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10 Abstract

11 Inspecting the diameter and spacing of rebar is an important task conducted by fabricators and 

12 site engineers during the manufacturing and construction stages. This is because the bearing 

13 capacity of reinforced concrete structures is affected by the size and position of the rebar, so 

14 installing rebar of the correct size and position should be ensured to safeguard the structural 

15 integrity of the structure. This study presents a new terrestrial laser scanning (TLS)-based 

16 method using machine learning to automatically classify rebar diameters and accurately 

17 estimate rebar spacing. To this end, a new methodology, named density based machine model, 

18 is proposed to improve classification accuracy. To validate the proposed method, experimental 

19 tests on laboratory specimens with rebars of seven different diameters are conducted. The 

20 results show that the prediction accuracy for large rebar diameters measuring D25-D40 are up 

21 to 97.2%, demonstrating great potential for the application of the proposed technique on 

22 manufacturing and construction sites. The key findings of the study are: (1) the proposed DBM 

23 method for rebar diameter prediction is superior to the traditional machine learning approach; 

24 (2) scan density is one of the most important factors in the prediction results, especially in the

25 small rebar diameter group; and (3) a scan density value of at least 80 pts/mm2 computed on 

26 the cross section plane for a rebar instance with 100 mm length is necessary for successful rebar 

27 diameter prediction. It is expected that the proposed rebar diameter and rebar spacing technique 

28 will be useful in providing autonomous and accurate rebar inspection in manufacturing factories 

29 and on construction sites.
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31 1. Introduction

32 Inspecting rebar diameters and rebar spacing is important for fabricators and site engineers to 

33 check dimensional compliance with the design model during the manufacturing and 

34 construction stages. This is because the bearing capacity of the reinforced concrete structures 

35 is dictated by the size and position of the rebar. Therefore, rebar of the correct size should be 

36 installed in the correction position, as determined by the blueprints, to ensure the structural 

37 integrity of the reinforced concrete structure. In this regard, dimensional inspection of rebars is 

38 conducted primarily by qualified workers to detect any abnormalities related to rebar diameter 

39 and rebar spacing using measurement tapes. However, this is a time-consuming and labor-

40 intensive task, so there is an urgent need for automated rebar diameter and rebar spacing 

41 measurement that can save time and increase the reliability of the inspection.

42 Thanks to improvements in 3D sensing technology, several studies have been conducted 

43 into dimensional inspection of prefabricated RC components such as precast slabs [1–5] and 

44 precast girders [6] over the past decade. However, there have been relatively few studies [7-9] 

45 into rebar inspection. Recently, the authors’ group proposed a technique that estimates the 

46 dimensions of rebar and formwork using the RANdom SAmple Consensus (RANSAC) [10] 

47 based on terrestrial laser scanning (TLS) approach. However, the prior study assumes rebar 

48 diameters are known prior to use as the input parameters of the RANSAC algorithm, making 

49 the algorithms unreliable due to the manual input. To fully automate the process, rebar 

50 diameters will need to be predicted from raw rebar scan data without any manual input. 

51 However, determining rebar diameters is a challenging task due to the small size of the rebar 

52 and irregular shapes of the rebar surfaces. In addition, diameter prediction in the current circle 

53 fitting methods remains a major challenge in the presence of noise, outliers, distortion, and 

54 missing boundaries in the unregistered scan data [11]. In order to tackle these technical issues, 

55 this paper aims to develop a TLS-based rebar diameter classification technique that 

56 automatically classifies rebar diameters using a machine learning approach. In this study, a new 

57 concept of density-based machine model is proposed and validation tests are conducted to 

58 demonstrate the applicability of the proposed rebar diameter prediction technique. The 

59 uniqueness of the study are (1) the development of a rebar diameter classification technique for 

60 the first time; and (2) successful applicability validation of the proposed technique through 

61 various tests including comparison tests with traditional methods.

62 This paper is organized as follows. Related background of the study and state-of-the-art 

63 studies is detailed in Section 2, followed by explanation of the proposed method and its 
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64 procedure in Section 3. Next, validation tests and results are presented and interpreted 

65 comprehensively in Section 4. The primary factors affecting the result of the proposed method 

66 are discussed in Section 5. Finally, this study is concluded with a summary and future work.

67 2. Research Background

68 2.1 Overview of circle fitting methods

69 There are three main approaches in classical circle fitting, which are 1) geometric, 2) algebraic, 

70 and 3) robust fitting. Geometric fitting minimizes the sum of the squared geometric (orthogonal) 

71 distance from the estimated circle to the given data points. According to [12], geometric fit is 

72 commonly regarded as the most accurate, but it is implemented by iterative schemes that are 

73 computationally intensive and subject to occasional divergence. Another limitation of 

74 geometric fitting is that its accuracy depends on the choice of the initial parameters of center 

75 circle and diameter of the circle [12-13]. Algebraic fitting is a form of non-iterative fitting that 

76 minimizes the approximate (algebraic) distances by determining the constraint of the algebraic 

77 equations based on mathematical law and theory [12]. Algebraic fits are faster than geometric 

78 fitting, which is an advantage for large size point cloud data. Kasa [14] developed a simple and 

79 fast algebraic fitting method that has been used as a basis of many circle fitting methods. 

80 However, Al-Sharadqah and Chernov [15] found that the method introduced by Kasa [14] is 

81 heavily biased toward smaller circular arcs. This limitation was studied by Pratt [16] and Taubin 

82 [17] who each developed a popular method by changing the parameter constraints of the Kasa 

83 fit. Al-Sharadqah and Chernov [15] subsequently developed a method, called ‘Hyper’, which 

84 works by minimizing the algebraic functions associated with the two constraints used by Pratt 

85 [16] and Taubin [17]. On the other hand, Gander-Golub-Strebel (GGS) fit [18] developed the 

86 concept of the least squares for estimating the circle center points and radius. Nievergelt [19] 

87 enhanced the GGS fit by using translation shifts of the center coordinates and the ‘Constrained 

88 Total Least-Squares’ concept for approximation in the algebraic objective function. However, 

89 the geometric and algebraic algorithms has limitations – namely, the presence of outliers. 

90 To counter the effect of outliers, several researchers have proposed robust statistical 

91 methods for circular fitting. Wang and Suter, for example [20], developed the Least Trimmed 

92 Symmetry Distance (LTSD) approach for robust model fitting using Symmetry Distance, 

93 coupled with a Least Trimmed Square (LTS) regression. However, their method is limited to 

94 spatially symmetric points [21]. The RANSAC, one of the most widely used methods, was 

95 developed in order to cope with high presence of outliers. The RANSAC iteration process starts 
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96 by randomly fitting a model with pre-determined threshold and computes number of points 

97 located inside the area of the RANSAC model. At the end of iteration, an optimal RANSAC 

98 model with maximum number of points is selected. However, the RANSAC algorithm is 

99 sensitive to thresholding parameters [22-23], which needs to be selected manually. In order to 

100 overcome this problem, a method to determine the RANSAC parameters is required. In this 

101 study, a machine learning approach that enables automatic determination of RANSAC input 

102 parameters is presented.

103 2.2 Circle fitting applications in the construction industry

104 In recent years, studies on circle fitting have been conducted using 3D measurement sensors 

105 such as Kinect and TLS. Nahangi et al. [24], for example, put forward a curvature estimation 

106 method for estimating the cylinder radius of pipes using Kinect. The study proposed a radius 

107 estimation algorithm involving normal vector estimation and curvature computation and shows 

108 an accuracy ranging from ±1.1 cm to ±2 cm. Separately, Díaz-Vilariño et al. [25] used the 

109 Hough Transform algorithm [26] to detect and estimate the radius of columns in a residential 

110 building. The study found that the Hough Transform algorithm is sensitive to the circumference 

111 of columns. In addition, Bueno et al. [27] examined the Hough Transform algorithm reliability 

112 using simulated column data. The study shows that completeness of edges is the most sensitive 

113 variable affecting the performance of the Hough transform algorithm and it was found that at 

114 least 30% to 40% edge completeness is required to robustly estimate the radius of columns. In 

115 addition, to deal with incomplete circular edges and noisy data, Nurmunabi et al [21] introduced 

116 a circle fitting method named Repeated Least Trimmed Squares (RLTS) that combines the 

117 concept of the least trimmed square [28] and the hyper-algebraic fitting [15]. The RLTS was 

118 validated with 1000 quarter-circle datasets with noise, and the results showed an average mean 

119 square error of 0.42. In summary of the circle fitting applications in the construction industry, 

120 the existing literature are focused on estimating the circular radius of target objects having a 

121 circular surface. However, considering the focus of this study that is rebar diameter 

122 classification, circle fitting and rebar diameter estimation is a challenging task because 

123 construction rebar has deformed shapes and its diameter is relatively small. In addition, the 

124 rebar diameter gaps between different sizes of rebar is relatively low, e.g. D10 and D12.

125 2.3 Rebar inspection studies in the construction industry

126 Thanks to the fast and accurate nature of laser scanning, there have been multiple studies 

127 conducted on sensing-based rebar and formwork inspection. Han et al. [8] used a density 

128 histogram of scan points generated based on the Structure-from-Motion (SfM) and multi-view 
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129 stereo algorithms for rebar layout inspection. In the study, a validation test was performed using 

130 fifteen targets placed near the rebar, and 850 images were used for the implementation of SfM 

131 to generate a set of point cloud data. However, the study focused on the generation of a dense 

132 point cloud data from images and numerous high-resolution photos were required from 

133 different angles to generate the formwork and rebar scan points. Subsequently, Akula et al. [7] 

134 used a drilling monitoring framework that maps the locations of rebars using the SfM and laser 

135 scanning to provide real-time feedback for for drill operator based on the position and 

136 orientation of the drill. A comparison analysis in the study showed that the accuracy of the 

137 vision-based technique was 28.9% lower than the laser scanning-based method. Nishio et al. 

138 [29] conducted a study with a rebar core wire extraction algorithm designed to perform well in 

139 noisy scan data. A density distribution function was proposed in the study to filter out unwanted 

140 scan points near the rebars. However, the study was focused on the extraction of rebar scan 

141 points, and there was no further analysis of rebar spacing and rebar diameter estimation. 

142 Recently, Kim et al [11] proposed a new technique that estimates the dimensions of rebar and 

143 formwork, concrete covers and rebar spacing. The study used a RANSAC algorithm to 

144 automatically detect and estimate rebar layers. Validation results showed an estimation 

145 accuracy of around 2.5 mm. However, the study assumed that the rebar diameters used for input 

146 parameters of the RANSAC algorithm were known, making the method unreliable. In order to 

147 achieve full automation and make the method reliable, rebar diameters needs to be classified 

148 accurately from raw rebar scan data. For this, a rebar classification technique that predicts 

149 correct rebar diameters is needed to ensure accurate and automated rebar spacing estimation 

150 during the fabrication stages or on construction sites. 

151 2.4 Point cloud data based machine learning application in the construction industry 

152 There have been multiple studies that have looked into adopting machine learning 

153 methodologies with point cloud data in the construction industry. Wang et al. [30] developed 

154 an automated technique for position estimation of rebars in reinforced precast slabs. A one class 

155 SVM, which is an unsupervised outlier detection method, was used to extract rebars based on 

156 the geometric and color features of scan points. Experiments on two reinforced precast concrete 

157 decks were conducted, and the results showed a rebar position estimation error of 0.9 mm. 

158 Valero et al. [31] proposed a strategy for the automatic detection and classification of defects 

159 on masonry walls. They achieved this using geometric and color features including roughness, 

160 circularity and RGB values, for their machine learning approach. Lastly, Bassier et al. [32] 

161 proposed an automated classification method for building elements for Scan-to-BIM. A 

https://onlinelibrary.wiley.com/doi/full/10.1111/mice.12293
https://www.sciencedirect.com/science/article/pii/S0926580518312676
https://www.sciencedirect.com/science/article/pii/S2352710217305703#t0005
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162 Random Forests classifier was used for the classification of the floors, ceilings, roofs, walls and 

163 beams. Both contextual and geometric features were used, culminating in an average precision 

164 of 85% for structural element classification. In summary, a few machine learning methods have 

165 been implemented using point cloud data previously. However, these previous studies are 

166 limited in that they mainly focus on the extraction of planar-type elements including roofs, 

167 walls and slabs.

168 2.5 Research gaps and objectives

169 Based on the review of related literature, there has been no study conducted into rebar diameter 

170 classification using point cloud data. In addition, the direct use of circle fitting methods, 

171 including geometrical and algebraic fits, may not be accurate and robust due to the small size 

172 and potentially deformed shape of rebars. Moreover, the RANSAC, which is a robust circle 

173 fitting method, requires initial manual parameters including the circle radius and tolerance 

174 threshold. To overcome these gaps in research the objectives of this study are to 1) develop a 

175 technique that classifies rebar diameters using machine learning approach for accurate and 

176 automated estimation of rebar spacings; and 2) validate the feasibility of the proposed rebar 

177 classification technique on rebars with various diameters.

178 3. Methodology

179 Figure 1 shows the workflow of the proposed rebar diameter classification, which consists of 

180 three stages: 1) training, 2) prediction and 3) estimation stages. The training stage is composed 

181 of five sub-steps, including data collection, data pre-processing, feature extraction, feature 

182 selection and machine learning model selection. In the prediction stage, new data sets are 

183 prepared and predicted using the learning model chosen in the training stage. Note that there is 

184 no step involving feature selection, as optimal features are already determined in the feature 

185 selection step of the training stage. In the last stage, rebar spacings between adjacent individual 

186 rebars are estimated based on the predicted rebar diameters in the rebar estimation stage. Details 

187 of each step are presented in the following sections.

188 3.1 Data collection

189 In the first step of the training process, deformed rebars with various rebar diameters are 

190 scanned by a TLS in the laboratory to collect rebar point cloud data. In this study, seven rebar 

191 diameters of 10, 12, 16, 20, 25, 32 and 40 mm, named as D10, D12, D16, D20, D25, D32 and 

192 D40, which are widely used in the Hong Kong construction industry, are selected and used for 

193 the data collection. Three scan variables including the incident angle, distance and angular 
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194 resolution, are controlled in the data collection to collect rebar surface point cloud data in as 

195 many different conditions as possible to ensure the generation of a high-accuracy machine 

196 learning model.

197

Figure 1. Overall procedure of the proposed rebar diameter classification technique for 
autonomous rebar spacing estimation

198 3.2 Data pre-processing

199 It is important to eliminate unwanted scan points near the rebar scan data including background 

200 noise and mixed pixels prior to the feature extraction of each rebar instance. Thus, the data pre-

201 processing step aims to 1) remove background noise and mixed pixels in raw scan points and 

202 2) slice the individual rebars into multiple small instances to be used for the next step, i.e. 

203 feature extraction. Figure 2 shows the data pre-processing steps consisting of three steps: 1) the 

204 elimination of the background noise and mixed pixels; 2) rebar rotation; and 3) rebar slicing 

205 and angle adjustment. Firstly, the DBSCAN (Density-based spatial clustering of applications 

206 with noise) [34] is used to segment the rebar scan points with respect to scan density and to 

207 remove the scan points of the background noises and mixed pixels [35]. Secondly, the 

208 segmented scan points of rebars are rotated by angle ( between the 1st principal axis of the 

209 rebar scan points and the X axis as shown in Figure 2(b) for the purpose of easy further data 

210 processing. Third, the rotated rebars are sliced into multiple instances and the scan points of the 

211 sliced rebar instances are then projected into the YZ plane. Note that a minor rotation by the 

212 angle  (defined as the angle discrepancies between X axis and 1st principal axes of the sliced 

213 rebar part) is performed before the projection to ensure that the rebar part is parallel to the X 

214 axis as illustrated in Figure 2(c). Here, the projected scan points of each sliced on to the YZ 
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215 plane is used to implement the feature extraction.

216

Figure 2. Data pre-processing steps: (a) Noise removal - mixed pixels and background noises 
are eliminated as sets of rebar scan data clusters using the DBSCAN; (b) Rebar rotation - the 
1st rebar principal axis is computed then rotated by  degree to make it parallel to the X axis; 
(c) Rebar slicing and angle adjustment - the individual rebar is sliced, rotated by  degree 
and projected onto the YZ plane.

217 3.3 Features extractions

218 The purpose of this step is to extract the key features of rebar instance for machine learning. 

219 For this study, several features of algebraic fitting and principal axes of the instance’s scan 

220 points were used due to the fact that they are sensitive to geometrical properties of rebar 

221 diameter. Unlike previous studies [33, 36-38], which used non-geometrical features such as 

222 material intensity [37], surface color [33] and surface roughness [36, 38], this study used seven 

223 geometrical features that can be extracted from the algebraic fittings and PCA [39] because the 

224 material property of rebar was assumed to be same.

225 Firstly, six algebraic fittings method were chosen to extract the six geometrical features: 

226 Kasa [14], Pratt [16], Taubin [17], Hyper [15], Nievergelt [19], GGS [18]. This is because no 

227 parameters are required for the algebraic fittings. Note that the outputs of the algebraic fitting 

228 that uses point cloud data of rebar instance as input are 1) estimated rebar diameter and center 
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229 point of the circle fit. Figure 3 shows the feature values of the six algebraic fittings. The 

230 estimated rebar diameter values vary largely depending on fitting method. It is for this reason 

231 that the 6 diameter features are used in the study for machine learning instead of the directly 

232 use of estimated rebar diameters based on algebraic fitting methods. Secondly, the 2nd 

233 eigenvalue of point cloud of the rebar instance is used as the 7th feature. Figure 3 shows that the 

234 2nd eigenvalue feature indicates the length of the point cloud data in the cross section and is 

235 closely associated with rebar diameter. In other words, the larger rebar diameter is, the larger 

236 the 2nd eigenvalue obtained, illustrating that the 2nd eigenvalue of rebar instance can be used as 

237 a unique feature that represents the rebar diameter. Note that only 2nd eigenvalue feature is used 

238 among the three eigenvalues because 1) the 1st eigenvalue (1) indicating the length of sliced 

239 rebar instance has the same value of 100 mm; and 2) the 3rd eigenvalue (3) is unreliable because 

240 of its small range of variation, as seen in Figure 3. 

241
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Figure 3. Features extraction of rebar instance in the YZ plane

242 3.4 Features selection

243 Feature selection aims to identify the most relevant or key features that increase machine 

244 learning prediction accuracy and reduces computational time [40]. In this study, correlation-

245 based selection (CFS) [41] , which is a robust method in selecting features when there are linear 

246 relationships between feature values and predicted values [42], was utilized because the 

247 extracted feature values of rebar instance tend to have a linear relationship with the predicted 

248 rebar diameters. The CFS selects the best subsets of features using the correlation coefficients 

249 of features which can be computed using Pearson’s coefficient [43]:
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250

𝑟𝑥𝑦 =  

∑
𝑖
(𝑥𝑖 ‒ 𝑥)(𝑦𝑖 ‒ 𝑦)

∑
𝑖
(𝑥𝑖 ‒ 𝑥)2 ∑

𝑖
(𝑦𝑖 ‒  𝑦)2

Eq. (1)

251 where  and  are the series of features with the ith number,  and  are the average value 𝑥 𝑦 𝑥 𝑦

252 of the  and  array.  is the Pearson’s correlation value ranging from -1 to 1. The larger 𝑥 𝑦 𝑟𝑥𝑦

253 the absolute value of , the more strongly  and  are correlated. If the value is zero, the 𝑟𝑥𝑦 𝑥 𝑦

254  and  variables are independent each other. In the CFS, a scoring method called Merit [41] 𝑥 𝑦

255 is used to determine the best sets of features using the correlation coefficients of the features. 

256 Here,  is the Merit score of a feature subset  consisting of  features.𝑀𝑒𝑟𝑖𝑡𝑆𝑘 𝑆 𝑘

257

𝑀𝑒𝑟𝑖𝑡𝑆𝑘 =  
𝑘 𝑟𝑓𝑐

𝑘 + 𝑘 (𝑘 ‒ 1) 𝑟𝑓𝑓 
Eq. (2)

258 where  is the average value of all feature-classification correlations and  is the average 𝑟𝑓𝑐 𝑟𝑓𝑓

259 value of all feature-feature correlations. Finally, the feature subset with the highest Merit score 

260 is determined as the features to be used for machine learning.

261 3.5 Machine learning classification test and selection

262 To classify different rebar diameters, machine learning classifiers are used to learn unique data 

263 patterns based on the selected features. Although machine learning is able to find key patterns 

264 from a set of training data [44-45], as well as accurately predicting classes based on the patterns 

265 found, the performance of rebar prediction varies with different classifiers. Thus, it is necessary 

266 to test diverse classifiers to see which classifier fits best the rebar scan data. To this end, five 

267 supervised machine learning algorithms, which are the Naïve Bayes (NB) [46-47], Discriminant 

268 Analysis (DA) [48-49], Classification Tree (CT) [50], Nearest Neighbor (NN) [51-52], and 

269 Support Vector Machines (SVM) [53] were employed in this study to find the optimal classifier. 

270 For the evaluation of the performance, the 10-fold cross-validation [54] method was used to 

271 decrease the bias and variance of the classifiers. Finally, the optimal model with the best 

272 features and classifier was used for predicting rebar diameters in the prediction stage.

273 3.6 Density-based modeling

274 In this study, a new methodology, named Density based Modeling (DBM), is proposed for the 
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275 purpose of enhancing the classification accuracy. The DBM was developed based on 

276 observations from this study as well as previous related studies [1-5, 11, 31-33] that a higher 

277 scan density results in a higher accuracy. For example, rebar instances with high scan density 

278 form much clearer circular shape compared to those with low scan density. In this regard, 

279 density-based modeling is important in increasing the accuracy of machine learning classifiers. 

280 Figure 4 shows the concept of the proposed DBM method. The training data sets can be divided 

281 into a certain number of density groups so each density group has an equal or a similar 

282 percentage of training data. For instance, if the training data is divided into 4 density groups, 

283 every density group will have 25% of the training data. Once the data has been divided, 7 

284 features are extracted for every instance and feature selection and machine learning selection 

285 are performed independently for each group.

286

(b)(a)

Figure 4. Density-based modeling (DBM): (a) The schematic of the DBM. The training data 
sets are divided into a number of density groups for machine learning; and (b) The estimation 
of scan density for a rebar instance

287

288 In order to estimate the scan density of each instance, a small area in the center of the scan 

289 points in the YZ plane is used. Figure 4(b) shows the scan density calculation in a rebar instance. 

290 Note that the Y and Z coordinates of the center point of each rebar instance in the YZ plane are 

291 calculated as the mean of the Y coordinates and the mode of Z coordinates of the scan points, 

292 respectively. Also note that the area with the dimensions of 9 mm2 (3 mm × 3 mm) was used 

293 for the scan density calculation.
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294 3.7 Rebar diameter prediction and rebar spacing estimation

295 Once a machine learning model was determined for each density group using the DBM method, 

296 the prediction of rebar diameters was performed on new rebar scan data with different rebar 

297 diameters using the optimized machine learning model. After the rebar diameter prediction, the 

298 rebar spacings between adjacent rebars was estimated using the predicted rebar diameters. The 

299 details of rebar spacing estimation, including the process of rebar center point estimation, are 

300 presented in [11]. It is important to note that compared to the previous study [11], the proposed 

301 method provides automatic rebar spacing estimation based on predicted rebar diameters, 

302 whereas two manual inputs, i.e, circle radius and tolerance threshold, are necessary for the 

303 implementation of the circular RANSAC in the previous literature.

304 4. Experimental Validation

305 4.1 Data collection for training

306 Figure 5 shows the two different data collection set-ups. A phase-shift TLS, FARO M70, with 

307 a measurement accuracy of ±3 mm in a range of 0.6 m to 70 m and a measurement rate of up 

308 to 488,000 points/sec., was used for data acquisition. For the first set-up as shown in Figure 

309 5(a), 14 individual rebars with 7 different diameters (D10-D40), as shown in Figure 5(c), and a 

310 standard length of 3 m, were scanned. Note that the rebar layers were scanned at 14 random 

311 scan positions with two different scan angular resolutions of 0.036° and 0.072° to collect 

312 extensive training data with different scan densities, resulting in a total of 11,099 rebar slicing 

313 instances from the first data collection. The second data collection, configured as shown in Fig. 

314 5(b), was focused on collecting scan data of rebar diameters of 12 mm and 16 mm at scan angles 

315 of 45° and 90° with respect to the rebar cage. For this configuration, the TLS was positioned 

316 on a desk to scan the entire rebar cage and a total of 2,888 instances of rebar diameter 12 mm 

317 and 16 mm were collected. In total, 13,987 rebar slicing instances were collected.

318 4.2 Feature selection and machine learning classifier selection using the DBM

319 Table 1 shows the results of the feature set selection based on the CFS in three different scan 

320 density groups. Note that each density group has its own feature set selected based on the Merit 

321 Score. It was found that the features of 1, 6 and 7 corresponding to Kasa fit, GGS fit and the 

322 2nd principal axis length respectively were selected in most cases. As can be seen in the table, 

323 the primary finding was that the best performance on the feature selection was obtained in the 

324 highest density group, i.e. density group 3. For example, the selected feature sets in the density 
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325 group 3 provided higher Merit scores when the number of features in the feature set were same. 

326

327

328

329

Figure 5. Data collection set-ups: (a) The first data collection configuration - the training 
data collection on 14 individual rebars with 7 different rebar diameters from 14 different 
positions with three different TLS heights; (b) The second data collection configuration – the 
training data collection on the rebar cage specimen having rebar diameters of 12 mm and 16 
mm with two different scan angles of 45° and 90° with respect to the rebar cage; and (c) used 
rebars with seven different diameters (D10-D40)

330 Table 1. Feature selection results in three scan density groups

Density group 1 Density group 2 Density group 3

Selected features Merit 
Score

Selected 
features

Merit 
Score

Selected 
features

Merit 
Score

6, 7 0.9680 6, 7 0.9724 6 0.9838

6 0.9624 6 0.9704 6, 1 0.9837

6, 7, 1 0.9676 6, 7, 1 0.9723 6, 1, 7 0.9821

6, 7, 1, 5 0.9160 6, 7, 1, 4 0.9311 6, 1, 7, 4 0.9532

6, 7, 1, 5, 4 0.7985 6, 7, 1, 4, 5 0.8706 6, 1, 7, 4, 5 0.9111

6, 7, 1, 5, 4, 2 0.6776 6, 7, 1, 4, 5, 2 0.7897 6, 1, 7, 4, 5, 2 0.8726

6, 7, 1, 5, 4, 2, 3 0.6776 6, 7, 1, 4, 5, 2, 3 0.7897 6, 1, 7, 4, 5, 2, 3 0.8726

331
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332 Table 2 shows the rebar diameter classification accuracy of the training data with five 

333 different machine learning algorithms. Note that the rebar diameter classification accuracy sets 

334 are divided into two groups: small diameters (D10-D20) and large diameters (D25-D40). Here, 

335 the number of 3 was selected as the optimal number of scan density group. The reasoning 

336 behind the selection is discussed in section 5.2. There are three primary observations. Firstly, 

337 in most cases, the classification accuracy increased as the density increases. Secondly, the 

338 average accuracy of the small rebar diameter cases (61.4%) was much lower than that (95.9%) 

339 of the large rebar diameter cases. This is attributed to the lack of scan points on the rebar surface 

340 in the cases of small diameters. Thirdly, the SVM provides the highest average classification 

341 accuracy of 78.7% and 96.0% for the total cases (D10-40) and the large diameters (D25-D40), 

342 respectively. Therefore, the SVM was chosen as the optimal classifier for the implementation 

343 of new rebar scan data prediction.

344

345 Table 2. Comparison of the training accuracy among the five machine learning classifiers in 
346 the three density groups

Classification accuracy

Small diameter (D10-D20) Large diameter (D25-D40)

Density group Density group

1 2 3 1 2 3

Selected features Selected features

Classifier

6, 7 6, 7 6

Avg.

6, 7 6, 7 6

Avg.

Total 
avg.

Naïve Bayes (NB) 52.9% 44.4% 64.5% 53.9
%

92.7% 95.8% 98.7% 95.7% 74.8
%

Discriminant Analysis 
(DA)

52.3% 45.5% 64.0% 53.9
%

92.0% 94.6% 99.2% 95.3% 74.6
%

Classification Tree (CT) 59.0% 65.6% 61.5% 62.0
%

90.6% 96.0% 96.5% 94.4% 78.2
%

Nearest Neighbours (NN) 58.5% 65.0% 59.1% 60.9
%

90.3% 96.2% 96.8% 94.4% 77.6
%

Support Vector Machine 
(SVM)

59.3% 56.5% 68.6% 61.5
%

93.1% 96.9% 98.0% 96.0
%

78.7
%

347

348 In order to investigate the details of the classification result, the confusion matrix of the 

349 SVM in three different density groups as shows in Figure 6. Three key pieces of information 

350 obtained through this are: (1) A large number of the false predictions occur in the small rebar 
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351 diameter group (D10-D20) due to the lack of scan points on the rebar surface for small 

352 diameters; (2) the false prediction occurs in the adjacent to the diagonal cells, indicating fasely 

353 predicted rebar diameters have similar diameters. For example, most falsely predicted rebar 

354 diameters for the cases of rebars with D12 are D10 or D16; and (3) classification accuracy is 

355 largely affected by scan density. In the confusion matrices, as the density increases, the number 

356 of non-diagonal cases is reduced. The causes are described in detail in Section 5.1, which 

357 compares the performance of the traditional machine model and the DBM.

Figure 6. Confusion matrix result in the three different density groups

358 4.3 Prediction result of Rebar grid with varies diameter

359 In order to validate the proposed rebar diameter classification method, prediction tests were 

D10 76.0% 21.5% 1.8% 0.2% 0.2% 0.4%

D12 28.7% 56.7% 13.7% 0.5% 0.3% 0.2%

D16 1.9% 31.0% 54.5% 12.1% 0.3% 0.1%

D20 3.3% 32.3% 50.6% 13.8%

D25 0.2% 0.7% 11.5% 84.5% 3.1%

D32 0.3% 4.1% 95.3% 0.3%

D40 1.0% 99.0%

D10 D12 D16 D20 D25 D32 D40

D10 72.7% 27.3%

D12 14.3% 65.7% 19.0% 0.1% 0.9%

D16 34.2% 42.7% 22.8% 0.1% 0.1%

D20 38.6% 53.8% 7.6%

D25 4.9% 93.7% 1.4%

D32 1.7% 97.8% 0.5%

D40 0.7% 99.3%

D10 D12 D16 D20 D25 D32 D40

D10 80.5% 19.2% 0.2%

D12 11.5% 75.6% 12.6% 0.3%

D16 21.2% 50.3% 27.3% 1.2%

D20 17.8% 75.8% 6.4%

D25 3.9% 96.1%

D32 1.1% 98.9%

D40 0.7% 99.3%
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360 conducted on a specimen with 3 m length and 1 m width. Figure 7 shows the experimental set 

361 up for the prediction test. The specimen is composed of 10 longitudinal rebars and 18 

362 transversal rebars. The longitudinal rebars also have 7 different diameters from D10 to D40 and 

363 the transversal rebars have 2 different diameters of D12 and D16.

364

Figure 7. Experimental set up for the prediction test: (a) Specimen with 3 m long and 1 m 
width; (b) the TLS at three positions (SP1-SP3) for the prediction test acquisition; and (c) 
artificial dimensional changes on the 3 individual rebars (1 longitudinal and 2 transversal) 
were introduced for rebar diameter prediction and rebar spacing estimation.

365 Figure 8 shows the prediction results of the longitudinal and transversal rebars. Note that 

366 the results were generated from the scan location of SP2 with the high scan density. Also note 

367 that the instances with different colors indicate the predicted diameters. Here, there are two 

368 types of prediction results, which are 1) instance-level prediction and 2) rebar-level prediction 

369 in the figure. The instance-level prediction gives the prediction value for each instance. 

370 Meanwhile, the rebar-level prediction provides one prediction value for each individual rebar 

371 based on the assumption that the diameter of each individual rebar is predicted as the diameter 

372 having the largest number of predicted diameter at the instance-level. For example, taking the 

(b)(a)

(c)
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373 example of the D40 bottom longitudinal rebar in Figure 8, the diameter with the largest number 

374 of predicted diameter at the instance-level is D40, although there are 5 instances of false 

375 predictions, as seen in D32, in blue. Note that the rebar-level prediction results are presented in 

376 the middle of each individual rebar in Figure 8. 

377

Figure 8. Rebar diameter prediction results. The upper and bottom parts indicate the 
longitudinal and transversal rebars prediction results respectively. (The results come from 
the scan location of SP2 with the high scan density)

378 Table 3 shows the prediction results obtained from the 3 scan positions of SP1 to SP3. There 

379 are three primary observations. First, a higher prediction accuracy is obtained in high scan 

380 density cases on both the instance-level and the rebar-level from the three scan positions of SP1 

381 to SP3. As can be seen in the bottom part of the table, the average accuracy improvement is 

382 17% in the high scan density among SP1 to SP3. Further, as expected, higher prediction 

383 performance was obtained at the rebar-level prediction compared to the instance-level 

384 prediction in both diameter groups. For instance, the average prediction accuracy at the 

385 instance-level is 71.1% whereas that at the rebar-level is 97.2% for the large diameter group. 

386 Finally, similar to the trend observed in the training data classification results, the small rebar 

387 diameters were hard to accurately classify (56.0%) at the rebar-level compared to of the large 

388 rebar diameters (97.2%).

Diameter 
color

Diameter 
color

Longitudinal rebar prediction result

Transversal rebar prediction result

D40
D32
D25
D20

D16
D12
D10

D25
D32
D40

Ground 
Truth

D40
D32
D25
D20

D16
D12
D12

D25
D32
D40

Prediction

D12D16 Ground Truth
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389 Table 3. The prediction test results with three scan positions (SP1 to SP3)

Prediction accuracy

Scan position

SP1 SP2 SP3

Scan density

Low High Low High Low High

Avg. at 
Inst. level

Num. of 
correct 
rebar out 
of total 
rebar

Avg. at 
rebar level

D10 0.0% 33.3% 38.1% 30.0% 30.0% 46.6% 4/6

D12 (L&T) 58.5% 53.6% 60.0% 61.4% 36.3% 41.3% 47/60

D16 (L&T) 30.2% 50.0% 22.5% 52.5% 12.4% 37.5% 20/60

D20 0.0% 29.6% 13.3% 57.5% 3.3% 45.0%

35.1%

3/6

56.0%

D25 50.0% 43.3% 70.0% 61.6% 63.3% 50.0% 12/12

D32 76.6% 66.6% 85.4% 78.0% 61.6% 75.0% 12/12

D40 90.0% 76.6% 88.3% 90.0% 73.3% 80.8%

71.1%

11/12

97.2%

Avg. at Inst. 
level 43.6% 50.4% 53.9% 61.6% 40.0% 53.7%

Avg. at rebar 
level 64% 82% 57% 75% 46% 61%

 

Figure 9. Estimation result using predicted rebar under the left scan position with a high scan 
density (The results come from the scan location of SP2 with the high scan density)

390 4.1 Rebar spacing estimation result

391 Figure 9 shows the rebar spacing estimation results based on the results of rebar prediction in 

392 Section 4.3. Note that four directions of the rebars are denoted as ‘N’, ‘S’, ‘E’, and ‘W’, and 

393 the value presented between two points at the outer boundaries refers to the estimated rebar 

394 spacing. Also, note that the diameter presented in the middle of rebars represents the predicted 

Estimated spacing using rebar prediction result
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395 rebar diameters in Section 4.3. The rebar spacing estimation was made at 52 locations (17 

396 locations in each ‘N’ and ‘S’ directions, and 9 locations in each ‘E’ and ‘W’ directions). Table 

397 3 shows the rebar spacing estimation discrepancies for the longitudinal and transversal rebars. 

398 Note that the rebar spacing estimation discrepancy is defined as the difference between the 

399 estimated rebar spacing using the proposed method and a manual measurement using a 

400 measurement tape. The results show the rebar spacing achieves estimation accuracy of 2.2 mm 

401 with the proposed automatic rebar diameter prediction - a comparable accuracy to that (2.1 mm) 

402 of on actual rebar diameter, indicating that the proposed method has potential for automated 

403 rebar diameter prediction as well as rebar spacing estimation in an accurate manner.

404 Table 4. Comparison of rebar spacing estimation results between the proposed automatic 
405 method and the manual method. Here, the discrepancy between the estimated rebar spacing and 
406 the manually measured (ground-truth) rebar spacing

Discrepancy between the estimated rebar spacing and the 
measured rebar spacing (mm)

Scan position

SP1 SP2 SP3

Scan density

Low High Low High Low High

Total 
avg.

N. Trans. 2.3 2.4 3.2 2.7 2.9 1.8 2.5

S. Trans. 1.6 1.7 2.4 1.5 2.0 1.8 1.8

W. Long. 2.5 1.7 3.1 1.3 3.2 2.9 2.4

E. Long. 3.3 1.7 2.8 2.2 3.0 1.7 2.4

Proposed 
method 
(automatic 
rebar diameter 
estimation)

Average 2.3 1.9 2.8 2.0 2.6 2.0 2.2

N. Trans. 2.3 2.0 3.0 2.8 2.0 2.0 2.3

S. Trans. 1.5 1.8 2.0 1.7 1.9 1.7 1.7

W. Long. 2.3 2.2 2.8 1.7 2.6 2.5 2.3

E. Long. 2.4 1.6 3.3 2.4 2.6 1.5 2.3

Manual 
method (rebar 
diameter are 
given 
manually)

Average 2.1 1.9 2.7 2.2 2.2 1.9 2.1

407 5. Discussion

408 To further identify the effectiveness of the proposed method, further investigation into the three 

409 aspects, which are 1) accuracy comparison between the traditional machine learning approach 

410 and the proposed DBM approach; 2) optimal number of density group; and 3) recommendation 

411 of scan density for performing rebar diameter classification, was conducted.
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412 5.1 Accuracy comparison with traditional machine learning approach

413 A comparison test was performed using the SVM which was as selected as the optimal machine 

414 learning classifier. Note that the traditional machine learning approach uses training data sets 

415 to generate one model, while the DBM generates a number of models according to the number 

416 of scan density groups. Table 4 shows the comparison results. Overall, the DBM approach 

417 offers better accuracy compared to the traditional model in both the cases of small diameters 

418 (D10-D20) and large diameters (D25-D40). Particularly, a significant improvement of 17.9% 

419 and 27.8% was observed in the large diameter group (D25 to D40) at the instance level and the 

420 rebar level respectively.

421

422 Table 4. Accuracy comparison between the traditional method and the proposed DBM method 

Classification Accuracy

Small diameter (D10 to D20) Large diameter (D25 to D40)

Traditiona
l

DBM Improvem
ent

Traditiona
l

BDM Improvem
ent

Training Instance level 57.6% 61.7% 4.1% 90.5% 95.8% 5.3%

Instance level 33.9% 35.1% 1.2% 53.2% 71.1% 17.9%Prediction 

Rebar level 57.6% 56.1% -1.5% 69.4% 97.2% 27.8%

423

424 The reasons for the improvement can be found in Figure 10, which illustrates the effect of 

425 the density-based modeling on the feature extraction results. Figure 10(a) shows the 13,987 

426 rebar instances comprising the training data plotted in the feature space. Note that the chosen 

427 features in the plot are GGS (Feature #6) and the 2nd principal axis (Feature #7), which are the 

428 primary selected features by the CFS. In traditional modeling, the instances’ feature values 

429 largely overlap with the adjacent rebar diameters. However, a clear separation between the 

430 different rebar diameters can be observed in the DBM, particularly in the highest-density 

431 (Density group 3). For example, in the highest scan density group of the large rebar diameter 

432 group, the separation level between the rebar diameter D25, D32 and D40 in the feature space 

433 can be seen in Figure 10. This indicates that high scan density needs to be assured for 

434 performing high accurate rebar diameter prediction. Meanwhile, Figure 11 illustrates the reason 

435 why prediction accuracy in the small rebar diameter group is relatively low compare to the large 

436 rebar diameter group. Taking the example of D20, the variation level of feature value among 

437 the 6 fitting features is relatively large compared to that of the large diameter cases, which 
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438 results in the large overlap between adjacent small rebar diameters and reduce prediction 

439 accuracy. On the other hand, the variation level of feature values among the 6 features is much 

440 lower in the large rebar diameter group and the feature values are closer to the actual rebar 

441 diameters, resulting in a clear separation in the feature space and achieving a high prediction 

442 accuracy. 

443
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Figure 10. Performance comparison between the traditional method and the proposed DBM 
method on the feature extraction results. Compared to the traditional method, a clear 
separation among the different rebar diameters can be observed using the DBM method, 
particularly in the highest-density (Density group 3) in the large rebar diameter group.
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Figure 11. Density effect on the feature values in both the small and large rebar diameter 
groups. Compared to the large variation level of feature values among the 6 features in the 
small rebar diameter group (e.g. D20), the variation level of feature values in the large rebar 
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diameter group (e.g. D32) is much lower and the feature values are close to the actual rebar 
diameters.

444 5.2 Selection of the number of density group

445 The selection of the optimal number of density group is another important issue in the proposed 

446 DBM method. Figure 12 shows the effect of number of density group on instance-level 

447 classification accuracy in training data using the SVM. It can be seen that although a 4.1 % 

448 increase is obtained when increasing the number from 2 to 3, there is no significant increase in 

449 accuracy when the number of density group is equal to or larger than 3. Based on the results, 

450 the selected number of density group was 3 in this study.
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Figure 12. The effect of number of density group on instance-level classification accuracy 
in training data using the SVM

452 5.3 Recommended scan density for rebar diameter prediction

453 Throughout the investigation in Section 4 and Section 5.1, it was found that the scan density is 

454 one of the most important factors for rebar diameter classification. This section investigates the 

455 recommended scan density level for accurate rebar diameter prediction. Figure 13 shows the 

456 effect of scan density on rebar diameter prediction accuracy. Figures 13(a) and (b) show the 

457 percentages of correctly predicted instances out of the total instances with respect to the scan 

458 density in the small and large rebar diameter groups, respectively. Note that each bin has a 

459 width of 10 pts/mm2. In the small rebar diameter group, it was found that in order to achieve an 

460 accuracy over 75%, a scan density value of at least 80 pts/mm2 is necessary. In contrast, for the 

461 large rebar diameter group, all the density bins from 0-150 pts/mm2 had a prediction accuracy 

462 over 80%, even in the case of the lowest scan density ranging between 0-10 pts/ mm2, which 
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463 had an accuracy of 84.8%. This is because the cross section shape of each rebar section instance 

464 formed in the large rebar diameter groups is always larger and clearer than that of small rebar 

465 diameter groups, resulting in a robust and consistent prediction accuracy. Figure 13(c) shows 

466 an exemplary case that represents the impact of scan density on prediction accuracy in both the 

467 small and large diameter rebars. The TLS was positioned on the left and as a result, the area of 

468 small rebar diameter groups in the middle of the horizontal rebar cage has many cases of false 

469 predictions. This is because the area has small rebar diameters, resulting in a low scan density 

470 ranging from 14.3 pts/ mm2 to 82.4 pts/ mm2. Based on the findings, a scan density value of at 

471 least 80 pts/mm2 on small rebar diameters from D10-D20 is necessary for successful rebar 

472 diameter prediction. Note that for each instance, the length of the instance is 100 mm, so much 

473 larger scan points are contained in the unit area (mm2). In summary, it can be concluded that it 

474 is essential to conduct scan planning before actual scanning in order to achieve a high rebar 

475 diameter prediction, as well as rebar spacing estimation.

476 6. Conclusion and future work

477 This study presents a new TLS-based approach that automates the classification of rebar 

478 diameters using machine learning in order to enable accurate rebar spacing inspection. In this 

479 study, a new methodology named Density based Modeling (DBM) is proposed to improve 

480 classification accuracy. Experimental tests on laboratory specimens with rebars of seven 

481 different diameters (D10-D40) were conducted and the results show that the prediction accuracy 

482 for large rebar diameter group (D25-D40) was up to 97.2%. However, it was found that its 

483 performance in predicting small rebar diameter group (D10-D20) is much lower - around 56.0%. 

484 The lessons learned from the results are (1) the proposed DBM method for rebar diameter 

485 prediction is superior to the traditional machine learning approach; and (2) scan density is one 

486 of the most important factors affecting the prediction results, especially in the small rebar 

487 diameter group (D10-D20); and (3) based on the findings of the study, a scan density value of 

488 at least 80 pts/mm2 on the cross section plane to rebar instance with 100 mm length is necessary 

489 in small rebar diameters from D10-D20 for successful rebar diameter prediction. In addition, in 

490 practice, it is essential to conduct scan planning before actual scan in order to achieve a high 

491 rebar diameter prediction as well as rebar spacing estimation.

492 However, there are some limitations of the proposed technique, which are avenues for future 

493 research. First, accurate prediction of small-diameter rebars is still a challenging task using the 

494 proposed method. This issue may be further investigated by finding more robust features for 
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495 accurate machine learning performance. In addition, a scan planning method that computes the 

496 scan density and determines an optimal scan position may address the issue of low accuracy in 

497 small-diameter rebars.

498

Figure 13. Effect of scan density on the rebar diameter prediction accuracy at the instance 
level: (a) In the small rebar diameter group; (b) in the large rebar diameter group; and (c) on 
the left scan (SP1) with the scan high density

499

500 Acknowledgement

501 The first author would like to acknowledge that this research was supported by the National 

502 Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 

503 2018R1A5A1025137) and the Basic Science Research Program through the National Research 

504 Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A3A03010355).



25

505 References

506 1. Kim, M.-K., et al., A framework for dimensional and surface quality assessment of precast 
507 concrete elements using BIM and 3D laser scanning. Automation in Construction, 2015. 49: p. 
508 225-238.

509 2. Kim, M.-K., H. Sohn, and C.-C. Chang, Automated dimensional quality assessment of precast 
510 concrete panels using terrestrial laser scanning. Automation in construction, 2014. 45: p. 163-
511 177.

512 3. Kim, M.-K., H. Sohn, and C.-C. Chang, Localization and quantification of concrete spalling 
513 defects using terrestrial laser scanning. Journal of Computing in Civil Engineering, 2015. 
514 29(6): p. 04014086.

515 4. Kim, M.-K., et al., Automated dimensional quality assurance of full-scale precast concrete 
516 elements using laser scanning and BIM. Automation in Construction, 2016. 72: p. 102-114.

517 5. Wang, Q., et al., Automated quality assessment of precast concrete elements with geometry 
518 irregularities using terrestrial laser scanning. Automation in construction, 2016. 68: p. 170-
519 182.

520 6. Yoon, S., Q. Wang, and H. Sohn, Optimal placement of precast bridge deck slabs with respect 
521 to precast girders using 3D laser scanning. Automation in construction, 2018. 86: p. 81-98.

522 7. Akula, M., et al., Real-time drill monitoring and control using building information models 
523 augmented with 3D imaging data. Automation in Construction, 2013. 36: p. 1-15.

524 8. Han, K., et al. Vision-based field inspection of concrete reinforcing bars. in 13th International 
525 Conference on Construction Applications of Virtual Reality, London, UK. Oct. 30-31. 2013.

526 9. Nishio, K., et al. A method of core wire extraction from point cloud data of rebar. in The 25th 
527 International Conference in Central Europe on Computer Graphics, Visualization and 
528 Computer Vision. 2017. University of West Bohemia, Plzen, Czech Republic: Václav Skala - 
529 UNION Agency.

530 10. Fischler, M.A. and R.C. Bolles, Random sample consensus: a paradigm for model fitting with 
531 applications to image analysis and automated cartography. Communications of the ACM 1981. 
532 24(6): p. 381-395.

533 11. Kim, M.-K., J.P.P. Thedja, and Q. Wang, Automated dimensional quality assessment for 
534 formwork and rebar of reinforced concrete components using 3D point cloud data. Automation 
535 in Construction, 2020. 112: p. 103077.

536 12. Chernov, N., Circular and linear regression: Fitting circles and lines by least squares. 2010: 
537 CRC Press.

538 13. Chernov, N. and C. Lesort, Least squares fitting of circles. Journal of Mathematical Imaging 
539 and Vision, 2005. 23(3): p. 239-252.

540 14. Kåsa, I., A circle fitting procedure and its error analysis. IEEE Transactions on instrumentation 
541 and measurement, 1976(1): p. 8-14.

542 15. Al-Sharadqah, A. and N. Chernov, Error analysis for circle fitting algorithms. Electronic 
543 Journal of Statistics, 2009. 3: p. 886-911.

544 16. Pratt, V. Direct least-squares fitting of algebraic surfaces. in ACM SIGGRAPH computer 
545 graphics. 1987. ACM.

546 17. Taubin, G., Estimation of planar curves, surfaces, and nonplanar space curves defined by 
547 implicit equations with applications to edge and range image segmentation. IEEE Transactions 
548 on Pattern Analysis & Machine Intelligence, 1991(11): p. 1115-1138.



26

549 18. Gander, W., G.H. Golub, and R. Strebel, Least-squares fitting of circles and ellipses. BIT 
550 Numerical Mathematics, 1994. 34(4): p. 558-578.

551 19. Nievergelt, Y., Hyperspheres and hyperplanes fitted seamlessly by algebraic constrained total 
552 least-squares. Linear Algebra and its Applications, 2001. 331(1-3): p. 43-59.

553 20. Wang, H. and D. Suter, Using symmetry in robust model fitting. Pattern Recognition Letters, 
554 2003. 24(16): p. 2953-2966.

555 21. Nurunnabi, A., Y. Sadahiro, and D.F. Laefer, Robust statistical approaches for circle fitting in 
556 laser scanning three-dimensional point cloud data. Pattern Recognition, 2018. 81: p. 417-431.

557 22. Nurunnabi, A., D. Belton, and G. West, Robust statistical approaches for local planar surface 
558 fitting in 3D laser scanning data. ISPRS journal of photogrammetry and Remote Sensing, 2014. 
559 96: p. 106-122.

560 23. Nurunnabi, A., G. West, and D. Belton, Outlier detection and robust normal-curvature 
561 estimation in mobile laser scanning 3D point cloud data. Pattern Recognition, 2015. 48(4): p. 
562 1404-1419.

563 24. Nahangi, M., et al., Pipe radius estimation using Kinect range cameras. 2019. 99: p. 197-205.

564 25. Díaz-Vilariño, L., et al., Automatic detection and segmentation of columns in as-built buildings 
565 from point clouds. 2015. 7(11): p. 15651-15667.

566 26. Ballard, D.H., Generalizing the Hough transform to detect arbitrary shapes. Pattern 
567 Recognition, 1981. 12(2): p. 111-122.

568 27. Bueno, M., et al., Quantitative Evaluation of CHT and GHT for Column Detection under 
569 Different Conditions of Data Quality. 2017. 31(5).

570 28. Rousseeuw, P.J., Least median of squares regression. Journal of the American statistical 
571 association, 1984. 79(388): p. 871-880.

572 29. Nishio, K., et al., A method of core wire extraction from point cloud data of rebar. 2017.

573 30. Wang, Q., J.C. Cheng, and H. Sohn, Automated estimation of reinforced precast concrete rebar 
574 positions using colored laser scan data. Computer‐Aided Civil and Infrastructure Engineering, 
575 2017. 32(9): p. 787-802.

576 31. Valero, E., et al., Automated defect detection and classification in ashlar masonry walls using 
577 machine learning. Automation in Construction, 2019. 106: p. 102846.

578 32. Bassier, M., B. Van Genechten, and M. Vergauwen, Classification of sensor independent point 
579 cloud data of building objects using random forests. Journal of Building Engineering, 2019. 21: 
580 p. 468-477.

581 33. Wang, Q., J.C.P. Cheng, and H. Sohn, Automated estimation of reinforced precast concrete 
582 rebar positions using colored laser scan data. Computer‐Aided Civil and Infrastructure 
583 Engineering, 2017. 32(9): p. 787-802.

584 34. Ester, M., et al. A density-based algorithm for discovering clusters in large spatial databases 
585 with noise. in Kdd. 1996.

586 35. Tang, P., D. Huber, and B. Akinci. A comparative analysis of depth-discontinuity and mixed-
587 pixel detection algorithms. in Sixth International Conference on 3-D Digital Imaging and 
588 Modeling (3DIM 2007). 2007. IEEE.

589 36. Fardin, N., Q. Feng, and O. Stephansson, Application of a new in situ 3D laser scanner to study 
590 the scale effect on the rock joint surface roughness. International Journal of Rock Mechanics 
591 and Mining Sciences, 2004. 2(41): p. 329-335.

592 37. Franceschi, M., et al., Discrimination between marls and limestones using intensity data from 



27

593 terrestrial laser scanner. ISPRS journal of photogrammetry and remote sensing, 2009. 64(6): 
594 p. 522-528.

595 38. Pollyea, R.M. and J.P. Fairley, Estimating surface roughness of terrestrial laser scan data using 
596 orthogonal distance regression. Geology, 2011. 39(7): p. 623-626.

597 39. Wold, S., K. Esbensen, and P. Geladi, Principal component analysis. Chemometrics and 
598 intelligent laboratory systems, 1987. 2(1-3): p. 37-52.

599 40. Yu, L. and H. Liu. Feature selection for high-dimensional data: A fast correlation-based filter 
600 solution. in Proceedings of the 20th international conference on machine learning (ICML-03). 
601 2003.

602 41. Hall, M.A., Correlation-based feature selection for machine learning. 1999.

603 42. Wang, F., et al. Feature selection using feature ranking, correlation analysis and chaotic binary 
604 particle swarm optimization. in 2014 IEEE 5th International Conference on Software 
605 Engineering and Service Science. 2014. IEEE.

606 43. Pearson, K., VII. Note on regression and inheritance in the case of two parents. proceedings of 
607 the royal society of London, 1895. 58(347-352): p. 240-242.

608 44. Holzinger, A. and I. Jurisica, Knowledge discovery and data mining in biomedical informatics: 
609 The future is in integrative, interactive machine learning solutions, in Interactive knowledge 
610 discovery and data mining in biomedical informatics. 2014, Springer. p. 1-18.

611 45. Wang, Q., J.C.P. Cheng, and H. Sohn, Automated Estimation of Reinforced Precast Concrete 
612 Rebar Positions Using Colored Laser Scan Data. Computer-Aided Civil and Infrastructure 
613 Engineering, 2017. 32(9): p. 787-802.

614 46. Bickel, P.J. and E. Levina, Some theory for Fisher's linear discriminant function,naive Bayes', 
615 and some alternatives when there are many more variables than observations. Bernoulli, 2004. 
616 10(6): p. 989-1010.

617 47. Hastie, T., et al., The elements of statistical learning: data mining, inference and prediction. 
618 2009: Springer, New York, NY.

619 48. Fisher, R.A., The use of multiple measurements in taxonomic problems. Annals of eugenics, 
620 1936. 7(2): p. 179-188.

621 49. McLachlan, G., Discriminant analysis and statistical pattern recognition. 1992: John Wiley & 
622 Sons.

623 50. Breiman, L., et al., Classification And Regression Trees. 2017: Routledge.

624 51. Cover, T.M. and P. Hart, Nearest neighbor pattern classification. IEEE transactions on 
625 information theory, 1967. 13(1): p. 21-27.

626 52. Dasarathy, B.V., Nearest neighbor (NN) norms: NN pattern classification techniques. 1991, 
627 Los Alamitos, California: IEEE Computer Society Press. 447.

628 53. Cortes, C. and V. Vapnik, Support-vector networks. Machine learning, 1995. 20(3): p. 273-297.

629 54. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model 
630 selection. in Ijcai. 1995. Montreal, Canada.


	EU_WEST

