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Metaheuristic model for the interface shear strength between granular 19 

soil and structure considering surface morphology 20 

 21 

Abstract: A complete set of 13 morphological parameters in accordance with standard ISO 4287 was 22 

applied to quantifying a series of random profiles. These profiles were imported into a discrete 23 

numerical model to perform 480 interface shear tests on coarse-grained soils. The relevant 24 

morphological parameters were selected using Spearman’s rank correlation coefficient for model 25 

selection. An optimal metaheuristic model was developed using a genetic algorithm and was further 26 

compared with the existing predicted formulas. The 2D discrete element method (DEM) results 27 

indicate that the highest correlation with shear strength was obtained for the hybrid parameter Pdq 28 

which represents not only the amplitude information but also the surface slope information on a 29 

random surface. The optimal model with one significant input variable (𝑃𝑑𝑞) was effectively selected 30 

through the Bayesian nonparametric general regression analysis. For irregular interface shearing 31 

widely existing in most geotechnical engineering, 𝑃𝑑𝑞 is more efficient and accurate to quantify the 32 

surface morphology or estimate the interface shear strength compared with relative roughness. 33 

Keywords: Random surface; morphology; soil-structure interface; shear strength; metaheuristic model 34 
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1. Introduction 39 

Soil-structure systems, as shown in Fig. 1., including pile foundation-soil contact, retaining wall-40 

soil interaction, and stabilizing piles in a slope, commonly exist in geotechnical engineering. These 41 

interactions can be regarded as a composite system. The connection between these two objects is the 42 

interface, which consists of the surface of the human-made construction and the surrounding granular 43 

material. Frictional resistance at the interface develops when the failure of the composite system occurs, 44 

leading to relative displacements at the interface (Chen et al., 2019; Chen et al., 2015; Wang et al., 45 

2019b; Zhao et al., 2016; Zhou et al., 2012). Accurate evaluation of the interface shear strength is 46 

necessary to improve soil-structure interaction model development.  47 

Various studies have shown that the soil-structure interface shear strength is influenced by the 48 

initial soil density (DeJong and Westgate, 2009; Oumarou and Evgin, 2005; Pra-ai and Boulon, 2017), 49 

particle geometry (DeJong and Westgate, 2009; DeJong et al., 2006; Dove et al., 2006; Frost et al., 50 

2012; Vangla and Latha, 2015; Zhou et al., 2019), and particle grading (Liang et al., 2017; Wang et al., 51 

2019a). The main consistent results showed that (a) the interface friction angle is greater for sands with 52 

more angular or elongated particle shapes; (b) both shear stress and dilatancy increase with relative 53 

density; and (c) the sample with a lower coefficient of uniformity presents higher shear stress and more 54 

pronounced dilative behavior. In addition, the experimental conditions have significant influences on 55 

the soil-structure interface strength. A multifunctional interface shear test apparatus was designed and 56 

fabricated to model soil–pile interactions under different boundary conditions (Evgin and Fakharian, 57 

1997; Lehane and White, 2005; Wang et al., 2017), providing a more rational and economical design 58 

parameters for pile foundations. In terms of the role of temperature, the studies conducted by Di Donna 59 

and Laloui (2013); Di Donna et al. (2016); Yavari et al. (2016) demonstrated that the direct effect of 60 

temperature on the interface strength is negligible. 61 

Apart from soil properties and experimental conditions, surface morphology is one of the 62 

structural properties and the effect of surface morphology on the mechanism of interaction between 63 
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the granular assembly and the solid surface under numerical and experimental interface-shearing tests 64 

has been underlined repeatedly in previous studies, as summarized in Table 1. Among these studies, 65 

the surfaces used to be simplified or considered to be regular surfaces, i.e., saw-teeth or semi-arch 66 

pattern, for convenience of analysis. In addition, roughness was evaluated only qualitatively in several 67 

previous studies (Junaideen et al., 2004; Sharma et al., 2017). The surface morphology was 68 

approximately classified from very smooth to very rough through the observation of surface 69 

morphology. The disadvantage of this approach is the subjective results. Even though the approach of 70 

surface morphology quantification was adopted in most previous studies, the surface roughness has 71 

been quantified as one parameter. The most commonly used parameter was the relative roughness 72 

(𝑅𝑛 = 𝑅𝑚𝑎𝑥/𝐷50, where 𝑅𝑚𝑎𝑥 is the maximum height of the surface and 𝐷50 is the average particle 73 

diameter) as proposed by Uesugi and Kishida (1986a, b). However, 𝑅𝑛  fails to reflect the local 74 

distribution and partial variation of the surface profile. Obviously, the same 𝑅𝑛 can be presented using 75 

many various profiles, as shown in Fig. 2. As shown in Table 1, some researchers have performed tests 76 

on non-random surfaces and have indicated that it is insufficient to adopt 𝑅𝑛 to quantify the surface 77 

roughness. Accordingly, more comprehensive roughness parameters were introduced to describe the 78 

asperity characteristics (Dove and Jarrett, 2002; Guo et al., 2020; Rui et al., 2020; Wang et al., 2019d; 79 

Wu and Yang, 2016). Some results showed that these non-random surfaces can yield a higher interface 80 

shear strength than pure soil (Guo et al., 2020; Wu and Yang, 2016). In addition, given that most of 81 

structure surfaces are normally irregular or extremely random, the regular surface may fail to reflect 82 

the true behavior of an irregular interface. Several studies have focused on random surface shearing 83 

(Canakci et al., 2016; Han et al., 2018; Martinez and Frost, 2017; Rui et al., 2020), which provides a 84 

valuable understanding of the interface shear behavior. However, the current parameters may fail to 85 

satisfy the roughness quantification of the real surface due to its complexity, and the role of 86 

morphology parameters in the evaluation of interface shear strength under random surface shearing 87 

remains ambiguous. 88 

https://cn.bing.com/dict/search?q=variation&FORM=BDVSP6&mkt=zh-cn
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To overcome limitations, the interaction between soil and random surfaces should be evaluated 89 

from the perspective of geotribology and more morphology parameters should be introduced, taking 90 

the local information and the spacing between peaks and valleys of the surface into consideration. The 91 

tribology theory has generally concentrated on the fields of wear, lubrication, surface characterization, 92 

and friction. Likewise, the theory can be applied to the investigation of the strength behavior of 93 

interface systems. Previous studies have proposed several techniques to quantify the surface 94 

morphology. Among these methods, the optical-based method (i.e. laser scanner device) was most 95 

widely used due to its high accuracy and fully non-destructive testing (Hoła et al., 2015; Sadowski and 96 

Mathia, 2016; Santos and Julio, 2007). The surface roughness can be characterized based on the 97 

scanned random surface and using a full quantitative approach. The 2D and 3D discrete element 98 

method (DEM) has been favorably adopted to address a range of geotechnical and geological issues, 99 

such as, soil-structure interactions (Chen et al.; Jing et al., 2018; Lai et al., 2016; Wang et al., 2007; 100 

Wang and Jiang, 2011; Wang et al., 2020; Zhu et al., 2019) and geological hazards (Shen et al., 2019; 101 

Utili et al., 2015). The DEM can also provide an effective technique to simulate and reproduce the 102 

interaction between the random surface and soil (Wang and Jiang, 2011). Once the scanned random 103 

surface is obtained, it is imported into the DEM to conduct a numerical interface shear test. Therefore, 104 

the DEM will be used to model the random surface-soil interface shear test in the present study. 105 

Considering the above, the present study focuses on selecting the morphology parameters of 106 

random surfaces for evaluating the soil-structure interface strength. A complete set of morphology 107 

parameters in accordance with standard ISO 4287 (ISO, 2009) was applied to quantifying a series of 108 

random profiles of concretes. Based on the 2D DEM simulation, 480 interface shear tests with random 109 

profiles were conducted on coarse-grained soils. The relevant morphology parameters were selected 110 

using the Spearman’s rank correlation coefficient for model selection. In addition, an optimal 111 

metaheuristic model was developed using a genetic algorithm and was further expressed by a formula. 112 

The proposed formula was compared with the existing predicted formulas. 113 
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2. Random Surface and Morphology Parameters 114 

The investigated elements manufactured by Sadowski and Stefaniuk (2017) and Sadowski et al. 115 

(2018) consisted of an overlay and a substrate. The components of the concrete used to make the 116 

substrate are listed in Table 2. When the concrete substrates were maintained for 28 days, the specimens 117 

were fabricated to diversify the surface morphology. Four various surface treatment techniques were 118 

utilized to obtain four various concrete surface morphologies. The first type of surface was named by 119 

T1-raw, which was subjected to the special treatment, but was only grabbed. In practice, this is the 120 

most commonly used method. The second method (i.e., T2-as cast) was fabricated after contact with 121 

the manufactured formwork. Mechanical treatment was applied to the third type of surface (i.e., T3-122 

ground) based on a portable angle grinder with an abrasive cutter and dust removal. After the dust was 123 

removed from the fourth type of surface (i.e., T4-shotblasted), T4 was continuously shotblasted by 124 

means of a lightweight shotblasting device. After treatments, a developed device based on the 3D 125 

triangulation scanner was used to scan the concrete surfaces and more details were presented by 126 

Sadowski et al. (2018). The scanning results showed a 3D isometric view of the investigated concrete 127 

surface morphology.  128 

In this study, a total of 240 profiles were extracted from the four different concrete surfaces, with 129 

each concrete surface having 60 profiles. The isometric views of four different concrete surfaces and 130 

one of their corresponding profiles in the software MountainsMap (Map, 2014) are shown in Fig. 3. 131 

These profiles were analyzed in MountainsMap to obtain the values of the morphology parameters for 132 

surface characterization. The surface morphology parameters used were obtained according to standard 133 

ISO 4287 (ISO, 2009). The standard ISO 4287 contains five types of parameters, namely, amplitude 134 

parameter, spacing parameter, hybrid parameter, material ratio curves and related parameter, and peak 135 

count parameter. Each parameter is carefully presented in Table 3. The physical meaning of each 136 

parameter was explained by comparing the characteristics of profiles, as shown in Fig. 3. Except for 137 

amplitude parameters 𝑃𝑠𝑘  and 𝑃𝑘𝑢 , the remaining amplitude parameters are more common and 138 
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easily calculated from the profiles. Profile P1 extracted from T1 has fairly deep valleys and scratches, 139 

which makes 𝑃𝑠𝑘 negative, while the rest of the profiles have fairly high spikes or peaks, leading to 140 

the result that the 𝑃𝑠𝑘 is positive. Profiles possessing comparatively few low valleys and high peaks 141 

lead to a 𝑃𝑘𝑢 of less than 3, whereas profiles with many low valleys and high peaks are reflected in 142 

a 𝑃𝑘𝑢 of more than 3. Clearly, P1 with a 𝑃𝑘𝑢 of less than 3 has fewer low valleys and high peaks 143 

than the other profiles, and the other three with a 𝑃𝑘𝑢 of more than 3 have a high density of low 144 

valleys and high peaks. 𝑃𝑑𝑞 describes the root mean square for the local slope of the profile, which 145 

is presented as degree in the present study. Overall, the local slope of P1 is most stable, while the local 146 

slope of P4 is steepest. Accordingly, P1 has the smallest 𝑃𝑑𝑞 and the largest 𝑃𝑑𝑞 is for P4. Evidently, 147 

from P1 to P4, the density of the peak gradually increases and the corresponding 𝑃𝑃𝑐  increases. 148 

Conversely, the 𝑃𝑠𝑚  decreases because the distance between neighboring peak-valley gradually 149 

becomes narrow from P1 to P4. The difference in 𝑃𝑚𝑟 and 𝑃𝑑𝑐 for these four profiles can be easily 150 

read from the profiles.  151 

3. Numerical Simulation of Interface Shear Test  152 

3.1. 2D DEM simulation limitations  153 

It is accepted that 2D DEM has the following limitations in terms of modeling the behavior of 154 

soils. First, the void ratio and porosity values achieved in a 2D model are much smaller than those in 155 

a 3D model. Second, the dilation in the 2D model can be much higher than that in the 3D model since 156 

the 2D plane assembly can only dilate due to the removal of freedom in the cross-plane direction. 157 

These differences may lead to overestimation of both the interface shear stress and the volumetric 158 

deformation when conducting 2D numerical interface shear tests. Despite these limitations, the 2D 159 

DEM was also used to simulate soil behavior and soil-structure behavior due to high computational 160 

efficiency, as mentioned above. In the present study, the numerical simulation was conducted with a 161 

2D-particle flow code (𝑃𝐹𝐶2𝐷), based on the DEM developed by Itasca (2008). 162 

3.2. Numerical model and model process 163 
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To compensate for the interlocking influence induced by the various shapes of particles, a rolling 164 

resistance linear contact model was applied to contacts (Iwashita and Oda, 1998). The test apparatus, 165 

with length of 90 mm and height of 25 mm, is comprised of an upper rigid shear box filled with 166 

particles and a rigid lower boundary. The latter one consists of a random surface and two smooth walls 167 

of auxiliary zones” of 20 mmat each end of the shear box to eliminate the boundary effect. The random 168 

surfaces imported into 𝑃𝐹𝐶2𝐷  were obtained from the profiles of concrete surfaces. There is no 169 

particle-to-bottom boundary friction within the auxiliary zones. The concrete surface will suffer some 170 

damage and abrasion during shearing and the corresponding morphology of post shearing surface 171 

would change if we investigate this issue using laboratory tests. However, numerical simulation will 172 

avoid damage and abrasion on the imported random surface because the random surface is assumed to 173 

be stiff or nondeformable in 𝑃𝐹𝐶2𝐷 . The numerical simulation model is shown in Fig. 4. The 174 

technique of specimen generation called particle size growing proposed by Chareyre and Villard (2002) 175 

was adopted to obtain a relatively isotropic specimen. Specifically, based on a particle size distribution, 176 

a series of particles with a certain diameter range was seeded inside the shear box and their sizes 177 

gradually grew. This particle size growing process stopped when the normal pressure applied on the 178 

top boundary achieved the targeted value. The radii of particles in the specimen were fixed in the 179 

process of shearing. The sample was verified to be uniform at the beginning of the shear phase by 180 

checking the spatial distributions of the force chains and void ratio. The bottom random surface started 181 

moving horizontally in the 𝑥-direction by applying a velocity of 1.0× 10−3 m/min recommended by 182 

ASTM D5321 to fulfill a quasistatic interface shearing. A constant normal pressure applied on the 183 

moveable top wall was sustained by a built-in servo control system in 𝑃𝐹𝐶2𝐷, while the two lateral 184 

counterparts were fixed throughout shearing.  185 

The shearing behavior was obtained by recording the displacements and forces on the walls. The 186 

shear stress ratio is the ratio of shear stress to normal stress. The normalized shear displacement is 187 

defined as the ratio of shear displacement to 𝐷50 . The input parameters follow the numerical 2D 188 
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interface shear test conducted by Zhu et al. (2017), as demonstrated in Table 4. The effect of normal 189 

stress on interface shearing behavior in preliminary tests is shown in Fig. 5. The peak shear stress is 190 

shown to increase with the normal stress. The specimens dilate with a decreasing rate and the degree 191 

of dilatancy decreases with increasing normal stress. All the preliminary results are consistent with the 192 

previous numerical and experimental results (Gu et al., 2017; Guo et al., 2020; Jing et al., 2018; Wang 193 

et al., 2019d).  194 

3.3. Numerical test schemes 195 

To increase the database, three different mean particle sizes, i.e., 𝐷50 = 0.35 mm, 𝐷50 = 0.53 196 

mm, and 𝐷50 = 0.80 mm, but the same uniformity coefficient were adopted for the interface shear 197 

test. The detailed three particle size distributions (PSD1, PSD2, and PSD3) are demonstrated in Fig. 6. 198 

Each specimen for the three different mean particle sizes contains 4,444, 10,000, and 22,500 particles. 199 

Accordingly, a total of 480 simulated interface shear tests with random surfaces were sheared under a 200 

normal stress of 100 kPa, as shown in Table 5. The initial void ratios of the specimens range from 201 

0.182 to 0.184. Direct shear tests on the specimen with varying mean diameters were also conducted, 202 

to obtain the shear strength of each soil. The normalized interface stress was designated by the 203 

efficiency parameter（𝐼𝐸), which was proposed by Koerner (2012). 𝐼𝐸 is the ratio of 𝑡𝑎𝑛𝛿 to 𝑡𝑎𝑛𝜑, 204 

where 𝑡𝑎𝑛𝛿 presents the interface friction coefficient, whereas 𝑡𝑎𝑛𝜑 is the friction coefficient of 205 

pure soil. The efficiency at the peak state 𝐼𝐸𝑃 can be calculated using the peak friction coefficients of 206 

the interface and pure soil. The value of the efficiency parameter ranges from 0.0 (small interface 207 

strength) to 1.0 (fully mobilized soil strength).  208 

3.4. Typical interface shearing behavior  209 

Four typical macroscopic interface shearing behaviors versus normalized shear displacement are 210 

illustrated in Fig. 7. The general curve trend shows that a post-peak strain softening to steady state 211 

because of the low initial void ratio. Continuous dilation is also observed in Fig. 7(b). Similar curves 212 

were also observed from the results of other interface shear tests with different surface geometries, but 213 
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their corresponding curves are not shown. The peak interface efficiency of each simulation 𝐼𝐸𝑃 was 214 

collected for further analysis using Spearman’s rank correlation coefficient  and by developing 215 

metaheuristic relationships between peak interface efficiency and surface morphology parameters.  216 

4. Results and Discussion  217 

The analysis of Spearman’s rank correlation coefficient  was conducted to eliminate the 218 

irrelevant morphology parameters with the peak interface efficiency 𝐼𝐸𝑃. Furthermore, the relevant 219 

morphology parameters were combined to form the potential models in the process of model selection. 220 

The optimal model was selected among the potential models based on the result of Bayesian 221 

nonparametric general regression. The obtained optimal model was formulated and validated with 222 

previous studies.  223 

4.1. Analysis of correlation by means of Spearman’s rank correlation coefficient 224 

Compared with the Pearson product-moment correlation, Spearman's rank-order correlation 225 

belongs to the nonparametric analysis. Spearman's rank correlation coefficient, 𝜌𝑠, presents the degree 226 

and direction of dependence between two ranked variables. Because 𝜌𝑠 is only mildly sensitive to 227 

divergent results, it is especially effective in analyzing the data where the distribution does not follow 228 

the normal distribution. According to Kowalczyk et al. (2004), the two random variables 𝑥 and 𝑦 in 229 

the analysis of Spearman's rank correlation coefficient can be obtained from the following equation:  230 

𝜌𝑠 = 𝑐𝑜𝑟𝑟 ⋅ (𝑓(𝑥)𝑥, 𝑓(𝑦)𝑦)         (1) 231 

where 𝑐𝑜𝑟𝑟 is the Pearson correlation coefficient; 𝑓(𝑥)𝑥 is the distribution function of variable 𝑥 at 232 

point 𝑥, while 𝑓(𝑦)𝑦 is the distribution function of variable 𝑦 at point 𝑦. The value of 𝜌𝑠 ranges 233 

from -1 to 1. Kowalczyk et al. (2004) also assumed that the data investigated are appropriate to perform 234 

an artificial neural network analysis, when the values of 𝜌𝑠 range from either -1 to -0.4 or from 0.4 to 235 

1.  236 

In this part, the correlation between peak interface efficiency 𝐼𝐸𝑃 and 13 morphology parameters 237 

was determined using the Spearman's rank correlation coefficient. The parameters with length units 238 
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were normalized by average diameter 𝐷50 . The statistics of 13 morphology parameters and peak 239 

interface efficiency 𝐼𝐸𝑃 based on the results of 480 interface shear tests are presented in Table 6. The 240 

correlations between the 13 morphology parameters and 𝐼𝐸𝑃  with the calculated values of 𝜌𝑠  are 241 

shown in Table 7. From Table 7, it appears that 𝜌𝑠 is in a range of 0.4 to 1 or -1 to -0.4 for parameters 242 

𝑃𝑝/𝐷50 , 𝑃𝑣/𝐷50 , 𝑃𝑧/𝐷50 , 𝑃𝑐/𝐷50 , 𝑃𝑎/𝐷50 , 𝑃𝑞/𝐷50 , 𝑃𝑠𝑚/𝐷50 , 𝑃𝑑𝑞 , 𝑃𝑑𝑐/𝐷50  and 𝑃𝑃𝑐 , 243 

indicating the highest value (0.777) for parameter 𝑃𝑑𝑞. A positive 𝜌𝑠 indicates an increase in the 244 

values of the parameter with the increase of 𝐼𝐸𝑃,whereas a negative 𝜌𝑠 indicates a decrease in the 245 

values of the parameter with 𝐼𝐸𝑃 increased. The rotation and translation of granular material over the 246 

random surface are affected by the surface morphology, which indirectly influences the mobilized 247 

efficiency of soil. The hybrid parameter 𝑃𝑑𝑞 includes not only the amplitude information but also the 248 

surface slope information on a random surface; therefore, its effect on 𝐼𝐸𝑃 is most productive. 𝑃𝑃𝑐 249 

signifies the peak number per unit length of a profile and is able to positively affect the soil movement 250 

over an interface. More peaks per unit length will lead to decreasing the distance between neighboring 251 

peak-valley pairs in a profile, which indicates that 𝑃𝑃𝑐  is inversely proportional to 𝑃𝑆𝑚 . 252 

Accordingly, the value of 𝜌𝑠  for 𝑃𝑆𝑚/𝐷50  is negative and 𝐼𝐸𝑃  has a negative relationship with 253 

𝑃𝑆𝑚/𝐷50. The 𝜌𝑠 is less than 0.4 for the remaining parameters, which suggesting that the correlation 254 

between the remaining parameters and 𝐼𝐸𝑃 is insignificant. As presented in Table 3, 𝑃𝑠𝑘 is used to 255 

express the symmetry of peaks and valleys, while 𝑃𝑘𝑢  is utilized to describe the sharpness of a 256 

surface. Both parameters are normally used for the evaluation of gloss and luster, but not for the 257 

evaluation of frictional force (Olympus, 2014; Vik et al., 2014). Given all that, the ten parameters 258 

𝑝/𝐷50 , 𝑃𝑣/𝐷50 , 𝑃𝑧/𝐷50 , 𝑃𝑐/𝐷50 , 𝑃𝑎/𝐷50 , 𝑃𝑞/𝐷50 , 𝑃𝑠𝑚/𝐷50 , 𝑃𝑑𝑞 , 𝑃𝑑𝑐/𝐷50 , and 𝑃𝑃𝑐  are 259 

the relevant input variables for metaheuristic model development.   260 

4.2. Data description and model selection 261 

A total of 480 databases were prepared for analysis based on the Bayesian nonparametric general 262 

regression (BNGR) carefully presented in Appendix A. The ten selected morphology parameters were 263 
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used to establish a metaheuristic model to estimate the peak interface efficiency 𝐼𝐸𝑃. The parameters, 264 

i.e., 𝑃𝑝/𝐷50, 𝑃𝑣/𝐷50, 𝑃𝑧/𝐷50, 𝑃𝑐/𝐷50, 𝑃𝑎/𝐷50, 𝑃𝑞/𝐷50, 𝑃𝑠𝑚/𝐷50, 𝑃𝑑𝑞, 𝑃𝑑𝑐/𝐷50, and 𝑃𝑃𝑐, 265 

are designated as 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, and 𝑥10, respectively.  266 

The traditional regression approaches have an obvious weakness that a large number of the model 267 

candidates are generated due to a large number of combinations of potential function structures from 268 

the same set of input variables. However, the BNGR method vanquishes this disadvantage from 269 

traditional methods. Based on the BNGR algorithm descripted in Appendix A, 210– 1 =1023 models 270 

were generated as the potential models. Because the prior distribution choice for the vector 𝜃 was 271 

independent of the model selection (Yuen et al., 2016), both the perdition error scale parameter and the 272 

smoothing scale parameter were analyzed based on the uniform prior distributions of [0, 100]. 273 

According to the current database, 70% of the database (336 points) was randomly selected as the 274 

training database which was used to obtain the optimal model while the remaining 30% of the database 275 

(144 points) was used for verification of the selected models. Based on the training database, the 276 

smoothing scale parameter was calculated by Eq. (11),whereas the perdition error scale parameter was 277 

measured using Eq. (12). The results of some selected models using BNGR algorithm are carefully 278 

summarized in Table 8. The first column represents the selected input variables and the sixth column 279 

shows the plausibility of the corresponding model, which is ranked in order. According to the value of 280 

plausibility, model (𝑥8) is the optimal model. Fig. 8 demonstrates that the optimal model shows a high 281 

fitting capability in the training phase, which means that it has an efficient learning ability. The most 282 

plausible model (𝑥8) is made of the hybrid parameter, 𝑃𝑑𝑞. 𝑃𝑑𝑞 is a combination of amplitude and 283 

spacing information of surface and has been proven to be most relevant to 𝐼𝐸𝑃  according to the 284 

Spearman’s rank correlation coefficient analysis. 285 

4.3. Optimal model validation  286 

In this section, the remaining 30% of the database (144 points) was used for verification of the 287 

optimal model. Fig. 9 shows the measured peak interface efficiency 𝐼𝐸𝑃 from the remaining 30% of 288 
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the database versus the predicted 𝐼𝐸𝑃  with the perfect matched line, i.e., the 45° line. All the 289 

prediction results based on the optimal model and the other six models (listed in Table 8) are plotted 290 

in this figure. The selected optimal model possesses the highest prediction capability based on the least 291 

number of morphology parameters compared with those for the models with the two input variable 292 

combinations (𝑥8 combined with the other six parameters). Fig. 10 shows that the full model (i.e., 293 

model with all input variables (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6  𝑥7 , 𝑥8 , 𝑥9  and 𝑥10 ) has a lower fitting 294 

capacity than that for optimal model, indicating that some input parameters are redundant for 295 

metaheuristic model development and cannot increase the fitting capacity but instead decrease the 296 

accuracy of model prediction.  297 

In previous studies, the most commonly used parameter for the description of surface morphology 298 

was the relative roughness 𝑅𝑛 = 𝑅𝑚𝑎𝑥/𝐷50  (i.e., 𝑃𝑧/𝐷50  in this study). The model with 𝑅𝑛  or 299 

𝑃𝑧/𝐷50 was also used to predict 𝐼𝐸𝑃. Fig. 11 shows that the models with 𝑅𝑛 or 𝑃𝑧/𝐷50 has a much 300 

lower predictive capacity than that for optimal model. Because the input variable 𝑅𝑛  can only 301 

represent the local maximum height of the surface, the precited points disperse in a larger domain 302 

compared to the distribution of precited points for the optimal model.  303 

For a more objective comparison, two traditional indicators, the mean absolute relative error 304 

(MARE) and mean absolute error (MAE), were calculated for the comparison of predictive capability 305 

among all selected models, as shown in Table 9. Compared with the other models, the optimal model 306 

has the smallest values of both MAE and MARE. Through the above comparisons, the model (𝑥8) was 307 

verified to be optimal for the prediction of 𝐼𝐸𝑃. 308 

4.4. Predicted formula development and comparison with existing predicted formulas 309 

The most plausible model (𝑥8) is made of the hybrid parameter, 𝑃𝑑𝑞. For the convenience of 310 

engineering applicability, the optimal model (𝑥8) was further expressed by a formula. By incorporating 311 

the observations of the relationship between 𝑃𝑑𝑞  and peak interface efficiency 𝐼𝐸𝑃 , the optimal 312 

model class for estimation of 𝐼𝐸𝑃 is proposed as follows 313 
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𝐼𝐸𝑃 = 𝑎 + 𝑃𝑑𝑞 ∗ 𝑏 (2) 314 

where 𝑎  and 𝑏  are all obtained from curve fitting. Seventy percent of the database was used to 315 

develop the predicted formula based on the hybrid parameter, 𝑃𝑑𝑞 . Fig. 12 shows the learning 316 

capability of the proposed formula and its expression. Fig. 13 shows the measured 𝐼𝐸𝑃  from the 317 

remaining 30% of the database versus the calculated 𝐼𝐸𝑃 from the proposed formula as well as the 318 

perfect matched line.  319 

As mentioned in section 4.3, the most commonly used parameter for estimation of interface 320 

strength is the relative roughness 𝑅𝑛 in previous studies. In the present study, the relationship between 321 

𝑅𝑛 and the peak shear stress ratio is plotted in Fig. 14(a). To verify the findings of the present study, 322 

several relevant existing studies (DeJong and Westgate, 2009; Jing et al., 2018; Sharma et al., 2019; 323 

Su et al., 2018; Subba Rao et al., 1998; Uesugi and Kishida, 1986b; Zhou et al., 2007) have been 324 

selected for comparison, as shown in Fig. 14(b). As reported by Su et al. (2018), the peak shear stress 325 

ratio remains nearly constant as 𝑅𝑛 is more than approximately 0.25, while the critical value was 326 

reported to be approximately 0.375 by Jing et al. (2018). For the other studies, generally, the peak 327 

stress ratio increases with 𝑅𝑛 when 𝑅𝑛 is less than 1.0, which is consistent with the findings of the 328 

current study. Among previous studies, the most commonly used pattern of the existing predicted 329 

formula based on 𝑅𝑛 contains the exponential function, the polynomial function, and the hyperbolic 330 

function. Seventy percent of the database was used to obtain the expressions of these three functional 331 

patterns. Fig. 15 shows the learning capabilities of these three expressions. The remaining 30% of the 332 

database was used to show the predictive capability of these three expressions, as shown in Fig. 16. 333 

Compared with the three existing predicted formulas, the proposed model has a higher learning 334 

capability in the training phase and higher predictive ability in the testing phase because the proposed 335 

model in both the training phase and testing phase has a higher coefficient of determination 𝑅2. This 336 

fact was also verified by the results of Table 10, showing that both the lowest MAE and MARE are 337 

found for the proposed formula. The observations indicate that for irregular interface shearing existing 338 

https://cn.bing.com/dict/search?q=polynomial&FORM=BDVSP6&mkt=zh-cn
https://cn.bing.com/dict/search?q=function&FORM=BDVSP6&mkt=zh-cn
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in the most geotechnical engineering, using 𝑅𝑛 for characterizing surface morphology and estimation 339 

of 𝐼𝐸𝑃  is inadequate but hybrid parameter 𝑃𝑑𝑞  is more efficient and accurate to estimate 𝐼𝐸𝑃 , 340 

instead, explained as follows. 𝑅𝑛, as the local morphology parameter of an interface, is only evaluated 341 

by the maximum height of a profile. It will be efficient for the morphology evaluation of regular 342 

surfaces but not for the morphology evaluation of random surfaces. 𝑃𝑑𝑞, as a global morphology 343 

parameter of an interface, provides not only height information but also spacing information along the 344 

full investigated profile. Accordingly, it is more efficient to evaluate the interface strength. It may be 345 

noted that the conclusion was reached based on the 2D DEM simulation, and widespread application 346 

needs to conduct more 3D numerical and experimental investigations. 347 

5. Conclusion 348 

Based on the 2D DEM simulation, 480 interface shear tests with random profiles were conducted 349 

on coarse-grained soils. The relevant morphology parameters were selected using Spearman’s rank 350 

correlation coefficient. BNGR was applied to forming a metaheuristic model for estimation of the soil-351 

structure interface shear strength. The key observations are summarized as follows: 352 

(1) 𝜌𝑠  is in a range of 0.4 to 1 or -1 to -0.4 for parameters 𝑃𝑝/𝐷50 , 𝑃𝑣/𝐷50 , 𝑃𝑧/𝐷50 , 𝑃𝑐/𝐷50 , 353 

𝑃𝑎/𝐷50 , 𝑃𝑞/𝐷50 , 𝑃𝑠𝑚/𝐷50 , 𝑃𝑑𝑞 , 𝑃𝑑𝑐/𝐷50  and 𝑃𝑃𝑐 . The highest Spearman’s rank 354 

coefficient, amounting to 0.788, has been obtained for hybrid parameter 𝑃𝑑𝑞 which represents 355 

not only the amplitude information but also the surface slope information on a random surface. 356 

(2) One significant input variable (𝑃𝑑𝑞) was effectively selected from 10 potential candidates (𝑃𝑝/𝐷50, 357 

𝑃𝑣/𝐷50 , 𝑃𝑧/𝐷50 , 𝑃𝑐/𝐷50 , 𝑃𝑎/𝐷50 , 𝑃𝑞/𝐷50 , 𝑃𝑠𝑚/𝐷50 , 𝑃𝑑𝑞 , 𝑃𝑑𝑐/𝐷50  and 𝑃𝑃𝑐 ) by using 358 

the BNGR algorithm. The optimal model selected was verified on the testing data and compared 359 

with the prediction results of some selected models, the full model, and the model with the most 360 

commonly used parameter. 361 

(3) Based on the 2D DEM results, the proposed formula was compared with the existing predicted 362 

formulas. For irregular interface shearing, using 𝑅𝑛 for characterizing surface morphology and 363 
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estimating 𝐼𝐸𝑃 is inadequate, but the hybrid parameter 𝑃𝑑𝑞 is more efficient and accurate for 364 

estimating 𝐼𝐸𝑃.  365 

It is noteworthy that the results were achieved based on the 2D DEM simulation, which has inherent 366 

limitations in investigating real 3D problems. The granular soil was modeled with circular disks in this 367 

study and the rolling resistance was adopted to compensate for the lack of angularity of circular 368 

particles. The simplifications in this study surely cause differences between the real and DEM 369 

investigations, and 2D numerical investigations still provide helpful results to illustrate the correlation 370 

between morphology parameters and interface shear strength. To make the conclusions broad, 3D 371 

DEM simulations will be the future work. 372 
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Appendix A 383 

Since Yuen and Ortiz (2016) developed an innovative Bayesian nonparametric general regression 384 

(BNGR) algorithm, BNGR has been applied to addressing the engineering issues (Zhao et al., 2019). 385 

Compared with the traditional generalized regression method, two merits of the BNGR method have 386 

been proven. Specifically, the prior distribution of the regression coefficients is independent of model 387 

selection. In addition, the number of model candidates is decreased significantly. 388 

Based on the generalized regression neural network (GRNN), the regression relationship between 389 

the input variables (denoted by vector, 𝑋 ) and output variable 𝑦  is obtained without presetting a 390 

specific parametric equation. Thus, the output 𝑦 can be expressed as follows: 391 

 𝐸(𝑦|𝑋) =
∫ 𝑦𝑝(𝑋,𝑦)𝑑𝑦

∞

−∞

∫ 𝑝(𝑋,𝑦)𝑑𝑦
∞

−∞

         (3) 392 

where 𝑝(𝑋, 𝑦) represents the joint probability density function (PDF) of 𝑋 and 𝑦.  393 

Considering the unknown 𝑝(𝑋, 𝑦)  for most conditions, the kernel density approximation 394 

𝑝̂(𝑋, 𝑦) is used to compute it. The Gaussian mixture distribution is normally chosen to address it, as 395 

shown in the following equation: 396 

 𝑝̂(𝑋, 𝑦) =
1

𝑁(2𝜋𝜎1
2)

(𝑑+1)/2 ∑ 𝑒𝑥𝑝 [−
(𝑋−𝑋𝑛)𝑇(𝑋−𝑋𝑛)+(𝑦−𝑦𝑛)2

2𝜎1
2 ]𝑁

𝑛=1     (4) 397 

where 𝜎1
2, an unknown parameter, is adopted to balance the regression model smoothness and the 398 

fitting capability. Substituting Eq. (3) into Eq. (4), we can obtain the expected value of 𝑦 expressed 399 

by: 400 

 𝑦̂(𝑋) = 𝐸𝑝(𝑦|𝑋) =
∑ 𝑦𝑛 𝑒𝑥𝑝[−(𝑋−𝑋𝑛)𝑇(𝑋−𝑋𝑛)/(2𝜎1

2)]𝑁
𝑛=1

∑ 𝑒𝑥𝑝[−(𝑋−𝑋𝑛)𝑇(𝑋−𝑋𝑛)/(2𝜎1
2)]𝑁

𝑛=1
     (5) 401 

To avoid the over-fitting and select the proper value of 𝜎1
2, the predicted point is eliminated by 402 

summing Eq. (5), Eq. (5) transforms into: 403 

 𝑦̂(𝑋𝑚) =
∑ 𝑦𝑛 𝑒𝑥𝑝[−(𝑋𝑚−𝑋𝑛)𝑇(𝑋𝑚−𝑋𝑛)/(2𝜎1

2)]𝑁
𝑛=1
𝑛≠𝑚

∑ 𝑒𝑥𝑝[−(𝑋𝑚−𝑋𝑛)𝑇(𝑋𝑚−𝑋𝑛)/(2𝜎1
2)]𝑁

𝑛=1
𝑛≠𝑚

      (6) 404 
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Thus, by fitting the predicted data obtained from Eq. (6) with the measured data, we can obtain the 405 

optimum value of 𝜎1
2. 406 

Based on nonparametric regression, GRNN represents an improved method in the neural 407 

networks. However, it is not objective to choose which input variable has great influences on the output. 408 

The subjectivity of human beings can be avoided by Bayesian inference because Bayesian inference 409 

uses an objective approach to select the significance of each input variable based on the measured data. 410 

Accordingly, taking advantage of Bayesian inference, it is conceivable to couple GRNN with Bayesian 411 

inference to determine the implied input variables.  412 

For the GRNN, there is an unknown parameter, 𝜎1
2. It can be obtained from Eq. (6). Likewise, an 413 

unknown vector, 𝜃 , exists in the Bayesian General Regression. Based on Bayes’ principle, the 414 

posterior PDF of 𝜃 is defined as: 415 

 𝑝(𝜃|𝑦, 𝑋, 𝐶) =
𝑝(𝑦|𝜃,𝑋,𝐶)𝑝(𝜃|𝐶)

𝑝(𝑦|𝑋,𝐶)
       (7) 416 

where 𝐶  and 𝑝(𝑦|𝑋, 𝐶())  are the general regression model and the normalizing constant, 417 

respectively. The prior PDF of the uncertain parameters, 𝑝(𝜃|𝐶) , is adopted to reflect the prior 418 

knowledge of the consciousness of the researchers. The likelihood function, 𝑝(𝑦 | 𝜃, 𝑋, 𝐶), is used to 419 

represent the fitting capability of the measured data given the parameter vector, 𝜃.  420 

To calculate the likelihood function in Eq. (7), the equation can be transformed into the form of 421 

conditional PDF as: 422 

 𝑝(𝑦|𝜃, 𝑋, 𝐶) = ∏ 𝑝(𝑦𝑚|𝑦1, ⋯ , 𝑦𝑚−2, 𝑦𝑚−1, 𝜃, 𝑋, 𝐶)𝑁
𝑚=1     (8) 423 

where 424 

 𝑝(𝑦𝑚|𝑦1, ⋯ , 𝑦𝑚−2, 𝑦𝑚−1, 𝜃, 𝑋, 𝐶) = (2𝜋𝜎2,𝑚
2 )

−1/2
𝑒𝑥𝑝 [−

(𝑦𝑚−𝑦̂𝑚|𝑚−1(𝑋𝑚))
2

2𝜎2,𝑚
2 ]   (9) 425 

where 𝑦̂𝑚|𝑚−1(𝑋𝑚) is the regression of 𝑦 on 𝑋 in accordance with the first m-1 measured data point, 426 

obtained as: 427 
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 𝑦̂𝑚|𝑚−1(𝑋𝑚) =
∑ 𝑦𝑛 𝑒𝑥𝑝[−((𝑋𝑚−𝑋𝑛)𝑇(𝑋𝑚−𝑋𝑛))/2𝜎1,𝑚

2 ]𝑚−1
𝑛=1

∑ 𝑒𝑥𝑝[−((𝑋𝑚−𝑋𝑛)𝑇(𝑋𝑚−𝑋𝑛))/2𝜎1,𝑚
2 ]𝑚−1

𝑛=1

     (10)  428 

 𝜎1,𝑚
2 =

𝑣1

𝑚−1
∑ (𝑋𝑚 − 𝑋𝑛)𝑇(𝑋𝑚 − 𝑋𝑛)𝑚−1

𝑛=1       (11) 429 

 𝜎2,𝑚
2 =

𝑣2

∑ 𝑒𝑥𝑝[−2(𝑋𝑚−𝑋𝑛)𝑇(𝑋𝑚−𝑋𝑛)]𝑚−1
𝑛=1

      (12) 430 

where 𝑣1  is the smoothing scale parameter and 𝑣2  is the prediction error scale parameter. Both 431 

parameters can be obtained (Yuen and Ortiz, 2016).  432 

To date, the unknown vector, 𝜃 = [𝑣1 𝑣2], has been expressed based on the framework of the 433 

BNGR approach. Thus, the posterior PDF of 𝜃 can be written as: 434 

 𝑝(𝑣1, 𝑣2| 𝑦, 𝑋 , 𝐶) ∝ 𝑝(𝑣1, 𝑣2)𝑝(𝑦|𝑣1, 𝑣2, 𝑋, 𝐶) 435 

                          ∝ (𝑣2)−(𝑁/2) × 𝑒𝑥𝑝 [−
1

2𝑣2
∑ 𝛺𝑚 (𝑦𝑚 − 𝑦̂𝑚|𝑚−1,𝑣1

(𝑋𝑚))
2

𝑁
𝑚=1 ]     (13) 436 

where 𝛺𝑚 is defined as: 437 

 𝛺𝑚 = ∑ 𝑒𝑥𝑝[−2(𝑋𝑚 − 𝑋𝑛)𝑇(𝑋𝑚 − 𝑋𝑛)]𝑚−1
𝑛=1       (14) 438 

Given that the derivative of the posterior PDF versus the parameter, 𝑣2, is equal to zero, as follows: 439 

 
𝜕𝑝(𝑣1,𝑣2|𝑦,𝑋,𝐶)

𝜕𝑣2
= 0        (15) 440 

then, 441 

 𝑣2
∗(𝑣1) =

1

𝑁
∑ 𝛺𝑚 (𝑦𝑚 − 𝑦̂𝑚|𝑚−1,𝑣1

(𝑋𝑚))
2

𝑁
𝑚=1

     (16) 442 

By maximizing the following function, the parameter, 𝑣1
∗, can be calculated: 443 

 𝑔(𝑣1) = 𝑝(𝑣1, 𝑣2
∗(𝑣1)|𝑦, 𝑋, 𝐶)       (17) 444 

According to the calculated 𝜃, the regression model is expressed by the relationship between a 445 

subset of potential input variables and the interested output. The suitable set of design variables can be 446 

obtained from the optional models using the Bayesian inference theorem, as presented in the following. 447 

Various combinations of these potential input variables generate various regression models, such as 448 

𝐶(1), 𝐶(2), …, 𝐶(3).  449 

Given Bayes’s theorem, the plausibility of a model can be obtained as: 450 
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 𝑃(𝐶(𝑘)|𝑦, 𝑋) =
𝑝(𝑦|𝑋,𝐶(𝑘))𝑃(𝐶(𝑘))

∑ 𝑝(𝑦|𝑋,𝐶(𝑘))𝑃(𝐶(𝑘))
𝑁𝑐
𝑘=1

      (18) 451 

Finally, 𝑝(𝑦 | 𝑋, 𝐶(𝑘))can be readily obtained: 452 

 𝑝(𝑦|𝑋, 𝐶(𝑘)) ≈
2𝛤(𝑁/2+1)√2𝜋 ∏ (𝛺𝑚/|ℏ𝑘(𝑣1

∗)|)𝑁
𝑚=1

(𝐵𝑈1−𝐵𝐿1)(𝐵𝑈2−𝐵𝐿2)𝜋𝑁/2
 453 

                     × [∑ 𝛺𝑚 (𝑦𝑚 − 𝑦̂𝑚|𝑚−1,𝑣1
(𝑋𝑚))

2
𝑁
𝑚=1 ]

−(𝑁/2+1)

      (19) 454 

The framework of Bayesian combined with GRNN was presented. It is noteworthy that, with the 455 

same group of input variables, the function form is automatically produced based on GRNN’s theorem. 456 

Thus, it is very efficient to conduct Bayesian model selection because it is unnecessary to produce 457 

various function structures using the same group of input variables compared with the conventional 458 

generalized regression method. 459 

 460 

  461 
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Table 603 

Table. 1 Review of recent studies on the effect of morphology parameters on soil-structure interactions 604 

Authors Surface pattern 

Quantified 

parameter 

Selected results 

Chen et al. (2015) 
 

Average depth of the 

poured sand  

⚫ The shear strength increases with the 

surface roughness. 

⚫ The shear failure plane is dependent 

with the confining pressure and surface 

roughness. 

Chu and Yin 

(2005) 
 Roughness angle 

⚫ The surface roughness has great impact 

on the interface shear strength.  

Dove and Jarrett 

(2002) 
 

Asperity angle 

Root spacing 

Asperity spacing 

Asperity height 

⚫ The interface behavior is influenced by 

predictable geometric properties.  

⚫ The proposed mechanical equation can 

be applied to complex manufactured 

surfaces. 

Feng et al. (2018) 
 

Relative roughness  

⚫ Stronger interaction between soil and 

geomembrane was developed under 

rougher geomembrane shearing. 

Chen et al. (2020); 

Hu and Pu (2004); 

Jing et al. (2018); 

Su et al. (2018); 

Wang et al. 

(2019c); Zhu et al. 

(2017) 

 
Relative roughness  

⚫ There exists a critical roughness to 

affect the interface shear strength 

Zhang and Evans 

(2018) 
 

Relative roughness  

⚫ For smoother interfaces, the contact 

normal force decays more rapidly 
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compared to rougher interfaces. 

Guo et al. (2020); 

Wang et al. 

(2019d) 

 

Flat width 

Intersection angle 

Groove depth 

⚫ Peak shear stress increases with normal 

stress and the intersection angle 

Canakci et al. 

(2016); Han et al. 

(2018); Martinez 

and Frost (2017); 

Rui et al. (2020) 

Random 

Normalized average 

of maximum 

roughness,  

Average roughness 

⚫ The larger interface friction angle was 

found for the case of rougher interface 

shearing. 

 605 

 606 
Table 2. Components of the used concrete 607 

Material Dosage Material Dosage 

Portland cement (Type II A-LL 42.5 R) 352 kg Plasticizer Sika® viscoflow®-6920 2.0 L 

Water 165 L Crushed basalt aggregates 

1086.6 

kg 

Fine aggregate 724.4 kg   

 608 
Table 3. Morphology parameters in accordance with standard ISO 4287 (ISO, 2009) 609 

Morphology 

parameters 

Parameter Definition Description 

Amplitude 

parameters 

Maximum 

profile peak 

height: 𝑃𝑝 

The maximum height value  

 
Maximum 

profile valley 

depth: 𝑃𝑣 

The minimum height value  

Maximum height The difference between the 
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of the profile: 

𝑃𝑧 

maximum height and the 

minimum height 

Arithmetic mean 

deviation of the 

profile: 𝑃𝑎 

𝑃𝑎 =
1

𝑛
∑ |𝑍𝑖|𝑛

𝑖=1   where 𝑛 

is the number of points and 

𝑍𝑖 is the height value at 

point 𝑖. 

Mean height of 

profile elements: 

𝑃𝑐 

𝑃𝑎 =
1

𝑛
∑|𝑍𝑡𝑖|

𝑛

𝑖=1

 

This represents the mean for the height 𝑍𝑡 of 

profile elements within the investigated 

sampling length 

Root mean 

square deviation 

of the profile: 

𝑃𝑞 

𝑃𝑞 = √
1

𝑛
∑ 𝑍𝑖

2

𝑛

𝑖=1

 
This is one of the most widely used parameters 

and is also referred to as the RMS value. 

Skewness of the 

profile height 

distribution: 

𝑃𝑠𝑘 

𝑃𝑠𝑘 =
1

𝑃𝑞3
(

1

𝑛
∑ 𝑍𝑖

3

𝑛

𝑖=1

) 

If this parameter is zero, it means that the height 

distribution is symmetric. Positive 𝑃𝑠𝑘 

represents the surfaces possessing fairly high 

spikes or peaks that protrude above a flatter 

average. Reversely, Surfaces with fairly deep 

valleys and scratch in a smoother plateau such 

as porous surfaces, lead to negative 𝑃𝑠𝑘. 

Kurtosis of the 

profile height 

distribution: 

𝑃𝑘𝑢 

𝑃𝑘𝑢 =
1

𝑃𝑞4
(

1

𝑛
∑ 𝑍𝑖

4

𝑛

𝑖=1

) 

The 𝑃𝑘𝑢 describes the sharpness of the height 

distribution. Surfaces normally possess 

relatively few high peaks and low valleys when 

kurtosis is smaller than 3. In contrast, surfaces 

with many high peaks and low valleys lead to a 

kurtosis value of more than 3. 
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Spacing 

parameters 

Mean width of 

profile 

elements: 𝑃𝑆𝑚 

The mean width of profile 

elements are neighboring 

peak-valley pairs. 

 

Hybrid 

parameters 

Root mean 

square slope of 

the profile: 𝑃𝑑𝑞 

𝑃𝑑𝑞 = √
1

𝑛
∑(

𝑑𝑍𝑖

𝑑𝑥
)2

𝑛

𝑖=1

 
This represents the root mean square for the 

local slope within the sampling length. 

Material 

ratio curves 

and related 

parameters 

Material ratio of 

the profile: 𝑃𝑚𝑟 

The ratio between the 

material length and the 

evaluation length for the 

section height level 𝐶  (% 

or μm).  

 

Relative material 

ratio of the 

profile: 𝑃𝑑𝑐 

Signifies the height 

difference in section height 

level 𝐶 , matching the two 

material ratios. 

Peak 

parameter 

Number of 

peaks: 𝑃𝑃𝑐 

Number of peaks per unit 

length 

 

 610 
Table 4. The selected input parameters (Zhu et al., 2017) 611 

Parameters Value 

Ball density (kg/m3) 2650 

Inter-particle normal stiffness 𝑘𝑛 (N/m) 5.0×109 

Inter-particle shear stiffness 𝑘𝑡 (N/m) 2.5×109 

Particle-wall normal stiffness 𝑘𝑛𝑤 (N/m) 9.0×109 

Particle-wall shear stiffness 𝑘𝑡𝑤 (N/m) 4.5×109 

Inter-particle frictional coefficient 𝑓𝑝 0.5 
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Particle- boundaries frictional coefficient 𝑓𝑝𝑤 0.9 

Rolling resistance coefficient 𝜇𝑟 0.1 

 612 

Table 5. Experimental program for 480 simulated interface shear tests 613 

Type of concrete 

profile 
Number of profiles Mean diameter 𝐷50 Uniformity coefficient  

Total 

groups 

T1 60 

𝐷50 = 0.35 mm (30 groups) 

𝐷50 = 0.53 mm (60 groups) 

𝐷50 = 0.80 mm (30 groups) 

1.46 120 

T2 60 

𝐷50 = 0.35 mm (30 groups) 

𝐷50 = 0.53 mm (60 groups) 

𝐷50 = 0.80 mm (30 groups) 

1.46 120 

T3 60 

𝐷50 = 0.35 mm (30 groups) 

𝐷50 = 0.53 mm (60 groups) 

𝐷50 = 0.80 mm (30 groups) 

1.46 120 

T4 60 

𝐷50 = 0.35 mm (30 groups) 

𝐷50 = 0.53 mm (60 groups) 

𝐷50 = 0.80 mm (30 groups) 

1.46 120 

 614 

Table 6. Statistical characteristics of 13 morphology parameters and measured peak interface efficiency 𝐼𝐸𝑃 based 615 

on the results of 480 interface shear tests 616 

Morphology parameter Mean 

Standard 

deviation 

Skewness Kurtosis 

Minimum 

value 

Maximum 

value 

Amplitude parameters 

𝑃𝑝/𝐷50 1.5024 1.84427 3.288 12.763 0.23 13.80 

𝑃𝑣/𝐷50 1.3171 1.59315 3.264 11.681 0.28 10.59 

𝑃𝑧/𝐷50 2.8193 3.34616 3.135 10.777 0.62 21.08 

𝑃𝑐/𝐷50 1.1783 1.46368 2.902 9.360 0.23 9.46 

𝑃𝑎/𝐷50 0.4177 0.50005 3.143 11.451 0.09 3.63 

𝑃𝑞/𝐷50 0.5269 0.62203 3.014 10.226 0.11 4.29 

𝑃𝑠𝑘 0.1497 0.59633 0.288 2.081 -1.63 2.44 

𝑃𝑘𝑢 3.3258 1.22181 2.705 9.626 2.12 10.29 
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Spacing parameters  𝑃𝑆𝑚/𝐷50 3.4195 3.06364 3.667 17.643 0.76 28.12 

Hybrid parameters 𝑃𝑑𝑞 36.3505 13.39251 1.186 2.455 9.68 75.98 

Material ratio curves and 

related parameters 

𝑃𝑚𝑟 0.2126 0.06687 0.521 3.312 0.10 0.49 

𝑃𝑑𝑐/𝐷50 0.8729 1.07105 3.277 12.591 0.18 7.97 

Peak count parameter  𝑃𝑃𝑐 6.1984 3.77133 0.464 -0.255 0.63 16.46 

Predicted peak interface 

efficiency  

𝐼𝐸𝑃 0.7051 0.08673 0.283 -0.240 0.52 0.94 

 617 

Table 7. Calculated spearman’s rank correlation coefficientfor 13 morphology parameters 618 

Morphology parameters SRCC 

Amplitude parameters 

𝑃𝑝/𝐷50 0.554 

𝑃𝑣/𝐷50 0.541 

𝑃𝑧/𝐷50 0.562 

𝑃𝑐/𝐷50 0.551 

𝑃𝑎/𝐷50 0.546 

𝑃𝑞/𝐷50 0.548 

𝑃𝑠𝑘 0.102 

𝑃𝑘𝑢 -0.055 

Spacing parameters  𝑃𝑠𝑚/𝐷50 -0.485 

Hybrid parameters 𝑃𝑑𝑞 0.777 

Material ratio curves and 

related parameters 

𝑃𝑚𝑟 -0.029 

𝑃𝑑𝑐/𝐷50 0.543 

Peak count number 𝑃𝑃𝑐 0.459 

 619 
Table 8. Results of some selected models based on the BNGR algorithm 620 

Model 

Smoothing scale 

parameter 𝒗𝟏 

Perdition error 

scale parameter 𝒗𝟐 

Maximum 

likelihood 

Evidence 

𝒑(𝒚|𝑿, 𝑪(𝒌)) 

Plausibility 

𝒑(𝑪(𝒌)|𝒚, 𝑿) 

(𝑥8) 0.0287  33.3831  2.91× 10−189 3.76× 10−196 0.999 
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(𝑥8, 𝑥10) 0.0337  17.9378  3.05× 10−195 4.63× 10−202 1.2× 10−6 

(𝑥5, 𝑥8) 0.0018  23.9538  4.07× 10−194 1.06× 10−202 2.8× 10−7 

(𝑥4, 𝑥8) 0.0039  26.4244  4.36× 10−201 3.16× 10−209 8.4× 10−14 

(𝑥8, 𝑥9) 0.0042  26.3362  2.30× 10−201 1.70× 10−209 4.5× 10−14 

(𝑥6, 𝑥8) 0.0033  26.5100  1.74× 10−201 1.16× 10−209 3.1× 10−14 

(𝑥3, 𝑥8) 0.0145  27.9494  2.04× 10−203 4.16× 10−210 1.1× 10−14 

 621 
Table 9. Accuracys measurement for some selected models  622 

Model MAE MARE 

Optimal model (𝑥8) 0.0345 0.0487 

(𝑥8, 𝑥10) 0.0420 0.0596 

(𝑥5, 𝑥8) 0.0410 0.0583 

(𝑥4, 𝑥8) 0.0417 0.0589 

(𝑥8, 𝑥9) 0.0417 0.0593 

(𝑥6, 𝑥8) 0.0407 0.0580 

(𝑥3, 𝑥8) 0.0428 0.0609 

(𝑥3) 0.0588 0.0853 

Full model 0.0367 0.0520 

 623 

Table 10. Accuracy measurements for the proposed formula and existing formulas  624 

Equation MAE MARE 

The proposed formula 0.0442 0.0631 

Formula referred by Subba et al. [62] 0.0594 0.0841 

Formula referred by Zhou et al. [63] 0.0589 0.0834 

Formula referred by Sharma et al. [61] 0.0760 0.107 

 625 
  626 
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Figures 627 

 628 

Fig. 1. Common interface between soil and structure in geotechnical engineering 629 

  630 
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 631 

Fig. 2. Different rough profiles with the same relative roughness 632 

 633 
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 635 

Fig. 3. 3D isometric views of four types of concrete substrates and their corresponding profiles 636 
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 637 

Fig. 4. Schematics of the interface shear apparatus with an imported random surface 638 

639 
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  640 

641 

  642 
Fig. 5. Interface shearing behavior under various normal stresses: (a) shear stress versus normalized shear 643 

displacement and (b) volumetric strain versus normalized shear displacement 644 
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 646 

Fig. 6. The three particle size distributions with different mean particle sizes 647 
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650 

  651 

Fig. 7. Four typical macroscopic interface shearing behaviors: (a) interface efficiency versus normalized shear 652 

displacement and (b) volumetric strain versus normalized shear displacement 653 
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 655 

 656 

Fig. 8. Predicted peak interface efficiency based on the training dataset 657 
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 659 

Fig. 9. Measured peak interface efficiency versus predicted peak interface efficiency using the optimal model 660 

and the models with two inputs 661 
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 663 
Fig. 10. Measured peak interface efficiency versus predicted peak interface efficiency using the optimal model 664 

and the full model 665 
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 667 

Fig. 11. Measured peak interface efficiency versus predicted peak interface efficiency using the optimal model and 668 

the models (𝑥3) 669 
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 671 

Fig. 12. Learning capability of the proposed formula and its expression 672 
  673 
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 674 

Fig. 13. Measured peak interface efficiency 𝐼𝐸𝑃 versus predicted peak interface efficiency 𝐼𝐸𝑃 using the 675 

proposed model 676 
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 678 
Fig. 14. Relationship between the peak interface strength parameter and relative roughness: (a) the present study and 679 

(b) other studies 680 
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 683 

Fig. 15. Learning capability of the existing formulas and their expressions 684 
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 686 

Fig. 16. Measured peak interface efficiency versus predicted peak interface efficiency using the existing formulas 687 




