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Many investment models in discrete or continuous-time settings boil down to max-
imizing an objective of the quantile function of the decision variable. This quantile
optimization problem is known as the quantile formulation of the original investment
problem. Under certain monotonicity assumptions, several schemes to solve such quan-
tile optimization problems have been proposed in the literature. In this paper, we propose
a change-of-variable and relaxation method to solve the quantile optimization problems
without using the calculus of variations or making any monotonicity assumptions. The
method is demonstrated through a portfolio choice problem under rank-dependent utility
theory (RDUT). We show that this problem is equivalent to a classical Merton’s port-
folio choice problem under expected utility theory with the same utility function but a
different pricing kernel explicitly determined by the given pricing kernel and probabili-
ty weighting function. With this result, the feasibility, well-posedness, attainability and
uniqueness issues for the portfolio choice problem under RDUT are solved. It is also
shown that solving functional optimization problems may reduce to solving probabilistic
optimization problems. The method is applicable to general models with law-invariant
preference measures including portfolio choice models under cumulative prospect theory
(CPT) or RDUT, Yaari’s dual model, Lopes’ SP/A model, and optimal stopping models
under CPT or RDUT.
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1 INTRODUCTION

Classical expected utility theory (EUT) as a model of choice under uncertainty fails to explain
a number of paradoxes. Among the alternative models proposed, Kahneman and Tversky’s
(1979, 1992) cumulative prospect theory (CPT) provides one of the best explanations of
these paradoxes. This theory consists of three components: an S-shaped utility function1, a
reference point, and probability weighting/distortion functions. The last two are missing in
EUT. In light of these theoretical developments, it is natural to consider investment problems
that involve probability weighting functions. However, the probability weighting functions
make these problems time-inconsistent so that these problems cannot be studied using only
classical dynamic programming or probabilistic approaches.

Jin and Zhou (2008) initiated the study of portfolio choice problems under CPT with prob-
ability weighting functions in continuous-time settings. They solved the problem by assuming
the monotonicity of a function related to the pricing kernel and probability weighting func-
tion. However, this assumption is so restrictive that it excludes most probability weighting
functions that are typically used, including that proposed by Tversky and Kahneman (1992),
in the Black-Scholes market setting. Jin, Zhang, and Zhou (2011) considered the same portfo-
lio choice problem under the scenario of a loss constraint with the same assumption. He and
Zhou (2011) investigated general models with law-invariant preference measures, including
the classical Merton’s portfolio choice model under EUT, the mean-variance model, the goal
reaching model, the Yaari’s dual model, the Lopes’ SP/A model, the behavioral model under
CPT, and those explicitly involving VaR and CVaR in their objectives and/or constraints.
Their work took a step forward and reduced the monotonicity assumption in Jin and Zhou
(2008) to a piece-wise monotonicity assumption. The results cover the probability weighting
functions proposed by Tversky and Kahneman (1992), Tversky and Fox (1995), and Prelec
(1998). Xu and Zhou (2013) initiated the study of continuous-time optimal stopping problem
under CPT and solved the problem under the same assumption of piece-wise monotonicity as
He and Zhou (2011). By adopting the calculus of variations, Xia and Zhou (2012) achieved
a breakthrough. They proposed and solved a portfolio choice problem under rank-dependent
utility theory (RDUT) with no monotonicity assumptions. Their method also works for gen-
eral models with law-invariant preference measures. However, they use techniques from the
calculus of variations and have extensive recourse to convex analysis, so their arguments are
lengthy, technical, and difficult to follow.

In this paper, without making any monotonicity assumptions, we propose a new and easy-
to-follow method to study the portfolio choice problem under RDUT. A complete and compact
argument replaces the lengthy calculus of variations argument in Xia and Zhou (2012). The

1A function is called S-shaped if it is convex on the left and concave on the right; and reverse S-shaped if
concave on the left and convex on the right.
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main idea is as follows. After transforming the portfolio choice problem into its quantile
formulation, we make a change of variable to remove the probability weighting function from
the objective and reveal the essence of the problem. In the literature, the optimal solution is
commonly obtained by point-wise maximizing the Lagrangian in the objective. However, such
a solution may not be a quantile function. Our idea is to replace a part of the Lagrangian
to relax the problem so that the new problem can be solved by point-wise maximizing the
new Lagrangian, and then to show that there is no gap between the old and new Lagrangians
in this point-wise solution. Through this approach, we show that solving a portfolio choice
problem under RDUT reduces to solving a classical Merton’s portfolio choice problem under
EUT with the same utility function but a different pricing kernel, which is determined by the
given pricing kernel and probability weighting function. Moreover, the quantile optimization
problem is avoided in the latter. As with Xia and Zhou (2012), the method is applicable to
general models with law-invariant preference measures.

In the literature, there is no study on feasibility, well-posedness, attainability and unique-
ness issues for the portfolio choice problem under RDUT2. We investigate these issues by
linking the portfolio choice problem under RDUT to a classical Merton’s portfolio choice
problem under EUT for which the issues have been completely solved in Jin, Xu and Zhou
(2008).

The remainder of this paper is organized as follows. In Section 2, we formulate a portfolio
choice problem under RDUT and define its quantile formulation. In Section 3, we introduce
a key step — making a change of variable — to formulate an equivalent quantile optimization
problem, in which the probability weighting function is removed from the objective. The
problem is then completely solved by a new relaxation method in Section 4. In Section 5,
we demonstrate how to transform the portfolio choice problem under RDUT into an equiv-
alent classical Merton’s portfolio choice problem under EUT. The feasibility, well-posedness,
attainability and uniqueness issues for the portfolio choice problem under RDUT are also
investigated in this section. We conclude the paper in Section 6.

2 PROBLEM FORMULATION

Using martingale representation theory (see, e.g., Pliska (1986), Karatzas, Lehoczky, and
Shreve (1987), Cox and Huang (1989, 1991)), the dynamic portfolio choice problem under

2see, e.g., Jin, Xu and Zhou (2008) for the definitions of feasibility, well-posedness, attainability and
uniqueness issues for a portfolio choice problem
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RDUT in a complete market setting3 reduces to finding a random outcome X to

sup
X

∫ ∞
0

u(x) d
(
1− w(1− FX(x))

)
,(1)

subject to E[ρX] = x0, X > 0,

where FX(·) is the probability distribution function of X; w(·) is the probability weighting
function which is differentiable and strictly increasing on [0, 1] with w(0) = 0 and w(1) = 1;
u(·) is the utility function which is strictly increasing and second order differentiable on R+

with u′′(·) < 0; and ρ > 0 is the pricing kernel, also called the stochastic discount factor or
state pricing density. We always have that E[ρ] < +∞.

If w(·) is the identity function, i.e., w(x) = x for all x ∈ [0, 1], then∫ ∞
0

u(x) d
(
1− w(1− FX(x))

)
=

∫ ∞
0

u(x) dFX(x) = E[u(X)],

for any X > 0, and consequently, problem (1) reduces to a classical Merton’s portfolio choice
problem under EUT:

sup
X

E[u(X)],

subject to E[ρX] = x0, X > 0.

To tackle problem (1), in the literature (see, e.g., Jin and Zhou (2008), Jin, Zhang, and
Zhou (2011), He and Zhou (2011, 2012), Xia and Zhou (2012)), it is always assumed that

Assumption 1 The pricing kernel is atomless4.

Under this assumption, solving problem (1) then reduces to solving a quantile5 optimization
problem

sup
G(·)∈Gx0

∫ 1

0
u(G(x))w′(1− x) dx,(2)

where the set Gx0 is given by

Gx0 :=

{
G(·) ∈ G :

∫ 1

0
G(x)F−1ρ (1− x) dx = x0

}
,

3See, e.g., Xia and Zhou (2012).
4A random variable is called atomless or non-atomic if its cumulative distribution function is continuous,

and called atomic otherwise.
5The quantile function Q(·) of a real-valued random variable is defined as the right-continuous inverse

function of its cumulative distribution function F (·), that is Q(x) = sup{t ∈ R : F (t) 6 x}, for all x ∈ (0, 1),
with convention sup ∅ = −∞. A real-valued random variable is atomless if and only if its quantile function is
strictly increasing.
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the set G denotes the set of all quantile functions:

G :=
{
G(·) : (0, 1) 7→ R+, increasing and right-continuous with left limits (RCLL)

}
,

and F−1ρ (·) ∈ G denotes the quantile function of the pricing kernel ρ. By Assumption 1, ρ is
atomless, so F−1ρ (·) is strictly increasing.

Problem (1) and problem (2) are linked as follows. The optimal solution X∗ to problem
(1) and the optimal solution G∗(·) to problem (2) satisfy

X∗ = G∗(1− Fρ(ρ)).(3)

For this reason, problem (2) is called the quantile formulation of problem (1).
Before Xia and Zhou (2012), problem (2) was partially solved under certain monotonicity

assumptions in the literature. Xia and Zhou (2012) used the calculus of variations to tackle it
without making those monotonicity assumptions, but their arguments are lengthy and com-
plex. Moreover, they did not study the feasibility, well-posedness, attainability or uniqueness
issues for problem (1).

In this paper, we propose a simple change-of-variable and relaxation method to tackle
problem (2) without making any assumptions. We also solve the feasibility, well-posedness,
attainability and uniqueness issues for problem (1) by linking the problem to a classical
Merton’s portfolio choice problem under EUT.

Remark 1 In the literature, Gx0 is often replaced by

Gx0 :=

{
G(·) ∈ G :

∫ 1

0
G(x)F−1ρ (1− x) dx 6 x0

}
.

However, there is no difference between considering problem (2) for Gx0 or Gx0 because the
optimal solution to problem (2) in Gx0, if it exists, must belong to Gx0.

Remark 2 Here we assume that the pricing kernel is atomless as according to convention.
However, if one studies economic equilibrium models with law-invariant preference measures
(see, e.g., Xia and Zhou (2012)), the pricing kernel will be a part of the solution, so one
cannot make a priori any assumption on it. The quantile formulation problem with an atomic
pricing kernel is solved in Xu (2014).

3 CHANGE OF VARIABLE

To tackle problem (2), our first main idea in this paper is to make a change of variable to
remove the probability weighting function from the objective.

Let ν : [0, 1] 7→ [0, 1] be the inverse mapping of x 7→ 1− w(1− x), that is

ν(x) := 1− w−1(1− x), x ∈ [0, 1].
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Then ν(·) is also a probability weighting function that is differentiable and strictly increasing
on [0, 1]. It follows that∫ 1

0
u(G(x))w′(1− x) dx =

∫ 1

0
u(G(x)) d(1− w(1− x))

=

∫ 1

0
u(G(x)) d(ν−1(x)) =

∫ 1

0
u(G(ν(x))) dx =

∫ 1

0
u(Q(x)) dx,

where
Q(x) = G(ν(x)), x ∈ (0, 1).

Note that

Gx0 =

{
G(·) ∈ G :

∫ 1

0
G(x)F−1ρ (1− x) dx = x0

}
=

{
G(·) ∈ G :

∫ 1

0
G(ν(x))F−1ρ (1− ν(x))ν ′(x) dx = x0

}
.

Therefore, we conclude that G(·) ∈ Gx0 if and only if Q(·) ∈ Q, where

Q :=

{
Q(·) : (0, 1) 7→ R+, increasing and RCLL with

∫ 1

0
Q(x)ϕ′(x) dx = x0

}
=

{
Q(·) ∈ G :

∫ 1

0
Q(x)ϕ′(x) dx = x0

}
,

and

(4) ϕ(x) := −
∫ 1

x
F−1ρ (1− ν(y))ν ′(y) dy = −

∫ 1

ν(x)
F−1ρ (1− y) dy

= −
∫ 1−ν(x)

0
F−1ρ (y) dy = −

∫ w−1(1−x)

0
F−1ρ (y) dy, x ∈ [0, 1].

Note that ϕ(·) is a differentiable and strictly increasing function on [0, 1] with ϕ(0) = −E[ρ]

and ϕ(1) = 0.
By making this change of variable, problem (2) has now been transformed into an equiv-

alent problem:

sup
Q(·)∈Q

∫ 1

0
u(Q(x)) dx,(5)

in which the probability weighting function does not appear in the objective. From now on,
we focus on this problem.

We point out here that although the objective of problem (5) does not involve the prob-
ability weighting function, the constraint set Q does. So problem (5) is different from the
special scenario of problem (2), in which w(·) is replaced by the identity function. We will
study their relationship in Section 5.
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This change in the formulation of problem (2) is mathematically simple, but reveals the
essence of the problem. In problem (5), the function ϕ(·), rather than the probability weight-
ing function and the quantile function of the pricing kernel, plays a key role; whereas, in
problem (2), the probability weighting function and the quantile function of the pricing ker-
nel play separate roles in the objective and the constraint. Because the probability weighting
function does not appear in the objective of problem (5), we can solve it by a new relax-
ation approach. Moreover, this also suggests that it may be possible to link problem (5) to a
problem under EUT. This will be investigated after solving it.

We also point out here that the new formulation explains why the function ϕ′(·) plays such
an important role in many existing models, such as those introduced by Jin and Zhou (2008),
He and Zhou (2011), and Xia and Zhou (2012). In those works, the mysterious function ϕ′(·)
is derived after lengthy analysis, and an explanation of why it should appear and play the
key role is never provided.

In tackling problem (2), some studies assume ϕ(·) to satisfy various properties which are
not generally true in practice, and under these assumptions, the problem is partially solved.
Here are some examples.

Example 1 In Jin and Zhou (2008), the function F−1
ρ (·)
w′(·) is assumed to be increasing in As-

sumption 4.1. This is equivalent to ϕ′(·) being decreasing, i.e., ϕ(·) is a concave function. In
fact, we have

1− w(1− ν(x)) = x, x ∈ [0, 1],

so
ν ′(x) =

1

w′(1− ν(x))
, x ∈ [0, 1].

And consequently, by (4),

ϕ′(x) = F−1ρ (1− ν(x))ν ′(x) =
F−1ρ (1− ν(x))
w′(1− ν(x))

, x ∈ [0, 1].(6)

The equivalence follows immediately as ν(·) is increasing.

Example 2 In He and Zhou (2011), the function w′(1−·)
F−1
ρ (1−·) is assumed to be first strictly

increasing and then strictly decreasing in Assumption 3.5 and many of the following results.
By (6), this is equivalent to ϕ′(·) being first strictly decreasing and then strictly increasing,
i.e., ϕ(·) is a strictly reverse S-shaped function.

Example 3 In He and Zhou (2012), the function w′(1−·)
F−1
ρ (1−·) is assumed to be nondecreasing

in Theorem 2, which is equivalent to ϕ′(·) being decreasing, i.e., ϕ(·) is a concave function.
In Proposition 4-7, Theorem 4-6, and Corollary 1, the same function w′(1−·)

F−1
ρ (1−·) is assumed to

be first strictly decreasing and then strictly increasing. This is equivalent to ϕ′(·) being first
strictly increasing and then strictly decreasing, i.e., ϕ(·) is a strictly S-shaped function.
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4 A NEW RELAXATION APPROACH

Our second main idea in this paper is to introduce a simple relaxation method to tackle
problem (5).

The objective of problem (5) is concave with respect to the decision quantiles, so we can
apply the Lagrange multiplier method. Problem (5) is equivalent to problem

sup
Q(·)∈G

J(Q(·)) =
∫ 1

0

(
u(Q(x))− λQ(x)ϕ′(x)

)
dx,(7)

for some Lagrange multiplier λ > 0 in the sense that they admit the same optimal solution.
A naive approach to tackling the foregoing problem (7) is to point-wise maximize its

Lagrangian (the integrand in (7)) to get a point-wise solution

Q0(x) := argmax
{
y : u(y)− λyϕ′(x)

}
= (u′)−1(λϕ′(x)), x ∈ (0, 1).

However, this point-wise solution may not be a quantile function in G. In fact, Q0(·) is a
quantile function if and only if it is increasing, that is equivalent to ϕ(·) being concave. This
is exactly what has been assumed in Jin and Zhou (2008) so as to solve the problem.

The novel idea in this paper is to replace ϕ(·) by some function δ(·) in the Lagrangian of
problem (7) so that:

(i) The new cost function gives an upper bound to that in (7);

(ii) The new problem can be solved by point-wise maximizing the new Lagrangian; and

(iii) There is no gap between the new and old cost functions in the point-wise solution.

This approach allows us to solve the problem completely without making any assumptions on
the function ϕ(·).

We first need to find a relaxed cost function. To this end, let δ(·) be an absolutely
continuous function such that∫ 1

0

(
u(Q(x))− λQ(x)ϕ′(x)

)
dx 6

∫ 1

0

(
u(Q(x))− λQ(x)δ′(x)

)
dx,(8)

for every Q(·) ∈ G. Setting δ(0) = ϕ(0) and δ(1) = ϕ(1) and applying Fubini’s theorem, the
inequality (8) is equivalent to ∫ 1

0

(
ϕ(x)− δ(x)

)
dQ(x) 6 0,(9)

for every Q(·) ∈ G, which is clearly equivalent to δ(·) dominating ϕ(·) on [0, 1].
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In this case, we have

(10)
∫ 1

0

(
u(Q(x))− λQ(x)ϕ′(x)

)
dx 6

∫ 1

0

(
u(Q(x))− λQ(x)δ′(x)

)
dx

6
∫ 1

0

(
u(Q(x))− λQ(x)δ′(x)

)
dx,

where the last inequality is obtained by point-wise maximizing the new Lagrangian:

Q(x) := argmax
{
y : u(y)− λyδ′(x)

}
= (u′)−1(λδ′(x)), x ∈ [0, 1].(11)

To make Q(·) a quantile function, we require δ(·) to be concave.
To make Q(·) an optimal solution to problem (7), it is sufficient, by (10), to have∫ 1

0

(
u(Q(x))− λQ(x)ϕ′(x)

)
dx =

∫ 1

0

(
u(Q(x))− λQ(x)δ′(x)

)
dx,(12)

or equivalently, ∫ 1

0
(u′)−1(λδ′(x))

(
ϕ′(x)− δ′(x)

)
dx = 0.

Applying Fubini’s theorem and using δ(0) = ϕ(0) and δ(1) = ϕ(1), the above identity is
equivalent to

(13)
∫ 1

0
(u′)−1(λδ′(x))

(
ϕ′(x)− δ′(x)

)
dx =

∫ 1

0

(
δ(x)− ϕ(x)

)
d
(
(u′)−1(λδ′(x))

)
= λ

∫ 1

0

(
δ(x)− ϕ(x)

) 1

u′′
(
(u′)−1(λδ′(x))

) dδ′(x) = 0.

Since δ(·) dominates ϕ(·) on [0, 1], u′′(·) < 0, and δ(·) is concave, by the last identity, δ′(·)
must be constant on any sub interval of {x ∈ [0, 1] : δ(x) > ϕ(x)}.

Putting all of the requirements on δ(·) obtained thus far together, we see that δ(·) should

(i) dominate ϕ(·) on [0, 1] with δ(0) = ϕ(0) and δ(1) = ϕ(1);

(ii) be concave on [0, 1]; and

(iii) be affine on {x ∈ [0, 1] : δ(x) > ϕ(x)}.

Therefore, we conclude that δ(·) must be the concave envelope of ϕ(·) on [0, 1]:

δ(x) = sup
06a6x6b61

(b− x)ϕ(a) + (x− a)ϕ(b)
b− a

, x ∈ [0, 1].(14)

On the other hand, if δ(·) is the concave envelope of ϕ(·) on [0, 1], then (9) and (13) hold
true. This further implies, by (10) and (12), that Q(·) defined in (11) is an optimal solution
to problem (7).

Putting all of the results obtained thus far together and noting that u(·) is strictly concave,
we conclude that
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Theorem 1 Problem (7) admits a unique optimal solution

(u′)−1(λδ′(x)), x ∈ (0, 1),

where δ(·) defined in (14) is the concave envelope of ϕ(·) on [0, 1].
Problem (5) admits an optimal solution if and only if∫ 1

0
(u′)−1(λδ′(x))ϕ′(x) dx = x0

admits a solution λ > 0, in which case

(u′)−1(λδ′(x)), x ∈ (0, 1),

is the unique optimal solution to problem (5).

Proof. The foregoing argument shows that

(u′)−1(λδ′(x)), x ∈ (0, 1),

is an optimal solution to problem (7). Since u(·) is strictly concave, the optimal solution is
unique.

Suppose problem (5) admits an optimal solution. Then the solution must be an optimal
solution to problem (7) for some λ > 0, so it must be of the form

(u′)−1(λδ′(x)), x ∈ (0, 1).

This should be a feasible solution to problem (5), so∫ 1

0
(u′)−1(λδ′(x))ϕ′(x) dx = x0.

On the other hand, suppose that∫ 1

0
(u′)−1(λδ′(x))ϕ′(x) dx = x0

holds true for some λ > 0. Note that∫ 1

0
Q(x)ϕ′(x) dx = x0

for all Q(·) ∈ Q, so

sup
Q(·)∈Q

∫ 1

0
u(Q(x)) dx = sup

Q(·)∈Q

∫ 1

0

(
u(Q(x))− λQ(x)ϕ′(x)

)
dx+ λx0

6 sup
Q(·)∈G

∫ 1

0

(
u(Q(x))− λQ(x)ϕ′(x)

)
dx+ λx0,
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where the last inequality is due to Q ⊆ G. The optimization problem on the right-hand side
is nothing but problem (7), so the unique solution is

(u′)−1(λδ′(x)), x ∈ (0, 1).

This solution belongs to Q as
∫ 1
0 (u

′)−1(λδ′(x))ϕ′(x) dx = x0, so it is a feasible solution to
the problem on the left-hand side, and consequently, it is an optimal solution to problem (5).
Since u(·) is strictly concave, the optimal solution to problem (5) is unique. The proof is
complete. �

By Theorem 1, the optimal solution to problem (2) is given by

G∗(x) = (u′)−1(λδ′(ν−1(x))) = (u′)−1(λδ′(1− w(1− x))), x ∈ (0, 1),

which is the same as the last identity on page 14 in Xia and Zhou (2012). That is, our
approach yields the same result as in Xia and Zhou (2012). It is clear that our change-of-
variable and relaxation approach is much simpler and neater than the calculus of variations
approach in Xia and Zhou (2012), which has extensive recourse to convex analysis. If ϕ(·)
is assumed to take special shape, such as reverse S-shaped function in He and Zhou (2011),
S-shaped function in He and Zhou (2012), then we can get explicit expression for δ(·), and
consequently, G∗(·) reduces to the results obtained in those works.

The feasibility, well-posedness, attainability and uniqueness issues for problem (1) are very
important and hard to answer. To avoid these issues, various assumptions are used in the
literature to ensure the existence and uniqueness of solutions (see, e.g., Jin and Zhou (2008),
Jin, Zhang, and Zhou (2011), He and Zhou (2011, 2012)). In the following section, with
Theorem 1, we will link problem (1) to a classical Merton’s portfolio choice problem under
EUT, for which the feasibility, well-posedness, attainability and uniqueness issues are studied
in Jin, Xu, and Zhou (2008). This connection also develops a new way to solve problem (1),
which avoids dealing with the quantile formulation problem (2).

5 A LINK BETWEEN MODELS UNDER RDUT AND EUT

By Theorem 1, it is clear that a quantile function is an optimal solution to problem (5) if and
only if it is an optimal solution to problem

sup
Q(·)∈Q̃

∫ 1

0
u(Q(x)) dx,(15)

where

Q̃ :=

{
Q(·) ∈ G :

∫ 1

0
Q(x)δ′(x) dx = x0

}
.
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Since δ′(·) is decreasing, function

F−1ρ̃ (x) := δ′(1− x), x ∈ (0, 1),

belongs to G and can be regarded as the quantile function of some positive random variable
ρ̃. It is possible to choose ρ̃ to be comonotonic6 with ρ, which is henceforth assumed.7 Then

Q̃ =

{
Q(·) ∈ G :

∫ 1

0
Q(x)δ′(x) dx = x0

}
=

{
Q(·) ∈ G :

∫ 1

0
Q(x)F−1ρ̃ (1− x) dx = x0

}
.

Now, we see that problem (15) can be regarded as a special case of problem (2), in which
the probability weighting function w(·) is replaced by the identity function and the pricing
kernel ρ is replaced by ρ̃.

We point out here that the new pricing kernel ρ̃ may be atomic, which does not satisfy
Assumption 1. In fact, ρ̃ is atomless if and only if its quantile function F−1ρ̃ (·) is strictly
increasing. This is equivalent to δ(·) being strictly concave as F−1ρ̃ (·) = δ′(1 − ·), and also
equivalent to ϕ(·) being strictly concave as δ(·) is the concave envelope of ϕ(·).

Recalling the relationship between problem (1) and problem (2), it is natural to link
problem (15) to a portfolio choice problem

sup
X

∫ ∞
0

u(x) dFX(x),

subject to E[ρ̃X] = x0, X > 0.

Note that ∫ ∞
0

u(x) dFX(x) = E[u(X)],

for any X > 0, so the above problem is the same as problem

sup
X

E[u(X)],(16)

subject to E[ρ̃X] = x0, X > 0.

This is a classical Merton’s portfolio choice problem under EUT.
Under the assumption that ρ is atomless, we have linked problem (2) to problem (1).

However, we cannot directly link problem (15) to problem (16) as before, because the new
pricing kernel ρ̃ in problem (16) may not be atomless.

The following result from Xu (2014), where no assumption on ρ̃ is required, links problem
(15) to problem (16).

6Two random variables X and Y are said to be comonotonic if (X(ω′)−X(ω))(Y (ω′)− Y (ω)) > 0 almost
surely under P⊗P.

7In fact, ρ̃ = δ′(1−Fρ(ρ)) in the current setting. Xu (2014) proved that ρ̃ can be chosen to be comonotonic
with ρ even if ρ is not atomless.
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Theorem 2 If X̃∗ is an optimal solution to problem (16), then its quantile function is an
optimal solution to problem (15).

On the other hand, if Q̃∗(·) is an optimal solution to problem (15), then

X̃∗ := Q̃∗(1− U)

is an optimal solution to problem (16), where U is any random variable uniformly distributed
on the unit interval (0, 1) and comonotonic with ρ̃.

With this result, we can link problem (16) to problem (1).

Theorem 3 Let X̃∗ be an optimal solution to problem (16) and Q̃∗(·) be its quantile function.
Then

X∗ := Q̃∗(1− w(Fρ(ρ)))

is an optimal solution to problem (1).
On the other hand, if X∗ is an optimal solution to problem (1), then there exists a unique

quantile function Q̃∗(·) such that

X∗ = Q̃∗(1− w(Fρ(ρ))).

Moreover, Q̃∗(1−U) is an optimal solution to problem (16), where U is any random variable
uniformly distributed on the unit interval (0, 1) and comonotonic with ρ̃.

Proof. Suppose that X̃∗ is an optimal solution to problem (16) and Q̃∗(·) is its quantile
function. By Theorem 2, Q̃∗(·) is an optimal solution to problem (15) and problem (5).
Consequently,

G∗(x) := Q̃∗(ν−1(x)), x ∈ (0, 1),

is an optimal solution to problem (2). Hence, by (3),

X∗ = G∗(1− Fρ(ρ)) = Q̃∗(ν−1(1− Fρ(ρ))) = Q̃∗(1− w(Fρ(ρ)))

is an optimal solution to problem (1).
On the other hand, if X∗ is an optimal solution to problem (1). Then by (3),

X∗ = G∗(1− Fρ(ρ)),

where G∗(·) is an optimal solution to problem (2). Consequently,

Q̃∗(x) := G∗(ν(x)), x ∈ (0, 1),

is an optimal solution to problem (5) and problem (15). By Theorem 2, Q̃∗(1 − U) is an
optimal solution to problem (16). The proof is complete. �
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The above result shows that solving the portfolio choice problem (1) under RDUT is equiv-
alent to solving problem (16) under EUT, which is much easier than the former. Moreover,
the latter does not require solving a quantile optimization problem. This provides us a new
way to solve the portfolio choice problem (1).

In the literature, various conditions are assumed so as to avoid studying the feasibility,
well-posedness, attainability or uniqueness issues for problem (1) (see, e.g., Jin and Zhou
(2008), Jin, Zhang, and Zhou (2011), He and Zhou (2011, 2012)). By the above result, these
issues for problem (1) reduce to that for problem (16). However, these issues for problem (16)
are solved in Jin, Xu, and Zhou (2008), so are for problem (1). Similarly, these issues for
problems (2), (5) and (15) are solved as well.

Remark 3 The optimal solution to problem (16) can be obtained by the Lagrange multiplier
method directly. Consequently, its quantile function can be obtained without solving problem
(15). Such approach to solving an investment problem under RDUT without using quantile
optimization technique has never appeared in the literature to the best of our knowledge.

On the other hand, this result also tells us that a functional optimization problem (2) can be
solved via solving a probabilistic optimization problem (16). It is an important and challenging
question whether we can apply this idea to other functional optimization problems.

Remark 4 The new pricing kernel ρ̃ does not depend on the utility function u(·).

Remark 5 Problem (1) is time-inconsistent, whereas problem (16) is time-consistent. It
would be interesting to study their relationships as time changes.

6 CONCLUDING REMARKS

In this paper, we consider a portfolio choice problem under RDUT. We propose a short, neat,
and easy-to-follow method to solve the problem. The method consists of two key ideas. The
first is making a change of variable to reveal the key function that we need to consider in
the quantile formulation problem. The second is relaxing the Lagrangian so as to find an
achievable upper bound. Our approach can also be adopted to deal with portfolio choice
and optimal stopping problems under CPT/RDUT as well as many other models with law-
invariant preference measures.

The second contribution of this paper is showing that solving a portfolio choice problem
under RDUT is equivalent to solving a classical Merton’s portfolio choice problem under
EUT. The latter avoids studying the quantile optimization problem and can be solved by
the classical dynamic programming and probabilistic approaches. Theorem 2 obtained by Xu
(2014) plays a key role in connecting these two problems as the new pricing kernel cannot be
assumed to be atomless in general.
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The third contribution of this paper is solving the feasibility, well-posedness, attainability
and uniqueness issues for the portfolio choice problem under RDUT.

Last but not least, we show that solving functional optimization problems may reduce to
solving probabilistic optimization problems. This idea may be applicable to other functional
optimization problems.

Acknowledgments. The author is grateful to the editors and anonymous referees for
carefully reading the manuscript and making useful suggestions that have led to a much
improved version of the paper.
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