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Learning curve for precast component production in construction 

Abstract 

The study objective is to establish the learning curve model for precast component 

productivity in construction, verified using cross-validation empirical data for over 90% 

of these facilities’ precast component production activities over the past five years, with 

a total of 373,077 datasets across 14 production activities, sorted among a total of 4,352 

workers. By applying the learning curve theory to the analysis, the results show that 

relative to the straight-line model, the learning curve was established using exponential 

models. The exponential model can effectively mitigate the unreasonable fluctuations 

present in the cubic model’s representations of learning curves during initial training 

periods. This study therefore suggests the adoption of the Exponential model to model 

the learning curves for production workers learning to make precast components. The 

model has a satisfactory degree of fit (R2 > 0.88), and the post-cross-validation results 

also show that the model has a highly accurate prediction capability (MAPE value < 10%). 

The finding can serve as an important reference for the creation of production personnel 

allocation plans, personnel reserve plans, and training plans at precast factories in the 

construction industry. 
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Introduction 

The global precast construction system has developed rapidly in recent years, with an 

annual rate of about 5% [1], and the market size of the precast industry reached nearly 

USD 200 billion in 2017 [2]. In China, over 600 precast factories have been established 

the past three years, and over 1,000 precast factories cover more than 30,000 m3 [3]. Facing 

the rapid growth of market, urgent issue of the shortage of skilled labor in precast 

industry has been discussed frequently. Production methods and manufacturing 

processes used for precast components are different from traditional ones and demands 

workers greater both knowledge and technical precision [4]. 

Skilled workers are undoubtedly important because they could provide high and 

stable productivity. However, on the other side, the productivity of unskilled workers 

seems often being ignored. As the saying goes, "Rome wasn't built in one day," newly 

employed workers wouldn’t become a skilled one of a sudden. They have to go through a 

learning process to be skillful, and researchers have studied on that and developed the 

learning theory, which has been applied to many different industries, including 

construction industry [5-11]. During the learning process, the productivity of unskilled 

workers will increase over time and gradually become stable. If the manager regards 

unskilled workers’ productivity as a constant, their productivity may not be fully utilized. 

Therefore, a precise model to describe the changes of the productivity of unskilled worker 

is critical. However, literature shows that only simple models such as the straight-line 

model or cubic model been applied in the construction or precast industry[10,9,12,13,11,14]. 

Considering the complexity of precast industry, whether these simple models could 

precisely describe the learning status is doubtful. 

Therefore, the purpose of this study is as follows: (1) to develop different learning 

curve models for trainees during their initial learning of each precast component 
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production process; (2) to evaluate different learning curve models and find out the best 

one. Since measuring productivity difference for individual due to workers’ ages is 

complicated, we have assumed that workers whose ages are in the range of 15-65 have the 

same productivity. 

 

Precast production management and process 

Precast method has been considered to be effective production methods to control 

cost, improve productivity, and ensure quality within construction industry, while 

maintaining fast and automatic production processes [15]. It is regarded as one of the 

most common and advanced industrialization methods in the construction industry, 

with the utilization of the methods of normalization, standardization, and 

modularization. The building is divided into many elements or components, such as 

columns, walls, beams, plates, and so on. After being produced in a factory via industrial 

processes, these elements or components are transported to the construction site to be 

assembled into a building structure [16]. 

Studies have been conducted to improve the productivity of precast factories through 

various methods, such as management practices, process reengineering, and simulation 

[17,16,18-20]. 

Li et al. organized the literature in the Management of Prefabricated Construction 

(MPC) research field between 2000 and 2013. These studies are categorized into five 

major themes within, including the “Future Development of the Industry”, “Technology 

Development and Application”, “Performance Evaluation”, “Technology Application 

Environment” and “Design, Production, Transportation and Assembly Strategies”.[19].  

The production process of the precast industry have also been reviewed. By reviewing 

studies based on production process models of precast factories, the manufacturing 
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processes for precast components can be understood [21]. Based on previous research, we 

regard the production processes of precast components as the following 14 basic activities 

(photos of some construction activities are shown in Figure 1), including: (1) Steel mold 

cleaning (clearing molds); (2) Module assembly; (3) Lofting (positioning for iron 

components); (4) Dipping of steel rod cages; (5) Laying of embedded parts; (6) Checking 

before pouring concrete; (7) Pouring concrete; (8) Surface whitewashing; (9) Concrete 

curing; (10) Mold removing; (11) Demolding; (12) Component repair; (13) Inspection of 

finished components and (14) Warehouse storage, [22-24]. Further work including data 

collection, analysis and discussion will base on 14 activities in this study.  

Learning curve theory and its application 

In 1936, Wright found that when yield is doubled in aircraft component production 

lines, the required work time can be reduced by 20%. He then proposed a straight-line 

model that speculates a constant rate of learning or improvement, by which the work 

time of a given production cycle can be reduced by a constant percentage each time a 

new cycle is added [25,9,5]. After Wright proposed the straight-line learning curve model, 

many other learning curve models that are different from this model were proposed. 

Since Wright's discovery of the learning effect on repetitive activities in aircraft 

component production lines in 1936 [5], the question of how to use the learning curve 

effect to improve the productivity of repetitive production activities has been a subject of 

concern to many scholars and applied to many industries. Many studies have published 

papers on whether this theory can improve productivity, predict output value, assess 

project progress, and improve cost-effectiveness [26-28,7,29]. In addition, construction 

industry related researches have applied the learning curve theory to improve industry 

productivity [25,11]. 

Jordan Srour et al. divided the various learning curve models proposed by scholars 
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based on Wright’s straight-line model into five categories: (1) the Wright model and its 

variations; (2) Polynomial models; (3) Exponential models; (4) Hyperbolic models; (5) 

The recursive model proposed by Srour himself [11] . Among these models, 7 learning 

curve models are well-known and frequently used, and include the following: 

1. Straight-line Model: 

This model assumed that the degree of improvement of work time is a result of 

learning at a fixed logarithmic ratio, resulting in a straight line forming in double 

logarithmic coordinates (Equation 1) [30,5,31,10]. 

Y = a𝑋−𝑛；L = 2−𝑛        (1) 

Where, 

Y：Time required to produce unit X (cost or man-hours) 

X：Quantity of units reproduced 

a：Time required to produce unit 1 (in cost or man-hours) 

n：Slope of learning curve in double logarithmic coordinates 

L：Learning rate 

2. Stanford B Model: 

With concern that the straight-line model was not fully applicable to certain data 

from the WWII era, Stanford Research Institute of the United States Department 

of Defense took into account the existing experience of the workers that the 

straight-line model did not include. An improved model named the Stanford B 

model was proposed based on straight-line model theory in 1949 (Equation 2) 

[32,11]. 

Y = a(𝑋 + 𝑏)−𝑛；L = 2−𝑛       (2) 
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Where b is the degree of experience that already exists (1 ≤ b ≤ 10), and the rest 

of the parameters are set the same as those set by the straight-line model.  

Parameter b in this model is generally preset to 4. When b = 0, it represents the 

complete absence of existing experience on the part of the operator, under these 

conditions the Stanford B model is identical to the straight-line model [33]. 

3. DeJong Model: 

J.R. DeJong developed the DeJong model in 1957, considering whether 

mechanized operations would affect the learning curve. He argued that if 

operations were primarily controlled by machinery, the potential compression of 

production time proportional to the increase in the number of operations could 

be damped, and added an ‘incompressibility factor’ to the learning curve model to 

define the degree to which the production time could be compressible(Equation 

3) [6,34]. 

Y = a[m + (1 − m) × 𝑋−𝑛]；L = 2−𝑛     (3) 

Where, 

m: Incompressibility factor (0 ≤ m ≤ 1). 

In general, if the operation is performed manually, m = 0.25; if m = 0, it means that 

the operation is under complete manual control, in which case the DeJong model 

is identical to the Straight-line model. Meanwhile, if m=1, the operation is fully 

automated, and as such undergoes no learning effect [31]. 

4. S-Curve Model 

The S-Curve Model was developed by G.W. Carr in 1946. Since subsequent studies 

found that the Stanford B model was more suitable for the first half of the curve 

and the DeJong model was more suitable for the second half of the curve, Carr 

combined these two learning curves into the S-Curve model(Equation 4), where 
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the parameter settings are the same as those of the above model [35,32,26]. 

Y = a[m + (1 − m)(𝑋 + 𝑏)−𝑛]；L = 2−𝑛    (4) 

5. Cubic Model: 

The cubic model included the effects of existing experience and the cessation of 

productivity improvement after operational proficiency had been achieved and 

assumed that the learning rate would not be constant( Equation 5) [36,10]. 

log 𝑌 = log 𝑎 − n(log 𝑋) + c(log 𝑋)2 + 𝑑(log𝑋)3；L = 2−𝑛 (5) 

6. Exponential Model: 

The concept of the exponential learning curve was first developed by Thurstone 

in 1919 and was refined by Kientzle, Kientzle, Towill, et al. [37-40,8,41], The 

mathematical formula of the constant time model developed by Towill is shown 

in Equation 6. 

Y = A + B ∗ (1 − 𝑒𝑐(𝑥−1))；L = 2−𝑛     (6) 

Where,  

A: Initial performance, the time it takes to produce the first unit (synonymous 

with the above variable a). 

B: Difference between the asymptotic and initial performance. 

A+B: Asymptotic or final performance, the production time that tends to 

stabilize after the learning process has been completed. 

c: Learning constant.  

7. Piecewise Model: 

The Piecewise Model is a linearized approximation of the Cubic Model, and can 

be divided into three distinct phases, namely operation learning phase, routine 

acquiring phase and standard production phase(Equation 7). In the literature, it 
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was found that the Piecewise Model is more difficult to use than other models.[10]. 

log 𝑌 = log𝐴 − 𝑛1 log 𝑋 − 𝑛2𝐽1(log 𝑋 − log 𝑥𝑝1) − 𝑛3𝐽2(log 𝑋 − log 𝑥𝑝2) (7) 

Where, 

n1 : slope of the first segment;  

J1 = 1 when X > xp1, 0 otherwise; 

n2 = additional slope of the second segment, total slope = n1 + n2; 

J2 = 1 when X > xp2, 0 otherwise; 

n3 = additional slope of the third segment, total slope = n1 + n2 + n3; 

xp1 = first point where the slope changes, usually in the operation learning phase; 

and xp2 = second point where the slope changes, the end of the routine-acquiring 

phase. This is called the standard production point. 

The comparison among these 7 methods is listed in Table 1. In addition, the time used 

in this formula is slightly different from that used in the several aforementioned formulas, 

the aforementioned time x is defined as the production efficiency on the x-th day, and 

here the time is defined as the production efficiency after x days of study, so x-1 is taken 

as the parameter for the equation.[11,26]. 

Since the learning curve theory came into being, many scholars have also applied it 

toward the cause of improving the productivity of the construction industry. As far as the 

learning process is concerned, it can be divided into the initial operation learning phase 

and the later routine procedure phase [42,43]. In 1986, Thomas et al. collected data from 

65 of precast component utilization procedures at construction sites, conducted fitting 

to five learning curve models including the straight-line, Stanford B, cubic, piecewise, 

and exponential models in order to examine their R2 value. The results show that the 

cubic model has the best fit to historical data and is also best suited to predict the 

production time for independent sampling data at the same phase [10]. Everett and 
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Farghal studied the fit of 12 learning curves to historical data and ability to predict future 

performance against 60 sets of construction data covering the on-site assembly process 

of precast components. The results show that the cubic model is more suitable for fitting 

existing historical data compared to other models. However, the cubic model performs 

the worst at predicting future production data; the straight-line model performs the 

worst in fitting existing historical data but the best at predicting future production data 

[9]. 

Learning curve theory was also applied to different construction projects in other 

studies. Lee et al. studied cases of high-rise buildings in Korea and developed a set of 

learning curves which considered several factors that could affect the learning curve in 

the construction of high-rise building projects and were then converted into another set 

of suggested learning curves to improve labor productivity [14]. Based on the data of 15-

storey concrete buildings in Italy, Pellegrino et al. conducted a fitting using a straight-

line model and discussed the influence of interrupting construction projects on the 

learning curve [13]. Many scholars also have applied the learning curve theory to 

formwork engineering, reinforcement fixing operations, roof insulation engineering, and 

other projects[44,45,25]. Based on the above literature, it is found that the learning curve 

models most commonly used in the construction industry are the straight-line model 

and cubic model. Researches attempt to apply learning curve theory to increase the 

productivity of construction industry have a very long history with many research results 

having been achieved in this field [11,10]. However, the application of learning curves in 

precast industry has only involved a few analysis on the assembly operation of precast 

components at construction sites [9,10], and there has been little research on the 

production processes of precast components. Furthermore, regarding the complexity of 

construction industry, both the straight-line model and the cubic model could be 
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questioned as too simple. Therefore, this study will analyze the training data of precast 

workers in learning the production process of precast components and validate the fit 

and predictive accuracy by using straight-line, cubic, and exponential models, allowing 

the results of the analysis to help the precast industry improve its productivity. 

Data collection and basic analysis 

This study gathered and analyzed the precast structural component data from more 

than 90% of new precast construction projects in Taiwan among five years (2015-2019). 

To participate, understand and investigate the production system of precast plants 

through thorough field study, we observed, measured, collected and verified the 

characteristics and the duration of each manufacturing activities in the field. Data 

collected mainly targeted on the main production time of three types of structural 

components, namely the main beam, minor beam and column. Our team measured every 

trainee’s daily production time based on 14 basic activities mentioned above, and the 

production data was collected from the first day they learned to work on those activities 

until their performance becomes steady. There are 4352 workers involved in the data 

collection project where 354,240 data points are recorded from the field and none of them 

has been used or published in any other work. The research contents of 14 activities in 

precast factories conducted by the research team are described as follows: 

1. Type of Projects for Data Collection 

There are 7 project types for the collected data, including collective housing, schools, 

office buildings, large shopping malls, technology plants, biotech factories, and 

composite shopping malls, as shown in Figure 2. The data collected include 

production times for basic activities in the primary construction of precast building 

structures, and the recorded production times are calculated in minutes. 

2. Objects for Data Collection 
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(1) Newly employed workers: The manager of the precast factory will allocate training 

activities as need, and each newly employed worker is considered able to formally 

conduct production activities after completing one of the 14 training activities. 

(2) In-service workers: The training of other activities is carried out to increase worker’s 

skill levels according to human resource planning and assignment of the precast 

factory, as well as personal preference on the part of the workers themselves. 

(3) The trainees include both domestic workers and foreign workers. 

3. Object Background Information for Data Collection 

(1) The trainees used for data collection in this study are all actively employed workers 

at a precast factory. 

(2) Each trainee has undergone a physical examination and was in good health before 

becoming an active employee. 

(3) The experience of the trainees, whether related to the precast industry or not, is 

irrelevant to the training activities. 

4. Data Collection Methods 

(1) In the first year, our team observed the training status of workers within the 

precast factory, and during each training session at the precast factory, the team 

mainly performed measurement and video recording from 8:00 AM to 5:00 PM 

that day. However, some activities (such as lofting, laying of embedded parts, 

surface whitewashing, and component repair) were trained on a non-periodic 

basis, and the team also made appropriate cooperative efforts. The next four years, 

with the consent of the precast factory, data collection was mainly performed via 

CCTV video recording, and videos were regularly exported for data analysis. 

(2) In this study, data were collected for each individual’s training sessions across all 

14 activities, via random sampling mode. If the person exited the training period 
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prematurely, that data was excluded. 

(3) The collected data correspond to the training modules produced on that day, with 

a maximum of 6 sets and a minimum of 3 sets, and the work time of various 

production processes have been recorded for each of the 14 activities. 

(4) The training of some activities is sometimes conducted privately by the workers 

themselves, mainly for activities such as lofting, the laying of embedded parts, 

surface whitewashing, and component repair (evidence states that employee pay 

is increased after they have completed training for the above four activities), so 

training time does not necessarily occur during working hours. 

5. Analysis of Production Trainee Numbers 

The analysis of the number of production trainees in this study is shown in Table 2, 

and the total number of trainees for whom data has been collected is 4,352. There are 

3,432 domestic (78.9%) and 920 foreign (21.1%) workers participated during training. In 

terms of age distribution, the highest proportion for domestic workers in Taiwan is at 

age of 30-39 (1,605 persons, 46.8%), while the largest proportion for foreign workers is 

at age of 20-39 (396 persons, 43.0%). The total average time of employment of those 

involved in precast projects was 1.61 years, and the overall time employed of those 

involved was not high. The total average time employed of domestic workers was 1.68 

years, while that of foreigners was 1.53 years. 

This study distinguishes 14 activities into 3 modules according to the categories used 

by Chen et al.: the molding module, the filling module, and the repair and storage 

module (Chen et al. 2016). The data analyses of component production trainees are 

described separately below: 

(1)  Molding module 

The analysis of data from the molding module is shown in Table 3 and consists of five 
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activities: steel mold cleaning (mold clearing), module assembly, lofting, dipping of steel 

rod cages, and laying of embedded parts. Within the research database of this module, 

domestic workers accounts for over 70% in most training activities, except in the laying 

for embedded parts, where it was 59.6% (293 persons). Most of the trainees aged 20-39 

(over 70% in every activity of this module), and more than one-third of them aged 30-39. 

In terms of the average time employed for participants in precast projects, the average 

time employed of personnel in lofting and laying of embedded parts is significantly 

higher than that of other activities in this module. 

(2) Filling module 

The analysis of the data for the filling module is shown in Table 3 and consists of four 

activities: checking before pouring concrete, pouring concrete, surface whitewashing, 

concrete curing. Within the research database of this module, domestic workers accounts 

for over 50% in every training activity, with the highest ratio being in concrete pouring at 

86.2% (424 persons). Over 70% workers aged 20-39 for all four activities. In terms of the 

average time employed of participants in precast projects, the average time employed of 

employees engaged in surface whitewashing is significantly higher than that of other 

activities in this module. 

(3) Repair and storage module 

The analysis of the data for the repair and storage module is shown in Table 3, and 

this consists of five activities: mold removing, demolding, component repair, inspection 

of finished components, and warehouse storage. Within the research database, domestic 

workers accounts for over 60% in every training activity, with the ratios of component 

repair and inspection for finished components being as much as 74.6% (367 persons) and 

73.6% (362 persons) respectively. Over 70% workers aged 20-39 for all four activities. In 

terms of average time employed for participants in the precast projects, time employed 
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for those trained in mold removal and component repair was significantly higher than 

those of other activities in this module. 

Due to the different degree of difficulty for each activity, the number of days required 

to perform data collection also varied. For some activities, the work time of workers 

tended to stabilize within ten days, but other activities required more than a hundred 

days to stabilize. The number of observations, observation days, and data points 

collected for each activity are shown in Table 4 Each worker produced 3-6 sets of modules 

per day, and the work time was recorded according to the 14 prescribed activities. Within 

the production data of 14 activities, work time on the final measurement day can be 

reduced by 32-87% compared with that of the first day, as shown in Table 5. I It follows 

that the learning effect clearly increases productivity in trainees. However, if human 

resources are to be deployed to take advantage of this effect, it is important to know how 

the trainees' work time changes before they enter a stable phase under the learning effect. 

Therefore, in the next section, various models of learning curve theories will be applied 

to identify the most suitable model to describe the changes in production data for 

trainees during the initial learning phase, which can serve as an important foundation 

for subsequent research or practical applications in improving the productivity of precast 

factories. 

 

Learning curve model and validation for precast component production 

To acquire the learning curve for each activity, we analyzes the obtained data through 

10-fold cross-validation and makes ten analyses by dividing the 354,240 datasets for all 14 

activities in the building precast structure into ten equal parts. In each analysis, 90% of 

the data are used as training data to perform regression analysis of the straight-line, cubic, 

and exponential learning curve models, and the R2 value is used to check the degree of 
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fit. The other 10% of the data are then used as testing data to perform validation, and the 

MAPE value is then calculated to judge the prediction accuracy of the model. The results 

of the analysis are shown in Table 6, for each activity, there is a range of R2 values and 

MAPE values due to a total of 10 times of cross-validation. For each activity, both the R2 

and the MAPE value of the cubic and exponential learning curve models perform better 

than those of the straight-line learning curve model. It is thus known that, for the precast 

component production data at the initial production phase, the cubic and exponential 

models can more accurately fit the historical data than the straight-line model, and also 

are more suitable for predicting the production data of trainees. Therefore, this study will 

continue the subsequent analysis based on the cubic and exponential models and 

generate learning curves for each activity. 

In the above-mentioned cross-validation, the data have undergone ten cross-

validation analyses, so ten sets of learning curves are generated for each activity. In the 

analysis results of the cubic and exponential models, the difference between the 

maximum and minimum values of R2 is within 0.008, and the difference between the 

maximum and minimum values of MAPE is within 10%, so the ten sets of learning curves 

for each activity can be regarded as being very similar curves. In order to generate a 

learning curve representing each activity, the study has selected the minimum MAPE 

value among the ten sets of learning curves of each activity as the learning curve LCbest 

represented the activity. 

After comparing the LCbest curves of the cubic and exponential models, it is found 

that the differences in MAPE values for the two models are within 5%, indicating that the 

two models have similar performance. Among these differences, the biggest comes from 

the activity of lofting, in which the MAPE value of the exponential model exceeds that of 

the cubic model by 4.07%. In addition, if the learn curve is actually drawn, it can be found 
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that many activities are affect by the cubic model’s characteristics of inflection points 

and more inconsistent fluctuations in the initial phase, while the exponential model can 

mitigate this problem (as shown in Figure 3). Therefore, we suggest that the learning 

curve of each activity in the precast factory should adopt the exponential model. 

The exponential model learning curve, initial learning rate, R2 value, and MAPE 

value for each activity are shown as Table 7. The R2 values for all the activities are above 

0.88, indicating that the degree of fit is extremely high and the MAPE values are all less 

than 10%, in line with the high-accuracy prediction defined by Lewis in 1982 [46]. 

Therefore, the learning curve model of 14 basic activities developed in this study can fit 

the data collected by this study and can also accurately predict the production data of 

newly employed workers having undergone initial training. 

Based on the above research results, learning rate can be seen to not be a fixed value 

in learning processes in which trainees have learned how to conduct precast component 

production activities, so the finding of this study is in line with that of Thomas et al. in 

1986 [10]. Moreover, we know that the cubic learning curve model proposed by Thomas 

et al. in 1986 has both good fit and predictability. However, the performance of the cubic 

model in the initial learning of some activities undergoes major fluctuations, so we 

propose that the exponential model performs as a more appropriate model to represent 

the learning curve of precast component production activities. 

 

Results and discussion 

According to the above research results, we further divide the learning curves of all 

activities into two groups (as shown in Figure 4) by using the K-means algorithm and the 

learning curve formula from Table 9. The result of this grouping can be seen from Table 

8, and there are 10 activities in the first group while 4 activities in the second. The initial 
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performance (A) and the asymptotic performance of the second group are both high, and 

the absolute value of the learning constant is lower. As a result, the complex activities can 

be defined including: lofting, laying of embedded parts, surface whitewashing, and 

component repairs. This helps managers to understand training difficulty for each 

activity and take advantage of it to ensure sufficient professional human resources for 

each activity. Figure 5 shows the exponential learning curves for all activities where 

Figures 6 to 8 illustrate closer looks at the learning curves for each modules. As observed, 

it takes a long time for the complex activities to stabilize. When further analyzing the 

asymptotic performance (A + B) for each activity (as shown in Table 9), it is found that 

those complex activities indicate at negative extremes for lofting and surface 

whitewashing. These two activities difficultly achieve convergence because their learning 

constants are particularly small (< 0.01). The other two complex activities achieve high 

asymptotic performance, as observed, due to their learning constants rational for 

convergence. This specifies that it still takes longer to complete these two activities than 

that of the others even if workers are skilled. 

To sum up, the exponential model provides the value of asymptotic performance 

serving as the production time that workers may achieve under maximum proficiency. 

This study therefore suggests the adoption of the exponential model to model the 

learning curves for production workers learning to make precast components. The model 

has a satisfactory degree of fit (R2 > 0.88), and the post-cross-validation results also show 

that the model has a highly accurate prediction capability (MAPE value < 10%). The other 

findings show that 4 difficult activities have been identified as lofting, laying of 

embedded parts, surface whitewashing, and component repairs. No matter how well 

trained workers carry out these four activities, their performance does not show much 

learning effect by the reason of various circumstances on-site, customized orders, and 
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high-quality demands.  

 

Conclusion 

Based on literature and field visits, and the production data of 14 basic precast 

activities obtained from precast factories in Taiwan are studied and analyzed using the 

learning curve theory. Using a total of 373,077 datasets regarding 14 production activities 

sorted among a total of 4,352 workers, the findings show that exponential model is more 

suitable than the straight-line model for fitting historical data and predicting the 

production data of trainees during their initial training. This also indicates that that the 

learning rate is not a fixed value during the learning process as previously considered in 

the construction industry. The second finding expresses that the learning curve model 

proposed in the study has a good fit to the historical data (R2 values all > 0.88), and the 

model is highly accurate in predicting the production data of trainees through their 

initial learning curves (MAPE values < 10%). The third finding reveals that, through using 

the K-means method, the 14 basic activities are divided into two groups due to the 

convergence of their learning curves respectively. As a result, the complex activities can 

be defined including: lofting, laying of embedded parts, surface whitewashing, and 

component repairs. This helps managers to understand training difficulty for each 

activity and take advantage of it to ensure sufficient professional human resources for 

each activity. It is an important reference for the production planning and personnel 

training planning of precast factories to improve the productivity of the precast industry. 

The contributions by the study are substantial especially for practitioners. 

The results of this study can serve as a well-developed and accurate foundation, and it 

is suggested that future studies make efforts in this direction. Follow-up studies focus on 

the threshold value for worker proficiency standards that is another important step for 
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managerial practice. To achieve it, since asymptotic performance for those difficult 

activities (1-ec(x-1)) in the model is as close as 1, it implies that the workers’ training never 

goes effective. Therefore, it is suggested that future research can seek a threshold as 

standard proficiency for workers based on the level of difficulty or complexity toward 

each activity. Studies dealing with formulas grouped to a couple of general formulas for 

all activities are also recommended to possibly simplify and to increase practicability for 

the findings. Additionally, since productivity difference for individual based on workers’ 

ages and nationality is possible, future work regarding productivity difference among 

workers’ ages and nationality is practicable to enhance the current work. 
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Figure 1 Related production activities of precast structure 
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Figure 2 Scope analysis of precast projects 
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Figure 3 Cubic and Exponential Learning Curve of Lofting 
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Figure 4 Clustering Result of Exponential Learning Curve(with centroids) 
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Figure 5 Exponential Learning Curves of All Activities 
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Figure 6 Exponential Learning Curves of Molding module 
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Figure 7 Exponential Learning Curves of Filling module 
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Figure 8 Exponential Learning Curves of Repair and storage module 
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Table 1 Comparison between common used learning curve models 

Model Formula Comparison 

Straight-line Y = a𝑋−𝑛 The original model proposed by 

Wright in 1936[5]. It assumed that 

the learning rate is a fixed value. 

Stanford B Y = a(𝑋 + 𝑏)−𝑛 Improved model considering the 

existing experience of the workers 

that the straight-line model did not 

include. 

DeJong Y = a[m + (1 − m) × 𝑋−𝑛] Improved model considering 

whether mechanized operations 

would affect the learning curve[6]. 

S-curve Y = a[m + (1 − m)(𝑋 + 𝑏)−𝑛] Improved model combined the 

concept and assumption of the 

Stanford B and DeJong Model[33]. 

Cubic log 𝑌 = log 𝑎 − n(log 𝑋)

+ c(log 𝑋)2

+ 𝑑(log𝑋)3 

The cubic model included the 

effects of existing experience and 

the cessation of productivity 

improvement after operational 

proficiency had been achieved and 

assumed that the learning rate would 

not be constant[37]. 

Exponential Y = A + B ∗ (1 − 𝑋𝑐(𝑥−1)) The model is based on the concept 

that subject to improvement will be 

reduced after a constant number of 

cycles, and the time will gradually 

approach an ultimate or lowest 

value[9]. 

Piecewise log 𝑌 = log𝐴 − 𝑛1 log 𝑋

− 𝑛2𝐽1(log 𝑋

− log 𝑥𝑝1)

− 𝑛3𝐽2(log 𝑋

− log 𝑥𝑝2) 

A linearized approximation of the 

Cubic Model, it is found that this 

model is more difficult to use than 

the others[10]. 
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Table 2 The analysis of the number of production trainees 

Item Age 
number of 

trainee 
percentage 

precast 

experience(year) 

Domestic 

workers 

20-29 1011 29.5% 1.1 

30-39 1605 46.8% 1.6 

40-49 618 18.0% 1.8 

Above 50 198 5.8% 2.2 

Sum 3432 78.9% 1.68  

Foreign 

workers 

20-29 396 43.0% 0.8 

30-39 322 35.0% 1.7 

40-49 202 22.0% 2.1 

Above 50 0 0.0% 0 

Sum 920 21.1% 1.53  

Total 4352 Total average 1.61  
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Table 3 Analysis of trainee data 1 

Item Domestic workers Foreign workers 

molding 

module Steel mold 

cleaning 

(mold 

clearing) 

Age 20-29 30-39 40-49 Above 50 20-29 30-39 40-49 

Count 95 19.3% 182 37.0% 75 15.2% 10 2.0% 31 6.3% 58 11.8% 41 8.3% 

precast 

experience(year) 
0.3  0.6  1.3  1.4  0.3 1.6  2.2  

Total 362 73.6% 130 26.4% 

Module 

assembly 

Age 20-29 30-39 40-49 Above 50 20-29 30-39 40-49 

Count 161 32.7% 151 30.7% 91 18.5% 28 5.7% 22 4.5% 29 5.9% 10 2.0% 

precast 

experience(year) 
0.4  0.6  0.9  1.3  0.6  0.8  1.8  

Total 431 87.6% 61 12.4% 

Lofting 

Age 20-29 30-39 40-49 Above 50 20-29 30-39 40-49 

Count 164 33.3% 218 44.3% 78 15.9% 3 0.6% 10 2.0% 17 3.5% 2 0.4% 

precast 

experience(year) 
4.5  5.1  5.9  5.3  3.7  3.9  4.2  

Total 463 94.1% 29 5.9% 

Age 20-29 30-39 40-49 Above 50 20-29 30-39 40-49 
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Item Domestic workers Foreign workers 

Dipping of 

steel rod cages 

Count 86 17.5% 201 40.9% 77 15.7% 16 3.3% 77 15.7% 25 5.1% 10 2% 

precast 

experience(year) 
0.2  1.0  0.9  1.3  0.2  1.0  2.2  

Total 380 77.2% 112 22.8% 

Laying of 

embedded 

parts 

Age 20-29 30-39 40-49 Above 50 20-29 30-39 40-49 

Count 97 19.7% 143 29.1% 42 8.5% 11 2.2% 91 18.5% 85 17.3% 23 4.7% 

precast 

experience(year) 
1.9  2.3  2.8  3.5  1.6  3.4  3.6  

Total 293 59.6% 199 40.4% 

Filling 

module 

Checking 

before pouring 

concrete 

Age 20-29 30-39 40-49 Above 50 20-29 30-39 40-49 

Count 122 24.8% 89 18.1% 81 16.5% 31 6.3% 65 13.2% 71 14.4% 33 6.7% 

precast 

experience(year) 
2.3  2.8  3.4  5.1  1.8  1.9  2.8  

Total 323 65.7% 169 34.3% 

Age 20-29 30-39 40-49 Above 50 20-29 30-39 40-49 
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Item Domestic workers Foreign workers 

Pouring 

concrete 

Count 79 16.1% 118 24.0% 93 18.9% 19 3.9% 101 20.5% 72 14.6% 10 2.0% 

precast 

experience(year) 
0.6  0.8  1.1  2.3  0.3  0.6  0.8  

Total 309 62.8% 183 37.2% 

Surface 

whitewashing 

Age 20-29 30-39 40-49 Above 50 20-29 30-39 40-49 

Count 41 8.3% 239 48.6% 87 17.7% 0 0.0% 28 5.7% 91 18.5% 6 1.2% 

precast 

experience(year) 
1.9  2.8  3.3  0.0  2.4  4.3  4.9  

Total 367 74.6% 125 25.4% 

Concrete 

curing  

Age 20-29 30-39 40-49 Above 50 20-29 30-39 40-49 

Count 102 20.7% 79 16.1% 49 10.0% 38 7.7% 111 22.6% 85 17.3% 28 5.7% 

precast 

experience(year) 
0.1  0.7  0.9  1.2  0.5  0.5  0.8  

Total 268 54.5% 224 45.5% 

Age 20-29 30-39 40-49 Above 50 20-29 30-39 40-49 
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Item Domestic workers Foreign workers 

Repair 

and 

storage 

module 

Mold 

removing 

Count 122 24.8% 89 18.1% 81 16.5% 31 6.3% 65 13.2% 71 14.4% 33 6.7% 

precast 

experience(year) 
2.3  2.8  3.4  5.1  1.8  1.9  2.8  

Total 323 65.7% 169 34.3% 

Demolding 

Age 20-29 30-39 40-49 Above 50 20-29 30-39 40-49 

Count 79 16.1% 118 24.0% 93 18.9% 19 3.9% 101 20.5% 72 14.6% 10 2.0% 

precast 

experience(year) 
0.6  0.8  1.1  2.3  0.3  0.6  0.8  

Total 309 62.8% 183 37.2% 

Component 

repair 

Age 20-29 30-39 40-49 Above 50 20-29 30-39 40-49 

Count 41 8.3% 239 48.6% 87 17.7% 0 0.0% 28 5.7% 91 18.5% 6 1.2% 

precast 

experience(year) 
1.9  2.8  3.3  0.0  2.4  4.3  4.9  

Total 367 74.6% 125 25.4% 

Age 20-29 30-39 40-49 Above 50 20-29 30-39 40-49 

Count 118 24.0% 116 23.6% 93 18.9% 35 7.1% 53 10.8% 59 12.0% 18 3.7% 
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Item Domestic workers Foreign workers 

Inspection of 

finished 

components  

precast 

experience(year) 
0.9  0.8  1.0  1.8  1.2  1.4  1.8  

Total 362 73.6% 130 26.4% 

Warehouse 

storage 

Age 20-29 30-39 40-49 Above 50 20-29 30-39 40-49 

Count 136 27.6% 98 19.9% 46 9.3% 18 3.7% 101 20.5% 76 15.4% 17 8.8% 

precast 

experience(year) 
0.9  1.5  1.8  1.9  0.9  1.8  2.9  

Total 298 60.6% 194 39.4% 

2 
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Table 4 Collected data 3 

Activity Observations Observation days Data points 

Steel mold cleaning 

492 

35 17,220 

Modules assembling 15 7,380 

Lofting 166 81,672 

Dipping for steel rod cage 25 12,300 

Laying for embedded parts 84 41,328 

Checking before concrete 

pouring 
35 17,220 

Concrete pouring 10 4,920 

Surface whitewashing 112 55,104 

Concrete curing 10 4,920 

Mold removing 8 3,936 

Stripping 22 10,824 

Component repair 116 57,072 

Inspection for finished 

components 
32 15,744 

Warehouse storage 50 24,600 

Total 720 354,240 

  4 
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Table 5 Production time comparison between the first and final measurement for 5 

each activity 6 

Activity T1 T2 𝑇1 − 𝑇2 
𝑇1 − 𝑇2
𝑇2

× 100% 

Steel mold cleaning 62.1  24.4  37.6  61% 

Modules assembling 39.8  19.2  20.6  52% 

Lofting 93.7  12.3  81.4  87% 

Dipping for steel rod cage 53.1  31.0  22.1  42% 

Laying for embedded parts 124.4  55.4  69.0  55% 

Checking before concrete pouring 27.0  10.3  16.8  62% 

Concrete pouring 47.1  27.2  19.8  42% 

Surface whitewashing 94.1  31.7  62.4  66% 

Concrete curing 21.3  12.2  9.1  43% 

Mold removing 23.8  16.3  7.5  32% 

Stripping 28.5  10.9  17.6  62% 

Component repair 197.3 69.0 128.2  65% 

Inspection for finished components 29.1  13.9  15.1  52% 

Warehouse storage 76.1  25.6  50.5  66% 

T1: Average work time of the first day 7 

T2: Average work time of the final measurement day 8 
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Table 6 Learning Curve Model comparative analysis for each activity 9 

Activity 
Straight-line model Cubic model Exponential model 

R2 MAPE(%) R2 MAPE(%) R2 MAPE(%) 

Steel mold cleaning 0.8581~0.8554 9.15%~13.23% 0.9422~0.9447 6.67%~11.02% 0.9637~0.9662 5.76%~10.62% 

Modules assembling 0.9420~0.9453 4.85%~10.93% 0.9826~0.9853 3.36%~10.20% 0.9817~0.9844 3.82%~10.26% 

Lofting 0.4426~0.4455 46.71%~47.47% 0.9605~0.9607 10.90%~13.22% 0.9905~0.9913 6.83%~10.77% 

Dipping for steel rod cage 0.7919~0.7973 7.83%~10.21% 0.9394~0.9426 4.92%~8.30% 0.9156~0.9191 6.04%~8.68% 

Laying for embedded parts 0.7006~0.7030 11.83%~13.65% 0.9737~0.9740 4.63%~8.52% 0.9680~0.9701 4.71%~8.51% 

Checking before concrete pouring 0.7913~0.7944 13.26%~14.79% 0.9378~0.9390 7.99%~10.45% 0.9512~0.9564 8.50%~10.99% 

Concrete pouring 0.9190~0.9321 6.19%~13.49% 0.9889~0.9928 4.27%~13.49% 0.9835~0.9862 4.76%~13.42% 

Surface whitewashing 0.5380~0.5478 22.71%~23.67% 0.9807~0.9837 4.84%~8.41% 0.9800~0.9809 5.45%~8.88% 

Concrete curing 0.8662~0.8820 6.00%~8.66% 0.9928~0.9944 3.44%~6.86% 0.9895~0.9903 3.82%~7.09% 

Mold removing 0.7400~0.7609 7.07%~10.75% 0.9058~0.9099 5.39%~8.77% 0.8840~0.8912 5.43%~9.43% 

Stripping 0.8168~0.8180 12.28%~14.18% 0.9412~0.9431 7.22%~10.53% 0.9679~0.9689 7.06%~10.39% 

Component repair 0.6085~0.6098 18.99%~20.09% 0.9716~0.9729 5.41%~7.90% 0.9817~0.9824 5.43%~7.92% 

Inspection for finished components 0.9330~0.9367 7.43%~9.13% 0.9777~0.9796 6.56%~8.15% 0.9850~0.9861 6.43%~7.97% 

Warehouse storage 0.8519~0.8540 11.90%~12.36% 0.9640~0.9646 8.44%~8.82% 0.9734~0.9749 7.85%~8.21% 

10 
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Table 7 Exponential model data for each activity 11 

Activity 
Exponential Model 

R² MAPE LCbest formula 

Steel mold cleaning 0.9658 5.76% 
y =62.2-41.38(1-*exp(-0.09877*(x-1))) 

=20.82+41.38*exp(-0.09877*(x-1)) 

Modules assembling 0.9840 3.82% 
y =39.76-21.55(1-*exp(-0.4388*(x-1))) 

=18.21+21.55*exp(-0.4388*(x-1)) 

Lofting 0.9907 6.83% 
y =100.41-138(1-*exp(-0.006511*(x-1))) 

=-37.59+138*exp(-0.006511*(x-1)) 

Dipping for steel rod 

cage 
0.9177 6.04% 

y =53.04-26.77(1-*exp(-0.09279*(x-1))) 

=26.27+26.77*exp(-0.09279*(x-1)) 

Laying for embedded 

parts 
0.9683 4.71% 

y =124.37-82.13(1-*exp(-0.02508*(x-1))) 

=42.24+82.13*exp(-0.02508*(x-1)) 

Checking before 

concrete pouring 
0.9520 8.50% 

y =27.11-18.9(1-*exp(-0.08162*(x-1))) 

=8.21+18.9*exp(-0.08162*(x-1)) 

Concrete pouring 0.9857 4.76% 
y =46.94-21.25(1-*exp(-0.5042*(x-1))) 

=25.69+21.25*exp(-0.5042*(x-1)) 

Surface whitewashing 0.9809 5.45% 
y =96.36-120.6(1-*exp(-0.007981*(x-1))) 

=-24.24+120.6*exp(-0.007981*(x-1)) 

Concrete curing 0.9903 3.82% 
y =21.53-9.321(1-*exp(-0.7737*(x-1))) 

=12.21+9.321*exp(-0.7737*(x-1)) 

Mold removing 0.8886 5.43% 
y =23.98-8.064(1-*exp(-0.708*(x-1))) 

=15.92+8.064*exp(-0.708*(x-1)) 

Stripping 0.9686 7.06% 
y =28.44-20.18(1-*exp(-0.08944*(x-1))) 

=8.26+20.18*exp(-0.08944*(x-1)) 

Component repair 0.9823 5.43% 
y =197.54-170.5(1-*exp(-0.01334*(x-1))) 

=27.04+170.5*exp(-0.01334*(x-1)) 

Inspection for finished 

components 
0.9855 6.43% 

y =29.05-15.57(1-*exp(-0.1282*(x-1))) 

=13.48+15.57*exp(-0.1282*(x-1)) 

Warehouse storage 0.9736 7.85% 
y =76.1-53.31(1-*exp(-0.07469*(x-1))) 

=22.79+53.31*exp(-0.07469*(x-1)) 

Table 8 K-means grouping results 12 
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group 

A B C 
Activity 

numbers mean 
Standard 

Deviation 
mean 

Standard 

Deviation 
mean 

Standard 

Deviation 

1 40.815 18.334 -23.63 13.994 -0.299 0.28 10 

2 123.967 46.905 -127.808 36.81 -0.013 0.008 4 

A：Initial Performance: Time required for produce the first unit 13 

B：Asymptotic Performance and Initial Performance deviation 14 

C：Learning constant 15 

  16 
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Table 9 Asymptotic Performance of All Activities 17 

Activity 
Asymptotic 

Performance 

Complex 

Activity 

Lofting -37.59 Yes 

Surface whitewashing -24.24 Yes 

Checking before concrete pouring 8.21 No 

Stripping 8.26 No 

Concrete curing 12.21 No 

Inspection for finished components 13.48 No 

Mold removing 15.92 No 

Modules assembling 18.21 No 

Steel mold cleaning 20.81 No 

Warehouse storage 22.79 No 

Concrete pouring 25.69 No 

Dipping for steel rod cage 26.27 No 

Component repair 27.04 Yes 

Laying for embedded parts 42.24 Yes 

 18 




