Computer Applications in Engineering Education

Page 8 of 43

This is the peer reviewed version of the following article: Yin, Z. Y., Teng, J. C., Wang, H. L., & Jin, Y. F. (2022). A MATLAB-based educational platform for analysis of slope stability. Computer Applications in Engineering Education, 30(2), 575-588, which has been published in final form at https:// doi.org/10.1002/cae.22474.This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited. The following publication Yin, Z. Y., Teng, J. C., Wang, H. L., & Jin, Y. F. (2022). A MATLAB - based educational platform for analysis of slope stability. Computer Applications in Engineering Education, 30(2), 575-588 is available at https://doi.org/10.1002/cae.22474.

A MATLAB-based educational platform for analysis of slope stability

- Xxxxxxx^{1,*}, xxxxxxxx¹, xxxxxxxx¹ and xxxxxxxx¹
- 4 1 XXXXXXXXXXXXXXXXXXXXXX

Abstract: This study presents a computer-aided educational platform namely ErosSSA (Eros-Slope-stability-analysis) developed by the geotechnical group in the Hong Kong Polytechnic University, to provide civil engineering students and young industrial engineers a better understanding for the analysis of slope stability. The platform is developed under the MATLAB environment, with a clear framework and a graphical interface. Using this platform, the rotational landslides can be generally analysed, considering a circular slip surface and the factors of safety defined with respect to basic and advanced methods with different force and/or moment equilibrium. Furthermore, the minimum factors of safety of different methods for a given slope can be determined. From the practical teaching of the ErosSSA in two courses for Bachelor and Master students, they were found to be highly satisfied with the accuracy, the reliability and the convenience of the ErosSSA according to their feedbacks to a questionnaire. These practical teaching experiences support the ErosSSA to be widely used as a suitable teaching platform in geotechnical engineering.

20 Keywords: slope stability; MATLAB GUI; computer-aided educational platform;
21 geotechnical engineering; optimization.

22 1 INTRODUCTION

Slope stability is an important issue in geotechnical engineering. The reliable analysis of slope stability is significant to prevent geological engineering problems, such as landslides and collapses [1-4]. By determining the safety of the slope project and the thrust of slope instability, a scientific basis for the design of supporting structures can be provided. Since Felenius [5] proposed the Swedish circle method in 1926, numerous methods for slope stability analysis have been reported, including the limit equilibrium method (LEM), finite element/difference method (FEM/FDM), distinct element/rigid element method (DEM), and limit analysis, etc. However, most of the formulas are complicated and not easy for geotechnical engineers and undergraduate/postgraduate students to fully understand the analysis process of slope stability, thus bringing challenges to the engineering practice. Recently, due to the rapid development of computer technology, some computer-aided educational platforms have been proposed to assist teaching students in the engineering field. This novel teaching approach provides an effective way to transit the traditional teaching method with a single form and limited teaching effect. Moreover, since the beginning of 2020, the pandemic of COVID-19 broke out around the world. The COVID-19 brings a significant challenge to the face-to-face teaching for safety reasons. Hence, the online remote teaching associated with a computer-aided educational platform is necessary to deliver the knowledge of the slope analysis for the education of geotechnical engineering.

In general, engineering educational platforms are implemented through finite element software, such as some commercial codes (ABAQUS [6], FLAC [7], PLAXIS [8], and COMSOL [9]), or open-source codes [10-13]. To date, computer-aided educational platforms have been widely implemented in engineering courses to facilitate the teaching and learning process. Sonparote and Mahajan [14] developed a platform to demonstrate structural dynamics using JAVA [15]. A platform software prepared in the DELPHI environment was developed by Gencer and Gedikpinar [16] to be utilized in laboratories of electric machinery courses. A MATLAB-based educational platform like ABEL developed by Katsanosp [17] was used to familiarize students with the problems of soil-structure interaction. Nevertheless, the complicated models provided by these software require users to understand the finite element method, which is not easy for undergraduate and postgraduate students. Therefore, a platform with easier interpretation is needed to evaluate the slope stability.

In the last decade, Graphical User Interfaces (GUI) are attracting interest from many scholars and engineers. GUI is a user interface that contains graphical objects, such as windows, icons, menus, and text. When these objects are selected or activated in a certain way, they cause actions. The MATLAB GUI [18] provides developers an environment integrated with MATLAB. This allows the developers to simplify the program and to easily develop a graphical interface at the same time, helping readers understand specific problems during the training process. Hence, the MATLAB GUI can be used to develop an educational platform for more convenient analysis of slope stability.

In this study, a computer-aided learning and simulation platform ErosSSA (Eros-Slopestability-analysis) is developed. Two factors (the "Parameters of Soil" and the "Geometry of Slope") are considered, showing the most significant impact on the factor of safety of slope stability. The limit equilibrium method is adopted during the analysis. Using this platform, the factor of safety under a given slip surface can be determined by five different methods. In addition, unlike other slope software, ErosSSA can quickly find the minimum factor of safety under a specific slope geometry.

In addition, in slope stability analysis, we need to find the global minimum/critical solution for design. A general method in class is to analyze a number of trial circles in the same way but with different circle centers and different points where the circle cuts the slope to determine the minimum safety factor. Another traditional method is the "stability chart"

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14 15	
15	
16 17	
17 18	
19	
20	
20 21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51	
52	
53 54	
54 55	
55 56	
57 58	
58 59	
59 60	
00	

method, which is only suitable for the homogeneous slope and very simple geometry. Other 72 methods like FEM, DEM and FDM, require a complicated modeling process. ErosSSA can 73 quickly find the minimum factor of safety under a specific slope geometry, and the analyze 74 process of searching the critical solution is also displayed in this tool. 75 Finally, some learning examples and the student feedbacks are also presented to 76 demonstrate the applicability of ErosSSA in the education of geotechnical engineering. 77 78 2 | DEVELOPMENT OF ErosSSA 79 The ErosSSA was developed using MATLAB GUI by the geotechnical group in the Hong 80 Kong Polytechnic University. It can be uploaded to personal homepages, and students can 81 install it directly on the computer for use without licenses. Students can easily learn to use this 82 tool because of its simple operation and clear interface. Compared with other slope softwares, 83 this tool highlights the function of finding the minimum safety factor. The Nelder-Mead 84 simplex based differential evolution algorithm (NMDE) is adopted to identify the minimum 85 safety factor. The detailed development process is demonstrated as follows. 86 2.1 | Basic theory 87 In this educational platform, the factor of safety (F_s) is used as an indicator to evaluate the slope 88

stability [19]. If $F_s \leq 1.2$ [20], the slope is considered unstable. The most common approaches 89 for defining F_s in the limit equilibrium method are based on the force equilibrium, moment 90 equilibrium, and shear strength method [21]. Moment equilibrium is used in the analysis of 91 rotational landslides. Considering a circular slip surface, the factor of safety equals to the sum 92 93 of the resisting moments (M_r) divided by the sum of the driving moment (M_d) . Force equilibrium is applied to translational or rotational failures composed of a plane or polygonal 94 slip surfaces, while the factor of safety is defined by dividing the sum of the resisting forces 95 $(F_{\rm r})$ by the sum of the driving forces $(F_{\rm d})$. For the shear strength method, the actual shear stress 96

97 can be mobilized along the failure surface against the ultimate shear strength.

Limit equilibrium method [22] solves a statically indeterminate problem. Assumptions on the interslice shear forces are needed to render the statically determinate problem. The failure is assumed to occur by rotating a rigid block of soil on a cylindrical failure surface, along which the undrained shear strength of the soil is moved. Based on the assumptions on the internal force and/or moment equilibrium, there are many methods developed for the evaluation of slope stability, including Fellenius [23], Bishop [24], Lowe and Karafiath [25], Janbu [26-28], Morgenstern-Price [29], Spencer [30], etc. Since most of the existing methods are very similar in their basic formulations with only different assumptions on the interslices shear forces, it is possible to group most of the existing methods under a unified formulation. Fredlund [31], Espinoza [32], Cheng [33] and Chang [34] have proposed slightly different unified formulation to the more commonly used slope stability analysis methods.

According to different analysis methods, several factors of safety can be obtained for a given slope, but the design requirements for the factor of safety are generally not limited to a specific analysis method in most design codes from different countries. So, five classic analysis methods, Swedish, Fellenius, Janbu's Simplified, Janbu's Modified, Bishop methods, are adopted in this platform to calculate the factor of safety. The corresponding formulas are shown as follows:

$$F_{s,Swedish} = \frac{M_{\text{resistance}}}{M_{\text{renversement}}} = \frac{\sum (l_i c' + b_i h_i \gamma \cos \alpha_i \tan \phi') R}{\sum b_i h_i \gamma \sin \alpha_i R}$$
(1)

$$F_{s,Fellenis} = \frac{\sum \left[l_i c' + \left(b_i h_i \gamma \cos \alpha_i - \gamma_w b_i h_i \sec \alpha_i \right) \tan \phi' \right]}{\sum b_i h_i \gamma \sin \alpha_i}$$
(2)

$$F_{s,Janbu's \ Simplified} = \frac{\sum \left[c'b + \left(b_i h_i \gamma - u_i b_i\right) \tan \phi'\right] / \eta_{\alpha_i}}{\sum b_i h_i \gamma \tan \alpha_i} \quad \text{with} \quad \eta_{\alpha_i} = \left(1 + \frac{\tan \alpha_i \tan \phi'}{F_s}\right) \quad (3)$$

$$F_{s,Bishop} = \frac{\sum (l_i c' \cos \alpha_i + b_i h_i \gamma \tan \phi') / m_\alpha}{\sum b_i h_i \gamma \sin \alpha_i} \quad \text{avec} \quad m_\alpha = \cos \alpha_i + \frac{\sin \alpha_i \tan \phi'}{F_s}$$
(4)

115 where $u_i = \gamma_w h_w$; γ_w is the unit weight of water; h_w is the height to the water table above the base 116 of the slice; l_i , b_i , h_i , R and α_i are used to describe the geometry of the slope; γ , ϕ ' and c ' are the 117 unit weight, effective internal friction angle and cohesion of soil, respectively; m_α and η_α are 118 the correction coefficients in Janbu's Simplified Method and Bishop Method, respectively. The 119 detailed interpretation of the parameters in these five formulas can also be seen in Figure 1. 120 In Janbu's modified method, a correction factor f_0 is applied to the factor of safety from

121 the simplified analysis. The correction factor f_0 is determined by the following formula.

For
$$c', \phi' > 0, \quad f_0 = 1 + 0.5 \left[\frac{D}{l} - 1.4 \left(\frac{D}{l} \right)^2 \right]$$

For $c' = 0, \quad f_0 = 1 + 0.3 \left[\frac{D}{l} - 1.4 \left(\frac{D}{l} \right)^2 \right]$
(5)
For $\phi' = 0, \quad f_0 = 1 + 0.6 \left[\frac{D}{l} - 1.4 \left(\frac{D}{l} \right)^2 \right]$

where l refers to the length of the slope; D is the maximum thickness of the slope.

2.2 | **Platform interface**

After opening ErosSSA, a dialog-box entitled "Slope Stability Analysis Platform" (Figure 2) is displayed, including seven panels: "Parameters of Soil", "Slip Surface", "Geometry of Slope", "Option of Calculation", "Number of Slice", "Figure of a slope", and "Results of Calculation". Different values can be filled in these white boxes. Then, the calculated results are displayed in these blank (grey) boxes. The detailed operation method is shown in Figure 3. Five parameters are considered in the panel of "Parameters of Soil": unit weight of slope soil (γ), cohesive strength (c), and friction angle (ϕ). In this platform, three different drainage conditions can be applied, i.e., saturated, dry and drained conditions. These three cases can be calculated by selecting γ sat, γ dry and γ' eff, respectively. Note that the default unit weight

133 of water $\gamma_{\rm w}$ is 9.8 kN/m³.

The coordinates of the determined circular failure surface can be filled in the panel of "Slip Surface". In "Geometry of Slope", three parameters are used: height of slope (*H*), angle of slope (α), and angle of the top face of the slope (β). ErosSSA can automatically check the values of the user's inputs. An error message appears when inappropriate parameters are filled, as shown in Figure 4. In addition, the more number of slices, the higher the accuracy and the longer the calculation time.

A typical schematic figure is displayed in the top right corner of the platform interface (Figure 2), indicating all the parameters. When clicking the "RUN" button, this figure changes to the calculation results according to the input parameters, as shown in Figure 5. When clicking the "CLEAN" button, Figure 5 changes back to the origin schematic figure as shown in Figure 2.

After each calculation, a TXT file namely solution (as shown in Figure 6) can be automatically generated in the folder where the educational platform is saved. The TXT file records the coefficients of each slice and the results of the factors of safety, which can be directly imported into an EXCEL file for future processing and analysis.

149 2.3 | Minimum factor of safety

In ErosSSA, to define the minimum factor of safety, the "Minimum Factor of Safety" in the "Option of Calculation" panel can be selected. The Nelder-Mead simplex based differential evolution algorithm (NMDE) proposed by Yin et al. [35] is adopted to accelerate the convergence speed, as shown in Figure 7. Before performing the differential evolution (DE) mutation, all the individuals are sorted on the basis of their fitness values. The best n+1 (n is the number of variables) individuals are selected to perform the Nelder-Mead simplex [36]. According to the results of the Nelder-Mead simplex, the best individual is updated. Then, the best individual is recombined with the N-(n+1) remaining individuals to perform the DE

mutation. This process is executed N times, followed by obtaining a new population with Nindividuals. After this process, the obtained population is applied to the crossover operation. In order to avoid a rapid loss of diversity, an elitism strategy is adopted to perform the selection. In the selection, 10% of individuals with the highest fitness value are selected from the parents and children to survive to the next generation. The remainders are chosen by tournament selection from the mating pool composed of parents and children other than the 10% individuals. The completion mechanism can help the NMDE determine better solutions. More details about NMDE can be seen in Yin et al. [35]. Except for the NMDE, any optimization method with a high searching performance can be used to identify the minimum factor of safety, such as MBSA [37].

A minimum factor of safety can be obtained in a reasonable time period. In this platform, only the Swedish method is adopted to find the minimum factor of safety. Figure 8 shows the process of searching for the minimum factor of safety displayed in the figure panel. After identifying the circular failure surface with the minimum factor of safety, a message box is N.C. displayed by ErosSSA.

3 | PRACTICAL TEACHING APPLICATION

Since the COVID-19 brings a significant challenge to the face-to-face teaching for safety reasons, the ErosSSA can be used as an educational platform to improve theteaching and learning efficiency of slope engineering course for both undergraduate and postgraduate students. In the previous teaching without this platform, instructors only showed the related formulas and used Excel (Figure 9) to calculate the safety factor of the slope. Only a "Stability chart" was used to calculate the minimum safety factor. Currently, they can use ErosSSA to demonstrate the slope stability analysis through various examples and explain the calculation steps through the generated "solution" file. The process of identifying the circular failure

surface with the minimum safety factor can also be presented. In addition, students can visualize and learn the evaluation process of slope stability by using ErosSSA. During the operation, they can understand the slope parameters comprehensively. A detailed demonstration of three cases is introduced as follows.

3.1 Case 1: Different geometries of slopes

Figure 10 shows a template that the top face of the slope is inclined. Students need to input the values of height, the angle of the top face and the toe of the slope. The coordinates of the circular failure surface such as the first point and the center point are also needed for the calculation. This suggests that ErosSSA can be used to investigate the slope stability with different geometries under various failure surfaces.

3.2 Case 2: Different reservoir conditions

The reservoir conditions for a slope can be simply divided into three categories: the reservoir full of water, the empty reservoir and the case of rapid emptying. The differences between these three conditions are the unit weights (γ) of soil. When the reservoir is full of water, the saturated unit weight (γ sat) is used in the calculation. The dry unit weight (γ dry) is used under the empty condition, while the effective unit weight (γ' eff) is used under the rapid emptying condition. These three conditions can be calculated by selecting γ sat, γ dry and γ' eff in the "Parameters of Soil" panel, respectively (Note: the default $\gamma_w = 9.8 \text{ kN/m^3}$). Table 1 summarizes the values of γ in M_r and M_d under different drainage conditions.

The schematic view of the reservoir full of water is plotted in Figure 11 for calculation. The saturated unit weight of soil (γ sat) is used. Figure 12 (a) shows the calculated results using the ErosSSA. If the reservoir is in a rapid drainage state, the effective unit weight of soil (γ' eff) should be selected, presenting the calculated results as shown in Figure 12 (b). By comparing the results of these two cases, the factors of safety of the same slope are quite different under various drainage conditions. On the whole, the factor of safety is much lower for the reservoir

53

2		
3 4	208	full of water than that for the case of rapid drainage, suggesting that a good drainage path for
5 6 7	209	the reservoir is favorable for more stable slope maintanence.
7 8 9	210	Figure 13 shows the results of these two conditions calculated by the EXCEL program
9 10 11	211	(LME), indicating a good agreement with the results of ErosSSA.
12 13	212	3.3 Case 3: Validation - the minimum factor of safety
14 15 16	213	In the evaluation of slope stability, users need to determine the global minimum/critical
17 18	214	solution for design. To validate the calculated results from ErosSSA, a similar slope stability
19 20	215	analysis is conducted by the PLAXIS 2D (Figure 14).
21 22 23	216	1. The height of the slope is 14 m.
24 25	217	2. The angle of the slope is 45° .
26 27	218	3. The reservoir condition is empty.
28 29 20	219	4. The parameters of soil are as follows: $\gamma_1 = 11 \text{ kN/m}^3$, $\gamma_2 = 11 \text{ kN/m}^3$, $c = 10 \text{ kN/m}^2$, $\phi = 10 \text{ kN/m}^2$
30 31 32	220	35°.
33 34	221	The factor of safety calculated by PLAXIS 2D is 1.452. Accordingly, the calculated
35 36	222	factors of safety are 1.42853, 1.42853, 1.50575, 1.41489, and 1.49885 using the Swedish
37 38 39	223	method, Fellenius method, Bishop method, Janbu's Simplified method and Janbu's Modified
40 41	224	method, respectively in the ErosSSA (Figure 15), indicating a good agreement with the result
42 43	225	from PLAXIS 2D. The results obtained from the two softwares have a minor difference,
44 45 46	226	because they use different calculation methods. The comparison between the results from
46 47 48	227	ErosSSA and PLAXIS 2D shows that the proposed computer-aided educational platform is
49 50	228	reliable and accurate.
51 52	229	3.4 Student feedbacks

In the semester of 2020-2021, online teaching is required for all courses in the Hong Kong
Polytechnic University due to the pandemic of COVID-19. Hence, the online teaching joint
with the self-developed computer-aided educational platform ErosSSA was used to deliver the

knowledge of slope stability for the courses of "Geotechnical Design (course code: CSE 40403; for Bachelor students)" and "Soil Behaviour and Geotechnical Engineering (course code: CSE578; for Master students)". Several calculation examples about the previous three cases were shown to students for teaching and training. For the learning example in Section 3.3, some parameters were changed for students to complete as assignments after class. The students were required to use ErosSSA and PLAXIS to perform the analysis and compare the results. Finally, they were asked to complete a questionnaire to evaluate the contribution of ErosSSA platform to their study of slope stability analysis. The questions in the questionnaire are shown in Table 2, including: 1) What is your overall feeling about ErosSSA? 2) Do you think this platform is easy to operate? 3) What do you think of the layout of this platform? 4) Will you recommend this platform to your friends? 5) Have you encountered any bugs when using it? 6) Any advice to improve this platform?

After collecting the feedbacks from the students, we summarized the results of the first five questions, as listed in Table 3. From the first two questions, most students (more than 85%) thought the ErosSSA was useful, easy and convenient for the analysis of slope stability. In terms of the layout of the platform, more than 80% of them were highly satisfied (Grade 4 and 5). After the learning and training process of the platform, more than 80% them expected to recommend ErosSSA to their friends (Grade 4 and 5). Moreover, 25 students (9.77%) encountered bugs while using the platform. In addition, some students also provided suggestions to improve the platform as follows:

253 1) Consider the soil nail condition in slope engineering, and

254 2) Provide a process display with formula calculation.

54255These two suggestions are very helpful, although they would affect the current layout and5556256the calculation efficiency. Nevetheless, these suggestions will be considered to further improve5859257the platform in the future. On the whole, the current ErosSSA platform is generally satisfying60

2 3 4	258	for the teaching on the analysis of slope stability.
5 6	259	
7 8 9	260	4 CONCLUSIONS
10 11 12	261	The ErosSSA is developed as an educational platform to promote the teaching and learning
12 13 14	262	efficiency, for the analysis of slope stability. It can be uploaded to personal homepages, and
15 16	263	students can install it directly on the computer for use. Five classic analysis methods, Swedish,
17 18	264	Fellenius, Janbu's Simplified, Janbu's Modified, Bishop methods, are adopted in this platform
19 20 21	265	to calculate the factors of safety. In addition, compared with other slope software, this tool adds
22 23	266	the function of finding the minimum safety factor. The Nelder-Mead simplex based differential
24 25	267	evolution algorithm (NMDE) is adopted to identify the minimum safety factor.
26 27	268	The ErosSSA can be used for Bachelor and Master geotechnical courses. Through the
28 29 30	269	operation process, the ErosSSA helps students understand the evaluation process of slope
31 32	270	stability. The graphical interface variation with the calculation is useful to understand the
33 34 35	271	process of searching for the minimum factor of safety.
36 37	272	Due to the COVID-19, the online teaching method associated with the ErosSSA teaching
38 39	273	platform was used to deliver the knowledge of slope stability in the courses of "Geotechnical
40 41	274	Design" for Bachelor students and "Soil Behaviour and Geotechnical Engineering" for Master
42 43 44	275	students of the Hong Kong Polytechnic University in the semester of 2020-2021. Students'
45 46	276	feedbacks were collected, from completing the assignment using the ErosSSA. The feedbacks
47 48	277	showed that the majority of the students were highly satisfied with ErosSSA. They though this
49 50 51	278	platform is helful, easy and convenient for the analysis of slope stability, although a minor
52 53	279	proportion of them encountered bugs. From their specific suggestions and the collected bugs,
54 55	280	this platform would be further improved for a wider application in the teaching and learning of
56 57	281	geotechnical engineering.
58 59	282	Currently, ErosSSA has only been used in two courses. Case studies on slope analysis

59 60 Currently, ErosSSA has only been used in two courses. Case studies on slope analysis

1 2		
2 3 4	283	carried out by this tool are not enough. The effectiveness of the tool needs to be verified in
5 6 7	284	more courses.
7 8 9	285	
10 11	286	ACKNOWLEDGEMENT
12 13 14	287	The development of the platform was financially supported by xxxxxxxxxxx.
15 16	288	
17 18	289	REFERENCES
19 20 21	290	1. D. W. Taylor, Stability of earth slopes, J. Boston Soc. Civil Engineers 24.3 (1937), 197-
22 23	291	247.
24 25 26	292	2. A. W. Bishop, and L. Bjerrum, The relevance of the triaxial test to the solution of stability
27 28	293	problems, Norwegian Geotechnical Institute Publ (1960).
29 30	294	3. J. M. Bell, General slope stability analysis, Journal of Soil Mechanics & Foundations Div
31 32 33	295	92.SM5, Proc Paper 490 (1968).
34 35	296	4. S. K. Sarma, Stability analysis of embankments and slopes, Journal of Geotechnical and
36 37	297	Geoenvironmental Engineering 105, ASCE 15068 (1979).
38 39 40	298	5. W. Fellenius, 'Earth stability calculations with friction and cohesion for circular cylindrical
41 42	299	slip surfaces' (in Swedish), Kungl. Va'g-och Vattenbygerrkdrens, 1926, 79-127.
43 44	300	6. K. Hibbitt, Sorensen. ABAQUS/Explicit: User's Manual: Hibbitt, Karlsson and Sorenson,
45 46	301	2001.
47 48 49	302	7. F. L. A. C. Itasca, Fast Lagrangian analysis of continua. Itasca Consulting Group Inc,
50 51	303	Minneapolis, Minn, 2000.
52 53	304	8. R. B. J. Brinkgreve, E. Engin, and W. Swolfs, Plaxis 2D 2012 user manual, Delft,
54 55 56	305	Netherlands: Plaxis by, 2012.
57 58	306	9. A. B. Comsol, COMSOL multiphysics user's guide, Version: September 10 (2005), 333.
59 60	307	10. D. Novák, M. Vořechovský, B. Teplý, FReET: Software for the statistical and reliability

Page 21 of 43

2 3	200	analysis of ancinoaring problems and ED-SET Dy Degradation module. Advances in
4 5	308	analysis of engineering problems and FReET-D: Degradation module, Advances in
6	309	Engineering Software 72 (2014), 179-92.
7 8 9	310	11. H. Wang, L. Li, Y. Y. Jiao, X. R. Ge, and S. C. Li, A relationship-based and object-oriented
10 11	311	software for monitoring management during geotechnical excavation, Advances in
12 13	312	Engineering Software 71 (2014), 34-45.
14 15 16	313	12. Z. Yang, J. Lu, and A. Elgamal, A web-based platform for computer simulation of seismic
17 18	314	ground response, Advances in Engineering Software 35.5 (2004), 249-259.
19 20	315	13. H. P. Langtangen, A FEniCS tutorial, Automated solution of differential equations by the
21 22	316	finite element method, Springer, Berlin, Heidelberg, 2012, p 1-73.
23 24 25	317	14. R. S. Sonparote, and S. K. Mahajan, An educational platform to improve understanding of
26 27	318	structural dynamics through idealization of physical structure to analytical model,
28 29	319	Computer Applications in Engineering Education 26.5 (2018), 1270-1278.
30 31 32	320	15. Y. Gao et al., Java-powered virtual laboratories for earthquake engineering education,
32 33 34	321	Comp. Appl. Eng. Educ.13(2005), 200–212.
35 36	322	16. C. Gencer, and M. Gedikpinar, A computer-aided educational platform for induction
37 38	323	motors, Computer Applications in Engineering Education 20.3 (2012), 503-509.
39 40 41	324	17. E. I. Katsanos, O. N. Taskari, and A. G. Sextos, A MATLAB-based educational platform
42 43	325	for the seismic design of flexibly supported RC buildings, Computer Applications in
44 45	326	Engineering Education 22.3 (2014), 442-451.
46 47 48	327	18. MATLAB Manual, Version 7, The Mathworks, Inc., 2004.
49 50	328	19. J. M. Duncan, S. G. Wright, and T. L. Brandon, Soil strength and slope stability. John
51 52	329	Wiley & Sons, 2014.
53 54	330	20. Geotechnical Control Office Engineering development Department Hong Kong,
55 56 57	331	Geotechnical manual for slopes. Geotechnical Control Office, Public Works Department,
58 59 60	332	<mark>1984.</mark>
00		

2 3 4	333	21. J. M. Duncan, S. G. Wright, The accuracy of equilibrium methods of slope stability analysis.
5 6	334	Engineering geology, 1980, 16.1-2: 5-17.
7 8 9	335	22. D. Y. Zhu, C. F. Lee, and H. D. Jiang, Generalised framework of limit equilibrium methods
9 10 11	336	for slope stability analysis. Geotechnique, 2003, 53.4: 377-395.
12 13	337	23. W. Fellenius, Calculation of stability of earth dam, Transactions. 2nd Congress Large Dams,
14 15 16	338	Washington, DC, 1936, Vol.4, 1936, p 445-462.
16 17 18	339	24. A. W. Bishop, The use of the slip circle in the stability analysis of slopes, Geotechnique
19 20	340	5.1 (1955), 7-17.
21 22	341	25. J. Lowe, and L. Karafiath, Effect of anisotropic consolidation on the undrained shear
23 24 25	342	strength of compacted clays, Research Conference on Shear Strength of Cohesive Soils.
26 27	343	ASCE, 1960, p 837-858.
28 29	344	26. N. Janbu, Application of composite slip surface for stability analysis, Proceedings of
30 31 22	345	European Conference on Stability of Earth Slopes, Sweden, 1954. Vol. 3. 1954, p 43-49.
32 33 34	346	27. N. Janbu, Earth pressure and bearing capacity calculations by generalized procedure of
35 36	347	slices, Proc. 4 ^{<} th> ICSMFE, London, 1957.
37 38	348	28. N. Janbu, Slope stability computations, Publication of: Wiley (John) and Sons,
39 40 41	349	Incorporated (1973).
42 43	350	29. NR. U. Morgenstern, and V. E. Price, The analysis of the stability of general slip surfaces,
44 45	351	Geotechnique 15.1 (1965), 79-93.
46 47 48	352	30. E. Spencer, A method of analysis of the stability of embankments assuming parallel inter-
48 49 50	353	slice forces, Geotechnique 17.1 (1967), 11-26.
51 52	354	31. D. G. Fredlund, and J. Krahn, Comparison of slope stability methods of analysis. Canadian
53 54	355	geotechnical journal, 1977, 14.3: 429-439.
55 56 57	356	32. R. D. Epsinoza, P. L. Bourdeau, and B. Muhunthan, Unified formulation for analysis of
57 58 59 60	357	slopes with general slip surface. Journal of geotechnical engineering, 1994, 120.7: 1185-

1		
2 3 4	358	<mark>1204.</mark>
5 6	359	33. Y. L. Chang, and T. K. Huang, Slope stability analysis using strength reduction technique.
7 8	360	Journal of the Chinese Institute of Engineers, 2005, 28.2: 231-240.
9 10 11	361	34. Y. L. Chang, and T. K. Huang, Slope stability analysis using strength reduction technique.
12 13	362	Journal of the Chinese Institute of Engineers, 2005, 28.2: 231-240.
14 15	363	35. Z. Y. Yin, Y. F. Jin, J. S. Shen, and P. Y. Hicher, Optimization techniques for identifying
16 17 18	364	soil parameters in geotechnical engineering: comparative study and enhancement.
19 20	365	International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42.1:
21 22	366	70-94.
23 24 25	367	36. J. A. Nelder, and R. Mead, A simplex method for function minimization. The computer
26 27	368	journal, 1965, 7.4: 308-313.
28 29	369	37. Y. F. Jin, and Z. Y. Yin, Enhancement of backtracking search algorithm for identifying soil
30 31 32	370	parameters. International Journal for Numerical and Analytical Methods in Geomechanics,
32 33 34	371	2020, 44.9: 1239-1261.
35 36		
37 38		
39 40 41		
42 43		
44 45		
46 47 48		
49 50		
51 52		
53 54 55		
56 57		
58 59 60		
00		

Page 24 of 43

List of Tables

- Table 1. Summary of different reservoir conditions.
- Table 2. Questionnaire for the ErosSSA evaluation.
- Table 3. Summary of student feedback on the ErosSSA questionnaire.

List of Figures

- Fig. 1. Reference diagram of parameters in the formulas for slope stability
- Fig. 2. Screenshot of ErosSSA default window
- Fig. 3. Operation Method
- Fig. 4. Screenshot of "error message" for improper input
- Fig. 5. Screenshot of a typical calculation result figure
- Fig. 6. Screenshot of "solution" file
- Fig. 7. Flowchart of NMDE
- Fig. 8. Screenshot of a typical result of the minimum factor of safety
- Fig. 9. Traditional Excel method
- Fig. 10. Screenshot of ErosSSA showing the analysis result of Case 1
- Fig. 11. Schematic view of a reservoir full of water
- Fig. 12. Screenshot of ErosSSA showing the analysis result of Case 2: (a) Reservoir full of water; (b) Reservoir with rapid emptying
- Fig. 13. Screenshot of EXCELL program (LEM) showing the analysis result of Case 2: (a) Reservoir full of water; (b) Reservoir with rapid emptying
- Fig. 14. Simulation results from PLAXIS 2D
- Fig. 15. Screenshot of ErosSSA showing the analysis result of Case 3

Reservo	ir conditions	ary of different reser γ in $M_{\rm r}$	γ in $M_{\rm d}$
	ated (γ_{sat})	$\gamma_{\rm sat} - \gamma_{\rm w}$	$\gamma_{\rm sat} - \gamma_{\rm w}$
	γ (γ_dry)	γ_dry	γ_dry
Drair	ned (γ'_{eff})	γ'_eff	$\gamma'_{eff} + \gamma_{v}$

TABLE 1 Summary of different reservoir conditions
--

Reservoir conditions	γ in $M_{\rm r}$	γ in $M_{\rm d}$
Saturated (γ_{sat})	$\gamma_{\rm sat} - \gamma_{\rm w}$	$\gamma_{\rm sat} - \gamma_{\rm w}$
Dry (γ_{dry})	γ_{dry}	γ_dry
Drained (γ'_{eff})	γ'_eff	$\gamma'_{eff} + \gamma_{w}$

1) What is your overall feeling about ErosSSA?	t is your overall feeling about ErosSSA? Useless				4	5	Very helpful
2) Do you think this platform is easy to operate?	Hard to understand		2	3	4	5	Very easy
3) What do you think of the layout of this platform?	Very dissatisified	1	2	3	4	5	Very satisfied
4) Will you recommend this platform to your		1	2	3	4	5	
friends?	Nope						Absolutly
5) Have you encountered any bugs when using it?	 Nope, it runs smo Some characters c It failed to give an The website broke Others: 	ann 1 ans	ot b	r.	ispl	aye	d.
6) Any advice to improve this platform?							

TADLE 1 O · • . CC A c. 1- $\mathbf{\Gamma}$ 1:

Questions	Grade							
	1	2	3	4	5			
What is your everall faciling about Fraces 4.2	2	1	33	91	129			
What is your overall feeling about ErosSSA?	(0.78%)	(0.39%)	(12.89%)	(35.55%)	(50.39%)			
Do you think this platform is about to operate?	4	8	42	85	117			
Do you think this platform is easy to operate?	(1.56%)	(3.13%)	(16.41%)	(33.20%)	(45.70%)			
	3	3	39	94	117			
What do you think of the layout of this platform?	(1.17%)	(1.17%)	(15.23%)	(36.72%)	(45.70%			
Will you recommend this platform to your	5	2	38	91	120			
friends?	(1.95%)	(0.78%)	(14.84%)	(35.55%)	(46.88%)			
Č	0 Nope,	it runs smo	oothly. 231	(90.23 %)]				
	• Some characters cannot be displayed. [4 (1.56%)]							
Have you encountered any bugs when using it?	○ It failed to give an answer. [12 (4.69%)]							
	○ The w	ebsite brok	e down. [2	(0.78%)]				
	Others:			[′	7 (2.73%)]			

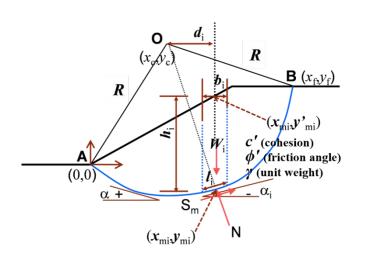


FIGURE 1 Reference diagram of parameters in the formulas for slope stability

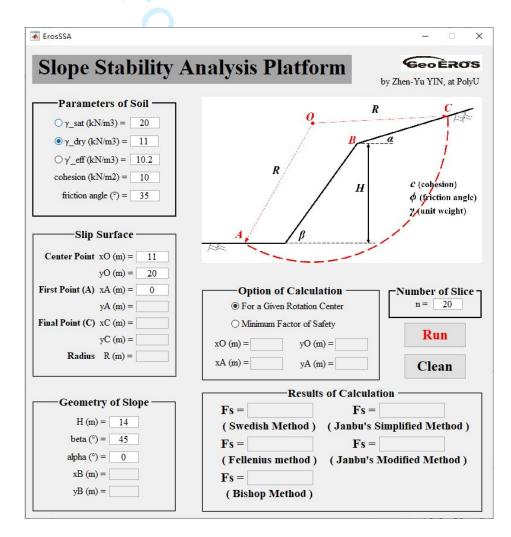
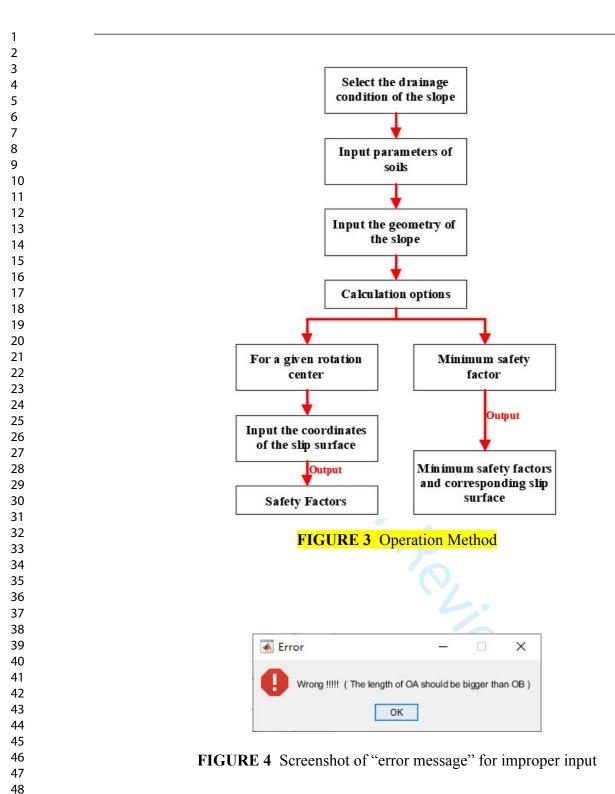
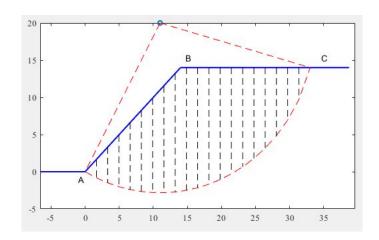
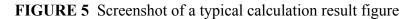
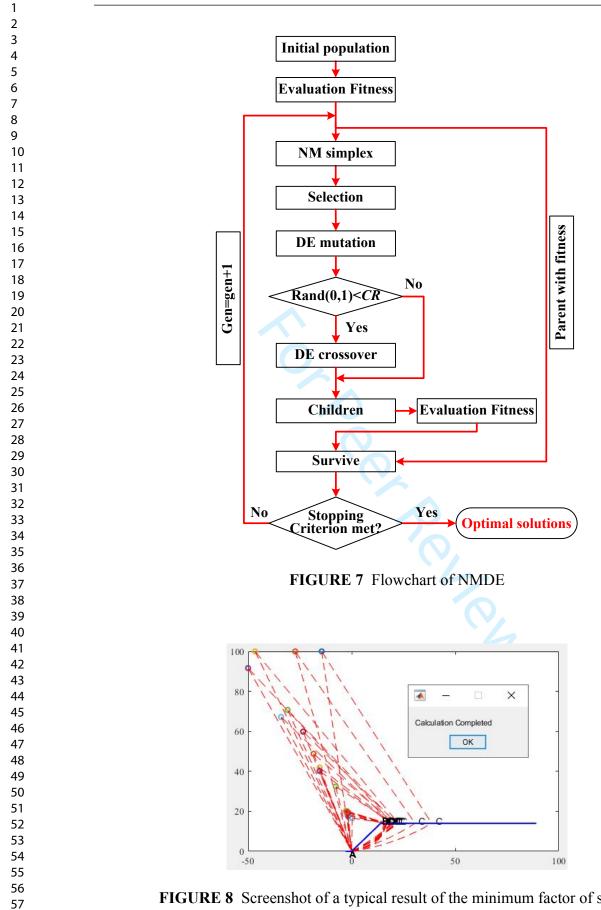
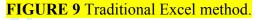
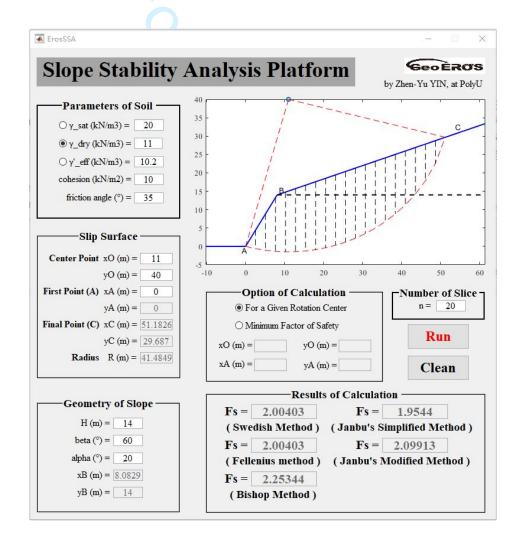
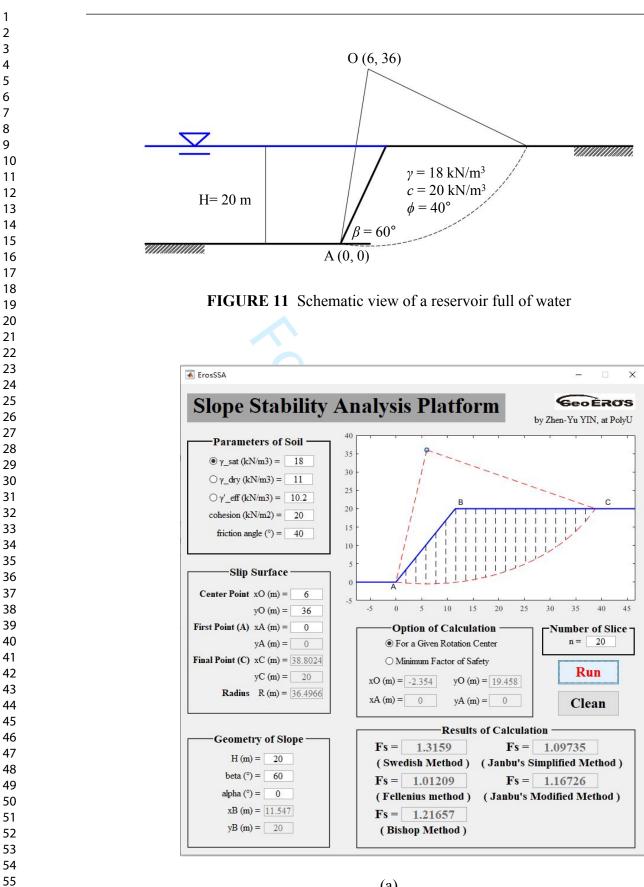





FIGURE 2 Screenshot of ErosSSA default window

solution.txt	ŧ		2021	/1/24 23:15		
No. x 001 +0.00e+00 002 +1.65e+00 003 +3.30e+00 004 +4.95e+00 005 +6.60e+00 006 +8.26e+00 007 +9.91e+00 008 +1.16e+01 009 +1.32e+01 010 +1.49e+01 011 +1.65e+01 012 +1.82e+01 013 +1.98e+01 014 +2.15e+01 015 +2.31e+01 016 +2.48e+01 017 +2.64e+01 017 +2.64e+01 018 +2.81e+01 019 +2.97e+01 020 +3.14e+01 021 +3.30e+01 Mr Md 2.84e+03 1.02e+03	y +0.00e+00 -8.23e-01 -1.49e+00 -2.01e+00 -2.66e+00 -2.82e+00 -2.82e+00 -2.72e+00 -2.50e+00 -2.50e+00 -2.55e-01 +6.55e-01 +1.79e+00 +3.17e+00 +3.17e+00 +4.85e+00 +9.70e+00 +1.40e+01 Fs_Swedish -2.787	yy +0.00e+00 +1.65e+00 +4.95e+00 +6.60e+00 +8.26e+00 +9.91e+00 +1.16e+01 +1.40e+01 +1.	xmi +0.00e+00 +8.26e-01 +2.48e+00 +4.13e+00 +5.78e+00 +7.43e+00 +9.08e+00 +1.07e+01 +1.24e+01 +1.40e+01 +1.57e+01 +1.73e+01 +1.90e+01 +2.23e+01 +2.56e+01 +2.72e+01 +2.89e+01 +3.05e+01 +3.22e+01 Fs_Bishop 3.129	ymi +0.00e+00 +8.26e-01 +2.48e+00 +5.78e+00 +5.78e+00 +7.43e+00 +1.07e+01 +1.24e+01 +1.40e+01 +1.40e+01 +1.40e+01 +1.40e+01 +1.40e+01 +1.40e+01 +1.40e+01 +1.40e+01 +1.40e+01 +1.40e+01 +1.40e+01 +1.40e+01	yymi +0.00e+00 -4.12e-01 -1.16e+00 -1.75e+00 -2.20e+00 -2.53e+00 -2.77e+00 -2.81e+00 -2.77e+00 -2.61e+00 -2.32e+00 -1.36e+00 -6.70e-01 +1.85e-01 +1.22e+00 +4.01e+00 +8.32e+00 +1.19e+01	hi(m) +0.00e+0(+1.24e+0() +3.63e+0() +7.98e+0() +9.96e+0() +1.18e+0 +1.35e+0 +1.52e+0 +1.63e+0 +1.63e+0 +1.54e+0 +1.28e+0 +1.15e+0 +3.15e+0() +2.15e+0()

FIGURE 6	Screenshot of "solution" file


FIGURE 8 Screenshot of a typical result of the minimum factor of safety

	rsection po													
No_i	xi	yi	y'i	M	iddle point	ts							For dry slope	
1	0.00	0.00	0	No_mi	xmi	ymi	y'mi	Slice No.	hi (m)	bi (m)	αi (degree)	li (m)	M_r	M_d
2	2.00	-0.98	2	1	1.00	-0.49	1.00	1	1.49	2.00	-25.98	2.22	978.1876875	-327.37946
3	4.00	-1.73	4	2	3.00	-1.35	3.00	2	4.35	2.00	-20.52	2.14	1920.220425	-765.75293
4	6.00	-2.27	6	3	5.00	-2.00	5.00	3	7.00	2.00	-15.24	2.07	2847.326829	-923.77681
5	8.00	-2.63	8	4	7.00	-2.45	7.00	4	9.45	2.00	-10.09	2.03	3734.769475	-831.53287
6	10.00	-2.80	10	5	9.00	-2.72	9.00	5	11.72	2.00	-5.03	2.01	4561.768658	-515.48036
7	12.00	-2.80	12	6	11.00	-2.80	11.00	6	13.80	2.00	0.00	2.00	5310.039529	0
8	14.00	-2.63	14	7	13.00	-2.72	13.00	7	15.72	2.00	5.03	2.01	5962.822178	691,480361
9	16.00	-2.27	14	8	15.00	-2.45	14.00	8	16,45	2.00	10.09	2.03	6157,991411	
10	18.00	-1.73	14	9	17.00	-2.00	14.00	9	16.00	2.00	15.24	2.07	5900.580174	
11	20.00	-0.98	14	10	19.00	-1.35	14.00	10	15.35	2.00	20.52	2.14	5542.652477	
12	22.00	0.00	14	11	21.00	-0.49	14.00	11	14.49	2.00	25.98	2.22	5087.166132	3187,37946
13	24.00	1.24	14	12	23.00	0.62	14.00	12	13.38	2.00	31.72	2.35	4538.898337	3532.53952
14	26.00	2.80	14	13	25.00	2.02	14.00	13	11.98	2.00	37.83	2.53	3905.837201	3690.81229
15	28.00	4.77	14	14	27.00	3.78	14.00	14	10.22	2.00	44.51	2.80	3202.469277	3596.77062
16	30.00	7.35	14	15	29.00	6.06	14.00	15	7.94	2.00	52.05	3.25	2459.199547	3144.37005
17	32.00	11.06	14	16	31.00	9.20	14.00	16	4.80	2.00	61.19	4.15	1760.07314	2110.54416
18	33.02	14.00	14	17	32.51	12.53	14.00	17	1.47	1.02	70.46	3.06	786.5887562	356.256901
												sum	64656.591	23207.294
													FS	2.786

(a)

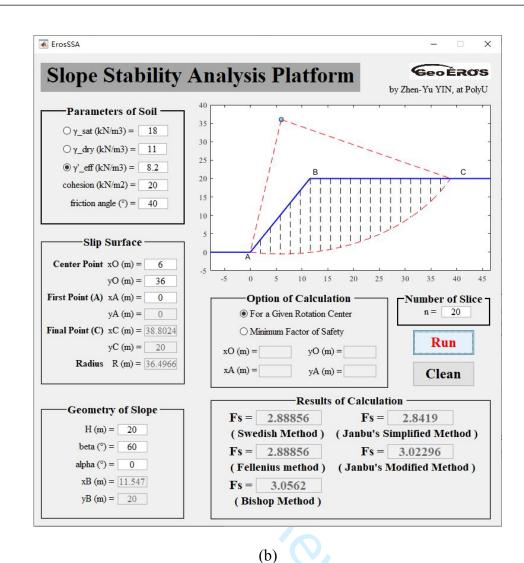


FIGURE 12 Screenshot of ErosSSA showing the analysis result of Case 2: (a) Reservoir full

	Swedish	nethod	Fellenius	method	Bishop meth	od	Janbu's simp	lified method	
	M_I/R	M_d/R	M_r/R	M_d/R	M_I/R	M_d/R	M_T/R	M_d/R	For Saturated slop
	65.87717	-9.2248	65.29433	-9.2248	73.35397894	-9.22479521	74.86635873	-9.31260221	(Rapid empty)
	116.326	-16.4394	115.7065	-16.4394	123.8834102	-16.4393695	125.0821846	-16.495191	
	165.5998	-9.00519	165.487	-9.00519	168.8832066	-9.00519336	169.2830755	-9.00857559	
	213.2522	12,42216	213.0966	12.42216	209.427677	12 42216214	209.1061552	12,42682774	
	258.8529	47.19209	257.0747	47,19209	246.3433632	47,19208861	245.8151036	47.35233385	
	296.6337	92.71418	290,7757	92,71418	275 3044076	92,71417925	275.4506118	93 59668705	
	308.2312	136,7452	296.0226	136.7452	280.6603681	136.7452265	282.5081205	139.3320283	
		4.4.4.0.0.0.00							
		171.8198		171.8198	268.9550765	171.8197636	273.3161764	177.2950354	
	288.4165	203.8085	258.9852	203.8085	257.06347	203.8084993	264.7122963	213.748134	
	275.369	231.9188	234.9806	231.9188	244.859534	231.9188061	256.5372601	248.1979681	
	260.3267	255.2815	207.7487	255.2815	232.2016588	255.2814948	248.6244914	280.0255353	
	243.3961	272.9227	177.7644	272.9227	218.9227256	272.9227353	240.783718	308.4250711	
	224.7213	283.7244	145.6884	283.7244	204.8160121	283.724437	232.7766734	332.3068092	
	204.5021	286.3656	112.4639	286.3656	189.613617	286.3656457	224.2767605	350.1339122	
	183.0244	279.2311	79.48609	279.2311	172.9510863	279.231132	214.7955738	359.6318746	
	160.7149	260.2594	48.92462	260.2594	154.3050413	260.2594341	203.5362879	357.2307922	
	138.2531	226.669	24.39486	226.669	132.8732757	226.6689899	189.0689622	336.8880186	
	116.8231	174.4074	12.54594	174.4074	107.3166358	174.4074049	168.5077042	287.2607476	
	98.79493	96.84943	27.58527	96.84943	75.10473431	96.84942892	134.9804727	183.5110507	
	36.83882	9.937462	28.08182	9.937462	18.96469159	9.937462118	38.91219939	21.59131648	
Sum	3955.344	3007.600	3041.524	3007.600	3655.803971	3007.599532	4072.940186	3714,137774	
	0000.044	0001.000	0041.024	0001.000	0000.000011	0001.000002	4012.040200	0124.201114	Janbu's modified method
		1.315		1.011		1.216		1.097	1.167
				Iteration number	Assumed Fs	Calculated Fs	Assumed Fs	Calculated Fs	
				1	1.315	1.233	1.315	1.139	/
				2	1.233	1.218	1.139	1.104	
				3	1.218	1.216	1.104	1.097	

of water; (b) Reservoir with rapid emptying

For Saturated slope

modified

method

M_r/R M_d/R M_r/R M_d/R M_r/R M_r/R <t< th=""><th>Janbu's simplif</th><th>bd</th><th>Bishop metho</th><th>hod</th><th>Swedish metl</th><th></th></t<>	Janbu's simplif	bd	Bishop metho	hod	Swedish metl	
116.3259518 -7.48904613 119.5534959 -7.48904613 120.1683516 -7.514 165.5997856 -4.10236586 166.9514589 -4.10236586 167.1092346 -4.103 213.2522008 5.658984975 211.7873753 5.658984975 211.7482542 5.6611 258.8529261 21.49861814 254.571855 21.49861814 255.0126116 21.5714 296.6336647 42.23645943 290.4965198 42.23645943 292.4589364 42.638 308.2311509 62.29504765 300.2189905 62.29504765 306.7640508 63.473 299.3901874 78.27344785 295.4470917 78.27344785 303.3756433 80.7677 288.4165172 92.84609414 288.0277961 92.84609414 300.2757895 97.374 275.3689826 106.6519006 279.8525746 105.6519006 297.3225746 113.06 260.3267259 116.2949032 270.7794214 116.2949032 294.59174 140.50 224.7212523 129.252435 249.1166845 129.2522435 288.6676709	M_r/R	M_d/R	M_1/R	M_d/R	M_I/R	
165.5997856 -4.10236586 166.9514589 -4.10236586 167.1092346 -4.103 213.2522008 5.658984975 211.7873753 5.658984975 211.7482542 5.6611 258.8529261 21.49861814 254.571855 21.49861814 255.0126116 215.71 296.6336647 42.23645943 290.4965198 42.23645943 292.4589364 42.638 308.2311509 62.29504765 302.2189905 62.29504765 306.7640508 63.473 299.3901874 78.27344785 295.4470917 78.27344785 303.3756433 80.777 288.416512 92.84609414 288.027961 92.84609414 300.2757895 97.374 275.3689826 10.56519006 279.8525746 105.6519006 297.325746 113.06 243.3960883 124.3314683 260.6195783 124.3314683 291.15752.47 140.50 244.502148 130.4554608 235.9125872 130.4554608 284.9494627 159.50 183.0243803 127.2052935 220.4884418 127.2052935 280.145223 163	69.84981405 -	-4.20240671	68.98630279	-4.20240671	65.8771749	
213 2522006 5658984975 211.787373 5658984975 211.7482542 56611 258 8529261 21.49861814 254 571855 21.49861814 255 0126116 215.71 296 6336647 42.23645943 290.4965198 42.23645943 292.4589364 42.638 308 2311509 62.29504765 302.2189905 62.29504765 306.7640508 63.473 299.3901874 78.27344785 295.4470917 78.27344785 303.375643 80.767 288.4165172 92.84609414 288.0277961 92.84609414 300.275789 97.374 276.326926 105.6519006 279.3825744 105.6519006 297.3825745 105.6519006 297.3825745 105.021763 243.3960583 124.3314683 260.6195783 124.3314683 291.7576247 140.50 224.7212523 129.2522435 224.86667709 151.38 204.86677 159.30 204.5021484 130.4554608 224.948627 159.50 183.0243803 127.2052935 220.4884418 127.2052935 280.145223 163.83 160.7148571 118.5626311 279.45226223 150.1012652 7	120.1683516	-7.48904613	119.5534959	-7.48904613	116.3259518	
213.2522008 5658984975 211.7873753 5658984975 211.7482542 56611 258.8529261 21.49861814 254.571855 21.49861814 255.0126116 215.71 296.6336647 42.23645943 290.4965198 42.23645943 292.4589364 42.638 308.2311509 62.29504765 302.2189905 62.29504765 306.7640508 63.473 299.3901874 78.27344785 295.4470917 78.27344785 303.3756433 80.767 288.4165172 92.84609414 288.0277961 92.84609414 300.2175895 97.374 276.368926 105.6519006 279.9825764 105.6519006 297.9827746 130.02757895 97.374 276.326926 105.6519006 279.825764 105.6519006 297.9827746 130.02757895 97.374 276.326926 105.6519006 279.9825764 105.6519006 297.827546 110.6521906 297.827546 110.6521906 297.827546 110.6521906 294.984667 157.56 243.3960583 124.314683 291.7576247 140.50 151.38 204.502146 130.4554608 2246.944667 159.50 183.0243803	167 1092346 -	-4 10236586	166 9514589	-4 10236586	165 5997856	
258.8529261 21.49861814 254.571855 21.49861814 255.0126116 21.571 296.6336647 42.23645943 290.4965198 42.23645943 292.4589364 42.638 308.2311509 62.29504765 302.2189905 62.29504765 306.7640508 63.473 299.3901874 78.27344785 295.4470917 78.27344785 303.3756433 80.767 288.4165172 92.84609414 288.0277961 92.84609414 300.2757895 97.374 275.3689826 105.6519006 279.8525764 105.6519006 297.852764 136.6519006 260.3267259 116.2949032 270.7794214 116.2949032 294.5914487 127.562 243.3960583 124.3314683 260.6195783 124.3314683 291.7576247 140.50 224.7212523 129.252435 249.1166451 129.252435 288.6676709 151.38 204.5021484 130.4554608 235.9125872 130.456408 294.8948627 163.38 160.7148571 118.5626311 273.1375334 162.73 133.2530591 10						
296.6336647 42.23645943 290.4965198 42.23645943 292.4589364 42.638 308.2311509 62.29504765 302.2189905 62.29504765 306.7640508 63.473 299.3901874 78.27344785 295.4470917 78.27344785 303.3756433 80.767 288.4165172 92.84609414 288.0277961 92.84609414 300.275895 97.374 275.368962 105.6510006 279.8525764 105.6510006 279.825764 130.6 260.3267259 116.2949032 270.7794214 116.2949032 294.5913487 127.562 243.3960583 124.3314683 260.6195783 124.3314683 291.7576247 140.50 224.7212523 129.2522435 249.1166845 129.2522435 288.6676709 151.38 204.5021484 130.455608 235.9125872 130.4554608 284.9948627 159.50 183.0243803 127.2052935 220.4884418 127.2052935 280.145223 163.38 160.7148571 118.5626311 202.0564031 118.5626311 273.1375334 162		a designed and a second second			a service production of the service	
308.2311509 62.29504765 302.2189905 62.29504765 306.7640508 63.473 299.3901874 78.27344785 295.4470917 78.27344785 303.3756433 80.767 288.4165172 92.84609414 288.0277961 92.84609414 300.2757895 97.374 275.3689826 105.6519006 279.8525764 105.6519006 297.382746 113.06 260.3267259 116.2949032 270.7794214 118.2949032 294.591348 127.65247 140.50 224.7212523 129.2522435 249.1166845 129.2522435 288.6676709 151.38 204.5021484 130.4554608 235.912587 130.4554608 249.948627 159.50 183.0243803 127.2052935 220.404418 127.2052935 280.145223 159.30 138.2530591 103.2603176 179.3428354 103.2603176 273.375334 162.73 138.2530591 103.2603176 159.0126257 79.45226223 153.47 215.047 203.406688 83.5999 36.8381777 4527066076 288.6716137 45270660		and the first standard standard stand				
299.3901874 78.27344785 295.4470917 78.27344785 303.3756433 80.767 288.4165172 92.84609414 288.0277961 92.84609414 300.2757895 97.374 275.3689826 105.6519006 279.8525764 105.6519006 297.3825746 113.06 260.3267259 116.2949032 270.7794214 116.2949032 294.5913487 127.56 243.3960583 124.3314683 260.6195783 124.3314683 291.7576247 140.50 224.7212523 129.2522435 249.9166845 129.2522435 288.6676709 151.38 204.5021484 130.4554608 235.9125872 130.4554608 284.9848627 159.50 183.0243803 127.2052935 220.4884418 127.2052935 280.145223 168.38 160.7148571 118.56611 202.05603176 179.3428354 103.2603176 261.9920235 153.47 138.2530591 103.2603176 179.3428354 103.2603176 261.9920235 153.47 160.6148571 19.45226223 150.1012652 79.45226223 242.4199211 130.86 98.79492549 44.1202954 1						
288.4165172 92.84609414 288.0277961 92.84609414 300.2757895 97.374 275.3689826 105.6519006 279.8525764 105.6519006 297.3825746 113.06 260.3267259 116.2949032 270.7794214 116.2949032 294.5913487 127.56 243.3960583 124.3314683 260.6195783 124.3314683 291.7576247 140.50 224.7212523 129.2522435 249.616645 129.2522435 286.676709 151.38 204.5021484 130.4554608 235.9125872 130.4554608 284.9848627 159.50 183.0243803 127.2052935 220.4884418 127.2052935 280.145223 163.83 160.7148571 118.5626311 202.0564031 118.5626311 273.1375334 162.73 138.2530591 103.2603176 179.3428354 103.2603176 261.992023 153.47 138.2530591 103.2603176 21.949211 130.86 98.7949254 44.1202954 203.406688 83.599 36.8381777 4527066076 28.86716137 4527066076 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
275.3689826 105.6519006 279.8525764 105.6519006 297.3825746 113.06 260.3267259 116.2949032 270.7794214 116.2949032 294.5913467 127.56 243.3960583 124.3314683 291.757547 140.50 294.5913467 127.56 243.3960583 124.3314683 291.757547 140.50 224.721252 129.86676709 151.38 204.5021484 130.4554608 235.9125872 130.4554608 284.984627 159.50 183.0243803 127.2052935 220.4884418 127.2052935 280.145223 163.83 160.7148571 118.5626311 202.0564031 118.5626311 273.1375334 162.73 138.2530591 103.2603176 179.3428354 103.2603176 261.9920235 153.47 146.8231181 79.45226223 150.1012652 79.45226223 242.4199211 130.86 98.79492549 44.1202954 109.8172665 44.1202954 203.4066888 83.599 36.83881777 4527066076 28.86716137 4527066076 61.13259524				The second s	299.3901874	
2603267259 116 2949032 270.7794214 116 2949032 294.5913487 127.56 2433960583 1243314683 2606195783 1243314683 291.7576247 140.50 224.7212523 129252435 249.1166845 129.252435 288.6676709 151.38 204.5021484 130.4554608 234.9125872 130.4554608 284.9948627 159.50 183.0243803 127.2052935 220.4884418 127.2052935 280.145223 163.83 160.7148571 118.5626311 202.0564031 118.5666311 273.1375334 162.77 138.2530591 103.2603176 179.3428354 103.2603176 261.9920235 153.47 116.6231181 79.45226223 150.1012652 79.4526523 242.4199211 130.96 98.79492549 44.1202954 109.8172665 44.1202954 203.466688 83.599 36.83881777 4527066076 28.86716137 4527066076 61.13259524 9.8360 sum 3955.344 1370.129 4184.995107 1370.128676 4806.380753 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
243.3960583 124.3314683 260.6195783 124.3314683 291.7576247 140.50 224.7212523 129.2522435 249.1166845 129.2522435 288.6676709 151.38 204.5021484 130.4554608 235.9125872 130.4554608 284.9848627 159.50 183.0243803 127.2052935 220.4884418 127.2052935 280.145223 163.83 160.7148571 118.5626311 202.0564031 118.5626311 273.1375334 162.73 138.2530591 103.2603176 179.3428354 103.2603176 261.9920235 153.47 116.8231181 79.45226223 150.1012652 79.45226223 242.4199211 130.86 98.79492549 44.1202954 109.8172665 44.1202954 203.406688 88.599 36.83881777 4.527066076 28.86716137 4.527066076 61.13259524 9.8360 sum 3955.344 1370.129 4184.995107 1370.128676 4806.380753 1691.9		Construction of the second s				
224.7212523 129.2522435 249.1166845 129.2522435 288.6676709 151.38 204.5021484 130.4554608 235.9125872 130.4554608 284.9848627 159.50 183.0243803 127.2052935 220.4884418 127.2052935 280.145223 163.83 160.7148571 118.5626311 202.0564031 118.5626311 273.1375334 162.73 138.2530591 103.2603176 179.9428354 103.2603176 261.9920235 158.34 98.79492549 44.1202954 109.8172665 44.1202954 203.4066888 83.599 36.83881777 4.527066076 28.86716137 4.527066076 61.13259524 9.8360 um 3955.344 1370.129 4184.995107 1370.128676 4806.380753 169.9						
204.5021484 130.4554608 235.9125872 130.4554608 284.9848627 159.50 183.0243803 127.2052935 220.4884418 127.2052935 280.145223 163.83 160.7148571 118.5626311 202.05603176 179.3428354 103.2603176 273.1375334 162.73 138.2530591 103.2603176 179.3428354 103.2603176 244.9419211 130.455 98.79492549 44.1202954 109.8172665 44.1202954 203.4066888 83.599 36.83881777 4.527066076 28.86716137 4.527066076 61.13259524 9.8360 aum 3955.344 1370.129 4184.995107 1370.128676 4806.380753 1691.9						
183.0243803 127.2052935 220.4884418 127.2052935 280.145223 163.83 160.7148571 118.5626311 202.0564031 118.5626311 273.1375334 162.73 138.253051 103.2603176 179.3428354 103.2603176 261.9920235 153.47 116.8231181 79.45226223 150.1012652 79.45226223 242.4199211 130.66 98.79492549 44.1202954 109.8172665 44.1202954 203.4066888 83.599 36.83881777 4.527066076 28.86716137 4.527066076 61.13259524 9.8360 umm 3955.344 1370.129 4184.995107 1370.128676 4806.380753 1691.9						
160.7148571 118.5626311 202.0564031 118.5626311 273.1375334 162.73 138.2530591 103.2603176 179.3428354 103.2603176 261.9920235 153.47 116.8231181 79.45226223 150.102652 79.45226223 242.4199211 130.86 98.79492549 44.1202954 109.8172665 44.1202954 203.4066888 83.5999 36.83881777 4.527066076 28.86716137 4.527066076 61.13259524 9.8360 aum 3955.344 1370.129 4184.995107 1370.128676 4806.380753 1691.9						
138.2530591 103.2603176 179.3428354 103.2603176 261.9920235 153.47 116.8231181 79.45226223 150.1012652 79.45226223 242.4199211 130.86 98.79492549 44.1202954 109.8172665 44.1202954 203.4066888 83.599 36.83881777 4.527066076 28.86716137 4.527066076 61.13259524 9.8360 m 3955.344 1370.129 4184.995107 1370.128676 4806.380753 1691.9						
116.8231181 79.45226223 150.1012652 79.45226223 242.4199211 130.86 96.79492549 44.1202954 109.8172665 44.1202954 203.4066888 83.599 36.83881777 4.527066076 28.86716137 4.527066076 61.13259524 9.8360 m 3955.344 1370.129 4184.995107 1370.128676 4806.380753 1691.9						
98.79492549 44.1202954 109.8172665 44.1202954 203.4066888 83.599 36.83881777 4.527066076 28.86716137 4.527066076 61.13259524 9.8360 um 3955.344 1370.129 4184.995107 1370.128676 4806.380753 1691.9						
36.83881777 4.527066076 28.86716137 4.527066076 61.13259524 9.8360 am 3955.344 1370.129 4184.995107 1370.128676 4806.380753 1691.9						
um 3955.344 1370.129 4184.995107 1370.128676 4806.380753 1691.9						
	61.13259524 9	4.527066076	28.86716137	4.527066076	36.83881777	
	4806.380753 1	1370.128676	4184.995107	1370.129	3955.344	sum
2.887 3.054 2.8		3.054		2.887		
Iteration number Assumed Fs Calculated Fs Assumed Fs Calcula						
1 2.887 3.036 2.887 2.8	and the second sec					
2 3.036 3.053 2.846 2.8 3 3.053 3.054 2.841 2.8	2.846	3.053	3.036	2		

FIGURE 13 Screenshot of EXCELL program (LEM) showing the analysis result of Case 2:

(a) Reservoir full of water; (b) Reservoir with rapid emptying

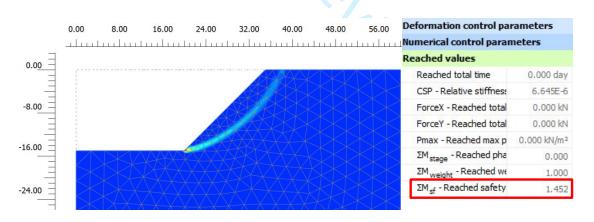
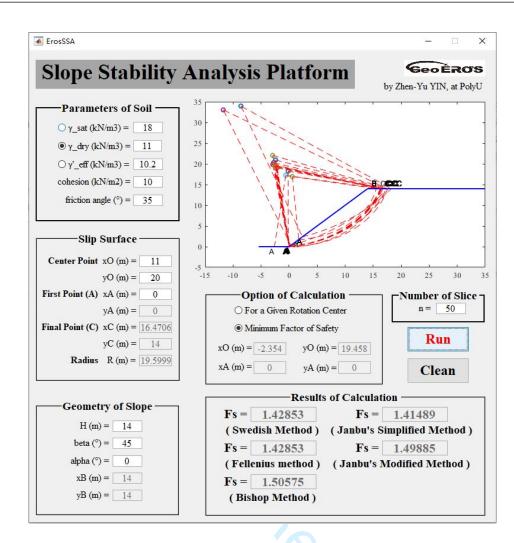



FIGURE 14 Simulation results from PLAXIS 2D

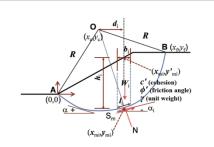


FIGURE 1 Reference diagram of parameters in the formulas for slope stability

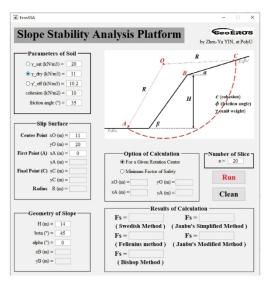


FIGURE 2 Screenshot of ErosSSA default window

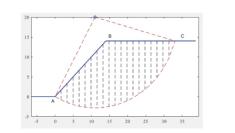


FIGURE 5 Screenshot of a typical calculation result figure

solution.txt	t		2021	/1/24 23:15		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	y y - - - - - - - - - - - - -	$\begin{array}{c} yy\\ -0.00\pm 00\\ +1.65\pm 00\\ +1.65\pm 00\\ +3.30\pm 00\\ +4.95\pm 00\\ +4.95\pm 00\\ +4.95\pm 00\\ +4.95\pm 00\\ +4.95\pm 00\\ +4.95\pm 00\\ +1.6\pm 00\\ +1.16\pm 00\\ +1.40\pm 00\\ +$	xni +0.000+100 +0.26e-01 +2.48e+000 +2.48e+00 +3.78e+00 +7.48e+00 +1.07e+01 +1.07e+01 +1.07e+01 +1.37e+01 +1.37e+01 +1.37e+01 +1.37e+01 +1.37e+01 +1.37e+01 +1.256e+01 +2.23e+01 +2.23e+01 +2.256e+01 +2.23e+01 +2.23e+01 +2.23e+01 +2.23e+01 +2.23e+01 +2.23e+01 +2.23e+01 +2.23e+01 +2.23e+01 +2.23e+01 +2.23e+01 +1	$\begin{array}{c} y_{R1} \\ +0.00e+00 \\ +8.26e-01 \\ +2.48e+00 \\ +2.48e+00 \\ +4.13e+00 \\ +5.78e+00 \\ +7.43e+00 \\ +7.43e+00 \\ +1.24e+01 \\ +1.24e+01 \\ +1.40e+01 \\ +1$	yri 4. 000+00 4. 12e-01 1. 16e+00 2. 20+00 2. 254+00 2. 73+00 2. 73+00 2. 73+00 2. 73+00 2. 73+00 2. 73+00 2. 73+00 2. 73+00 1. 36+00 4. 36+00 4. 40+00 4. 01+00 4. 32+00 4. 32+00 5. 32+000 5. 32+000 5. 32+000 5. 32+000 5.	h (w) +0.00e+00 +1.24e+00 +3.63e+00 +5.88e+00 +7.98e+100 +1.18e+01 +1.35e+01 +1.35e+01 +1.66e+01 +1.54e+01 +1.35e+01 +1.35e+00 +5.68e+00 +2.15e+00

FIGURE 6 Screenshot of "solution" file

209x296mm (300 x 300 DPI)

FIGURE 9 Traditional Excel method.

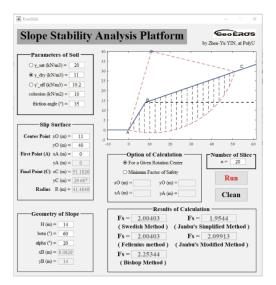


FIGURE 10 Screenshot of ErosSSA showing the analysis result of Case 1

28

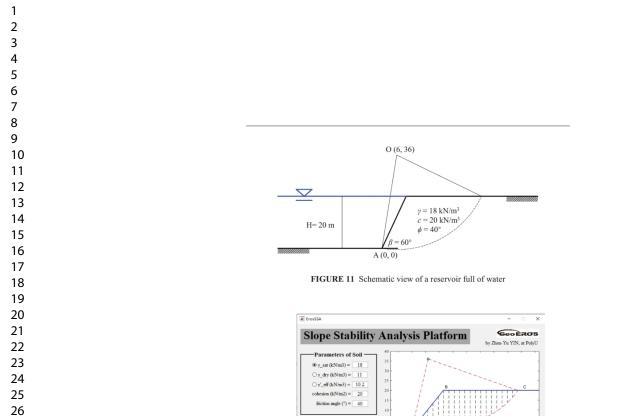
29

30

31

32

33


34

35

36 37

38 39 40

60

Slip Surface -

Center Point xO (m) = 6

yO (m) = 36 First Point (A) xA (m) = 0

yA (m) = 0Final Point (C) xC (m) = 38.8024

Geometry of Slope

H (m) = 20 beta (°) = 60

alpha (°) = 0 xB (m) = 11.547

yB (m) = 20

yC (m) = 20 Radius R (m) = 36.4966

(a)

0 5 10 15 20 25

Option of Calculation

For a Given Rotation Center O Minimum Factor of Safety

xO (m) = -2.354 yO (m) = 19.458

xA (m) = 0 yA (m) = 0

Fs = 1.3159

Fs = 1.21657(Bishop Method)

 Results of Calculation

 1.3159
 Fs = 1.09735

(Swedish Method) (Janbu's Simplified Method) Fs = 1.01209 Fs = 1.16726(Fellenius method) (Janbu's Modified Method)

30 35 40

Number of Slice

Run

Clean

6

M_1/R M_4/R 65.29433 -9.2248 115.7065 -16.4394 105.487 -9.00519 213.0966 12.42216

3041.524 3007.600

1.011

M_1/R M_d/R

3655.803971 3007.599532

1.315 1.233
1.218
1.216

M_r/R M_d/R

66.9514589

54.571855 90.4965198

11.7873

4184.995 07 1370.128676

3.054

3.036 3.053 3.054

(b)

(a) Reservoir full of water; (b) Reservoir with rapid emptying

<mark>(a)</mark>

1.216

M_1/R M_d/R

4072.940186 3714.137

1315 1139 1139 1104 1104 1097

lified method

53 1691.99609

2.841

2.846 2.841 2.841

8

M_r/R M_d/R

167 1092346

211.7482542 255.0126116 21.57161876 292.4589364 42.63849077 306.7640508 63.47347956 303.3756433 80.7677383

297.382574 294.591348 291.757624 288.667670

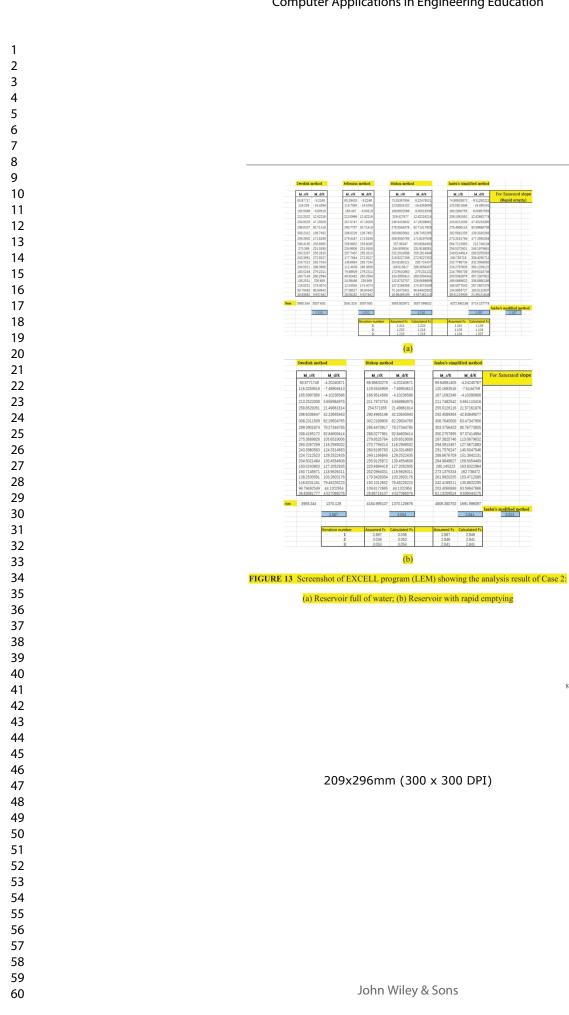
2.887 2.846 2.841

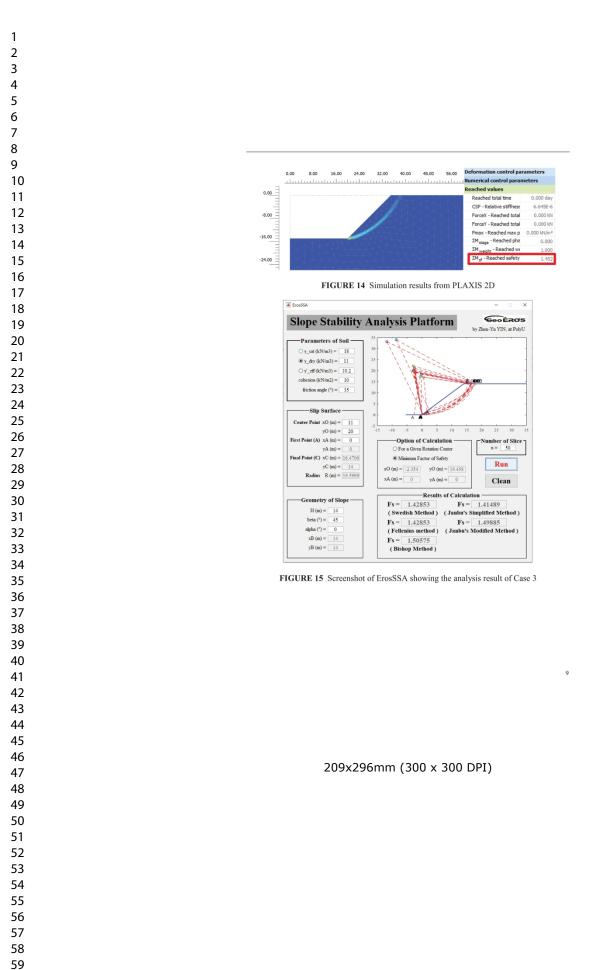
1.097

M_1/R M_d/R 6587717 -9.2248 116.325 -16.4394 165.5918 -9.00519

3955.344 3007.600

Swedish method


3955.344


1370.129

2.887

M_r/R M_d/R

1.315

