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Abstract: It will be practically useful to know the mechanical properties of granular materials by only 

taking a photo of particles. This study attempts to deal with this challenge by developing a novel deep 

learning-based modelling strategy. In this strategy, the convolutional neural network (CNN) as image 

identification algorithm is first used to extract the particle information (particle size distribution PSD and 

morphology) based on the image of a granular sample, and the bidirectional long short-term memory 

(BiLSTM) neural network is employed to train the model of reproducing mechanical behaviours and 

induced fabric evolutions of the sample with corresponding particle information. The datasets of images of 

samples are generated using discrete element method, and the datasets of mechanical properties together 

with fabric evolutions are obtained through numerical tests on corresponding samples. As a preliminary 

attempt, two-dimensional biaxial samples and tests with initially isotropic fabric are considered for the sake 

of simplicity. The feasibility and reliability of the proposed modelling strategy are evaluated through 

training and testing. All results indicate that the first part of the model based on CNN is capable of 

accurately identifying PSD of a granular sample, as well as circularity and roundness of particles, using 

which as connecting parameters the mechanical behaviours together with induced fabric evolutions of 

granular materials are subsequently well captured by the second part of the model based on BiLSTM. This 

study provides a basis and a possible way to obtain immediately particle and packing information, 

mechanical properties and fabric evolutions by leveraging images of granular materials. 
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1. Introduction 

The physical and mechanical behaviours of granular materials are complex, because such materials are 

composed of distinct solid particles interacting with one another [1], which means that the behaviours of 

granular materials are primarily affected by their particle interactions particularly relating to the particle 

size distribution (PSD) [2-6] and the particle morphology [7-12]. Experimental tests tend to explain the 

behaviours of granular materials and investigate the effects of various factors from the macroscopic 

viewpoint [13-16], but the measurements are expensive using various advanced experimental techniques 

[17]. Analytical methods derived from continuum mechanics are generally based on strong assumptions 

with complicated mathematical formulations and myriad parameters which poses great difficulty for 

engineers in practice. If there is a way through recognizing individual particles and packing assembles to 

know the mechanical behaviour of the granular material, it will be genius and practically useful. The rapid 

development and application of deep learning (DL) nowadays bring a dawn for this. 

Recently, the application of DL, e.g. convolutional neural network (CNN) and long short-term memory 

(LSTM), to simulate various properties of materials has gained great attention owing to its strong non-linear 

mapping capacity [18, 19]. CNN and its variants can directly extract microscopic information from images. 

Thereby, they have been applied to acquire properties from images of the studied material, such as the 

evaluation of permeability of porous media [20] and the prediction of fracture evolution of brittle material 

[21]. LSTM and its variants are characterized by sequence prediction, in which the historical information 

can be stored and learned. They have thus been successfully employed to simulate path-dependent 

behaviours of granular materials [22, 23] and demonstrated superior performance than other machine 

learning algorithms [24]. However, the current application of DL to identify the particle information of 

material such as the study of PSD and particle morphology is limited, and DL to model macroscopic 
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behaviours is typically only based on results of stress-strain without relating to particle and inter-particle 

information. Therefore, the feasibility of DL-based mechanical modelling with detecting particle 

information only upon images of granular materials deserves to be investigated. If do so, both experimental 

and computational costs can be significantly reduced for engineering practice. 

For such purpose the datasets creation with both micro and macro information is necessary. The 

idealist method is to use Micro-Computed Tomography with performing mechanical tests on real granular 

materials [25-27]. Indeed as a preliminary attempt of the DL-based modelling strategy from image of 

particles of a sample to mechanical properties, two-dimensional (2D) discrete element method (DEM) well 

capturing granular mechanics in an analogous but simplified manner may also be a good choice. Note that 

DEM is a widely applied method to simulate behaviours of granular materials with providing physics 

insight for granular mechanics [1, 28-32]. Besides, the numerical tests eliminate experimental errors due to 

artificial operation or machine problems. DEM itself is computationally expensive on mechanical 

modelling [33], but this disadvantage can be eliminated by DL-based modelling if the datasets of DEM 

simulations are prepared in advance. 

Therefore, in this study a novel DL-based strategy for recognising the particle information and 

behaviours of granular materials from image of particles is proposed. The results of DEM-based numerical 

biaxial tests with various particle size distributions and particle morphologies are converted into the 

auxiliary training and testing data. The proposed strategy includes two parts: CNN is first employed to 

identify the particle information including PSD and morphology, followed by BiLSTM to describe the 

mechanical behaviours and induced fabric evolutions of granular materials.  
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2. Generalization of applied methods 

2.1 Indicators of particle and packing assembly 

Myriad factors control the mechanical behaviour of granular materials, in which only the PSD and particle 

morphology, as two key fundamental factors, are selected for the sake of simplicity. PSD is computed based 

on the sizes of all individual particles, and the particle morphology is represented by its circularity and 

roundness in this study (Fig. 1). Circularity (C) describes the relative sharpness of corners and edges of a 

particle, and roundness (R) is a measure to describe the approximation degree of the overall outline of a 

particle to a circle. Methods proposed by Cox [34] and Wadell [35] (Eq. 1) are used to measure the 

circularity and roundness of a particle, respectively. The entire morphology of a sample is represented by 

its average circularity Ca and average roundness Ra (Eq. 2). 
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where A and P are the area and perimeter of a particle, respectively; nc is the number of corners of a particle; 

Dr and Di are the diameters of curvature of a corner and the largest inscribed circle, respectively; np is the 

number of particles for a given sample. For a circular particle, both C and R are equal to 1. For a triangular 

particle, C and R are identical to 0.605 and 0, respectively.  

2.2 Discrete element method and fabric evolution 

A series of 2D DEM-based biaxial test simulations on samples with different PSDs, morphologies are first 

carried out to create training and testing datasets. For a given combination of PSD and morphology, loose 

and dense samples are generated. All particles are generated within a plain bounded by rigid walls. Velocity-
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controlled loading is assigned vertically and constant pressure is applied laterally. The particles in DEM are 

assumed to be rigid without deformation, and the dynamic modelling process is controlled by time step. 

The deformation of particles is simulated by overlapping, and the corresponding contact force is calculated 

using the contact model [29]. A linear elastic contact model with Coulomb’s friction criterion is applied, in 

which the contact force Fc is resolved into linear Fl and dashpot force Fd, and the contact moment is 0. 

Linear elastic and frictional inter-particle behaviours are considered. The motion of the particle is updated 

using Newton’s second law. A typical set of variables used in DEM is summarized in Table 1.  

By analysing the distribution of contacts E(θ) along with loading, which defines the portion of contacts 

falling within a given angular interval, fabric evolution can be inferred [36]. A second Fourier component 

provides a basis of approximating the distribution of contact normal orientation (Eq. 3). 

    
1

1 cos 2
2

+ aE a  


     (3) 

where a describes the magnitude of anisotropy in the contact normal orientation and θa describes the 

direction angle of anisotropy, which can be computed using: 

    
2

0
cos2 2 cos2 aE d a



    ;    
2

0
sin 2 2 sin 2 aE d a



     (4) 

Particularly, for the fabrics of normal and tangential forces, a can be replaced by an and as, respectively, 

meanwhile θa can be replaced by θn and θs, respectively. The analytical calculations of fabric anisotropy for 

normal force fn and tangential force fs can be derived from [36]: 

    0 1 cos 2n n nf f a       ;    0 sin 2s s sf f a      (5) 

where f0 is the average normal force. Noticed that Eq. 5 can also be used to describe the distribution of 

normal contact, in which f0 denotes the average number of normal contacts. 
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2.3 Convolutional neural network 

Inspired by the characteristics of CNN, two-dimensional CNN (con2d) is used to identify the particle 

information of granular materials. CNN generally consists of convolutional, pooling and fully-connected 

layers (Fig. 2). Given an image with the size of hr (height)× wr (width)× cr (channel, 1 for grayscale image 

and 3 for colour image), the size is rescaled to hc×wc×cc×nc after convolved by n kernels [37]. The size of 

each kernel is identical with both height and width of f. The kernel scans the image from left to right and 

from top to bottom with a fixed stride s to extract features. This process is achieved by computing the dot 

product between the entries of the kernel and the input image, and a 2-dimensional feature map is computed 

subsequently. Noticed that the kernel may exceed the boundary of an image when scanning the edge. Under 

that condition, the pixel value of the overflow part is assigned as 0. Therefore, the size of feature maps is: 

 ,  ,
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 (6) 

where S
r 

i  and S
c 

i  denote the size of images along the ith dimension in the input and convolutional layers, 

respectively;     is the ceiling function, which maps x to the least integer larger than or equal to x. 

The pooling layer merges similar features in the feature map and further reduces the size of feature 

map to hp×wp×cp×nc using Eq. 6. The Max-pooling layer is used in this study, in which the maximum value 

in a region of feature map represented by a filter is retained. The feature map with two dimensions is 

flattened finally so that they can be fed into the fully-connected layer.  

2.4 Bidirectional long short-term memory neural network 

BiLSTM is adopted to capture the mechanical behaviours and induced fabric evolutions of granular 

materials in this study. Long short-term memory (LSTM) that can store and learn historical information has 

been proved to be suitable for modelling path-dependent behaviours of granular materials [22]. A memory 
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cell with an entity termed as “gate” is devised and embedded into the topology of LSTM to overcome the 

issues such as gradient vanishing and exploding [38] in conventional recurrent neural networks [39]. A 

series of variants motivated by the “gate” mechanism has been proposed and applied to specific issues, such 

as bidirectional LSTM (BiLSTM) [40] and gated recurrent unit (GRU) [41]. Herein, BiLSTM has the same 

architecture of memory cell with LSTM, but BiLSTM takes use of both positive and reverse sequential 

information, enhancing the interaction of sequential datasets. The number of weights and biases in BiLSTM 

increases two times in comparison with LSTM. Compared with general issues in the ML domains, the 

number of datasets and feature used in constitutive modelling of granular materials is much less, thereby 

the BiLSTM-based constitutive model can be controlled with a simple framework. The effect of the 

increasing number of weights and biases on computational efficiency is not discernible. To this end, 

BiLSTM is finally employed to simulate macroscopic behaviours of granular materials in this study (Fig. 

3). 

3. DL-based modelling strategy and generation of datasets 

3.1 Data source 

The dataset of biaxial tests used in this study are generated using DEM (download via: 

https://www.researchgate.net/publication/349532612_DEM_data_for_biaxial_simulations), since the simulation 

results are not interfered by experimental errors, which ensures to fairly evaluate the feasibility and 

performance of the DL-based modelling strategy from micro to macro scales. The height and width of the 

representative volume element (RVE) are 4 and 8 mm, respectively (Fig. 4). The RVE is initially 

compressed to an isotropic stress of 200 kPa, followed by the imposed velocity-controlled loading until the 

vertical strain reaches 15%. Meanwhile, the lateral stress maintains constant. The trajectory of mean stress 

p, deviatoric stress q, void ratio e (Eq. 7) and fabric anisotropy is recorded. The detailed modelling cases 
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through DEM is summarized in Table 2. 

Herein, the preparation of loose and dense DEM samples refers to Muir and Maeda [42], in which the 

maximum and minimum void ratios (emax and emin) for a sample are first calculated, and the porosity n with 

a given Dr can be inferred subsequently using Eq. 8. The dense and loose samples are prepared using 

frictionless particles and particles with the friction coefficient of 0.5, respectively. 
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where σ11 and σ22 are the vertical and lateral stress, respectively; Vv and Vs are the volume of void and solid 

assembly, respectively.  

In total, 200 DEM-based biaxial tests are ultimately implemented, which sufficiently guarantees the 

stability of model performance in the presence of small data regime [43]. The images of all samples, PSD, 

particle morphology, stress-strain curves and induced fabric evolutions are collected to create a database. 

Note that the global behaviours from numerical biaxial tests are used for datasets, although there are shear 

bands inside of samples which may influence the sense of representative element of volume. 

3.2 Data preprocessing 

Data augmentation is employed to enlarge image database to improve the generalization ability of the CNN-

based model [44]. The application of data augmentation techniques is required to retain the original 

information of samples. To this end, only flip data augmentation technique is used in this study, i.e., all 

original images are flipped horizontally and vertically, thereby the size of database enlarges three times 

with a total of 600 images. Each image is labelled by the PSD and sample type. 
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The raw simulated results of DEM fluctuate dramatically. Such variable datasets impose difficulties 

on BiLSTM to learn useful information. Therefore, piecewise cubic Hermitean interpolation polynomials 

method [45] and Savitzky-Golay denoising [46] methods are used to interpolate and smooth data, because 

such two methods can enlarge the database and smooth data without changing the shape of raw stress-strain 

curve (Fig. 4). Two databases are ultimately constructed, one is the image database including 600 images 

of samples, another includes the corresponding stress-strain data. 

Regarding the image database, the original pixel values for an image range from 0 to 255. If the 

original images are directly fed to the CNN-based model, the values in the feature map would be extremely 

large, which may result in difficulty in the convergence of a training process. Therefore, the RGB values 

are rescaled into the range (0, 1) by multiplying 1/255 factor in this study [47]. Regarding the database of 

stress-strain relationships, to eliminate the effect of scale difference of input parameters on the training 

process of BiLSTM, all datasets are normalized into the range of (–1, 1) using the Min-Max scaling method. 

Herein, 80% of images (480) are randomly selected to train the CNN-based model and the remaining 

20% of images (120) are used to test the model. Because each image is flipped horizontally and vertically 

at the image augmentation phase, three images present the same sample. The testing set is thus constrained 

with 40 different samples for fairly evaluating the performance of the CNN-based model. Meanwhile, the 

corresponding 80% (160 cases) and 20% (40 cases) of strain-stress datasets are employed to train and test 

the BiLSTM-based model, respectively. It should be noted that the cases used for the training and testing 

sets in the CNN and BiLSTM-based models are the same. Therefore, for a single case in the testing set, the 

outputs of the CNN-based model can be directly fed to the BiLSTM-based model. The consistency of 

applying the proposed DL-based modelling framework is guaranteed in this way. 
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3.3 Framework of modelling strategy 

3.3.1 CNN-based particle identification model 

Fig. 5 presents the schematic view of the proposed DL-based modelling framework from particle to sample 

scales. The modelling starts from identifying PSD and morphology of samples using CNN. By importing 

the image of a sample into the CNN-based model, and the corresponding PSD and morphology can be 

predicted. Accordingly, two CNN-based models are developed, one for PSD identification and another for 

particle morphology.  

Motivated by Buscombe [48], to obtain the PSD of a sample, CNN is designed to identify the diameter 

through which 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of particles pass. 

The dimension of the output in the CNN-based model is thus identical to 12. To identify particle 

morphology, the direct intention is to identify the ratio of each type of particles, thereby the aforementioned 

Ca and Ra can be calculated. However, this study merely considers round and triangular particles, and five 

types of samples with different mixture ratios are prescribed. Therefore, the identification of particle 

morphology can be converted into a classification issue, i.e., the identification of sample type. The 

mathematic expression for computing PSD and morphology via CNN is given in the Appendix A1.  

3.3.2 BiLSTM-based mechanical prediction model 

The second phase of the proposed framework is to develop a BiLSTM-based model for predicting 

mechanical behaviours and induced fabric evolutions of granular materials. The selection of features 

determines what factors can be considered by the date-driven model, thereby it is related to the application 

scopes of the BiLSTM-based model [49]. To this end, features are required to involve inherent properties 

of the studied object, state parameters and history information of stress or strain, presented as follows: 
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 The inherent properties of granular materials are identified by the CNN-based model at the first phase. 

Herein, the mean particle size d50 and the coefficient of uniformity Cu derived from the PSD as 

representative indicators are selected as the input variables. The inherent properties of a sample are 

thus represented by four variables, i.e. d50, Cu, Ca and Ra. 

 State variables are employed to reproduce the experimental process including initial void ratio e0, 

relative density Dr and vertical strain ε. 

 The outputs of the BiLSTM-based model at previous time steps are fed to the input variables for 

considering history loading path.  

Hence, the input parameters of the BiLSTM-based model for modelling mechanical behaviours are x 

= [p, q, e, ε, e0, Dr, d50, Cu, Ca, Ra], and x = [a, an, as, ε, e0, Dr, d50, Cu, Ca, Ra] for predicting fabric evolutions. 

The direction angle of fabric anisotropy roughly maintains constant in the biaxial test, thereby anisotropy 

variables regarding the magnitude of anisotropy a, an, as are predicted while the direction angle of 

anisotropy maintains initial values. The detailed mathematic expression of a BiLSTM-based model is 

introduced in the Appendix A2. 

4. Applications 

4.1 Training of the CNN-based model 

The development of the DL-based model is implemented using Keras with the Tensorflow backend [50]. 

The training of CNN is first to determine the number of convolutional, pooling, fully-connected layers, and 

the hidden neurons in each layer. Other hyper-parameters such as optimizer, learning rate, activation 

function, batch size and epochs are required to be finely tuned. The prediction of PSD is a regression issue, 

mean square error (MSE) is thus set as the loss function. Meanwhile, k-fold cross-validation method is 
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employed to detect the overfitting issue. The loss function is finally formulated using: 

  
2

1

1 1
MSE

subn
p a

i i

isub

y y
k n 

   (9) 

where nsub is the number of datasets in a sub validation set; k is the number of folds, which is usually set as 

10; y
p 

i  and y
a 

i  are predicted and actual values, respectively. The configurations of the CNN-based model 

are determined using the trial-and-error method, and the detailed process is not presented for brevity. The 

final configurations are summarized in Table 3. The number of weights and biases are 6193176 and 92, 

respectively. It can be seen from Fig. 6a that MSE values on the training and testing sets are small and 

rapidly converge within 50 epochs.  

The shallow layers of the CNN-based model focus on extracting features of each sample, while the 

deep layers are used to fuse features and the outputs tend to be abstract. To reveal the mechanism of the 

CNN-based model to identify the PSD, the outputs at the shallow layers are illustrated. Feature maps in the 

fundamental four layers of the model are illustrated in Fig. 7. When a particle is convolved by a kernel, the 

output is dependent on its size. After three kernels convolve the whole image (con2d_1, con2d_2, con2d_3) 

and pass through the pooling layer (max_pooling2d_1), particle size information is stored in the feature 

map with different values and are thus marked with different colours. Accordingly, the CNN-based model 

can distinguish the particle size and predict PSD.  

The identification of particle morphology is a classification issue, thereby the average cross-entropy 

(ACE) is tailored for objectively calculating the discrimination between predicted and actual labels [51]. 

  ,

1 1

1
ACE ln

n C
a

j i j i

i j

y f x
n  

    (10) 

where C is the number of classification labels; n is the total number of datasets; y
a 

j,i is the actual label; fj(xi) 
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is the output of the CNN-based model for an input xi. The evolution of ACE values on the training and 

testing sets is presented in Fig. 6b. The number of weights and biases are 6190072 and 61, respectively. 

The training process rapidly maintains stable, and the ACE value accordingly decreases to 0 within 50 

epochs. Similar to the identification of particle size, the pixel size and value for a triangular particle and a 

circular one are different, thereby CNN can extract the particle morphology information. The process of 

extracting features in the CNN-based particle morphology identification model is the same as the principle 

revealed in Fig. 7, the feature map in each layer is thus not presented for brevity. 

4.2 Training of the BiLSTM-based model 

Similar to CNN, the training of the BiLSTM-based model is primarily to determine the number of hidden 

layers and hidden neurons in each layer, and other hyper-parameters are required to be finely tuned. The 

configurations of the BiLSTM-based model are determined using the trial-and-error method, and the results 

are presented in Table 3. The number of weights and biases are 67560 and 963, respectively. 

One of the important configurations in BiLSTM is the time step, which determines how long the stress-

strain history can be taken into account by the BiLSTM-based model. The history information enforces the 

capacity of modelling mechanical behaviours, but too long history information also degrades the learning 

efficiency and causes overfitting. To this end, three steps of stress-strain history before the current step are 

selected, i.e., the time step of BiLSTM is set as 3. Because the number of datasets at each experiment is 

identical to 1503, the batch size is thus set as 1503 to ensure BiLSTM can learn the entire information of 

an entire experiment at each round. Considering the prediction of mechanical behaviours is a regression 

issue, the MSE is also set as the loss function. The evolution of MSE values generated by the BiLSTM-

based models for predicting mechanical responses and induced fabric evolutions during the training process 

is presented in Figs. 6c and 6d, respectively. The MSE values on both training and testing sets dramatically 
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decrease to a negligible value within 50 epochs. Compared with the evolution of MSE values generated by 

the CNN-based PSD identification model (Fig. 6a), the MSE values generated by the BiLSTM-based 

models are more fluctuant, because the ranges of outputs in the BiLSTM-based model is much larger than 

the range of outputs (i.e. diameters of particles) in the CNN-based PSD identification model. Overall, the 

MSE values are small, thereby the performance of training can be guaranteed. 

4.3 Modelling results of the CNN-based model 

After the optimum configurations of the CNN-based model are determined, the training and testing sets are 

fed to the model to examine its generalization ability. To quantitatively evaluate the performance of the 

BiLSTM-based model. Absolute and relative error indicators, i.e., mean absolute error (MAE) and mean 

absolute percentage error (MAPE), are computed. 

 
1

1
MAE

n
p a

i i

i

y y
n 

  ; 
1

1
MAPE 100%

p an
i i

a
i i

y y

n y


   (11) 

The MAE and MAPE values generated by the CNN-based model for predicting PSD is summarized 

in Table 4. The error is not discernible and MAPE value is largely owning to the small value of the 

denominator. To comprehensively evaluate model performance, the predicted results of 5 samples in the 

testing set with different mixture ratio and PSD are particularly selected. It can be seen from Fig. 8 that the 

predicted PSD curves are close to the evolution of actual points, and the calculated d50 and Cu are roughly 

identical to the actual results. Such factors indicate CNN deduces plausible identification for the PSD of 

granular materials. 

The result of identifying particle morphology on the testing set is presented in Fig. 9. The confusion 

matrix is used to evaluate the classification accuracy of the CNN-based particle morphology identification 

model. The sum of probability at each column is identical to 0. Given an actual mixture ratio, the predicted 
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mixture ratio has five conditions, but only one condition that is located at the diagonal line is correct. It can 

be observed that the CNN-based model perfectly identifies the mixture ratio with the probability along the 

diagonal line of 1. CNN provides a direct and reliable way of identifying the particle information of granular 

materials. 

4.4 Modelling results of the BiLSTM-based model 

The number of datasets used in the BiLSTM-based model is large. Each simulation test consists of 1503 

datasets, and the training and testing sets include 160 and 40 numerical simulations, respectively. Although 

MAE and MAPE values on the testing set are roughly 5 times the values on the training set, the prediction 

errors are negligible (Table 4). To reveal the modelling results of the BiLSTM-based model, the mechanical 

behaviours of 5 samples in the testing set (the same as the selected samples in the former section) are 

illustrated (Fig. 10). The BiLSTM-based model can accurately capture the relationships of p–ε, q–ε and e–

ε. Cho et al. [52] demonstrated that the increasing angularity leads to the increasing strength of soil mass, 

extreme emax and emin. The simulated results in Fig. 10 also present a similar trend, in which the increasing 

ratio of triangular particles results in higher peak stress and lower initial void ratio. The BiLSTM-based 

model captures the effects of mixture ratio of on the mechanical behaviours. For a biaxial test simulated 

using DEM, a 2-dimensional granular specimen dilates at a greater rate than the real specimen particularly 

for angular particle [53, 54]. Moreover, the increasing triangular particles cause denser sample with a 

smaller initial void ratio, and the volumetric dilatancy is more obvious due to the rolling of triangular 

particles during the shearing process. Therefore, it can be seen from Fig. 10 that the volumetric compression 

on the loose sample merely appears as the ratio of triangular particles is less than 75%. Volumetric dilatancy 

is observed on both dense and loose samples in most of cases. Mechanical behaviours including stress 

softening and volumetric dilatancy on the dense samples, stress hardening and volumetric compression on 
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the loose samples with a large ratio of circular particles can accurately be captured by the BiLSTM-based 

model. Such factors indicate BiLSTM understands the intrinsic physical mechanism of granular materials, 

showing great potential of modelling their mechanical behaviours.  

The prediction errors on the induced fabric evolutions are also small (Table 4). MAE and MAPE values 

on the testing set double the values on the training set. Fig. 11 presents the evolution of predicted and 

measured a, an and as, which reveals the magnitude of anisotropy of contact number, contact normal force 

and tangential force, respectively. The BiLSTM-based model is capable of accurately predicting the 

evolution of induced anisotropy. With the increasing ratio of triangular particles, the magnitude of 

anisotropy increases. Detailed inspection of the modelling results indicates that the peak values of a, an and 

as reach at ε of around 2%, which is close to the position where peak strength reaches (Fig. 10). Thereafter 

the values of a, an and as reduces for the dense samples, and maintains steadily for the loose samples. The 

ultimate values of a, an and as of dense and loose samples with the same mixture ratio are roughly identical. 

Such results reflect the variation of the microstructure of granular samples, and it further induces the 

corresponding responses of global mechanical behaviours. Overall, BiLSTM is capable of identifying the 

physical phenomena on both microscopic and macroscopic scales.  

5. Evaluation of generalization ability and robustness 

Understanding the performance of DL-based model on unknown data is vitally important to guarantee its 

application scope. Four additional numerical biaxial tests with two mixture ratios (R10_T90 and R90_T10) 

that out of the range of the training set are conducted using DEM, in which the d50 and Cu of the R10_T90 

sample are 0.0006 and 3.5, respectively. The d50 and Cu of the R90_T10 sample are 0.0007 and 3.75, 

respectively. Both dense and loose samples for each mixture ratio are prepared for testing set. For testing, 

the images of the four new samples as inputs are fed to the developed CNN-based model to predict the PSD, 
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i.e., d50 and Cu. They are then automatically fed to the developed BiLSTM-based model with pre-assigned 

morphology information to predict the mechanical behavours of these new samples. The predicted results 

are compared with simulated results of DEM to evaluate the generalization ability and robustness of the 

proposed DL-based modelling framework. Good agreement demonstrates that the DL-based model can still 

accurately capture the evolution of mechanical responses and induced fabric evolution for samples with 

novel particle morphology. Based on the predicted a, an and as, the distribution of contact normal can be 

fitted using Eq. 5. The results for a dense sample R10_T90 as a representative example are illustrated in 

Fig. 13. It can be observed that the fitted contact normal distribution, distributions of normal and tangential 

forces show excellent agreement with the measured results. The evolution of anisotropy with the increasing 

vertical strain can be accurately captured. These factors indicate the proposed DL-based modelling 

framework is promising for multiscale modelling. The DL-based model is capable of accurately capturing 

the effects of particle information on the mechanical behaviours and induced anisotropy, such as effects of 

particle morphology and relative density on the characteristics of deformation and strength with the 

magnitude of anisotropy.  

 

6. Conclusions 

A DL-based modelling strategy from image of particles to global behaviours of the sample of granular 

materials has been developed. In this approach, CNN was first used to extract the particle information (PSD 

and morphology), and BiLSTM neural network was then employed to simulate the global mechanical 

behaviours and fabric evolutions of granular materials. The datasets of biaxial samples and tests were 

created using DEM with different particle information for training and testing.  

As demonstrated, the proposed CNN-based model part is capable of accurately identifying mean 
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diameter and coefficient of uniformity of a granular sample, as well as circularity and roundness of a particle, 

which provides a direct and easy way of acquiring the particle information of granular materials. The effects 

of PSD, particle morphology and relative density on the global mechanical behaviours and induced fabric 

evolutions of granular materials have been well captured by the BiLSTM-based model with the particle 

information as connecting parameters. Thus, the feasibility and reliability of the proposed modelling 

strategy have been evaluated. 

It should be pointed out once two DL-based model parts embedded in the proposed modelling 

framework are well trained, the whole modelling process from extraction of particle information to 

prediction of mechanical and fabric behaviours can be completed within seconds. The computational source 

is dramatically saved. Moreover, the proposed modelling framework is genetic, which means the datasets 

can be replaced by the real experimental or brilliant numerical datasets to investigate different issues, such 

as Micro-CT for real granular materials on real granular materials, 3D numerical modelling and making 

use of contact distribution to consider the fabric of materials. Meanwhile, the applied DL algorithms can 

also be updated by more advanced and effective algorithms considering the rapid development in the DL 

domain.  

 

Appendix 

A1 - Mathematic expression of the CNN-based model 

Given a set of images of a soil sample that are digitalized by x, the computation of the CNN-based model 

with two convolutional layers, one pooling layer and one fully-connected layer as a representative example 

is carried out. 
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(1) from the input x to the first convolutional C1 layers: 

  1

1 ReLU +
j

j i jC
sum b 
  

C W x  (A1) 

where C
1 

j  denotes the outputs convolved by the jth kernel in the C1 layer; 1
jC

W  is weights of the jth kernel 

in the C1 layer; bj is a bias term at the jth kernel; sum denotes the summation of all elements; ReLU 

represents the activation function rectified linear unit (ReLU). 

(2) from the first C1 to the second C2 convolutional layers: 

  2

2 1ReLU +
j

j i jC
sum b 
  

C W C  (A2) 

where the meaning of all notations can refer to Eq. A1. 

(3) from the second convolutional C2 to the pooling P1 layers: 

  1 1 1 1

1 2 2 2 2

, , , 1 1, 1, 1max , , ,..., , ,
P P P P

i j i j i j f i f j i f j f       P C C C C  (A3) 

where max function indicates the output at the P1 layer is the maximum value of a region covered by a 

kernel with a size of 1P
f .  

(4) from the pooling P1 to the fully-connected F1 layers: 

  1 1
1

1 1 1 1

1 2ReLU , , ,..., b
P

nF F

   
  

F W P P P  (A4) 

where 1P
n  denotes a total of elements in the P1 layer; 1F

W  and 1b
F

 are the weights and biases 

connecting P1 and F1 layers, respectively. 

(6) from the fully-connected F1 to the output y layers: 

 ; b b
y b y

y n y y n yy n y

PSD mor
e e       W F W F

W F  (A5) 

where Wy and by are the weights and biases connected F1 and y layers, respectively. Eqs. The computation 

of regression and classification problems is different, as shown in A5, where the outputs of PSD (yPSD) and 
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particle morphology (ymor) identification models are given.  

A2 - Mathematic expression of the BiLSTM-based model 

In BiLSTM (Fig. 3), pW, pU and pb are the weights matrices and biases vector used for the positive data 

flow. rW, rU and rb are used for the reverse data flow. The same architecture of the memory cell is used for 

positive and reverse directions, which means the dimensions of matrices and biases used in both positive 

and reverse data flow is identical, but the values are different. The mathematical expression of the BiLSTM-

based model with one LSTM layer, one fully-connected layer and a time step of t as a representative 

example is revealed as follows: 

(1) From the first input x1 to the LSTM layers at the first time step ph1 (positive data flow), it starts from 

the calculation of the forget, input and output gates: 

 
 1 1 0

f x h b
p p p p p

f f f    W U
  

  1 1 0
i x h b

p p p p p

i i i    W U   

  1 1 0
ο x h b

p p p p p

o o o    W U  (A6) 

where subscript f, i and o denote the weight matrices and bias vectors used in the forget, input and output 

gates, respectively. σ is the activation function sigmoid. Superscript p denotes the positive data flow. ph0 

with zero values denotes the initial hidden state. The output of memory cell is obtained by: 

 1 1 0ELUc x h b
p p p p p

c c c    W U ; 
1 1 0 1 1

c f c i c
p p p p p  ;  1 1 1ELUh o c

p p p  (A7) 

where  denotes the element-wise product. pc0 with zero values denotes the initial memory state. ELU is 

the activation function exponential linear unit. 

(2) from the first ph1 to the next time step ph2, ph3, …, pht in the LSTM layers: the calculation is similar to 
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Eqs. A6-A7, the only difference is the x1 and ph0 are replaced by x2 and ph1, respectively. The subsequent 

calculation steps are similarly repeated until the pht is obtained.  

(3) the ultimate output of the first LSTM layer ht: procedure (1) and (2) reveal the positive data flow, and 

half of the first hidden state. The calculation method of reverse data flow is same, in which the only 

difference is that the calculation starts from the tth time, and rW, rU and rb are used instead of pW, pU and 

pb. Therefore, the ultimate output of the first hidden layer is obtained by integrating the outputs of memory 

cell in both positive and reverse data flow using:  

 
1 1

h h h
p r t   (A8) 

where   denotes concatenation operation.  

(4) from the LSTM h1 to the fully-connected layers F: 

  1tanhF h bF F  W  (A9) 

where WF and bF are the weights and biases used in the fully-connected layer, respectively. 

(5) from the fully-connected to the output layers: 

 y F by y  W  (A10) 

where Wy and by are the weights and biases used in the output layer, respectively. y is the predicted 

mechanical responses or fabric evolutions based on the input x. 
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Table 

Table 1 Parameters used in DEM modelling 

Parameter Value 

Particle density (kg/m3) 2650 

Inter-particle friction coefficient 0.5 

Friction coefficient of particle-wall 0 

Inter-particle contact normal stiffness (N/m) 1.5×108 

Inter-particle contact shear stiffness (N/m) 1.0×108 

Normal stiffness of particle-wall (N/m) 15×108 

Shear stiffness of particle-wall (N/m) 10×108 

Damping ratio 0.7 

 

 

Table 2 Summary of numerical sample types for the database 

5 Mixture ratios R0_T100 (100% triangle particles), 

R25_T75 (25% round and 75% triangle particles), 

R50_T50 (50% round and 50% triangle particles), 

R75_T25 (75% round and 25% triangle particles), 

R100_T0 (100% round particles) 

20 PSDs (d50/mm, Cu) for each 

mixture ratio 

(0.55, 1.83), (0.7, 3.75), (0.8, 5), (0.6, 3.5), (0.4, 1.6), (0.55, 3), (0.9, 5), (0.6, 3.5), 

(0.6, 3.5), (0.5, 1.83), (0.55, 2.75), (0.7, 3.75), (0.8, 4.5), (0.6, 3.5), (0.4, 1.6), 

(0.55, 3), (0.6, 3.5), (1.2, 6.5), (0.6, 3.5), (0.5, 1.83) 

2 Dr (%) for each mixture ratio 10, 80 

Total number of simulation cases 5×20×2 = 400 
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Table 3 Configurations of the DL-based model 

Model  

type 

Layer 

type 

Num. of 

neurons 

Num. of 

kernel 

kernel 

size 

Activation 

function 

kernel  

initializer 
Note 

PSD C / 8 3, 3 ReLU RU 

optimizer = SGD with 

learning rate of 1e-4, 

decay of 1e-6 and 

momentum of 0.9; 

loss function = MSE; 

batch size = 1 

C / 8 3, 3 ReLU RU 

C / 16 3, 3 ReLU RU 

P / / 2, 2 / / 

C / 16 3, 3 ReLU RU 

P / / 2, 2 ReLU / 

F 32 / / ReLU GU 

F (output) 12 / / linear GU 

Particle 

morphology 

C / 8 3, 3 ReLU RU optimizer = SGD with 

learning rate of 1e-4, 

decay of 1e-6 and 

momentum of 0.9; 

loss function = ACE; 

batch size = 1 

P / / 2, 2 / / 

C / 16 3, 3 ReLU RU 

P / / 2, 2 / / 

F 32 / / ReLU GU 

F (output) 5 / / softmax GU 

Mechanical 

behaviours/ 

Fabric evolutions 

B 60 / / ELU GU optimizer = Adam 

loss function = MSE; 

batch size = 1503 

B 60 / / ELU GU 

F (output) 3 / / linear GU 

Note: C, P, F, B = convolutional, pooling, fully-connected and BiLSTM layer; RU = random uniform; GU = glorot uniform; 

SGD = stochastic gradient descent 

 

 

Table 4 Values of indicators generated by DL based model 

Model type 
Training set Testing set 

MAE MAPE MAE MAPE 

PSD 1.0E-4 mm 15.82% 1.3E-4 mm 21.35% 

Mechanical responses 0.2 kPa 0.17% 1.1 kPa 0.64% 

Fabric evolutions 4.1E-5 0.34% 1.1E-4 0.89% 
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Figure caption 

Fig. 1 Definition of particle circularity and roundness 

Fig. 2 Schematic view of CNN 

Fig. 3 Schematic view of BiLSTM 

Fig. 4 A representative numerical biaxial test for 2D granular assembly and modelling results 

Fig. 5 Flowchart of the proposed DL-based modelling framework 

Fig. 6 Evolution of loss value: (a) CNN-based PSD identification model; (b) CNN-based particle 

morphology identification model; (c) BiLSTM-based mechanical responses prediction model; (d) 

BiLSTM-based induced fabric anisotropy prediction model 

Fig. 7 Feature maps in the first four layers of CNN-based PSD identification model 

Fig. 8 Predicted PSD curves on the testing set 

Fig. 9 Classification of mixture ratios on the testing set 

Fig. 10 Predicted relationships of p–ε, q–ε and e–ε on the testing set 

Fig. 11 Predicted relationships of a–ε, an–ε and as–ε on the testing set 

Fig. 12 Predicted relationships on the unknown samples with new particle morphology: (a) mechanical 

responses; (b) induced anisotropy 

Fig. 13 Predicted anisotropy for a dense sample R10_T90 using BiLSTM 
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Fig. 1 Definition of particle circularity and roundness 
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Fig. 2 Schematic view of CNN  
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Fig. 3 Schematic view of BiLSTM 
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Fig. 4 A representative numerical biaxial test for 2D granular assembly and modelling results 
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Fig. 5 Flowchart of the proposed DL based modelling framework 
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(a)  (b)  

(c)  (d)  

Fig. 6 Evolution of loss value: (a) CNN-based PSD identification model; (b) CNN-based particle 

morphology identification model; (c) BiLSTM-based mechanical responses prediction model; (d) 

BiLSTM-based induced fabric anisotropy prediction model 
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Fig. 7 Feature maps in the first four layers of CNN based PSD identification model 
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Fig. 8 Predicted PSD curves on the testing set 
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Fig. 9 Classification of mixture ratios on the testing set 

  

1.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 1.00

P
re

d
ic

te
d

Actual

0.00

0.25

0.50

0.75

1.00

R0_T100 R25_T75 R50_T50 R75_T25 R100_T0

R0_T100

R25_T75

R75_T25

R50_T50

R100_T0
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

37 

 

 

 

Fig. 10 Predicted relationships of p–ε, q–ε and e–ε on the testing set 
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Fig. 11 Predicted relationships of a–ε, an–ε and as–ε on the testing set 
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(a)  

(b)  

Fig. 12 Predicted relationships on the unknown samples with new particle morphology: (a) mechanical 

responses; (b) induced anisotropy 
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Fig. 13 Predicted anisotropy for a dense sample R10_T90 using BiLSTM 
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