNN 
H1 

(P − value 

=3.87×10-3) 

H1 

(P − value 

=2.2×10-4) 

H1 

(P − value =2×10-3) 

H1 

(P − value =0) 

H1 

(P − value =0) 

ENN −
IWO, LSVM 

H1 

(P − value 

=3.51×10-3) 

H1 

(P − value 

=1.83×10-3) 

H1 

(P − value =1×10-3) 

H1 

(P − value =0) 

H1 

(P − value =0) 

ENN − IWO, 

RSVM 

H1 

(P − value 

=3.58×10-3) 

H1 

(P − value 

=7.69×10-4) 

H1 

(P − value =7×10-3) 

H1 

(P − value =0) 

H1 

(P − value =7×10-3) 

ENN − IWO, 

GBDT 

H1 

(P − value 

=3.87×10-3) 

H1 

(P − value 

=7.28×10-3) 

H1 

(P − value =7×10-3) 

H1 

(P − value =0) 

H1 

(P − value =7×10-3) 

ENN − IWO, GP 
H1 

(P − value 

=4.09×10-3) 

H1 

(P − value 

=1.83×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

ENN − IWO, K −
NN 

H1 

(P − value 

=4.02×10-3) 

H1 

(P − value 

=1.13×10-2) 

H1 

(P − value =1×10-2) 

H1 

(P − value =0) 

H1 

(P − value =7×10-3) 



Table 11: Performance comparison between the different multi-objective optimization 

algorithms 

Performa

nce 

metric  

Objecti

ve 

functio

n 

𝐍𝐋𝐏 𝐌𝐎𝐆𝐀 𝐌𝐎𝐏𝐒𝐎 𝐌𝐎𝐃𝐀 𝐌𝐎𝐆𝐖𝐎 𝐌𝐎𝐉𝐀𝐘𝐀 𝐌𝐎𝐒𝐅𝐋 𝐌𝐎𝐃𝐄 

Average 

TS 59.026 
105.38

2 
54.634 31.916 32.636 48.102 46.108 30.549 

Cm 
1444.2

87 

904.84

2 

907.96

5 

771.51

1 

1014.7

08 

852.13

2 
682.99 

652.62

9 

GHGm 19.549 16.447 15.515 17.017 13.426 16.946 13.606 9.984 

Coefficien

t of 

variation 

TS ……. 
61.849

% 

90.980

% 

30.275

% 

4.035

% 

176.72

9% 

18.555

% 

5.760

% 

Cm ……. 
29.164

% 

32.983

% 

31.611

% 

27.095

% 

24.671

% 

7.369

% 

0.084

% 

GHGm ……. 
23.222

% 

26.844

% 

21.747

% 

12.587

% 

22.488

% 

22.516

% 

3.794

% 

Hypervolu

me 

indicator 
……. ……. 

47.341

% 

23.140

% 

20.112

% 

22.586

% 

28.374

% 

74.265

% 

81.721

% 

Generatio

nal 

distance 
……. ……. 0.9563 2.2969 0.0489 0.3003 5.482 3.1475 0.029 

Spacing ……. ……. 
14.261

1 
16.939 

14.964

5 
6.6787 

157.46

36 
6.0265 0.1881 

Diversity ……. ……. 1.0138 0.9163 1.5165 0.8874 0.8855 0.9587 0.5229 

Spread ……. ……. 0.6047 0.4394 0.5152 0.7329 0.7832 0.7353 0.9618 

Coverage ……. ……. 0.955 0.7505 0.9249 0.9997 0.9488 0.8006 0.4087 

 

 

 

 

 

 



Table 12: Statistical comparison between the different multi-objective optimization models 

as per hypervolume indicator using non-parametric testing  

 

Pair of 

optimization 

models 

Wilcoxn Mann-Whitney-U Kruskal–Wallis Binomial sign Mood’s median 

MODE, MOGA 
H1 

(P − value 

=5.12×10-3) 

H1 

(P − value =2×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

MODE, MOPSO 
H1 

(P − value 

=5.12×10-3) 

H1 

(P − value =2×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

MODE, MODA 
H1 

(P − value 

=5.12×10-3) 

H1 

(P − value =2×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

MODE, MOGWO 
H1 

(P − value 

=5.12×10-3) 

H1 

(P − value =2×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

MODE, MOJAYA 
H1 

(P − value 

=5.12×10-3) 

H1 

(P − value =2×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

MODE, MOSFL 
H1 

(P − value 

=5.12×10-3) 

H1 

(P − value =2×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 



 

Table 13: Entropy values, variation coefficients, and the weights of the attributes 

Index 𝐓𝐒 𝐂𝐦 𝐆𝐇𝐆𝐦 

Entropy value (𝐞𝐣) 5.7502 5.7706 5.7691 

variation coefficient (𝐝𝐣) 0.00895 0.00544 0.00568 

weights of the attribute (𝐰𝐣) 44.588% 27.102% 28.31% 
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Table 14: Sample of the solutions’ rankings obtained from PROMETHEE II 1 

Optimum solution Optimum objective function 

values 

Meta-heuristic Net flow 

(ø(𝐚)) 

Ranking 

[5, 1, 5, 4, 10, 7, 10, 5, 5, 8, 10, 6, 5, 1] 

 
[29.742, 652.918, 9.719] MODE 0.2213 1 

[5, 1, 5, 4, 10, 7, 10, 4, 5, 10, 10, 6, 5, 1] [30.304, 652.817, 9.762] MODE 0.2165 8 

[5, 2, 5, 4, 6, 7, 7, 1, 4, 9, 7, 4, 4, 5] [30.469,652.567, 10.208] MODE 0.2123 14 

[5, 2, 1, 6, 7, 6, 6, 2, 4, 11, 6, 8, 4, 4] [28.685, 1422.838, 12.731] MODA 0.2078 29 

[3, 4, 4, 5, 7, 5, 3, 5, 4, 12, 5, 7, 5, 2] [40.896, 658.032, 10.781] MOSFL 0.2066 32 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 




