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Abstract: For a multilayered asphalt pavement, rutting resistance of the mixture in 10 

the middle asphalt layer underneath the surface course plays a significant role in the 11 

high-tempearture stability of the whole pavement structure. Thus, evaluation of the 12 

rutting resistance of the middle asphalt layer using field cores is often necessary for 13 

project-level pavement maintenance decision-making. However, the extrusion and 14 

tests of field cores are time-consuming and destructive to pavement. To address this 15 

problem, developing an empirical model to predict the rutting resistance of the middle 16 

asphalt layer at a certain service time from historical test results may be a potential 17 

alternative. This study aims to address this challenge by using the gene expression 18 

programming (GEP) method and a database composed of a large number of 19 

multiple-stress repeated load (MSRL) test results of field cores. By correlating the 20 

compound creep rate (CCR) of the middle asphalt layer from the MSRL tests to 21 

material properties, environmental and traffic parameters, field rutting depth, and 22 

middle layer age, the optimal GEP model was developed, and then compared with the 23 

conventional multiple linear regression (MLR) model built on the same database. 24 

Uncertainty analysis was also conducted through the Monte Carlo simulation (MCs). 25 

It was found that the GEP model outperformed the MLR model, with a 6%-7% higher 26 

R-square. The uncertainty analysis allows the transport agencies to estimate the27 

reliability of their prediction and make maintenance and rehabilitation (M&R) plans 28 

according to the specified reliability target. 29 

Keywords: In-service asphalt mixture; Rutting resistance; Pavement maintenance; 30 

Gene expression programming; Uncertainty analysis. 31 

32 

1 Introduction 33 

The combined effect of traffic and environmental factors result in the accumulation of 34 

permanent deformation in asphalt pavement which finally turns into rutting at the 35 
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pavement surface [1]. Rutting is one of the common distresses of asphalt pavement, 1 

which could significantly degrade the durability of asphalt pavement, reduce the 2 

riding quality, and affect road safety [2][3]. Therefore, extensive efforts have been put 3 

forward to regularly monitor the field rutting performance of the asphalt pavement 4 

and apply pavement management systems (PMS) to systematically manage the 5 

collected rutting depth(RD) data[5]. Many transport agencies also consider rutting as 6 

one of the decision-making criteria in their maintenance planning tools [4].  7 

Treatments for pavement rutting often require removal and replacement of the 8 

problematic layers or other costly M&R activities. For a multilayered asphalt 9 

pavement, locating the asphalt layers of insufficient rutting resistance is especially 10 

challenging given only the surface rutting depth. This is because measuring the rutting 11 

depth at the pavement surface alone is not sufficient to reflect the actual rutting 12 

resistance of the asphalt mixtures after long-term field service since the complex 13 

maintenance and rehabilitation(M&R) history of the wearing course may keep the 14 

rutting depth on the surface within a certain range but can hardly improve the rutting 15 

resistance of the underlying asphalt mixtures. It has been reported that for the asphalt 16 

pavements with three asphalt layers, such as those in China and many other countries, 17 

the middle asphalt layer contributes the most permanent deformation among the three 18 

asphalt layers [6]. Therefore, the high-temperature performance of asphalt mixtures in 19 

the middle asphalt layer is particularly concerned. However, without taking field cores, 20 

the actual rutting resistance of the in-service middle asphalt layer is unclear. Hence, 21 

decision-makers often face the dilemma whether the middle asphalt layer should be 22 

replaced, especially when the RD is in the mediocre range (8-12 mm). The traditional 23 

method is to make M&R desicions according to the pre-specified RD thresholds. The 24 

middle asphalt layer will only be rehabilitated when the RD meets the corresponding 25 

threshold. While this method is simple to implement, it completely relies on the 26 

engineering experience and ignores the specific material properties of the in-service 27 

asphalt mixtures. This motivates the current engineering practice to use the field core 28 

tests to assist in the evaluation of rutting resistance of in-service asphalt pavements 29 

and incorporate the test results into the maintenance decision-making framework.  30 

Various field core tests were developed to evaluate the high-temperature 31 

performance of the old pavement materials. The accelerated loading tests (APTs) in 32 

small scales, such as the Asphalt Pavement Analyzer (APA) and Hamburg Wheel 33 

Tracking Tester (HWTT) tests, have been widely adopted considering the confined 34 

geometry and size of the field cores [7][8]. In addition, various uniaxial and tri-axial 35 
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loaded tests have been applied to the field cores [9]. To better simulate the actual 1 

condition of the field, new procedures have also been proposed to modify the 2 

traditional dynamic creep test, including temperature gradient control, application of 3 

multiple compressive loading, and confining stress [10]. Although tests on field cores 4 

can directly reflect the high-temperature performance of the middle asphalt layer, 5 

such repetitive tests are typcially time- and resource-consuming, cost-prohibitive and 6 

destructive to pavement structure, while covering only limited testing locations. 7 

Therefore, it would lead to considerable savings both in cost and time, if empirical 8 

models between the rutting resistance of middle asphalt layer measured from the field 9 

cores and the known or readily obtained parameters could be developed. 10 

There have been some availalbe models which can predict the high-temperature 11 

performance of asphalt mixture. However, few of them deal with in-service asphalt 12 

mixtures, especially those mixtures in the middle asphalt layer. Instead, most of these 13 

models only apply to laboratory prepared specimens or newly built pavement [11][12], 14 

serving as a tool to assist in mixture design rather than in-service asphalt mixture 15 

evaluation. Hence, it is keenly desired to establish a model which can predict the 16 

high-temperature performance of the in-service middle asphalt layer mixtures. To fill 17 

such gap, a machine learning (ML) method, named gene expression programming 18 

(GEP), has been applied to develop the prediction model for the rutting resistance of 19 

middle asphalt layer at a certain service age. The main reason for using GEP model is 20 

that GEP has the advantages of generating the predictive equations without assuming 21 

the prior form of the underlying relationship. Thus, compared with other ML methods 22 

such as neural network, GEP model could provide more insight into the key 23 

relationships while still have the ability of modelling complex non-linear relationships. 24 

In addition, the generated functional relationship can be easily used by practitioners. 25 

GEP is an extension to genetic programming (GP) which has been widely used in the 26 

field of civil engineering [13][14]. In pavement engineering area, GEP has gained 27 

popularity in modeling the deflection basin of flexible pavements [15], 28 

back-calculation of pavement layer thickness [16], predicting the flow number [17], 29 

dynamic modulus [18] and fracture energy [19] of asphalt mixture, predicting the 30 

calfornia bearing ratio (CBR) of subgrade soil [20], evaluating the permanent 31 

deformation of asphalt mixture [21], modeling the expansion ratio and half-life of 32 

foamed bitumen [22], etc. 33 

The research presented herein aims to: (a) develop a GEP model that can be 34 

applied to predict the rutting resistance of middle asphalt layer after long-term field 35 
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service without any destructive field core test; and (b) quantify different sources of 1 

uncertainty and investigate their effect on the GEP model output to enhance the 2 

reliability of prediction. 3 

 4 

2 Gene Expression Programming 5 

GEP is a natural development of the genetic programming invented by Ferreira [23]. 6 

It is a method to develop computer programs and mathematical equations based on 7 

evolutionary algorithms. GEP encodes complicated expressions as linear strings of 8 

fixed length, which are called genomes or chromosomes, and can be converted to 9 

nonlinear solutions expressed as Expression Trees (ETs) with different sizes and 10 

shapes. The fact that generally more than one genes are contained in a chromosome of 11 

GEP enables the evolution of more complex programs. There are five main 12 

components in GEP: function set, terminal set, fitness function, control parameters, 13 

and termination condition. The function set includes arithmetic operators (+, -, *, /, 14 

√), logic operators (if, and, or, not) or any other self-defined operators, while the 15 

terminal set consists of variables and constants (x1, x2, 1, 2). Genes in GEP are an 16 

array of symbols whose elements could be either functions or terminals. For example, 17 

an given algebraic expression: 𝑥1 − √𝑥3 + 2𝑥2, can be represented as a tree-shape 18 

ET, as shown in Figure 1. 19 

 20 

Figure 1 An example of ET. 21 

By straightforwardly reading the ET from left to right and from top to bottom, it can 22 

be converted to a K-expression gene, as shown below:  23 

 +. -. *. x1. √. 2, x2. x3 (1) 24 

where x1, x2, and x3 are variables; and 2 is a constant. GEP starts from the random 25 

generation of the chromosome of each individual to form the initial population. 26 

Afterward, the chromosomes are expressed, and the fitness of each individual is 27 

evaluated according to the predefined fitness function. The individuals with the best 28 
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fitness values are then selected to reproduce with modification (transposition/ rotation, 1 

mutation, and recombination/ crossover), ensuring the genetic diversification that 2 

allows for long-term evolution. The individuals in this new generation are, in their 3 

turn, subject to the same developmental process. The process continues until the 4 

termination criterion is fulfilled or a satisfactory solution is obtained. More details 5 

related to GEP can be found in [23]. 6 

 7 

3 Experimental Database 8 

3.1 Field Core Source 9 

Field core samples from 59 sections of seven highways in Jiangsu Province of China 10 

were extruded from the in-service pavement to build the experimental dataset. In each 11 

section, three full-depth field cores with a diameter of 150mm were collected (Figure 12 

2a). In total, 177 field cores with different aggregate gradations, asphalt binders, 13 

pavement ages, traffic or environmental conditions were collected. Each road section 14 

has a semi-rigid base course and three asphalt layers: 4cm-thick wearing course + 15 

6cm-thick middle layer + 7 to 8cm-thick bottom layer. The middle asphalt layers were 16 

sawed from the full-depth field cores as shown in Figure 2b. Finally, as Figure 2c 17 

shows, the middle layer materials of the field core samples with a diameter of 150mm 18 

and a height of 60mm were used for laboratory tests. 19 

 20 

Figure 2 Preparation of the field cores: (a) original full-depth field core samples; (b) 21 

sawing and (c) separated middle layer samples. 22 

 23 

3.2 Multi-Sequenced Repeated Load (MSRL) Test  24 

The multi-sequenced repeated load (MSRL) test was adopted to evaluate the rutting 25 

resistance of asphalt mixtures at a certain service time under laboratory conditions. 26 

The details of the procedure of the newly developed MSRL test and the feasibility of 27 

the MSRL test applied to full-depth or separated layered field cores are discussed in 28 

(a) (b) (c)
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[24][25]. All samples were preconditioned for more than 4 hours to achieve a constant 1 

temperature of 58 oC, which has been proved to be the worst high temperature 2 

condition of the middle layer in the asphalt pavement in Jiangsu[26]. During the 3 

MRSL test, a 50mm-diameter plate was placed at the top center of the specimen to 4 

provide a better boundary condition as shown in Figure 2c. Figure 3(a) illustrates the 5 

loading configuration of the MSRL test. A pre-loading sequence with a stress level of 6 

600kPa was first applied for 500 cycles prior to the multi-sequenced repeated loading 7 

to warrant the testing materials entering the secondary creep stage. After that, the 8 

multi-sequenced repeated loading was repeated five times, with each comprising of 9 

six stress levels from 500kPa to 1,000kPa and each stress level continuously loaded 10 

for 50 cycles. Finally, the creep rate at each stress level was obtained. Figure 3(b) 11 

shows one typical compressive deformation curve of the field core from the MSRL 12 

test. A power function could be used to fit the relationship between the measured 13 

creep rates and stress levels as Eq. (2) presents. 14 

 ε(σ)=a∙σb (2) 15 

where σ is the stress level (kPa), ε(σ) is the corresponding creep rate under stress 16 

level σ (με), and a, b are the regression coefficients. 17 

 18 

  

(a) (b) 

Figure 3 The MSRL test. (a) loading configuration and (b) one typical deformation 19 

curve. 20 

 21 

3.3 Definition of the Compound Creep Rate (CCR) 22 

The average axle load spectrum over the recent three years was extracted from the 23 

PMS of Jiangsu Province, China, from which the loading frequency of each loading 24 

interval could be calculated, as shown in  25 

 26 
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Table 1. According to Eq. (3), the tire pressure, also termed the stress level in Eq. (2), 1 

corresponding to each loading interval was computed by taking the mid-value as the 2 

representative axial load. The creep rates at the 13 stress levels could be inferred from 3 

Eq. (2). The compound creep rate (CCR) was then obtained by getting the weighted 4 

avarge of the 13 creep rates according to their corresponding loading frequencies, as 5 

presented in Eq. (4). Compared with other rutting indexes, CCR has the advantage of 6 

representing the rutting resistance of middle asphalt layer under the actual load 7 

spectrum. In addition, lower values of CCR representt better high-temperature 8 

stability of the testing material. 9 

 10 

Table 1 Parameters of the axle load spectrum 11 

Number, 

i 
Intervals(KN) Mid-value (KN) Frequency(%) 

Stress levels, σi 

(kPa) 

1 20-40 30 𝑝1 274 

2 40-60 50 𝑝2 382 

3 60-80 70 𝑝3 476 

4 80-100 90 𝑝4 560 

5 100-120 110 𝑝5 638 

6 120-140 130 𝑝6 712 

7 140-160 150 𝑝7 781 

8 160-180 170 𝑝8 847 

9 180-200 190 𝑝9 911 

10 200-220 210 𝑝10 972 

11 220-240 230 𝑝11 1031 

12 240-260 250 𝑝12 1088 

13 260-300 280 𝑝13 1172 

Note: 𝑝𝑖 denotes the frequency of the i-th loading interval, differing from section to 12 

section. 13 

 𝜎𝑖 𝜎𝑠⁄ =( q
i

q
s

⁄ )
0.65

 (3) 14 

 CCR = ∑ 𝜀(𝜎𝑖)13
𝑖=1 ∙ 𝑝𝑖 (4) 15 

where CCR is the compound creep rate (με), i is the number of axle-load intervals, 𝜎𝑖 16 

is the representative stress level of interval i (kPa), qi is the representative axial load 17 

of interval I (KN), 𝜎𝑠  is the standard tire pressure for the middle layer (600kPa), qs is 18 
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the standard axial load for the middle layer (100KN), 𝜀(𝜎𝑖) is the corresponding 1 

creep rate under stress level σi (με), and 𝑝𝑖 is the loading frequency of axle-load 2 

interval i. 3 

 4 

4 Model Development 5 

4.1 Analysis of Influencing Factors 6 

The factors that are believed to have an impact on the rutting resistance of the 7 

in-service middle asphalt layer are determined according to the relevant literature and 8 

the available data. Since it is difficult to collect a very large number of field cores, 9 

most of the previous models acquired data from laboratory specimens or newly built 10 

pavement using only material property indexes as input variables, without considering 11 

the actual traffic and weather conditions, nor making good use of the annually 12 

collected pavement condition data. This research, therefore, has filled in this gap by 13 

employing the following five groups of explanatory variables. 14 

 15 

4.1.1 Variables Related to the Material Properties  16 

Based on the available data in PMS, variables related to the properties of middle layer 17 

materials in this study include aggregate gradation, penetration and softening point of 18 

asphalt binder, and binder aggregate ratio. 19 

 20 

4.1.2 Variables Related to the Weather  21 

Temperature is always considered as a significant rutting factor as the asphalt binder 22 

is a time-temperature dependent material [27]. It has been found that mean 23 

temperature exerts a great influence on the permanent deformation of in-service 24 

asphalt pavement [28]. As for precipitation, Smith et al.[29] found that precipitation 25 

changes significantly affected the level of in-service asphalt mixture deformation 26 

because of moisture infiltrating. Some researchers also considered annual 27 

precipitation as one of the input variables when developing rutting models [30][31]. 28 

Therefore, two weather-related variables, namely mean temperature and proportion of 29 

rainy days, were considered in this research, which were calculated annually based on 30 

the available weather data. 31 

 32 
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4.1.3 Variables Related to the Traffic  1 

Rutting develops when the accumulative traffic loading leads to layer densification or 2 

even shear deformation within the asphalt mixtures. Hence, the accumulative axle 3 

load terms, such as equivalent single-axle load (ESAL), are frequently used for 4 

developing rutting models. Since the middle layer samples involved all stay intact, the 5 

ESAL was calculated from the date of opening to traffic to the date of coring. Besides, 6 

overloading of varying degrees is widespread in China despite various traffic 7 

regulations, from which pavement suffered severe damage or even collapse. 8 

Rusbintardjo [32] showed that 150% overloading of single-, dual-, and triple-axle 9 

trucks will bring about 500%, 135%, and 122% level of damage, respectively. 10 

Consequently, the overloading rate, which is defined as the ratio of the number of axle 11 

loads exceeding the axle-load limit to the number of the total axle loads, was 12 

employed to describe the severity of overloading on a particular pavement segment. 13 

The equivalent single-axle dual-wheel load spectrum converted from different 14 

axle-wheel types with a loading limit of 10 tons was utilized to calculate this index 15 

[33]. 16 

 17 

4.1.4 Variables Related to the Field Rutting Depth 18 

Field rutting depth and compound creep rate represent the high-temperature 19 

performance of asphalt mixtures on two different scales, measured by pavement 20 

condition survey and field core test, respectively. However, they are not always in 21 

consistence with each other, especially in road sections where the wearing course has 22 

been rehabilitated, but the underlying courses remain intact. Therefore, three 23 

RD-related variables were considered in this research, namely current RD, 24 

pre-treatment RD, and RD area, which refer to the rutting depth collected closest to 25 

the coring time, rutting depth before the last treatment and the area bounded by the 26 

RD curve and the age, respectively, as illustrated in Figure 4. 27 
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 1 

Figure 4 Schematic diagram of the adopted RD-related indicators. 2 

4.1.5 Variable Related to Service Age 3 

The service age of the middle layer samples was also considered in the prediction 4 

model as it affects the aging degree of the materials.  5 

 6 

4.1.6 Summary of the Variables 7 

 8 

 Table 2 presents the descriptive statistics of the variables used in model development. 9 

It should be noted that aggregate gradation is transformed from a nominal variable to 10 

a dummy variable, with “1” representing AC-20 and “2” representing SUP-20 (AC 11 

and SUP are two different dense-graded gradations and the number 20 denotes the 12 

nominal maximum aggregate size in mm). Arguably, better model performance is 13 

expected for cases within the ranges given in Table 2. 14 

 Table 2 Descriptive statistics of the variables 15 

Variables Mean Std Min. Max. Median Unit 

Aggregate gradation / / / / / / 

Penetration 69.57 3.89 55.70 74.00 70.20 0.1mm 

Softening point 64.34 13.41 47.00 81.90 73.00 oC 

Binder aggregate ratio 4.41 0.09 4.18 4.60 4.41 / 

Mean temperature 17.53 0.55 16.25 18.72 17.87 oC 

Proportion of rainy 

days 
30.57 2.35 26.58 37.29 29.49 % 

ESAL(× 106) 15.34 10.52 0.14 39.47 13.26 / 

Overloading rate 43.97 10.16 20.05 56.32 48.88 % 

Current RD 7.98 3.42 2.38 21.20 7.55 mm 
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Pre-treatment RD 5.12 5.38 0.00 16.88 4.77 mm 

RD area 103.03 33.22 48.94 221.71 97.59 mm*year 

Age 14.91 2.25 4.37 16.97 15.89 year 

CCR 6.95  11.47  0.08  55.13  0.65  / 

 1 

4.2 Model Development Using GEP 2 

 3 

Table 3 shows the main parameters that need to be carefully tuned in the GEP 4 

algorithm. The number of chromosomes (population size) determines the number of 5 

programs that GEP will evolve. Larger population size will make the algorithm run 6 

longer. Considering the complexity of the problem, three levels of population size 7 

(1,000, 2,000, and 3,000) were tried out. The architectures of different models 8 

evolved by GEP depend on the head size and the number of genes. The head size 9 

decides the complexity of each ET, while the number of genes indicates the number of 10 

sub-ETs in the model. In this research, three levels of head size (8, 10 and 15) and 11 

gene number (3, 4 and 5) were considered. Consequently, the overall number of runs 12 

was about 3 (levels of generation number) × 3 (levels of chromosome number) × 3 13 

(levels of gene number) × 3 (levels of head size) × 3 (replications)= 243. The fitness 14 

function was set to be the mean squared error (MSE) function.  15 

Table 3 Parameter settings for the GEP algorithm 16 

Parameters Settings 

Number of generations 1,000, 2,000, 3,000 

Number of chromosomes 400, 500, 600 

Number of genes 3, 4, 5 

Head size 8, 10, 15 

Linking function + 

Fitness function error type MSE 

Mutation rate 0.2 

Inversion rate 0.1 

IS transposition rate 0.1 

RIS transposition rate 0.1 

Gene transposition rate 0.1 

One-point recombination rate 0.2 

Two-point recombination rate 0.3 
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Gene recombination rate 0.1 

Function set +, -, ⅹ, /, √, ^2 

Note: IS is insertion sequence and RIS is root insertion sequence. 1 

Figure 5 illustrates the flowchart of GEP modelling. A computational framework 2 

named geepy developed in Python was used to implement the GEP algorithm. 3 

 4 

Figure 5 The flowchart of GEP modelling 5 

The data samples were randomly divided into training (80%) and testing subsets 6 

(20%). Figure 6 presents the changes of fitness with generations during the training 7 

process. The best fitness was found at the 940th generation. The optimal GEP model 8 

for CCR is shown in Eq.(5). It was found that the GEP technique can automatically 9 

select the variables that contribute the most to construct the model. 10 

𝐿𝑜𝑔(𝐶𝐶𝑅) = 𝑆𝑃 ⋅ [𝑃𝑟𝑎𝑖𝑛𝑦 − (√𝑅𝐵−𝐴 + Pr𝑒 + 𝐴𝐺)] (𝑂𝑣𝑒𝑟𝑙 − 𝐸𝑆𝐴𝐿)2 + 𝑅𝐷⁄

             +𝑂𝑣𝑒𝑟𝑙 ⋅ (1 + √|𝑃𝑟𝑎𝑖𝑛𝑦 − 𝑅𝐵−𝐴 + 𝑅𝐷|) + (𝑅𝐵−𝐴 ⋅ 𝑇 − 𝑆𝑃)2
 (5) 11 

where Log is natural logarithm, CCR, RD, SP, 𝑃𝑟𝑎𝑖𝑛𝑦, 𝑅𝐵−𝐴, 𝑃𝑟𝑒, AG, 𝑂𝑣𝑒𝑟𝑙, ESAL, 12 
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and T denote compound creep rate, current RD, softening point, proportion of rainy 1 

days, binder aggregate ratio, pre-treatment RD, aggregate gradation, overloading rate, 2 

equivalent single-axle loads, mean temperature, respectively. 3 

 4 

Figure 6 Fitness variations against generations. 5 

Figure 7 presents the expression trees of the optimal GEP model. This model 6 

consists of five individual sub-models linked by an addition operation. A comparison 7 

of the measured CCR values with the predicted CCR values is shown in Figure 8. It 8 

can be observed that the determination coefficients (R2) for training and testing 9 

dataset are 0.879 and 0.912, respectively. The points are densely around the ideal 10 

45-degree angle line, indicating that the developed model has good performance. 11 

Besides, it seems the model encounters more difficulties in predicting smaller CCR 12 

values. One reason for this may be the usage of material property indicators tested at 13 

the construction stage instead of those tested at the current stage. However, it should 14 

be noted that the purpose of this research is to develop a prediction model without 15 

conducting any destructive field core test and the predicted CCR is expected to serve 16 

as an evaluation index. Thus, the level of CCR instead of the specific value is more 17 

important. Furthermore, the accuracy of the GEP model could be improved by 18 

accumulating more data samples in the future. 19 
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(a) 

 
 

(b) (c) 

 
 

(d) (e) 

Figure 7 Expression trees for the best GEP model (𝐸𝑇 = ∑ 𝑆𝑢𝑏- 𝐸𝑇𝑖). (a) Sub-ET1; (b) 1 

Sub-ET2; (c) Sub-ET3; (d) Sub-ET4 and (e) Sub-ET5. 2 
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(a) (b) 

Figure 8 Measured against the predicted log of CCR using GEP model. (a) Training 1 

data and (b) Testing data. 2 

 3 

4.3 Model Development Using MLR 4 

For comparison purpose, multiple linear regression (MLR), a conventional tool for 5 

building a model, was also applied for the same prediction purpose. The same input 6 

variables as the GEP model were used to develop the MLR model. The formulation of 7 

the MLR model can be expressed as follows: 8 

 

𝐿𝑜𝑔(𝐶𝐶𝑅) = −23.89 − 0.34𝐴𝐺 − 0.02𝑃 − 0.14𝑆𝑃 + 3.82𝑅𝐵−𝐴

                  +0.04𝐴𝑔𝑒 + 1.12𝑇 − 0.04𝑃𝑟𝑎𝑖𝑛𝑦 − 0.04𝐸𝑆𝐴𝐿

                    +0.03𝑂𝑣𝑒𝑟𝑙 − 0.02Pr𝑒 − 0.01𝑅𝐷𝑎𝑟𝑒𝑎+0.01𝑅𝐷
                 

 (6) 9 

where P, Age, 𝑅𝐷𝑎𝑟𝑒𝑎 denote penetration, middle layer service age, and RD area, 10 

respectively; Log, CCR, AG, SP, 𝑅𝐵−𝐴, T, 𝑃𝑟𝑎𝑖𝑛𝑦, ESAL, 𝑂𝑣𝑒𝑟𝑙, Pre, RD have the 11 

same meanings as those in Eq.(5). From Eq. (6), it is found that the effects of some 12 

independent variables are not consistent with the practical obervations. For example, 13 

the predicted CCR decreases with the increase of service age and ESAL, which is 14 

thought to be problematic. Figure 9 shows the relationship between the measured and 15 

predicted CCR values for both training and testing datasets. It can be seen that the R2 16 

for the training and the testing dataset are 0.821 and 0.862, respectively, lower than 17 

those of the GEP model. In addition, the points around the ideal line are not as dense 18 

as those in the GEP model. All these imply that the GEP model provides better 19 

predction performance than the MLR model.  20 
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(a) (b) 

Figure 9 Measured against the predicted log of CCR using MLR model. (a) Training 1 

data and (b) Testing data. 2 

 3 

5 Performance Evaluation 4 

5.1 Model Validity 5 

Frank and Todeschini [34] indicated that the ratio of the number of data samples over 6 

the number of input variables should be at least three and preferrably five. In this 7 

study, the ratio is 59/9=6.6 for the GEP model and 59/12=4.9 for the MLR model. 8 

Smith [35] suggested that there is a strong relationship between the two variables if 9 

the R-value between them is higher than 0.8. Besides, more new criteria 10 

recommended by Golbraikh and Tropsha [36] and Roy and Roy [37] for external 11 

verification of the GEP model and MLR model are shown in Table 4. It is evident that 12 

the GEP model satisfies all the criteria, while the MLR model fails one criterion. Thus, 13 

it can be inferred again that the GEP model outperforms the MLR model.14 
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Table 4 Statistical parameters of GEP and MLR model for external validation 1 

Item Formula Condition GEP MLR 

1 
𝑅 =

∑ (𝑦𝑖 − �̅�)(�̃�𝑖 − �̅̃�)
𝑛

𝑖=1

√∑ (𝑦𝑖 − �̅�)2 ∑ (�̃�𝑖 − �̅̃�)2𝑛

𝑖=1

𝑛

𝑖=1

 
𝑅 > 0.8 0.938 0.906 

2 𝑘 =
∑ 𝑦𝑖�̃�𝑖

𝑛
𝑖=1

∑ �̃�𝑖
2𝑛

𝑖=1

 0.85 ≤ k ≤ 1.15 1.000 1.000 

3 𝑘′ =
∑ 𝑦𝑖�̃�𝑖

𝑛
𝑖=1

∑ 𝑦𝑖
2𝑛

𝑖=1

 0.85 ≤ k′ ≤ 1.15 0.884 0.828 

4 𝑅0
2 = 1 −

∑ (�̃�𝑖 − 𝑦𝑖
𝑟0)2𝑛

𝑖=0

∑ (�̃�𝑖 − �̅̃�)2𝑛
𝑖=0

 Close to 1 1.000 1.000 

5 𝑅′0
2 = 1 −

∑ (𝑦𝑖 − �̃�𝑖
𝑟0)2𝑛

𝑖=0

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=0

 Close to 1 0.986 0.969 

6 m =
𝑅2 − 𝑅0

2

𝑅2
 <0.1 -0.121 -0.18 

7 n =
𝑅2 − 𝑅′0

2

𝑅2
 <0.1 -0.137 -0.218 

8 𝑅𝑚
2 = 𝑅2(1 − |√𝑅2 − 𝑅0

2|) >0.5 0.592 0.505 

Note: n is the sample size, i is the number of the sample, 𝑦𝑖 is the i-th measured CCR, 2 

�̃�𝑖  is the i-th predicted CCR,  �̅� =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 , �̅̃� =

1

𝑛
∑ �̃�𝑖

𝑛
𝑖=1 , 𝑦𝑖

𝑟0 = 𝑘�̃�𝑖  and �̃�𝑖
𝑟0 =3 

𝑘′𝑦𝑖. 4 

 5 

5.2 Appearance Frequency and Sensitivity Analysis 6 

Appearance frequency refers to the frequency that an input variable has appeared in 7 

the best thirty GEP programs [19]. It describes the importance and contribution of 8 

each input variable to the final GEP model. As appearance frequencies in Figure 10 9 

show, among the 12 variables, softening point, binder aggregate ratio and mean 10 

temperature had the most significant contribution to the GEP model, followed by 11 

overloading rate and proportion of rainy days. 12 
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 1 

Figure 10 Appearance frequencies of the input variables in the GEP analysis. 2 

 3 

Besides, one-dimensional sensitivity analysis (1D-SA) was performed to identify 4 

how different values of each input variable affect the model output. The following 5 

equation defines the computational method of sensitivity [38]: 6 

 𝑆𝑖 =
𝑓max(𝑥𝑖)−𝑓min(𝑥𝑖)

∑ 𝑓max(𝑥𝑗)−𝑓min(𝑥𝑗)
𝑛

𝑗=1

× 100 (7) 7 

where 𝑓max(𝑥𝑖) and 𝑓min(𝑥𝑖) are the maximum and minimum output of the i-th 8 

input variable when other input variables are equal to their mean values, n is the 9 

number of input variables and 𝑆𝑖 is the 1D-sensitivity of the i-th input variable. 10 

As Figure 11 shows, CCR is most sensitive to the softening point, followed by 11 

mean temperature and overloading rate. Binder aggregate ratio also has a significant 12 

influence on the predicted CCR. It can be concluded then the effect of the inherent 13 

properties of asphalt binder on the rutting resistance of asphalt mixtures is dominant, 14 

implying the necessity of using modified asphalt in the middle layer. In addition, CCR 15 

is quite sensitive to mean temperature and overloading rate, which is in close 16 

agreement with previous studies [39][40] and the practical experience. Other variables 17 

that show an evident impact on the predicted CCR include current RD, ESAL, and 18 

proportion of rainy days. 19 
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 1 

Figure 11 Results of 1D-SA 2 

Furthermore, two-dimensional sensitivity analysis (2D-SA), which is measured as 3 

the maximum range in the output response produced by each pair of input 4 

variables[41], was also conducted to investigate the interaction effect of variables. 5 

Let  {𝑓(𝑥𝑖𝑘, 𝑥𝑗𝑚): 𝑘 ∈ {1, … , 𝐿}, 𝑚 ∈ {1, … , 𝐿}}  denotes the sensitivity responses 6 

associated with the 𝐿 × 𝐿 changes of input pair (𝑥𝑖, 𝑥𝑗). The 2D-SA can be given by: 7 

 𝑓max(𝑥𝑖, 𝑥𝑗) = max (𝑓(𝑥𝑖𝑘, 𝑥𝑗𝑚): 𝑘 ∈ {1, … , 𝐿}, 𝑚 ∈ {1, … , 𝐿}) (8) 8 

 𝑓min(𝑥𝑖 , 𝑥𝑗) = min (𝑓(𝑥𝑖𝑘, 𝑥𝑗𝑚): 𝑘 ∈ {1, … , 𝐿}, 𝑚 ∈ {1, … , 𝐿}) (9) 9 

 𝑆𝑖,𝑗 =
𝑓max(𝑥𝑖,𝑥𝑗)−𝑓min(𝑥𝑖,𝑥𝑗)

∑ ∑ 𝑓max(𝑥𝑖,𝑥𝑗)−𝑓min(𝑥𝑖,𝑥𝑗)𝑛
𝑗=1,𝑖≠𝑗

𝑛
𝑖=1

× 100 (10) 10 

where 𝑓max(𝑥𝑖 , 𝑥𝑗), 𝑓min(𝑥𝑖 , 𝑥𝑗) are the maximum and minimum output by varying 11 

the input pair (𝑥𝑖 , 𝑥𝑗) simultaneously while holding the other variables at their 12 

median values, and 𝑆𝑖,𝑗 is the 2D-sensitivity of the input pair (𝑥𝑖 , 𝑥𝑗). 13 

 Figure 12 uses a color matrix to illustrate the 2D sensitivity of each input pair 14 

with a deeper color denoting the higher interaction. It can be observed that the 15 

interaction between softening point and mean temperature is the strongest.  16 
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 1 

Figure 12 2D sensitivity matrix 2 

5.3 Parametric Analysis 3 

To further verify how well the predicted target values agree with the underlying 4 

physical behavior of the investigated problem, a parameter analysis was performed by 5 

moving the objective variable within its domain while keeping other variables equal 6 

to their median values. Figure 13 shows the tendency of the predicted CCR to the 7 

variation of each input variable. AC-20 has slightly better rutting resistance than 8 

SUP-20. CCR decreases drastically with the increase of softening point, and this 9 

decline slows down significantly after the softening point is over approximately 55oC. 10 

Positive correlations were found as expected between the predicted CCR and binder 11 

aggregate ratio, mean temperature and proportion of rainy days. CCR almost keeps 12 

steady up to ESAL equal to 3 × 107 and after that, it continuously increases with 13 

increasing ESAL. It indicates that the rutting resistance of the middle asphalt layer is 14 

susceptible to extremely heavy loads. Further evidence of this can be found in the 15 

correlation between the overloading rate and the predicted CCR, as shown in Figure 16 

13(g). As expected, the CCR of the middle layer materials still shows an increase as 17 

the current rutting becomes deeper but not that sensitive, which may be attributed to 18 

the disturbance of M&R activities implemented on the wearing course or the lagging 19 

between the external rutting performance and inner material degradation. The rational 20 
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relationship between the input variables and the predicted CCR in the GEP model 1 

confirms that the developed GEP model is superior to the MLR model and thus can be 2 

used for prediction purposes. 3 

  

(a)  (b)  

  

(c)  (d)  

  

(e)  (f)  
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(g)  (h)  

 

 

(i)   

Figure 13 Results of parametric analysis. (a) Aggregate gradation, (b) Softening point, 1 

(c) Binder aggregate ratio, (d) Mean temperature, (e) Proportion of rainy days, (f) 2 

ESAL, (g) Overloading rate, (h) Current RD and (i) Pre-treatment RD. 3 

 4 

Moreover, to futher explore the impact of the interaction between softening point 5 

and mean temperature on the model output, a variable effect characteristic (VEC) 6 

surface[42] was drawn. As shown in Figure 14, the combination of low softening 7 

point and high mean temperature accounts for a high CCR value. The GEP model 8 

becomes more sensitive to the softening point as the mean temperature goes up. 9 

Similarly, the GEP model becomes more sensitive to the mean temperature as the 10 

softening point goes down. It indicates that binders with a high softening point must 11 

be used in relatively hot areas, while this is less important in areas where the mean 12 

temperature is lower than 17.5 oC. 13 
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 1 

Figure 14 The VEC surface of the input pair: softening point and mean temperature. 2 

 3 

6 Uncertainty Analysis 4 

The CCR model shown in Eq. (2) was deterministic, which means all input variables 5 

have deterministic values despite the varying levels of uncertainty embedded in them. 6 

However, some input variables utilized by the GEP model have inherent variability 7 

due to the uncertainty in the construction, testing, and deterioration process of 8 

pavement. Furthermore, although the GEP model will faithfully emulate the exact 9 

value of CCR, model error is inevitable. 10 

 11 

6.1 Monte Carlo Simulation 12 

To investigate the effect of the combined uncertainties on the model output, Monte 13 

Carlo simulation (MCs) was performed in this study to propagate different sources of 14 

uncertainty into the CCR prediction. Figure 15 shows the schematic diagram of MCs. 15 

After the uncertainties have been characterized by quantifying their variances and 16 

distributions, a probability density function (PDF) was constructed for each random 17 

variable. MCs was then executed to randomly sample data from the predefined 18 

distributions into the GEP model and to compute the corresponding CCR values. By 19 

repeating this process, the probability distributions of the predicted CCR could be 20 

estimated. More details on the parameters and assumptions of the distribution of each 21 
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random variable are introduced in the following section. 1 

 2 

 3 

Figure 15 Schematic diagram of Monte Carlo simulation. 4 

 5 

6.2 Parameters and Assumptions 6 

The aggregate gradation of middle layer represented by its name is constant and fixed 7 

in the same road section. However, the rutting depth, softening point, penetration, and 8 

binder aggregate ratio are all random variables and vary from core to core. Besides, 9 

the real-time data of overloading rate, mean temperature and proportion of rainy days 10 

are difficult to obtain. Some areas even have no such data at all. As a result, data 11 

collected in earlier years or other areas have to be used to replace or estimate the true 12 

value and hence cause variability in the input variables.  13 

Numerous historical data stored in PMS are capable of providing statistical 14 

distribution properties regarding some input variables, e.g., rutting depth. In this 15 

research, most of the field core locations were roughly documented in a one-kilometer 16 

interval, whereas the original RD data were detected every 10 meters. Hence, there 17 

were about 100 data samples in each coring section that can be used to investigate the 18 

distribution and coefficient of variation (COV) of the RD data. Kolmogorov-Smirnov 19 

test with 95% confidence was employed to determine whether the data follow a 20 

specific distribution. The result shows it is statistically acceptable to consider RD data 21 

to follow a lognormal distribution and normal distribution in 96.9% and 87.5% of the 22 

sections, respectively, as seen in Table 5. So, it is preferable to sample RD from a 23 

lognormal distribution, which is in agreement with the results of Sivilevičius and 24 

Vansauskas [43]. Thus, both current RD and pre-treatment RD were considered to 25 
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follow a lognormal distribution, with the COV ranging from 10% to 40%.  1 

 2 

Table 5 Result of Kolmogorov-Smirnov test 3 

Distribution 
Null hypothesis 

Accept Reject 

Normal  87.5% 12.5% 

Lognormal  96.9% 3.1% 

  4 

The variability of the overloading rate could be estimated from the axle load 5 

spectra of the same section in different years. However, considering the axle load 6 

spectra of the whole service period would overestimate its variability. This may be 7 

ascribed to the significant decline of the overloading rate in recent years due to the 8 

effective control measures adopted by the transport department. Thus, only the traffic 9 

data in the last five years were included here. Haan et al. [44] indicated that 10 

reasonable estimates of the mean and variance of the input variable are more 11 

important than the form of distribution. Since five data samples were not enough to 12 

construct a specific distribution, the overloading rate is therefore assumed to be 13 

normally distributed with the COV varying from 20% to 75% according to the 14 

statistical results. Similarly, it was also decided to assume a normal distribution for 15 

ESAL, mean temperature and proportion of rainy days. As ESAL increase over time, 16 

annual equivalent single-axle loads(AESAL) data instead of ESAL data in the past 17 

five years, were collected to determine the COV range of ESAL.  18 

For other variables, however, these parameters are unknown. Therefore, a normal 19 

distribution is simply assumed for them, and the uncertainty of these variables in 20 

terms of COV were decided according to available literature and expert opinions. 21 

Research has shown that the traditional asphalt binder property indexes, such as 22 

penetration, softening point and binder aggregate ratio (asphalt binder content), have 23 

substantially lower variability than the asphalt mixture property indexes, with the 24 

value of COV less than 10% [45][46]. Accordingly, COV ranges for softening point 25 

and binder aggregate ratio were set to be 0%-10%. The overall results are outlined in 26 

Table 6. 27 

Table 6 Probability distributions of random variables 28 

Random variable Probability distribution COV range 

Softening point normal 0%~10% 

Binder aggregate ratio normal 0%~10% 
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Mean temperature normal 5%~15% 

Proportion of rainy days normal 0%~25% 

ESAL normal 5%~65% 

Overloading rate normal 20%~75% 

Current RD lognormal 10%~40% 

Pre-treatment RD lognormal 10%~40% 

  1 

The second significant source of uncertainty derives from the GEP model error. 2 

This uncertainty was quantified by the residuals calculated as the difference in 3 

prediction values and measured values. Figure 16 shows the distribution of the 4 

residuals, on which the Kolmogorov-Smirnov test was used for testing normality. It 5 

can be observed from Figure 16 that the p-value (0.7431) is much higher than 0.05, 6 

indicating that the normal distribution was not rejected at the 95% significance level. 7 

Thus, the uncertainty incurred by the model error is considered to be normally 8 

distributed with a mean and standard deviation calculated based on model residuals. 9 

 10 

Figure 16 Distribution of the residuals. 11 

 12 

6.3 Results of Uncertainty Analysis 13 

A COV of 5% was first assigned to all the random variables to display how the 14 

uncertainties were propagated to the model outputs by performing MCs. A distribution 15 

rather than a single value of the predicted CCR of the testing samples were obtained, 16 

as presented in Figure 17a, where the subplot shows the cumulative frequency 17 

distribution (CDF) for sample one. The CDF can be used to interpret the predicted 18 



27 

 

CCR values for a target reliability level [47]. For example, the predicted CCR of 1 

sample one at 75% reliability is about 0.9654 (equal to 𝑒−0.0352). That means 75 of 2 

100 predictions for this sample will exhibit CCR less than 0.9654, i.e., there is a 75% 3 

chance that the predicted CCR will be less than 0.9654. 4 

Figure 17b shows the predicted CCR values of the testing samples at a level of 5 

75%, 50%, and 25% reliability, respectively. As seen, the predicting results vary 6 

significantly at different reliability levels. For the middle layer materials to be at least 7 

75% reliable in terms of its high-temperature performance, the green dashed curve 8 

should not exceed the threshold of CCR. The reliability level must be selected based 9 

on the annual budget, as a high-reliability value may sharply increase the cost for 10 

middle layer rehabilitation. It can thus be concluded that disregard of the uncertainties 11 

will result in a prediction or evaluation that does not perform to the required level of 12 

reliability. 13 

  

(a)  (b)  

Figure 17 Results of uncertainty analysis for testing samples(COV=5% for all random 14 

variables). (a) Distribution estimation of the log of predicted CCR and (b) Log of 15 

predicted CCR at different reliability levels. 16 

 17 

Moreover, different sources of uncertainty may affect the predicting results to 18 

varying degrees. Hence, it is of great importance to gain some insight into how every 19 

single uncertain factor works and the relative contributions of these uncertainties. This 20 

will allow engineers to understand whether the uncertainty is reducible through 21 

stricter quality control or refining the prediction model. To this end, four levels of 22 

COV derived from Table 6 were considered for each random variable, among which 23 

COV=0% represents the deterministic results. Only one input variable was set to be 24 

uncertain with a specified COV value and a mean value that is taken within the range 25 

in Table 2, whereas other variables are equal to their median values. The contributions 26 
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of input variability and model uncertainty to the overall variance were also compared.  1 

Figure 18 shows the result, where the x-axis represents the mean value and the 2 

y-axis is the prediction at 75% reliability level. It is observed from Figure 18a that the 3 

CCR values at different COV levels is significantly different for softening point less 4 

than 55 oC. Comparing the CCR values corresponding to the green and yellow solid 5 

lines shows that even a low COV would cause great variance in CCR prediction. The 6 

almost overlapping of the solid red line and the dotted green line in Figure 18a 7 

implies that the variations resulted from input variability and model uncertainty are 8 

comparable when the COV is lower than 5%, and afterward, input variability 9 

contributes more. From Figure 18b, d, e, g and h (binder aggregate ratio, proportion of 10 

rainy days, ESAL, current RD and pre-treatment RD) where all the dotted lines are 11 

above the solid lines, it can be concluded that the influence of model uncertainty is 12 

more significant than the input variability. However, the much smaller y-axis values in 13 

these figures indicate that the degree of impact is limited. Moreover, the partial 14 

overloping of the solid lines and dotted lines in Figure 18e and g suggest that when 15 

ESAL is less than about 1.8 × 107 or current RD is lower than 7.5 mm or so, the 16 

uncertainty of these variables is almost negligible. From Figure 18c, the relatively 17 

higher position of the green dotted line than the red solid line indicates that model 18 

uncertainty has more contributions when the COV of mean temperature is less than 19 

10%. Concerning the overloading rate, the relative position between the green dotted 20 

line and the yellow, red and dark red solid lines signifies that the contributions of 21 

model uncertainty are greater, comparable and smaller than that of input variability, 22 

corresponding to the 20%, 50%, and 75% COV, respectively. Finally, it is clear that 23 

the effect of variability in mean temperature, ESAL, overloading rate and current RD 24 

is more significant at their respective higher values as the distance between solid lines 25 

in different colors is increasing in Figure 18c, e, f and g. In summary, the proposed 26 

model is robust provided that the variability of softening point is strictly controlled. 27 
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(a)  (b)  

  

(c)  (d)  

  

(e)  (f)  

  

(g)  (h)  

Figure 18 Effect of model uncertainty and input variability on the predicted results at 1 

75% reliability level (IV=input variability; MU=model uncertainty). (a) Softening 2 

point, (b) Binder aggregate ratio, (c) Mean temperature, (d) Proportion of rainy days, 3 

(e) ESAL, (f) Overloading rate, (g) Current RD and (h)Pre-treatment RD. 4 

 5 
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7 Conclusions 1 

In this study, a machine learning method named GEP was utilized to predict the 2 

rutting resistance of the middle asphalt layer after long-term field service, and 3 

compared with the traditional MLR method. Different sources of uncertainty were 4 

propagated into the GEP model through Monte Carlo simulation to investigate their 5 

effects on the predicting results and enhance the reliability of the prediction. Based on 6 

the outcome of this study, the following conclusions have been obtained: 7 

• The developed GEP model was capable of predicting the CCR of middle layer 8 

asphalt mixtures with high accuracy. It can be used as an alternative to the 9 

field core test and can generate a continuous profile of the high temperature 10 

performance of the in-service asphalt mixture. Compared with the MLR model, 11 

the GEP model shows better prediction performance. The GEP model satisfies 12 

all the criteria for external validation, while the MLR model failed one 13 

criterion. 14 

• The input variables selected in the optimal GEP model included aggregate 15 

gradation, softening point, binder aggregate ratio, mean temperature, 16 

proportion of rainy days, ESAL, overloading rate, current RD and 17 

pre-treatment RD. Among them, softening point, binder aggregate ratio and 18 

mean temperature were found to have the most significant contribution to the 19 

GEP model, followed by overloading rate and proportion of rainy days. CCR 20 

was most sensitive to softening point. The material properties of the asphalt 21 

binder dominate the rutting resistance of the in-service asphalt mixtures. The 22 

interaction between softening point and mean temperature was the strongest. 23 

The combination of low softening point and high mean temperature led to a 24 

high CCR value. 25 

• The parametric analysis demonstrated that the predicted target values were in 26 

close agreement with the underlying physical behavior of the investigated 27 

problem. CCR decreased drastically with the increase of softening point. 28 

Positive correlations were found between the predicted CCR and binder 29 

aggregate ratio, mean temperature, proportion of rainy days and current RD. 30 

Extreme heavy loads or high overloading rate would greatly increase the 31 

rutting potential of the middle asphalt layer. 32 

• The implementation of uncertainty analysis enables the prediction of CCR for 33 

a target reliability level. Transport agencies are then allowed to make their 34 

M&R plans according to the specified reliability target. The influence of 35 
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model uncertainty is more significant compared with that of input variability 1 

in binder aggregate ratio, proportion of rainy days, ESAL, current RD and 2 

pre-treatment RD. However, for other variables, the contributions of input 3 

variability and model uncertainty to the overall variance could be either 4 

different or comparable, depending on the COV levels. Among all the 5 

uncertainties, the variability in the softening point should be strictly controlled, 6 

especially when the softening point is less than 55 oC. 7 

Despite the contributions this study has made, there are still opportunities to 8 

further improve this research. First, the estblished GEP model was found to have 9 

some difficulties in distinguishing smaller CCR values. This can probabily be solved 10 

by improving the data quality of smaller CCR value. Second, the sample size of CCR 11 

data is still limited which implies the needs to accumulate more data samples. 12 

Meawhile, it should be mentioned that the accumulation of test data for in-service 13 

asphalt mixtures will never stop. By expanding the experimental database and 14 

allowing the model to continue learning, the model can be further improved. This 15 

study just prove the feasibility and construct the framework of modelling in-service 16 

material properties of asphalt pavement. Further research could also include other 17 

material property indicators and asphalt layers. 18 
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