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Three-dimensional Quantitative Analysis on Granular Particle Shape 

using Convolutional Neural Network

Pin ZHANG1, Zhen-Yu YIN2, Yin-Fu JIN3

Abstract: To identify all desired shape parameters of granular particles with less 

computational cost, this study proposes a three-dimensional convolutional neural network (3D-

CNN) based model. Datasets are made of 100 ballast and 100 Fujian sand particles, and the 

shape parameters (i.e. aspect ratio, roundness, sphericity and convexity) obtained by 

conventional methods are used to label all particles. For the model training, by feeding the slice 

images of particles into the model, the contour of particles is automatically extracted, thereby 

the shape parameters representing particle shape can be learned by the model. Thereafter, the 

model is applied to predict shape parameters of new particles as model testing. All results 

indicate the model trained based on slice images cut from three orthogonal planes presents the 

highest prediction accuracy with an error of less than 10%. Meanwhile, the accuracy for 

concave and angular particles can be guaranteed. The rotation-equivariant of the model is 

confirmed, in which the predicted values of shape parameters are roughly independent of 

changeable rotations of the particle when cutting slice images. Superior to conventional 

methods, all desirable shape parameters can be obtained by one unified 3D-CNN model and its 

prediction is independent of particle complexity and the number of triangular facets, thus 

saving computation cost.
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1. Introduction

Numerous experiments have been conducted to investigate the effects of particle shape on the 

mechanical behaviour of granular material, such as shear strength,1 shear stiffness,2 and 

compactness.3 Besides, numerical modelling methods, particularly for the discrete element 

method (DEM),4 have also been extensively employed to explore microscopic and macroscopic 

behaviours of particles with different shapes.5-8 No matter for experimental or numerical 

research works, quantitative analysis of particle shape is a necessity for understanding the 

mechanical responses to their shape. 

A series of indices have been proposed for quantitatively describing 2D or 3D particle 

shapes.9-12 2D particle shape tends to be analysed based on its projections, thereby the 

calculated shape parameters rely heavily on the orientations of particles and tend to be 

inaccurate.13,14 3D shape parameters are more representative and accurate descriptors. The 

currently used methods for reconstructing and calculating 3D shape parameters can be 

categorized into three groups.15 The first one is achieved by voxelization of a particle, in which 

the entire body of a particle is assembled by voxels, thereafter particle size and morphology 

are calculated based on the total number and spatial distribution of voxels,16 respectively. The 

second way is developed based on the reconstruction of particle surface using triangular mesh. 

The Marching Cube algorithm is a commonly used method to detect boundary voxels and build 

surface inside these boundary voxels.17 Spherical harmonic (SH) analysis is the third method 

to theoretically reconstruct the particle surface.18 However, the boundary of particles cannot be 

clearly distinguished using the first method, thereby it generally integrates with error analysis 
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to mitigate such deficiency.16 The reconstruction of 3D shape is a necessary step in the second 

and third methods, but such a process also involves certain approximation calculations, leading 

to the overlap of error generated during the scanning of particles. The calculation of each shape 

parameter relies on an independent formulation among these methods. Meanwhile, the 

calculation process also requires domain-based empirical knowledge to set parameters and the 

computational cost depends on the number of triangular facets, which is not concise and user-

friendly.

Recently, a deep learning algorithm convolutional neural network (CNN) provides a state-

of-the-art method to extract the features hidden in images such as micro-structural 

characteristical of the studied object19,20 and the identified features can be further leveraged for 

the analysis of macro-scale responses.21,22 In 3D-CNN, a series of 2D slices images of the 

studied object can be extracted by X-ray computed tomography or photography, etc.,23-25 and 

then they are aligned along the depth dimension as the input of 3D-CNN. Inspired by the 

characteristics of 3D-CNN, 2D slice images cut from the particle can be directly fed into 3D-

CNN, and the outputs can be set as the 3D particle shape parameters. All desired shape 

parameters can be simultaneously obtained with one unified model and the computation 

process is independent of the number of triangular facets. Meanwhile, myriad problems are 

still open for the application of 3D-CNN to identify shape parameters, such as the selection of 

slice images, the effect of particle orientation on the prediction (rotation equivariant) and the 

dependency of prediction accuracy on the particle shape. 

Hence, this study aims to employ 3D-CNN to identify slice images of real granular 
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particles and to predict the 3D shape parameters of particles. Slice images of 100 ballast and 

100 Fujian sand particles are extracted by using a 3D laser scanner and their 3D shape 

parameters including aspect ratio, roundness, sphericity and convexity are pre-calculated for 

labelling each particle. Slice images collected from various particle orientations are extracted 

to train different models and their performance are comprehensively compared for devising 

model development strategy and model selection. The relation between the predicted output 

and the particle orientation is presented for revealing the robustness of the model. The 

prediction accuracy against the particle shape such as angularity and concavity is investigated 

for investigating the applicability of the model. Finally, the performance of the developed 

model on randomly synthetic particles is discussed for understanding its generalization ability.

2. Applied methods for model development

2.1 Extraction of particle shape parameters

3D X-ray micro-computed tomography and 3D laser scanner are two commonly used methods 

to obtain the 3D shape of particles. Thereafter image processing methods are performed to 

reconstruct particle surfaces such as using numerous triangular meshes, in which the number 

of facets, vertices, coordinate of vertices, unit normal vectors of facets and the pair relationships 

between facets and vertices are recorded. Particle shape parameters can be calculated based on 

such information. Herein, four representative parameters: aspect ratio (AR), roundness (R), 

sphericity (S) and convexity (CX) for describing a particle are studied. 

The form of a particle is generally represented by the longest (l), intermediate (i) and 
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shortest (s) axes.26 Principle component analysis is a commonly used method to identify the 

orientations of three axes.27 Thereafter the particle is rotated to guarantee its principal axes of 

inertia parallel to the Cartesian axes, and the values of l, i and s can be calculated based on 

voxel coordinates (l ≥ i ≥ s, Fig. 1a). Then the AR can be calculated using:

(1)  2AR i l s i 

For the particle roundness, Dong and Wang28 proposed a method to determine the 

maximum (k1) and minimum (k2) normal curvature of a surface. Herein, the surface is formed 

by neighbouring triangles around one or several points (Fig. 1b). After the maximum and 

minimum normal curvatures of a surface being determined, the roundness of a particle can be 

calculated using the method proposed by Wadell29, as follows:

(2) 
1

N

i is
i

R r R N


 

where ri and Ris are the radius of curvature of a corner and the maximum inscribed sphere; N 

is the total number of corners. Herein, ri can be represented by k1 or k2, and k1 is used in this 

study. Meanwhile, the local curvature value larger than its inscribed sphere is treated as a part 

of a “corner”.15 

Sphericity is another important index of particle shape to quantify the compactness of 

granular materials. The sphericity index proposed by Wadell29 is used in this study, which is 

defined as the ratio of the surface area of a sphere, which has the same volume as the studied 

particle, to the surface area of the studied particle (Fig. 1b):

(3)3 236S V SA

where V and SA are the volume and surface area of the studied particle, respectively.
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The convexity index is defined as the ratio of the convex hull of the particle to its volume, 

in which the convex hull is the minimal convex surface enclosing the particle.

(4)X CHC V V

where VCH is the volume of the convex hull.

2.2 Convolutional neural network

CNN generally consists of convolutional, pooling and fully connected layers, as shown in Fig. 

2. The kernel is a key component of CNN, which is represented by a three-dimensional matrix 

for 3D-CNN and its function is similar to a filter to extract information. Given a raw image 

with the size of hr (height)×wr (width)×dr (depth)×cr (channel, 1 and 3 for greyscale and color 

images, respectively), the kernel is first employed to directly compute the dot product between 

the entries of the kernel and the matrix of the raw image. Such a process is generally known as 

feature extraction, i.e., aiming to relate the pixel distribution to the desired outputs such as 

shape parameters in this study. The corresponding output is known as the feature map. The 

training of CNN is to adjust the kernel matrix for optimizing feature extraction until the 

predictions converging to measured values. Given that each kernel moves with a fixed stride 

st, the size of the feature map (i.e. height, width and depth) is rescaled to hc×wc×dc×cc,30 which 

can be obtained by:

(5)
1

,  , ,
r
jc

j
t

S f
S j h w d

s
  

  
  

where  and  denote the size along the ith dimension of images in the input and r
jS c

jS
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convolutional layers, respectively; f is the size of the kernel;  is the ceiling function, which   

maps x to the least integer great than or equal to x. 

The pooling layer aims to merge similar features in the feature map. The size of the feature 

map can be further reduced to hp×wp×dp×cp using Equation (5). The max-pooling layer is used 

in this study, in which the maximum value in a region of the feature map represented by a 

kernel is retrained. Before entering the fully connected layer, all feature maps are required to 

be flattened and connected in turn. The rear section of CNN is a multi-layer perceptron. The 

introduction of CNN and the illustration of the computation process can be found in Zhang et 

al31.

3. Modelling process using 3D-CNN

3.1 Framework of modelling strategy

A primary characteristic of the supervised learning algorithm is that the outputs are required to 

be known so that the relationships between images of particles and shape parameters can be 

learned. Therefore, a database with the true shape of particles (obtained by laser scanner in this 

study) and corresponding shape parameters is first built. After the model is developed, the 

images of arbitrary particles can be fed to the model and shape parameters can be directly 

predicted.

Fig. 3 presents the schematic view of developing a 3D-CNN based model to identify 3D 

shape parameters of particles. Based on the real 3D particle, an algorithm is developed to 

automatically extract random cross-sections of a 3D particle, i.e., the slice image. First, the 
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coordinates of the real particle are rescaled by its longest axis. The rescaled particle is imported 

and put in the same cubic box with the size of 1 The centroid of the particle (o) is located at 

the centre of the box. Herein, the cubic box is used so that the slice images of particles retain 

the same square, which is useful for further image processing. Another noteworthy point is that 

the dimensionless particle shape parameters are not affected by the size of the box. Thereafter, 

the cutting plane is located by setting coordinates, based on which the slice image can be 

obtained accordingly. Each slice image is assigned 3 RGB channels for clearly exhibiting 

details of particles by colour, thus further improving the potential of using 3D-CNN to identify 

particle shape. Slice images are extracted along three orthogonal orientations. From the 

boundary, 40 equally-spaced slices are extracted along each orientation. There is no general 

method to judge how many slices should be extracted. After examining with different numbers, 

40 slices are found sufficiently dense, thereby ensures the entire shape contour of particles to 

be retained. Therefore, a total of 24000 slice images along three dimensions are ultimately 

extracted from all particles.

These slice images form the input x of the 3D-CNN. This x has five dimensions, i.e., the 

number of particles, width, height, depth and channels of slice images. After passing through 

the convolutional (C, with a total of l), pooling (P, with a total of m) and fully-connected (F, 

with a total of n) layers, outputs y, i.e. AR, R, S and CX, can be predicted simultaneously. Such 

a process involves a step-by-step computation of matrix 

x→C1→…→Cl→P1…→Pm→F1→…→Fn→y. The sequence and number of convolutional, 

pooling and fully-connected layers are related to the ultimate framework of the 3D-CNN based 
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model. The mathematic expression of such a process is shown as follows:

(1) Computation from the input x to the first convolutional C1 layers:

(6)
1

11

1
ELU +

C

j
f

C
j i j

i
b



 
 
 
 
C W x

where  denotes the outputs convolved by the jth kernel in the C1 layer;  is the weight 1
jC

1
jCW

of the jth kernel in the C1 layer; is the size of the kernel in the C1 layer; bj is a bias term at 
1Cf

the jth kernel for shifting the transfer function curve along the input axis, allowing more flexible 

input-output mapping;32 ELU represents the activation function exponential linear unit (ELU).

(2) Computation from the first C1 to the second convolutional C2 layers:

(7)
2

22 1

1
ELU +

C

j
f

C
j i j

i
b



 
 
 
 
C W C

(3) Computation from the lth convolutional Cl to the first pooling P1 layers:

(8) 1 1 1 1
1
, , , 1 1, 1, 1

max , , ,..., , ,
P P P P

l l l l
i j i j i j f i f j i f j f       

P C C C CK K

where max function indicates the output in the P1 layer is the maximum value of a region 

covered by a kernel with the size of .
1Pf

(4) Computation from the first P1 to the second pooling P2 layers:

(9) 2 2 2 2
2 1 1 1 1
, , , 1 1, 1, 1

max , , ,..., , ,
P P P Pi j i j i j f i f j i f j f       

P P P P PK K

(5) Computation from the mth pooling Pm to the first fully-connected F1 layers:

(10) 1
1 2, , ,..., mP

m m m

n
F P P PK

where  denotes a total of elements in the Pm layer. This procedure does not involve 
mPn

mathematical computation. It aims to extract all elements in the feature maps and align them 

with a two-dimensional matrix so that they can enter the fully-connected layer.
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(6) Computation from the first F1 to the second fully-connected F2 layers:

(11) 2 22 1ELU F F F W F b

where  and  are the weights and biases connected with F1 and F2 layers, respectively.
2FW

2Fb

(7) Computation from the nth fully-connected Fn to the output y layers:

(12)y n y W Fy b

where Wy and by are the weights and biases connected with Fn and y layers, respectively. 

A noteworthy point is that slice images vary with the cutting orientations, but the 

performance of the CNN based model is dependent on the input images. To investigate the 

influence of slice cutting-plane direction on the model performance, a total of 7 models are 

thus trained based on slice images cut from x, y, z, xy, xz, yz and xyz directions, respectively. 

Herein, x denotes all images are collected from cut planes perpendicular to the x-axis, xy 

denotes images of cutting-plane perpendicular to x and y axes, xyz denotes images of cutting-

plane perpendicular to x, y and z axes. The meaning of other notations is the same. Hereafter 

such 7 models are labelled with CNN-x, CNN-y, CNN-z, CNN-xy, CNN-xz, CNN-yz and CNN-

xyz for convenient demonstration. The number of slice images for each cutting-plane direction 

is the same, thus the depth of input for the first to third models is half of the fourth to sixth 

models, and one-third of the last model. Such an investigation can understand the influence of 

slice orientations on the performance of the 3D-CNN based model, and the optimum number 

of slice orientations can also be determined.

3.2 Data source

The data source is collected from 100 ballast and 100 Fujian particles due to their rich 
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morphologies. Their 3D shape is obtained by using a laser scanner (Handy Scan 700 TM). The 

principle of the laser scanner is measuring the distance from the laser light to the studied object 

in different directions. The point cloud of a particle is first obtained during scanning, thereafter 

adjacent points are connected to form a triangular vertex. The final surface of the particle is 

reconstituted by numerous triangular facets (Fig. 1b). Previous research works confirm that a 

reconstituted particle with over 1500 triangular facets is roughly identical to its real 

morphology,15,33 thereby all ballast and Fujian sand particles used in this study are reconstituted 

using more than 1500 triangular facets. Nie et al33 have presented the details of the used laser 

scanner and the process of reconstructing particle surface. The shape parameters of these 

particles are computed in advance using the conventional methods as mentioned before for 

labelling each particle. Fig. 4 illustrates the distribution of all data points and the statistical 

values are summarized in Table 1. It can be seen that the shape characteristics of ballast and 

Fujian sand can be distinguished clearly. Fujian sand is globally rounder than ballast but is 

more angular. Overall, particle shape is abundant in the database to develop a general model. 

3.3 Data pre-processing

CNN-based model tends to suffer from erratic fluctuations in predictions when the input images 

rotate.34 To enhance rotation equivariance and enlarge the database, the flip data augmentation 

method is adopted,31,35 through which each image is flipped horizontally and vertically, thus 

the database size triples. Finally, a database with 72000 slice images is used in this study. 

Gholamy et al36 have verified that training and testing sets with 80% and 20% of the data, 

respectively, are the best division to ensure the desirable prediction accuracy and avoid over-
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estimation simultaneously. Thus, 80% of particles are randomly selected to train the 3D-CNN 

based model and the remaining 20% are used to test the model.

The raw slice image are 512×512 pixels. Considering a larger amount of slices images are 

used in this study, using raw slice images would impose a large burden on computational cost, 

but the too-small size of images may omit the local characteristics of particles. To achieve the 

trade-off between computational cost and accuracy, the size of slice images are reduced to 

64×64 pixels by trial and error. This is a commonly used technique in the CNN domain as long 

as the contour of the studied object in the compressed images is retained.25 Besides, RGB 

values of a raw slice image range from 0 to 255. Large RGB values are sensitive to the variation 

of weights and biases, leading to the difficulty in the convergence of a training process and 

stability of the model. Therefore, RGB values are rescaled to the range (0, 1) by multiplying 

1/255 factor before the training of the model.37

4. Analysis of 3D-CNN based model

4.1 Training of 3D-CNN based model

The primary objective of training the 3D-CNN based model is to determine its topology. In 

addition, other configurations such as initial weights, biases, optimizer, learning rate, activation 

function, batch size and epochs are required to be finely tuned. Moreover, some configurations 

such as the activation function also has their intrinsic parameters that need to be finely tuned. 

Such factors indicate the determination of all parameters of a 3D-CNN based model is a 

tremendous task. An automatic search of optimum configurations of 3D-CNN such as using 
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meta-heuristic algorithms would cause a computational disaster, thereby the most practical and 

commonly used method is trial and error combined with knowledge of domain experts. To this 

end, the configurations of the 3D-CNN based model in this study are determined manually. 

Weights and biases of the model are updated using a stochastic gradient descent algorithm with 

the learning rate of 1e–4, the decay of 1e–6 and the momentum of 0.9. The configurations of 

seven 3D-CNN based models maintain consistency. The final configurations are summarized 

in Table 2. Inspired by the VGG model,38 the kernel sizes used in the convolutional and pooling 

layers are 3×3 and 2×2, respectively. Such a combination can improve the extraction of image 

features. The detailed process for determining such configurations are not presented for brevity, 

and each configuration has been explained by Chollet39.

The prediction of particle shape parameters is a regression issue, thereby mean square 

error (MSE) is defined as the loss function. Meanwhile, the k-fold cross-validation method is 

employed. Such a method further divides the original training set into 10 subsets, in which 9 

random subsets form a new sub-training set to be used to train the model, and the remaining 

one as the validation set is used to test the model. Each subset has the same probability to be 

selected as the sub-training and validation sets. Therefore, 10 sub-models are developed based 

on 9 random subsets at each training epoch, which can detect the overfitting issue and reduce 

the effects of the split of training and testing sets on the model performance.40 To avoid the 

overfitting issue, an L2 regularization term is added to constrain the weights W and biases b 

values of the 3D-CNN based model. The loss function (L) is ultimately formulated by:

(13)   2

1 1

1 1
2

,b w w
subnk

p a T
i i

isub

y y
k n




  WL
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where nsub is the number of datasets in a sub validation set; k is the number of folds, which is 

usually set as 10;  and  are predicted and actual shape parameters, respectively. w is p
iy a

iy

vector consists of all elements in the weights and biases.

Fig. 5 presents the evolution of loss values on both sub-training and validation sets 

generated by 7 models individually during the training process. MAE values on the sub-training 

set rapidly reduce at the early 1000 epochs, then roughly converges at 0.001. Compared with 

the loss values generated by CNN-x, CNN-y, CNN-z, CNN-xy, CNN-xz and CNN-yz, there is 

no large difference of MAE values generated by the models trained based on slices images 

collected from one or two directions. From the perspective of CNN-xyz, the model trained by 

slices images collected from three directions present an obvious decrease of MAE values with 

a more rapid convergence rate. Regarding the validation set, MAE values generated by all 

models on the validation set roughly maintains unchanged as the epoch exceeds 1000. The 

MAE values do not show increase trend with the increasing epoch, which indicate these 7 

models are well trained without overfitting issue. The difference in the validation set among 7 

models can be distinguished. It seems that slices images collected from y-direction are less 

important than the remaining two directions, because the error of models trained with images 

of this direction are larger than other same type models, e.g., error of CNN-y is larger than 

CNN-x and CNN-z, errors of CNN-xy and CNN-yz are larger than CNN-xz. The side effect of 

the y-direction is mitigated by images from x and z directions in the model CNN-xyz. CNN-xyz 

outperforms the remaining models on both sub-training and validation in terms of prediction 

accuracy and convergence rate.
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Revealing image transformation inside the model is a necessity of understanding the 

identification mechanism of particle shape in the 3D-CNN based model. The first feature map 

in each layer is illustrated, and only the results generated by model CNN-xyz are presented as 

a representative example, as shown in Fig. 6. Feature maps in the low layers (Con3D_1) and 

(Con3D_2) are close to the shape of the raw particle. The deeper layer (MaxPooling3D) aims 

to fuse features, thereby the illustration is abstract. It can be seen from Fig. 6 that the boundary 

of the particle is accurately identified and marked with different colours, which indicates 3D-

CNN is capable of capturing particle shape information. 

4.2 Comparison and selection of the model

After the optimum configuration of the CNN based model is determined, the training and 

testing sets are fed to the model to evaluate its prediction performance. Quantitative evaluation 

indicators mean absolute error (MAE) and mean absolute percentage error (MAPE), are 

calculated.

(14)
1

1MAE
n

p a
i i

i
y y

n 

 

(15)
1
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i i
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i i

y y
n y


 

where n is the total number of datasets.

Fig. 7 presents MAE and MAPE values on the training and testing sets generated by 7 

models and the detailed values are summarized in Table 3 and Table 4. The prediction error 

on the testing set is about 6-7 times the error on the training set. The MAE values are related 

to the magnitude of the shape parameter values, thus MAE values for predicting AR and CX are 
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larger than S and R. The magnitude of R is the smallest, thus MAPE values on both training 

and testing sets are the largest. This indicates that the prediction of R using 3D-CNN is more 

difficult than the remaining three shape parameters, which complies with the real condition, 

i.e., the calculation of R is much more complex than the others. 

To comprehensively compare the performance of 7 individual models, MAE and MAPE 

values for all particles in the testing set generated by all models are illustrated in Fig. 8. 

Prediction errors of CNN-x, CNN-y and CNN-z show a large variation, indicating that the 

performance of the 3D-CNN based model is affected by slice orientations as expected. The 

performance of the model stabilizes and improves with the increasing slice orientations 

particularly when the slice images from three orientations are used to train the model. Such a 

phenomenon is consistent with the convergence values generated during the training process 

(Fig. 5). Note that the mean MAE and MAPE values show a slight increase when the training 

slice images are expanded from one orientation to two orientations. Such a difference can be 

neglected in the context of small prediction errors and it should be highlighted that the stability 

of the model performance is enhanced with a smaller variation of MAE and MAPE values. 

Hereafter, the model CNN-xyz trained using the slice images from three orientations is used 

for further analysis considering its optimum performance.

4.3 Robustness of 3D-CNN based model

4.3.1 Generalization ability

The predicted values of AR, S, R and CX on both training and testing sets using the optimum 

model CNN-xyz are presented in Fig. 9, compared with the measured values. All data points 
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are close to the line with the slope of 1. In Table 4, it can be seen that the individual prediction 

errors of AR, S, R and CX on the testing set are well controlled within 10%, 4%, 10% and 7%, 

respectively. Such factors indicate one unified 3D-CNN based model is capable of directly 

predicting all desirable particle shape parameters and the prediction accuracy can be guaranteed. 

Note that all shape parameters can be obtained within several seconds once the model is trained. 

Such a process is completely independent of the number of triangular facets because the model 

makes a prediction solely based on the slice images as inputs. From this perspective, 3D-CNN 

based model outperforms conventional methods, in which the computational cost for obtaining 

shape parameters relies heavily on the number of triangular facets.

Considering R and CX can represent the complexity of a particle shape, the prediction 

errors on these two indices are thus presented in detail for further analysing the model 

performance. Herein, the values of shape parameters are categorized into several groups with 

an interval of 0.1 and the prediction errors on the testing set in each group are also summarized. 

As shown in Fig. 10, the prediction errors increase with the decreasing values of R and CX. It 

reveals that the 3D-CNN based model presents the same characteristic as the conventional 

methods, i.e., the difficulties for capturing particle shape increase with the increasing angularity 

and concavity. Meanwhile, prediction errors seem to be more sensitive to the CX value, which 

may be contributed to the paucity of data with the small CX value (see Fig. 11) causing poor 

model performance at that range.

4.3.1 Rotation equivariant

Particle shape parameters are independent of their orientations. The slice images are changed 
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as the particle rotates, which may vary the predicted shape parameters using the 3D-CNN based 

model. Therefore, the predicted shape parameters are required to hold steadily with the 

changeable orientations of a given particle. This is a significant characteristic to confirm the 

applicability of a 3D-CNN based model, whereby a rotation equivariant (RE) index is proposed 

to quantify its robustness, which is defined as:

(16),max ,min

,
1

100%,  , , ,
p p
j j

Xm
p
j k

k

ER
y y

j AR S R C
y




  



where m denotes the total number of orientations;  denotes the predicted jth shape ,
p
j ky

parameter at the kth orientation;  and  corresponds to the maximum and minimum ,max
p
jy ,min

p
jy

values. The small value of RE indicates a 3D-CNN based model exhibits excellent robustness.

The orientation of a particle is represented by azimuth θ, which ranges from 0 to 2π, as 

shown in Fig. 11. To evaluate the stability of the optimum model CNN-xyz, oritentations of 

particles in the testing set are changed. Considering the slice images of a particle with the 

azimuth of θ and θ+π are same, the orientation of particles thus varies between 0 to π and four 

azimuths, i.e., π/4, π/2π, 3π/4 and π are selected as the representative cases. Slice images cut 

from particles with such four orientations are fed to the model CNN-xyz. Two particles 

corresponding to maximum and minimum values RE are labelled with A and B, respectively. 

The predicted shape parameters of particles A and B with the changing azimuth are presented 

in Fig. 12, and the detailed values are summarized in Table 5. It can be seen that the predicted 

values of shape parameters show a slight difference at different azimuths as expected, and there 

is no evidence indicates the predicted values are larger or smaller at a certain azimuth. The 
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maximum discrepancy with the RE of 10% is observed for R and the corresponding mean value 

of RE is also the largest (9.092%). Thus, R is more sensitive to the orientation of the particle in 

comparison with the remaining three shape parameters with the RE around 5%. This result is 

reasonable because the computation of R is more complex involving the identification of local 

features. Overall, the performance of the model is roughly independent to the orientation of 

particles.

5. Discussion

To further examine the generalization ability of the proposed model, 15 elliptical particles with 

various s, i and l are created (Fig. 13) and their shape parameters are directly predicted by the 

3D-CNN based model. The predicted AR, R, S and CX, are plotted together against the exact 

values. The mean MAE and MAPE values for four shape parameters are also computed. The 

predictions agree well with the actual values, thus further indicating the excellent 

generalization ability of the model. 

The real shape of particles in the database is known and they are labelled with their shape 

parameters. For instance, numerous research works investigated the effects of particle shape 

on mechanical behaviour, in which particles with target shape parameters were first devised. 

Thus, the particle in the database with shape parameters closest to the target values can be 

selected to represent the real particle. Thus, this database is also an alternative method to 

roughly provide particles with expected shape parameters. The difference between the target 

particle and the selected particle in the database is quantified by the average MAE values of 
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AR, S, R and CX. The particle with the minimum difference is finally selected to represent the 

target particle. The mathematical expression of such a process can be formulated by:

(17),
1arg min  ,  , , ,
4 p

p

t p
j j n X

n j
y y j AR S R C 

where np denotes a selected particle in the database;  and  are the value of the jth shape t
jy , p

p
j ny

parameter for the target and selected particles, respectively. 

This formulation aims to search the particles in the training set whose difference to the 

given values of shape parameters is the lowest. Two representative particles A and B (Fig. 12) 

are used to verify the feasibility of such a method. Using shape parameters of A and B, two 

particles in the training set are identified. For comparison, the real shape of particles A and B 

are reconstructed with a 3D laser scanner. Fig. 14 indicates the identified 3D shape of particles 

is close to the real shape, thereby this rough estimation method of 3D particle shape is feasible 

to a certain extent. Note that this study provides an effective approach, based on which more 

parameters of particles can be easily introduced and more accurate identification can thus be 

achieved.

In essence, a data-driven model developed based on 3D-CNN primarily relies on the 

database. The number of particle samples and types used in this study is limited, and the ranges 

of shape parameters cannot involve all types of granular particles, which also limits application 

scopes of the developed model. Note that with this effective approach it is easy to feed more 

numbers and types of particles, based on which the model is feasible to predict 3D shape 

parameters of arbitrary particles given. The configurations of the 3D-CNN based model are 

flexible and it can be adjusted with simple operation to be adapted with more images of 
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particles. 

6. Conclusions

Using a series of 2D cross-sectional images of the particle, its 3D shape parameters can be 

obtained by the deep learning algorithm 3D-CNN. This study has achieved such a process, and 

developed a 3D-CNN based model applied to real particles. The datasets for model training 

and testing have been created with a total of 100 ballast and 100 Fujian sand particles labelled 

with their representative shape parameters, i.e. aspect ratio, roundness, sphericity and 

convexity. 

By feeding the slice images of these particles to the model, the 3D-CNN based model 

extracted the contour of particles, thereby the relationships between particle shape and shape 

parameters were learned for model training. In this study, a total of 7 models were trained using 

7 combinations of slice images cut from x, y, z, xy, xz, yz and xyz directions, respectively. 

Through model testing it has been examined that, the 3D-CNN based model trained based on 

slice images from three orthogonal planes (i.e. xyz) can well predict all four shape parameters 

simultaneously. The prediction process can be completed within a second and is independent 

of the triangular facets. The prediction accuracy is high an error of less than 10% and the 

accuracy can also be ensured for the complex particles with concavity and angularity. The 

model has also been examined for different rotational degrees of particles, which shows the 

predicted results roughly maintain consistency whatever the rotational degree is. Therefore, the 

robustness and applicability of the proposed model are guaranteed.

Page 80 of 100

http://mc.manuscriptcentral.com/nag

International Journal for Numerical and Analytical Methods in Geomechanics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

22

Moreover, the developed model is generic, i.e., the outputs in the model can be represented 

by a random number of desirable shape parameters, the database can be further expanded to 

improve the application scopes of the model, and for given shape parameters the model can 

also find possible particles with closest values of parameters from the database. 3D-CNN is a 

novel promising and effective method of predicting shape parameters, reconstructing the 

surface and implementing discrete-element modelling. 
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Table

Table 1 Summary of shape parameters

Ballast Fujian sandParameter Mean SD Min. Max. Mean SD Min. Max.
AR 0.733 0.074 0.541 0.924 0.808 0.060 0.683 0.948
S 0.785 0.043 0.640 0.868 0.806 0.103 0.356 0.897
R 0.402 0.044 0.232 0.515 0.196 0.058 0.040 0.336
CX 0.884 0.032 0.789 0.941 0.867 0.145 0.265 1.0

Note: SD = standard deviation

Table 2 Configurations of the 3D-CNN based model

Layer Num. of 
nodes

Num. of 
kernels

Kernel 
initializer

Activation 
function

Num. of 
parameters

Convolutional / 8 (3,3,3) random_normal ELU valid 656
Max-pooling / / (2,2,2) / / valid /
Convolutional / 16 (3,3,3) random_normal ELU valid 3472
Max-pooling / / (2,2,2) / / valid /
Convolutional / 32 (3,3,3) random_normal ELU valid 13856
Max-pooling / / (2,2,2) / / valid /
Fully-connected 32 / glorot_uniform ELU / 479264
Fully-connected 4 / glorot_uniform Linear / 128
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Table 3 Prediction errors of 7 3D-CNN based models on the training set

MAE MAPE (%)Model AR S R CX AR S R CX

CNN-x 0.011 0.003 0.003 0.006 1.489 0.378 1.336 0.895
CNN-y 0.012 0.005 0.003 0.007 1.711 0.592 1.097 0.696
CNN-z 0.008 0.003 0.003 0.006 1.192 0.395 1.114 0.797
CNN-xy 0.013 0.005 0.003 0.006 1.796 0.620 1.238 0.947
CNN-xz 0.010 0.005 0.003 0.006 1.416 0.584 1.020 0.745
CNN-yz 0.010 0.004 0.003 0.005 1.475 0.478 1.011 0.695
CNN-xyz 0.007 0.003 0.003 0.005 1.009 0.374 0.994 0.559

Table 4 Prediction errors of 7 3D-CNN based models on the testing set

MAE MAPE (%)Model AR S R CX AR S R CX

CNN-x 0.078 0.020 0.022 0.045 9.563 2.636 8.789 6.597
CNN-y 0.072 0.029 0.026 0.052 8.755 3.697 10.390 6.981
CNN-z 0.064 0.021 0.026 0.046 8.154 2.711 10.090 6.128
CNN-xy 0.071 0.028 0.024 0.040 8.660 3.577 9.269 5.172
CNN-xz 0.060 0.024 0.027 0.034 7.569 3.031 10.721 5.456
CNN-yz 0.065 0.024 0.023 0.035 8.277 3.131 8.959 4.782
CNN-xyz 0.055 0.022 0.022 0.031 6.902 2.880 8.459 4.090

Table 5 Variation of predicted values of shape parameters

Particle A B Mean
AR 5.767% 2.749% 4.258%
S 5.668% 4.071% 4.870%
R 10.568% 7.616% 9.092%
CX 7.457% 3.958% 5.708%
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Figure Caption

Fig. 1 (a) three principal axes of a particle; (b) factors for calculating roundness and sphericity

Fig. 2 Framework of 3D-CNN

Fig. 3 Framework of calculating 3D shape parameters of a particle using 3D-CNN

Fig. 4 Distribution of particle shape in the database

Fig. 5 Evolution of loss value during training process: (a) sub-training set; (b) validation set

Fig. 6 Feature maps generated at different layers

Fig. 7 Prediction performance of the 3D-CNN based model on (a) training set; (b) testing set

Fig. 8 Performance of 3D-CNN model developed based on different slice images (a) MAE; (b) 

MAPE

Fig. 9 Comparison between measured and predicted particle shape parameters for (a) AR, (b) 

S, (c) R and (d) CX

Fig. 10 Relationships between prediction error and shape parameters on the testing set (a) MAE, 

(b) MAPE

Fig. 11 Definition of azimuth

Fig. 12 Influence of particle orientations on the predicted shape parameters of model CNN-xyz 

for (a) AR, (b) S, (c) R and (d) CX

Fig. 13 Model performance on synthetic particles (a) illustration of synthetic particles, (b) 

prediction of shape parameters

Fig. 14 Identified 3D shape of particles A and B

Page 86 of 100

http://mc.manuscriptcentral.com/nag

International Journal for Numerical and Analytical Methods in Geomechanics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

28

(a) 

(b) 

Fig. 1 (a) three principal axes of a particle; (b) factors for calculating roundness and sphericity
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Fig. 2 Framework of 3D-CNN
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Fig. 3 Framework of calculating 3D shape parameters of a particle using 3D-CNN

Page 89 of 100

http://mc.manuscriptcentral.com/nag

International Journal for Numerical and Analytical Methods in Geomechanics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

31

0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6
R

ou
nd

ne
ss

, R
 

Sphericity, S

 Ballast
 Fujian sand

Fig. 4 Distribution of particle shape in the database
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Fig. 5 Evolution of loss value during training process: (a) sub-training set; (b) validation set
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Fig. 6 Feature maps generated at different layers
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Fig. 7 Prediction performance of the 3D-CNN based model on (a) training set; (b) testing set
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Fig. 8 Performance of 3D-CNN model developed based on different slice images (a) MAE; (b) 

MAPE
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Fig. 9 Comparison between measured and predicted particle shape parameters for (a) AR, (b) 

S, (c) R and (d) CX
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Fig. 10 Relationships between prediction error and shape parameters on the testing set (a) MAE, 

(b) MAPE
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Fig. 11 Definition of azimuth
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Fig. 12 Influence of particle orientations on the predicted shape parameters of model CNN-xyz 

for (a) AR, (b) S, (c) R and (d) CX
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Fig. 13 Model performance on synthetic particles (a) illustration of synthetic particles, (b) 

prediction of shape parameters
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Fig. 14 Identified 3D shape of particles A and B
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