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Abstract

Scleractinian corals obtain metabolic energy from their endosymbiotic autotrophic 
microalgae, and from remineralization of organic matter by bacteria and viruses, 
along with the heterotrophic food sources. The mutualistic symbiosis is generally 
stable but can be disrupted when environmental conditions surrounding the cor-
als, such as increasing seawater temperature, become unfavorable to sustain each 
component of the holobiont. In this connection, the effects of global stressors such as 
climate change, and local stressors such as pollution, and their combination, are pos-
ing serious threats to the metabolic resistance of corals. However, some more resilient 
coral species have developed specific mechanisms to cope with fluctuating environ-
mental conditions according to the trophic strategy (autotrophy, heterotrophy, or 
mixotrophy), and by modulating their energy expenditure. In this chapter, the role 
of nutrition in the coral symbiosis as the energetic budget for metabolic performance 
will be discussed, with a focus on the role of acquisition of nutrients through feeding, 
regulation of energy reserves (lipids, proteins, and carbohydrates), and adaptation 
capability in the natural environment, including the expression of heat-shock pro-
teins (Hsps). Future environmental conditions under a combination of global changes 
and local impacts will also be discussed, with the aim of identifying the trophic niches 
of corals and geographical areas as possible refugia.
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1. Introduction

Scleractinian corals are complex key habitat-forming organisms that create 
biogenic reef structures from shallow to deep waters [1], and they are fundamental to 
the supporting of the biodiversity of the world’s oceans. They have evolved to thrive 
in conditions of optimal nutrient availability [2], seawater temperature, and oxygen-
ation [3], and are in competition for space with other benthic taxa [4]. Mostly distrib-
uted along the tropics, corals can be found also in high-latitude subtropical areas and 
deep seas [5–8], where they show adaptive capability to live in fluctuating environ-
mental conditions [9]. Corals can develop several biological structures depending on 
their capacity to grow via vertical or horizontal extension (Figure 1). These biogenic 
habitats formed by coral reefs represent one of the worldwide hotspots of biodiversity 
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in the ocean [11], hosting a great variety of organisms, such as fish, macroalgae, and 
microorganisms [12].

Coral reefs can provide ecosystem goods and services, such as the provision of 
food, touristic activities, and protection of coastline from flooding and tidal move-
ments [12, 13]. However, in the era of Anthropocene, coral reefs are among the 
habitats on Earth that are suffering the most and are dramatically degrading, since 
a multitude of factors are plaguing these marine ecosystems. Abiotic factors such as 
abnormally elevated or reduced temperatures, ocean acidification, high ultraviolet 
radiations, and fluctuation in salinity are increasing the occurrence of coral bleaching 
events [14–18]. Additionally, industrial pollution, coastal development, and exces-
sive nutrient input, as well as biotic stressors such as predation outbreaks, epizootic 
diseases, and bioerosion are leading to further coral reef degradation around the 
world [19–22]. For all these reasons, corals are sensitive to changes in environmental 
conditions and therefore are considered good bioindicators of the health status of the 
marine environment [23, 24].

Corals are considered meta-organisms because of the complex biological interac-
tions between the animal host and endosymbionts. Indeed, the concept of corals as 
holobiont encompasses the symbiotic relationship between dinoflagellate endosymbi-
onts (Symbiodiniaceae [25]) and the animal host tissue (coral polyps), as well as the 
associated microorganisms found in coral tissue, gastric cavity, and coral skeleton. 
All components contribute to coral growth through the combined uptake of inorganic 
nutrients and food particles, photosynthesis, and deposition of calcium carbonate. 
In particular, the symbiotic relationship of corals is a mutual relationship between 
the coral polyps and the dinoflagellate endosymbionts. To gain metabolic energy, 
scleractinian corals are able to shift from heterotrophy (catching particulate food) 
[26, 27] to autotrophy (through photosynthesis by endosymbionts) [28]. Depending 
on the species-specific trophic strategy [29, 30], corals exhibit the ability to collect 
food particles (e.g. zooplankton) as a heterotrophic source of energy. On the other 
hand, they can rely on the autotrophic system of endosymbionts as an alternative 
source of oxygen and carbohydrates for aerobic respiration [31]. Oxygen availability 
determines the balance between the aerobic and anaerobic metabolic pathways, and 
therefore has significant implications for the energy budgets of corals [32]. These 
processes, however, are not perfectly balanced. Some species rely more on heterot-
rophy as an external source of energy, but some more on the photosynthetic system, 
while others are mixotrophic, meaning that they can increase the ability to modulate 
energy availability depending on the environmental conditions [30]. In all cases, 
the energy produced during the metabolic processes, which is stored as adenosine 
triphosphate (ATP), is used for maintaining the cellular physiology and supporting 

Figure 1. 
Major scleractinian coral morphologies and different colony growth modes, based on branch, vertical, and 
horizontal extension. Modified from Pratchett et al. [10].
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the intracellular uptake of dissolved inorganic carbon to form calcium carbonate, 
which is necessary for building the skeleton and sustaining the growth of corals [33]. 
Energy reserves include proteins, lipids, and carbohydrates [27, 34] can be used when 
there is a high energy demand, e.g. under thermal stress [35].

Corals also harbor a large variety of microorganisms on their surface, which con-
tribute to biogeochemical cycles and the provision of micronutrients. For instance, 
bacteria, archaea, and viruses play fundamental roles in the remineralization of 
organic matter into micronutrients [36]. The nutrition of corals is linked to the uptake 
of macro- and micronutrients that support the metabolic processes and growth [26]. 
The roles of micronutrients, such as nitrogen and iron, in enhancing the capacity of 
symbiosis have also been highlighted, in particular for the endosymbionts to resist 
abnormal conditions of surrounding waters [34]. The microorganisms living on the 
coral surface and in the tissue are also related to the probiotic diversity necessary for 
the general health of corals [37]. In case of disruption of the symbiotic equilibrium 
during extreme events (e.g. heatwaves or nutrient discharge) and prolonged distur-
bances (e.g. climate change or pollution), the microbial community can change from 
the symbiotic to commensal mode, a change that could reduce the capacity of the 
coral host to maintain the metabolic equilibrium [38].

In this context, the coral holobiont is capable of gaining metabolic energy from 
multiple sources and therefore has the capacity to modulate its physiology depend-
ing on nutrient availability and environmental conditions. The continuous pressures 
from anthropogenic activities are leading to substantial changes in the capability of 
corals to develop resistance mechanisms, which in turn define the characterization of 
coral species living in their specific environments. For instance, ocean warming and 
acidification are causing drastic changes that affect the sustainability of coral reef 
ecosystems, including food availability and services provided for humans [15, 39].

In this chapter, the nutrition in corals including recent advancements in the defini-
tion of coral health, energy budget, and performance under current environmental 
challenges of climate changes is explained, and the implications on the survival of 
corals are highlighted with the aim to define future reef habitats as refugia.

2. Coral nutrition

Corals are unique organisms capable of taking in nutrients and gaining energy for 
their metabolic processes, acting like nearly every trophic level in the marine ecosys-
tem. For instance, it has been demonstrated that corals can behave simultaneously 
as: i) primary producer, by fixing carbon and producing biomass through photosyn-
thesis; ii) primary consumer, by utilizing the products of photosynthesis; and iii) 
secondary and tertiary consumers, by degrading the substrate or taking in dissolved 
organic matter through the ingestion of zooplankton and bacteria [40]. Therefore, 
corals can optimize the feeding modes to contribute to the total daily energy budget 
according to the surrounding conditions. However, these processes depend mostly on 
light and food availability, and this determines the trophic niches and the metabolic 
plasticity to environmental changes [27].

2.1 Trophic niches

The diet of corals, however, goes beyond a fixed trophic strategy based on the 
morphology of polyps and corallites [41]. There is a need to consider trophic plasticity 
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as a critical factor of resistance to environmental stress [42]. The position of corals 
within the reef food web could be considered as the “movement or storage of energy 
or materials” [43] to identify the ecological functions of corals within such ecosys-
tems. For example, energy allocation can shift from growth and reproduction under 
optimal environmental conditions to prioritizing long-term survival by depleting 
energy reserves under stress and shifting to anaerobic respiration of the coral hosts 
[44]. This concept has been applied to aquatic invertebrates, including corals, and the 
investigation of energy reserves based on the trophic strategy of corals is important to 
understand their metabolic responses to climate change, with significant implications 
on future coral refugia. Recently, scientific techniques have been advanced to define 
the trophic position of corals, and their plasticity within the reef niches. In this sense, 
the analysis of stable isotopes of carbon (δ

13C) and nitrogen (δ
15N) in coral samples 

allows the identification of either heterotrophic, autotrophic, or mixotrophic corals 
based on nutritional fluxes between coral hosts and endosymbionts [30, 45]. In this 
way, it is possible to recognize changes in trophic strategy (i.e. trophic plasticity) 
among different coral species living under the same environmental conditions [41]. 
This is particularly important in the ecological success of corals living in subtropical 
areas (Figure 2) [23] due to their capacity of using different nutrient sources to gain 
metabolic energy. Although the heterotrophic strategy has been suggested as a trophic 
key to enhancing bleaching resistance [45], the identification of the Symbiodiniaceae 
endosymbiont species and their role in acquiring essential nutrients needs to be 
considered as a thermotolerance feature of future corals [34].

2.2 Coral feeding

A substantial amount of energy in scleractinian corals is acquired through 
heterotrophy, which has become a key process to determine the resistance of corals 
to adverse conditions. Through heterotrophy, more energy for metabolic needs 
is available and therefore enhances the capability to resist stress events, which 
promotes bleaching resilience, raises protein levels, and in turn, supports the 
endosymbionts’ physiological status [46]. Trophic differences are recognizable in 
the feeding rates of different species of corals. Pocillopora spp., for instance, have a 
higher capability to capture Artemia nauplii than Acropora spp. with different mor-
phology, polyp extension, and feeding capacity. This, in turn, increases the growth 
rates and photosynthetic efficiency of endosymbionts, enhances the resistance to 
bleaching, and improves the general health status of corals [46, 47]. The key role 
of feeding is therefore not only related to increasing energy of the hosts but also 
supporting the processes involved in the endosymbionts, including photosyn-
thesis and remineralization of organic matter. The transfer of nutrients between 
the hosts and endosymbionts has been recognized as inclusive of the mutualistic 
symbiosis of corals [48, 49]. The active intake of external organic matter, indeed, 
drives the acquisition of nitrogen fundamental for supporting the symbiont diversity 
and chlorophyll concentrations, conditions that are favorable to boost tissue growth, 
productivity, and calcification rates [50, 51]. Heterotrophy, however, is dependent on 
light, turbidity, and temperature, and can contribute to up to 35% of the metabolic 
energy in healthy corals [49] through assimilation of essential organic compounds of 
energy reserves such as lipids, proteins, and carbohydrates that cannot be acquired by 
photosynthesis only [46]. These are important biomarkers of coral physiology under 
climatic stress.
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2.3 Energy reserves

Lipids are a fundamental component for the metabolic needs of corals and 
account for at least 30% of the energy reserves in corals [52]. These molecules indeed 
constitute much of the coral body composition, cells, and subcellular organelles 
[53]. The composition of fatty acids is mostly species-specific, and they are used as a 
 chemotaxonomic indicator of the metabolic status of corals, and to trace the nutri-
tional input of corals [54]. Polyunsaturated fatty acids (PUFAs) are one of the major 
lipids, and they are widely used as an indicator of dietary sources in heterotrophic 
corals for coping with metabolic stress [55]. It has been reported that when corals 
are exposed to high irradiance or heat stress, the intracellular PUFA content could 
decrease by up to 75% [56]. PUFAs are transported into coral compartments through 
feeding of zooplankton [57], and they reach the tissue after 1–2 weeks of incorpora-
tion [47]. The photosynthetic product supplied by endosymbionts is a second source 

Figure 2. 
Trophic niches of the coral hosts (purple) and photosynthetic endosymbionts (green) analyzed with the stable 
isotope Bayesian analysis (SIBER). The overlapping of δ13C and δ15N indicates different trophic strategies between 
autotrophy, mixotrophy, and heterotrophy. From Conti-Jerpe et al. [30]. Reprinted with permission from AAAS.
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of PUFAs [46]. Moreover, the PUFA content can vary depending on the depth, 
season, and niche distribution of zooplankton in reef ecosystems [58] and in temper-
ate waters [59].

Proteins are another key component of the coral cellular physiology, since they 
are involved in enzymatic catalysis, cellular transportation, immunity, and growth. 
Heterotrophic corals are able to have higher growth rates with higher tissue protein 
and lipid contents, which in turn facilitate calcification, tissue synthesis, and the 
formation of more polyps. Interestingly, recent studies have shown that scleractin-
ian corals are not uniform in their morphology, and different parts of corals (core, 
branches, etc.) in different regions are functionally specialized to meet the specific 
energetic demands from coral surfaces to branches [60]. The field of proteomics, i.e. 
identification and quantification of cellular proteins, has been recently advancing 
with the aim to identify key physiological processes for uncovering cellular responses 
under environmental changes [61]. The expression of cellular stress molecular 
biomarkers represents a useful diagnostic tool to analyze changes in the cellular 
structural integrity and in the functional cellular pathways [62]. For instance, changes 
in the expression of heat-shock proteins (Hsps) are emerging as ubiquitous and 
putative markers of stress in corals [63–67]. Hsps are molecular chaperones that have 
vital cellular homeostatic and cytoprotective functions and represent one of the most 
important defense mechanisms of all organisms [68]. Hsps are present in different 
cellular compartments where they participate in various housekeeping tasks, such 
as proper protein folding, translocation of proteins between cellular compartments, 
and assembly of protein complexes [69, 70]. Hsps are classified by molecular weight 
in major chaperone families (Hsp40, Hsp60, Hsp70, Hsp90, Hsp100, and the small 
Hsps), which include several members with specific intracellular localization and 
functions [71].

Carbohydrates form an important component of the coral energy reserves 
because they are involved in the production of energetic metabolites such as ATP [72]. 
The production of ATP is crucial in all functions of the coral physiology, including 
cellular productivity, functioning, growth, and reproduction [44]. Carbohydrates 
in corals are acquired by both active capturing of food through heterotrophy and 
by translocation from the photosynthetic process. Excess carbohydrates can be 
released externally as a mucoid matrix [73, 74] or stored in tissue as lipids [75]. The 
coral mucus, a mucoid polysaccharide external layer, plays multiple roles. It serves 
as an attracting layer to capture food, a food source for bacteria by trapping organic 
particles [76, 77], and it also creates a probiotic pool to protect the holobiont from 
external pathogens and viruses [37, 78, 79].

For these reasons, carbohydrates are also considered an indicator of the coral 
health status. Indeed, the levels of intracellular carbohydrates indicate the capacity 
of corals to modulate thermal stress, and therefore indicate the thermotolerance of 
corals [35]. These findings suggest that elevated levels of carbohydrates are related to 
higher adaptation to future climatic conditions and reduced bleaching susceptibility 
to extreme events [80, 81].

3. Responses of corals to environmental changes

The coral holobiont is capable of modulating its metabolic processes to dissipate 
or gain energy from different sources depending on nutrient availability. However, 
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corals need to adopt special measures to face climatic change which is modifying the 
physicochemical and nutrient environment.

Anthropogenic activities are increasing levels of carbon dioxide (CO2) in the 
atmosphere, leading to global warming and more frequent heatwaves, which are 
apparently associated with reduced rates of growth, calcification, and other func-
tional traits, such as skeletal density, volume, and size[82–84]. These changes may 
in turn induce coral bleaching and mass mortality, and in the longer term, decline 
in coral biodiversity [81]. About a quarter of the atmospheric CO2 dissolves in the 
ocean and reduces the seawater pH and carbonate saturation state, a process which is 
commonly known as ocean acidification. Ocean surface pH is expected to decrease by 
0.3 units by 2100 under the RCP8.5 scenario [85, 86]. This, accompanied by cellular 
oxidative stress, can reduce the capacity of scleractinian corals and other calcifying 
organisms to build their calcium carbonate skeletons [87]. Besides global changes, 
human activities are responsible for multiple local pressures on marine ecosystems, 
specifically on corals. Coastal water quality declines in overpopulated areas, where 
high levels of dissolved inorganic nutrients cause eutrophication, sedimentation, 
and turbidity events [88–90]. The alteration of water conditions in the surface layer 
results in changes in the nutrient equilibrium (e.g. in the Redfield stoichiometry of 
C:N:P elements), which have brought about imbalanced physiological status of corals 
and their symbionts, and consequently increased frequency and severity of mass 
coral bleaching events [91, 92].

3.1 Responses to thermal stress

Among the plethora of stress factors, the rising of sea surface temperature due to 
global warming is certainly recognized as the prominent cause of coral bleaching induc-
ing mass coral mortality [93, 94]. However, variable spatial and temporal patterns of 
mass bleaching have been extensively observed and can be generated by several factors 
that, by operating in combination, can determine different sensitivities of coral taxa to 
stressors [93, 95, 96]. For example, the extent of bleaching can depend on the duration 
and frequency of thermal anomalies and on-site-specific environmental conditions 
[97–100]. Nevertheless, several studies have pointed out that intrinsic factors of corals, 
including their morphological and physiological characteristics, play a fundamental role 
in determining the different levels of physiological resistance to environmental stress. In 
this context, the identity and clade of the Symbiodiniaceae partner may affect the coral 
susceptibility to unfavorable conditions [101–102].

Attempts to understand the differences in the response of corals to stress have 
also focused on coral physical properties, such as the coral morphology and tissue 
thickness, which influence growth, metabolic rates, and metabolite exchange across 
boundary layers and host CO2 supply strategies [103, 104]. Therefore, faster growing 
branching taxa with thinner tissues appear more susceptible to elevated temperature 
than slower growing massive taxa with thicker tissues due to the latter’s lower photo-
protective capacity and ability to remove oxygen radicals generated during metabolic 
stress [103, 105].

3.2 Cellular stress responses

The cellular stress responses of corals are involved in driving spatial and tem-
poral patterns of coral bleaching at both intra- and inter-specific levels. As sessile 
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organisms, corals cannot easily migrate to new environmental optima. Therefore, in 
order to cope with perturbations, they rely mainly on the efficiency of their molecu-
lar and cellular mechanisms, which represent the first line of defense in reducing 
the harmful effects of unfavorable conditions [106–108]. The capacity of acquiring 
metabolic energy from autotrophy rather than heterotrophy, and vice versa, is the 
key to a successful symbiotic relationship in corals. However, decreased capacity to 
take in nutrient has been observed during thermal stress along with reduced levels 
of dissolved inorganic nutrients [109], impairing the assimilation of carbon and 
nitrogen from the hosts’ heterotrophy, and inducing starvation and parasitism [38]. 
Recent studies have identified positive correlation between the trophic status of host 
and endosymbionts in Stylophora proving that increased photosynthetic performance 
is related to the amount of inorganic nutrients assimilated and translocated between 
hosts and symbionts, and indicating that functional heterotrophy requires essential 
nutrients acquired through photosynthesis [42]. On the other hand, when facing an 
elevated nutrient concentration, corals might exhibit thermotolerance by maintaining 
symbionts as an autotrophic nutrient supply for the entire holobiont [42, 109] which 
suggests that nitrogen enrichment might enhance the resilience of corals to thermal 
stress [108]. In contrast, excessive nutrients in seawater have been linked to anthropo-
genic activities along the coastline, such as sewage plants, dredging, and agricultural 
activities. These conditions are typical of rapid urbanization and industrialization 
and are becoming critical for biogenic habitats near urban areas [7, 23, 110, 111]. 
Therefore, it is critical to identify and understand the trophic plasticity of corals in 
relation to nutrient availability and environmental stressors.

At the cellular level, Hsps are expressed under normal physiological conditions for 
maintenance of normal protein folding, signal transduction, and/or normal develop-
ment [112]. Moreover, their expression is upregulated as a consequence of exposure 
to conditions that perturb cellular protein structures [69]. The expression of Hsps, 
and in particular that of Hsp70 and Hsp60, has been extensively analyzed in corals 
subjected to extreme temperatures and bleaching conditions [113–118]. However, Hsp 
modulation has also been observed in corals exposed to elevated light intensity [119, 
120], salinity change [121, 122], and xenobiotics/nutrient enrichments [62, 118, 123]. 
Recently, it has been observed that Hsps may also play a role in the immune system 
of corals in response to pathogen invasion [65, 124]. In most of these studies, higher 
Hsp levels in corals generally infer higher protection toward environmental stressors 
and bleaching. For instance, corals with different susceptibilities to bleaching differ 
in their Hsp expression levels, with the bleaching-tolerant corals exhibiting higher 
expression levels than the bleaching-susceptible ones [96, 119]. A recent field study 
showed that healthy coral colonies of Goniopora lobata Milne Edwards [125] and 
Porites lobata Dana [126] of the central Red Sea had higher Hsp70 and Hsp60 levels 
than their respective naturally bleached counterparts [66].

In addition, high Hsp levels also contribute to corals adaptation to extreme condi-
tions, such as those characterizing the shallow lagoons of the Maldivian reefs. There, 
despite the remarkable daily fluctuations in temperature and light and the regular 
exposure to higher temperature/light regimes than surrounding waters, which can 
exceed their tolerance threshold and would ordinarily induce stress and bleaching, 
Hsp modulation seems to play a protective role to prevent the rupture of symbiosis 
of corals [120]. Likewise, the Hsp levels have been found to be significantly higher in 
bleaching-tolerant corals originating from highly variable environments compared 
to corals that live in more stable environments. On Ofu Island (American Samoa), 
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colonies of Acropora hyacinthus Dana [126] from adjacent tidal pools with high daily 
thermal fluctuations were found to be more thermotolerant and had constitutively 
higher levels of Hsp70 gene compared to bleaching-sensitive colonies from less ther-
mally variable pools [127]. Similarly, corals from inshore reefs of Florida bay Porites 
astreoides, Lamarck [128] were subjected to temperature fluctuations and appeared to 
have higher levels of Hsp genes than the offshore corals [107]. During the bleaching 
event of 2016, the near-shore colonies in Mauritius did not bleach and had signifi-
cantly higher relative levels of both Hsp70 and 60 genes and protein compared to 
bleached reef colonies, indicating that the modulation of these Hsps was involved in 
local acclimatization of corals to their environments [96]. However, it is important to 
consider that prior exposure to sublethal environment stress (preconditioning) that 
resulted in later tolerance to bleaching temperatures [129] and changes in the expres-
sion of specific genes, such as those of Hsps, have been associated with this thermal 
tolerance plasticity [130, 131]. For example, the preconditioning of Acropora millepora 
(Ehrenberg, 1834) colonies to heat stress accounted for increased gene expression 
and tolerance to bleaching compared to nonpreconditioned colonies [63]. Overall, the 
expression pattern of Hsps and the amplitude of their modulation may show species-
specific characteristics, which may reflect different mechanisms and abilities of stress 
response.

3.3 Thermal performance

Metabolic performance, in particular the thermal performance curve (TPC) 
which defines the nonlinear relationship of organismal metabolism versus a given 
source of stress, is another parameter to consider when coral health is concerned. 
When the metabolic response of corals to low/high temperature is considered, the 
TPC can be applied to quantify the response of a coral species to thermal stress [132]. 
Moreover, through the TPC, it is possible to measure the maximum level of such 
performance, the optimal conditions of temperature, and the capacity of resistance 
to temperature variation (e.g. thermal breadth). The shape of such curve and its 
relative breadth will determine the metabolic plasticity of organisms (corals) to 
temperature variations. This can be used to define the physiological performance of 
corals and compare their specific responses in the subtropical area to indicate physi-
ological adaptation of corals to living conditions and the challenges that subtropical 
corals face when optimizing their productivity in subtropical environments [133]. 
The heritability of coral traits must also be considered in the framework of coral 
adaptation to future conditions of climate change to better predict the evolution of 
corals in suboptimal conditions [134].

4. Future coral refugia

Coral reefs are often described as biogenic structures which provide nutriments 
and services to the marine ecosystems formed in oligotrophic areas (i.e. low dissolved 
nutrients and clear water) with stable environmental conditions. These features 
are usually optimal for bioconstruction, such as corals, to capture carbonates from 
seawater and sustain the metabolic energy needed for growth and reproduction  
[93, 135]. The capacity of corals to modulate their metabolism according to surround-
ing conditions is the key for their success. Scleractinian corals are thriving also in the 
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so-called marginal reefs, where thermal and salinity anomalies, eutrophication, and 
elevated sedimentation rates are the causes of metabolic expenditures and, eventually, 
stress [136–139].

Marginal reefs are located at high latitudes of subtropical areas and near mega-
lopolis. Corals living in these areas receive multiple pressures from local stressors 
together with global changes, although the processes involved in these ecosystems 
operate at different spatial (i.e. geographical) and temporal (i.e. frequency of 
stress events) scales compared to tropical reefs. In this context, it is important to 
consider how natural evolution, affected by human pressures, has shaped the coral 
species living in these areas, and how the marginal reefs can act as refuge area for 
future conditions. Refugia are considered as those areas with the ability to provide 
protection from multiple stressors [140], and in this case coral refugia are identi-
fied as areas where long-term stressors are low that less likely to influence coral 
survival. For examples, considering the evolutionary timescales, the current mar-
ginal reefs are already serving as refugia due to their environmental conditions [9], 
although with reduced speciation, growth, and reproduction rates [141]. Moreover, 
most of the research works have focused on the short-term relief to environmental 
stressors, and there is a need to understand how the marginal reefs can act as refu-
gia under the climatic scenarios of more frequent heatwave events and continuous 
development of coastal areas [142]. The understanding of the responses of corals 
in the adaptation and evolution in these areas is therefore a priority for devis-
ing conservation and restoration measures for the future coral reefs [3]. Recent 
studies have identified areas as future refugia from thermal stress. Corals living 
in environments with naturally high temperature fluctuation may have developed 
higher thermal tolerance to heat stress, and therefore these areas can be considered 
as refugia for future conditions. To represent refugia areas with a high potential to 
maintain the future coral biodiversity and ecosystem functions, the frequency of 
thermal stress events (e.g. 12-week sum of 1°C higher than the maximum monthly 
mean) should be less than one every 10 years [143]. Future warming conditions 
and more heatwaves might result in too frequent thermal stress events and leave 
no room for those corals and other marine organisms that live in thermal refugia 
to adapt. The biological responses to the chronic development of ocean warming 
will be critical to determine the effectiveness of high-latitude reefs as the thermal 
refugia [143].

5. Conclusion

Coral reefs have very high biodiversity values and provide important ecosystem 
services, with the capacity to resist anthropogenic stress by modulating their ener-
getic budgets as described in this chapter. Current major threats to them are caused 
by increasing seawater temperature (ocean warming) and reduced pH level (ocean 
acidification), which cause reduction in survival, calcification, growth, and photo-
synthesis in several marine taxa [138, 144] with the levels of impacts depending on 
morphology and the feeding capacity of corals [45]. There are global consequences 
of this reduced capacity of reef ecosystems to provide crucial services, such as 
reduced fishing capacity and unsustainable management of marine reserves [145, 
146]. A deep understanding of the multiple interactions between stressors and 
mitigators will be crucial to define the trophic plasticity and reef responses under the 
future environmental changes.
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