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The electricity production of a thermal generator is often constrained by the available fuel supply. These

fuel constraints impose a maximum bound on the energy output over multiple time periods. Fuel constraints

are increasingly important in electricity markets, due to two main reasons. First, as more natural gas-

fired generators join the deregulated market, there is often competition for natural gas supply from other

sectors (e.g., residential and manufacturing heating). Second, as more environmental and emission regulations

are being placed on fossil fuel-fired generators, fuel supply is becoming more limited. However, there are

few studies that consider the fuel constraints in the unit commitment problem from the perspective of

computational analysis. To address the challenge faced by an independent power producer with a limited fuel

supply, we study a fuel-constrained self-scheduling unit commitment (FSUC) problem where the production

decisions are coupled across multiple time periods. We provide a complexity analysis of the FSUC problem

and conduct a comprehensive polyhedral study by deriving strong valid inequalities. We demonstrate the

effectiveness of our proposed inequalities as cutting planes in solving various multistage stochastic FSUC

problems.
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1. Introduction

With 42% of the total electricity generation capacity, natural gas-fired generators provided 34%

of total electricity generation in 2016, surpassing coal to become the largest generation source

(US EIA 2017). As reported in US EIA (2021a), both the generation capacity and output of

natural gas-fired generators continue to grow. Due to the environmental friendliness and continued

cost-competitiveness of natural gas compared to coal, an increasing portion of independent power

producers (IPPs) in the energy market are replacing coal-fired generators with natural gas-fired

ones. Natural gas-fired generators are flexible and efficient in electricity generation because their
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fast ramping capabilities allow IPPs to mitigate the effect of uncertainties in today’s complex power

systems. A natural gas-fired generator can largely mitigate the effect of the electricity generation

uncertainty caused by the increasing penetration of renewable energy. More important, a natural

gas-fired generator can be efficiently self-scheduled by IPPs in order to maximize the total profit

obtained from selling electricity in times of volatile electricity prices.

Although IPPs may enjoy the benefits of natural gas-fired generators, the profits of power gen-

eration largely depend on the availability of natural gas supply, and circumstances in which a

natural gas-fired generator encounters a limited fuel supply are not uncommon in practice. IPPs

with natural gas-fired generators are often considered lower priority than residential, commercial,

and industrial users (US EIA 2021b) that are experiencing the same fuel shortage. The situation is

more severe in cold weather when natural gas is mainly used for heating. For example, significant

amounts of planned electricity generation from natural gas-fired generators became unavailable due

to curtailed natural gas supply during the 2014 “polar vortex” weather conditions (NERC 2014).

As more IPPs with natural gas-fired generators join power systems, the limited natural gas supply

imposes an increasing challenge for an IPP’s power generation scheduling, which needs to solve a

self-scheduling unit commitment (UC) problem for the optimal generation schedule.

The UC problem, often formulated as a mixed-integer program (MIP) (e.g., Bixby 2010, Carlson

et al. 2012, Li et al. 2021, Xavier et al. 2021), has received ample attention because it is widely

used for power generation scheduling, electricity market clearing, operational reliability assessment,

expansion planning, and other activities. As a fundamental problem in power system operations,

the UC problem determines the optimal commitment (online/offline status) and production levels

of generators while respecting the characteristics of the generators and physics of the power sys-

tem (e.g., generation upper/lower bounds, minimum-up/-down time limits, ramping constraints).

Because of the increasing importance of natural gas-fired generators, fuel supply constraints are

receiving increased attention in industry practice. Fuel supply constraints, imposing a maximum

bound on the energy output of a generator over multiple time periods, were first introduced in

the late 1980s to reflect the daily or hourly limits on maximum fuel availability due to contrac-

tual obligations or technological constraints (Cohen & Wan 1987, Aoki et al. 1987, 1989). These

constraints complicate the UC problem, but because the production decisions of the generator are

now coupled across different time periods of the operation horizon, they offer relevant analyses for

many applications. For example, Shahidehpour et al. (2005) show the short-term impact of natural

gas prices on power generation scheduling by running security-constrained UC problems. Chen

et al. (2019) incorporate gas flow into UC problems to optimize generator scheduling, given the

supply constraints imposed by natural gas pipeline flows, and use linearized gas flow equations to
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derive local marginal prices. Zhao et al. (2017) study the impact of uncertain gas supply availability

induced by gas transmission congestion and extremely high gas prices during peak demand.

Various solution approaches have been proposed to solve deterministic fuel-constrained UC prob-

lems. A majority of these studies adopt the Lagrangian relaxation (LR) method by relaxing several

complicated constraints (including the fuel constraints) in the problem. An early attempt can be

found in Cohen & Wan (1987), in which the load balance, reserve, and fuel constraints are relaxed

and penalized in the objective function using Lagrange multipliers. There are some follow-up stud-

ies using the LR method, including Aoki et al. (1987, 1989), Ruz̆ić & Rajaković (1991), Kuloor

et al. (1992), Baldick (1995), Shaw (1995), and Lu & Shahidehpour (2005), among others. A related

method often used is the augmented LR method, which additionally adds quadratic penalty terms

to the objective function of the relaxed problem. For instance, Ma & Shahidehpour (1999) add

quadratic terms to penalize the load balance violation, and Fu et al. (2005) add quadratic terms

to penalize the generation difference violation, while both studies penalize the fuel constraints

using Lagrange multipliers. Another method commonly used for solving the UC problem with no

fuel constraints is dynamic programming (Padhy 2004, Saravanan et al. 2013), and such method

is also used in Al-Kalaani et al. (1996) for solving the fuel-constrained UC problem. Specifically,

Al-Kalaani et al. (1996) derive an approach to transfer the fuel constraints into unit capacity limits

and then approximate the original fuel-constrained UC problem by a UC problem with no fuel

constraints, which is further solved by dynamic programming. Lee (1991) proposes a sequential

commitment approach for solving the fuel-constrained UC problem, in which a tentative commit-

ment schedule for each candidate unit is first determined, and then the most advantageous unit is

sequentially committed by evaluating the economic benefit of each unit. Li et al. (1997) propose

a unit decommitment approach for solving the fuel-constrained UC problem, where the units are

turned off one at a time to reduce the total cost until no further cost reduction is possible. Vemuri &

Lemonidis (1992) solve a fuel-constrained UC problem by decomposing it into two subproblems—a

linear fuel dispatch subproblem and a unit commitment subproblem—and solve them iteratively

until the algorithm converges to a near-optimal solution. Heuristic search methods are often used

for solving fuel-constrained UC problems. For example, Amjady & Nasiri-Rad (2011) develop a

solution method by integrating particle swarm optimization and genetic algorithm, and Bai &

Shahidehpour (1997) develop a solution method by integrating tabu search with the augmented

LR method. Stochastic fuel-constrained UC problems have also been studied. Takriti et al. (2000)

and Wu et al. (2007, 2008) consider various types of uncertainties and propose different stochastic

fuel-constrained UC models, and they apply LR methods to solve the problems. Saneifard et al.

(1997) propose a fuzzy logic approach to tackle uncertainties in fuel-constrained UC problems.

Our paper differs from these fuel-constrained UC research in that we apply polyhedral theory to a
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fuel-constrained UC problem and derive strong valid inequalities that can improve the effectiveness

of a branch-and-cut solution process.

In this paper, we consider an IPP that faces a fuel supply constraint when self-scheduling its gen-

erator to maximize its total profits from selling electricity. Specifically, we study a fuel-constrained

self-scheduling unit commitment (FSUC) model, which represents a core structure of power system

operations with limited fuel supply. It is worth noting that, because our model considers an upper

bound of the total power generation over the operation horizon, the setting can be extended to

any generators (e.g., coal-fired ones) with limits on fuel supply or carbon emissions. For example,

many environmental regulations require that the total generation of an IPP in one day cannot

exceed a certain upper limit (El-Keib et al. 1994, Pulgar-Painemal 2005, Kockar et al. 2009). It

is also worth noting that our model is applicable to hydropower production scheduling, where the

fuel supply constraint is used for limiting the amount of water that can be used from the reservoir

during the planning horizon.

Because cutting plane is an efficient approach to tightening an MIP formulation and speeding

up the corresponding branch-and-cut algorithm (Nemhauser & Wolsey 1988), we conduct a com-

prehensive polyhedral study of the FSUC by deriving strong valid inequalities as cutting planes

and convex hull descriptions to improve the computational performance of the problem with the

FSUC embedded. There have been some studies on the polyhedral structure of the traditional

UC model without fuel constraints. In particular, Lee et al. (2004) and Rajan & Takriti (2005)

provide convex hull descriptions for the polytopes with only minimum-up/-down time constraints,

while a more general result incorporating time-dependent and bounded up/down time limits is

provided by Queyranne & Wolsey (2017). Morales-España et al. (2013) and Gentile et al. (2017)

focus on tightening the generation upper bound constraints. Ostrowski et al. (2012), Damcı-Kurt

et al. (2016), Pan et al. (2016), Pan & Guan (2016a), and Huang et al. (2021a) derive strong valid

inequalities to strengthen various ramping constraints. Knueven et al. (2020) perform a compre-

hensive review of the various MIP models and evaluate their computational advantages. However,

there is no work that studies the polyhedral structures of the UC problem with fuel constraints,

which complicate the analysis. To fill this gap and help efficiently solve the practical problems, we

investigate the FSUC problem by considering both the generator’s physical characteristics and its

fuel supply constraint, and we derive several families of strong valid inequalities to strengthen the

original formulation by focusing on the impact of fuel constraint.

Our main contributions can be summarized as follows:

1. We provide a complexity analysis to show that the FSUC problem is NP-hard. To our knowl-

edge, we are the first to show that a self-scheduling UC considering a single generator is

NP-hard.
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2. We derive a family of strong valid inequalities (semi-continuous inequalities) that are strong

enough to describe the convex hull of the polytope by including only the generation

upper/lower bounds and fuel constraint.

3. We derive another two families of strong valid inequalities for the FSUC problem, namely look

forward inequalities and look backward inequalities, by considering the minimum-up/-down

time limits, generation lower/upper bounds, ramping constraints, and fuel constraint. The

look forward (resp. backward) inequalities bound the generation amount in a time period by

considering the generator’s online/offline status after (resp. before) that period.

4. We conduct extensive computational experiments to demonstrate the effectiveness of our

proposed inequalities in improving branch-and-cut algorithms for solving various multistage

stochastic FSUC problems.

The remainder of this paper is organized as follows. Section 2 introduces the MIP formulation of

the FSUC problem and the corresponding complexity analysis results. Section 3 develops several

families of strong valid inequalities for the FSUC. Section 4 demonstrates the effectiveness of

the proposed strong valid inequalities through extensive computational experiments. Section 5

summarizes our results. All the proofs are presented in the Online Appendix.

2. The Model

The FSUC problem in its MIP formulation is a core of many planning and operational problems

supporting power system operations. In this section, we model this core part as an MIP and

summarize the difficulty of solving this model. We will show the corresponding applications of this

model in Section 4 when we test our results derived from this core model.

The model involves binary decisions on a generator’s online/offline status and the generation

output in each time period when the generator is online. The physical characteristics of our focal

generator are defined as follows. Let L> 0 and ℓ > 0 be the minimum-up and minimum-down time

limits, respectively, i.e., once the generator is online, it must stay online for at least L time periods.

Similarly, once the generator is offline, it must stay offline for at least ℓ time periods. Let C and

C be the upper and lower limits, respectively, on the amount of electricity that can be generated

when the generator is online, where C >C > 0. Let V > 0 be the ramp-up/down rate limit in the

stable generation region; that is, the generation amounts in two consecutive time periods must

not differ from each other by more than V if the generator is online in these two periods. Let

V be the start-up/shut-down ramp rate limit; that is, immediately after the generator starts up

and immediately before the generator shuts down, the generation amount must not exceed V . We

assume that V ≤ V and C <V <C+V , both of which hold in most industrial settings. Let U ≥ 0

and U ≥ 0 be the start-up and shut-down costs, respectively, of the generator.
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The operation horizon has T time periods, and we define T = {1, . . . , T}. For each t ∈ T , we

define the following quantities:

• ct: the fixed cost incurred if the generator is online in period t (ct > 0);

• ξt: the per-unit electricity price in period t (ξt ≥ 0);

• ft(xt): the non-decreasing convex piecewise linear generation cost in period t, where ft(0) = 0;

• yt: a binary decision variable such that yt = 1 if the generator is online in period t, and yt = 0

otherwise;

• ut: a binary decision variable such that ut = 1 if the generator starts up in period t, and ut = 0

otherwise;

• xt: a continuous decision variable indicating the generation amount in period t.

Note that the generation cost is a non-decreasing convex piecewise linear function of xt. The

piecewise linear cost is commonly used in practice to approximate the quadratic cost function

c′′t x
2
t + c′txt (Carrión & Arroyo 2006).

Let Q be the maximum fuel supply (in terms of power output) over the entire opera-

tion horizon of T periods. In addition, we let L̄ = max{L, ℓ} and assume that the values of

u−L̄+2, u−L̄+3, . . . , u−1, u0, y−ℓ+1, y−ℓ+2, . . . , y−1, y0, x0 are given as initial conditions. The FSUC

problem can be formulated as follows:

Problem (1): min
T∑

t=1

[
ft(xt)+ ctyt +Uut +U(yt−1 − yt +ut)− ξtxt

]
(1a)

s.t.
t∑

i=t−L+1

ui ≤ yt, ∀t∈ T , (1b)

t∑
i=t−ℓ+1

ui ≤ 1− yt−ℓ, ∀t∈ T , (1c)

yt − yt−1 −ut ≤ 0, ∀t∈ T , (1d)

−xt +Cyt ≤ 0, ∀t∈ T , (1e)

xt −Cyt ≤ 0, ∀t∈ T , (1f)

xt −xt−1 ≤ V yt−1 +V (1− yt−1), ∀t∈ T , (1g)

xt−1 −xt ≤ V yt +V (1− yt), ∀t∈ T , (1h)
T∑

t=1

xt ≤Q, (1i)

yt ∈ {0,1}, ut ∈ {0,1}, ∀t∈ T . (1j)

Objective function (1a) minimizes the total cost, including the fixed and variable generation costs

and the start-up and shut-down costs, minus the total revenue obtained from selling the electricity.

Here, the term “U(yt−1 − yt + ut)” is the shut-down cost in period t. Note that constraints (1b)
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and (1d), together with the minimization objective, ensure that the shut-down cost U is incurred

in period t (i.e., yt−1 − yt + ut = 1) if and only if yt−1 = 1 and yt = ut = 0. Constraints (1b) and

(1c) model the requirements of the minimum-up and minimum-down time limits, respectively. The

minimum-up time limit requires that if the generator starts up in period t−L+1 (i.e., yt−L = 0,

yt−L+1 = 1), then it needs to stay online in the following L consecutive periods (including t−L+1)

until period t; and the minimum-down time limit requires that if the generator shuts down in period

t− ℓ+1 (i.e., yt−ℓ = 1 and yt−ℓ+1 = 0), then it needs to stay offline in the following ℓ consecutive

periods (including t− ℓ+1) until period t. Constraints (1d) describe the relations between online

status and start-up action. It requires ut = 1 when yt = 1 and yt−1 = 0. Constraints (1e) and (1f)

model the generation lower and upper bounds if the generator is online. Constraints (1g) and (1h)

model the ramp-up and ramp-down rate limits, respectively, between two consecutive time periods.

The ramp-up rate limit requires that if the generator is online in period t− 1 (i.e., yt−1 = 1), then

the generation increment from t−1 to t should be no more than V ; otherwise, it should be no more

than V . The ramp-down rate limit requires that if the generator is online in period t (i.e., yt = 1),

then the generation decrement from t− 1 to t should be no more than V ; otherwise, it should be

no more than V . Constraint (1i) models the fuel supply limit.

We assume that all the given parameters in Problem (1) are rational numbers. To avoid trivial

cases, we assume that L, ℓ ≤ T − 1 and (L+ 1)C < Q < TC. Note that the objective function of

Problem (1) is piecewise linear. Following the existing literature (Carrión & Arroyo 2006, Frangioni

et al. 2008), Problem (1) can be converted into an MIP. Note also that constraint (1i) follows the

literature (e.g., Lee 1991, Kuloor et al. 1992, Vemuri & Lemonidis 1992, Zhao et al. 2017) to impose

an upper bound on the total power generation over the operation horizon, and accordingly helps

maintain the whole model as an MIP. To focus on the effects of limited gas supply, here we only

impose the gas supply upper limit and omit the lower limit that is also considered by Lee (1991)

and Kuloor et al. (1992).

The following proposition states the computational complexity of the problem.

Proposition 1. Problem (1) is NP-hard.

Remark 1. Existing studies such as Frangioni & Gentile (2006), Damcı-Kurt et al. (2016),

and Guan et al. (2018) have shown that when there is no fuel supply constraint, similar variants

of Problem (1) with different setups of initial conditions can be solved polynomially in O(T 3)

time. When constraint (1i) is removed, we can follow their approaches to solving Problem (1) in

polynomial time, because the problem can be reduced to a shortest-path problem on an acyclic

network with O(T 2) nodes and O(T 2) arcs, where each node, denoted by a time-index pair (h,k)

such that k≥ h+L− 1, represents a time period {h,h+1, . . . , k} in which the generator is online,
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and each arc represents a transition between two nodes that has to satisfy the minimum-down

time requirement. By Proposition 1, Problem (1) is NP-hard. This implies that the fuel supply

constraint significantly increases the problem complexity. In addition, the fuel supply constraint

may increase the computational burden substantially when Problem (1) is embedded in other

large-scale problems.

Remark 2. From the proof of Proposition 1, it is not difficult to see that the NP-hardness proof

remains valid when constraints (1b), (1c), (1d), (1g), and (1h) are removed from Problem (1) and

when U = U = 0. Hence, the major factors that contribute to the high computational complexity

of the problem are (i) the fuel supply limit constraint (1i), (ii) the non-linearity of the generation

cost function ft(xt), and (iii) the time-dependency of the cost parameters.

Remark 3. If Q≥ TC, then constraint (1i) becomes redundant, and by Remark 1, Problem (1)

becomes polynomial-time solvable. If Q≤ (L+1)C, then there are at most two stable generation

regions in the operation horizon. In this case, there are O(T 4) possible combinations of start-

up and shut-down periods. Once the start-up and shut-down periods are known, the generation

amounts in different periods can be determined in polynomial time by a linear program. In this

case, Problem (1) is also polynomial-time solvable. Hence, in this paper, we focus on the case where

(L+1)C <Q<TC.

3. Strong Valid Inequalities

In this section, we focus on developing and analyzing various families of strong valid inequalities

that can be applied to help efficiently solve Problem (1), as well as other extensions with Problem

(1) embedded (e.g., multistage stochastic FSUC). For notational convenience, we let R and Z

denote the set of real numbers and the set of integers, respectively. We define [n1, n2]Z as the

set of integers between integers n1 and n2. That is, [n1, n2]Z = {n1, n1 +1, · · · , n2} if n1 ≤ n2, and

[n1, n2]Z = ∅ otherwise. We also define [n]+ = n if n≥ 0, and [n]+ = 0 otherwise.

Let D0 = {(x, y,u) ∈RT ×{0,1}T ×{0,1}T : (1b)− (1i)}. We consider the following linear relax-

ation of set D0:

D=
{
(x, y,u)∈RT ×{0,1}T ×{0,1}T−1 :

t∑
i=t−L+1

ui ≤ yt, ∀t∈ [L+1, T ]Z, (2a)

t∑
i=t−ℓ+1

ui ≤ 1− yt−ℓ, ∀t∈ [ℓ+1, T ]Z, (2b)

yt − yt−1 −ut ≤ 0, ∀t∈ T \ {1}, (2c)
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−xt +Cyt ≤ 0, ∀t∈ T , (2d)

xt −Cyt ≤ 0, ∀t∈ T , (2e)

xt −xt−1 ≤ V yt−1 +V (1− yt−1), ∀t∈ T \ {1}, (2f)

xt−1 −xt ≤ V yt +V (1− yt), ∀t∈ T \ {1}, (2g)
T∑

t=1

xt ≤Q
}
. (2h)

Note that variable u1 is not included in D and that D is (3T − 1)-dimensional. Let conv(D) be

the convex hull of D. Let D′ = {(x, y,u) ∈ RT × [0,1]T × [0,1]T−1 : (2a)− (2h)}, which is a linear

relaxation of D.

Proposition 2. The polytope conv(D) is full dimensional.

In the following, we develop several families of strong valid inequalities for conv(D). Note that

the set D contains a subset of the variables and constraints in D0, and that D is independent

of u−L̄+2, u−L̄+3, . . . , u−1, u0, y−ℓ+1, y−ℓ+2, . . . , y−1, y0, x0. It follows that any strong valid inequalities

for conv(D) are also valid for conv(D0) and can be used to help solve Problem (1), regardless of

the initial conditions. Note also that Rajan & Takriti (2005) prove that constraints (2a) – (2c)

provide the convex hull description of all feasible solutions in the space of y and u variables when

considering only the minimum-up/-down time limits with start-up costs. In Section 3.1, we derive

valid inequalities by considering a relaxation of set D. In Section 3.2, we derive two families of

valid inequalities for conv(D).

3.1. Semi-Continuous Inequalities

The generation outputs in the operation horizon, xt ∈ {0}∪ [C,C], ∀t∈ T , are represented by a set of

semi-continuous variables (Beale 1985) and are linked by the fuel supply constraint (2h). This gives

rise to a semi-continuous knapsack set defined as Dsc =
{
x∈RT : (2h); xt ∈ {0}∪ [C,C] ∀t∈ T

}
,

which plays a central role in our model. De Farias & Zhao (2013) have conducted a polyhedral

study of a general semi-continuous knapsack problem. However, simply applying their inequalities

to the set Dsc only gives us valid inequalities. In this subsection, we exploit the unique structure

of the set Dsc, characterize all of its extreme points, and then derive its convex hull description.

We refer to an inequality as a semi-continuous inequality if it is facet-defining for conv(Dsc).

Denote D′
sc = {(x, y,u)∈RT ×RT ×RT−1 : x∈Dsc}. Clearly, D⊆D′

sc. Thus, any valid inequality for

conv(D′
sc) is also valid for conv(D). Because D′

sc simply lifts Dsc by introducing 2T −1 dimensions

of y and u with no constraints enforced in these dimensions, any valid inequality for conv(Dsc) is

valid for conv(D′
sc). Hence, those inequalities that are valid for conv(Dsc) are also valid for conv(D).

Let λ =
⌊
Q/C

⌋
, λ′ =

⌈
(C +λC −Q)/(C −C)

⌉
, and θ∗ = Q − λC + λ′(C − C). The following

lemma characterizes all the extreme points of conv(Dsc).
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Lemma 1. Each extreme point of conv(Dsc) must belong to one of the following two categories:

1. No more than λ components of the extreme point are equal to C, and the other components

are 0.

2. One component of the extreme point is equal to θ∗. Among the remaining T−1 components, λ−
λ′ components are equal to C, and λ′ components are equal to C, while the other components

are 0.

Based on this characterization of the extreme points, the following proposition offers a family of

inequalities that are valid for conv(D) and strengthen (2h).

Proposition 3. If λ≥ λ′, then for any T1 ⊆T such that λ−λ′ +1≤ |T1| ≤ λ, the inequality∑
t∈T1

xt + ρ
∑

t∈T \T1

xt ≤ ζ (3)

is a semi-continuous inequality and is valid for conv(D), where

ρ= 1− Q−λC

C − (λ− |T1|)(C −C)
and ζ =

[
|T1|+ ρ(λ− |T1|)

]
C.

Example 1. Let T = 6, Q= 19, C = 4, and C = 6. Then, λ= 3 and λ′ = 2. Thus, inequality (3)

holds for any T1 with 2≤ |T1| ≤ 3. We have (ρ, ζ) = (1/2,15) when |T1|= 2, and (ρ, ζ) = (3/4,18)

when |T1|= 3. For example, we obtain the following two valid inequalities if we set T1 = {1,2} and

T1 = {1,3,5} respectively:

x1 +x2 +0.50x3 +0.50x4 +0.50x5 +0.50x6 ≤ 15;

x1 +0.75x2 +x3 +0.75x4 +x5 +0.75x6 ≤ 18.

The family of inequalities (3), along with (2h) and the condition 0 ≤ xt ≤ C, is sufficient to

provide the linear description of conv(Dsc), as stated in the following proposition.

Proposition 4. The polytope conv(Dsc) is equal to {x∈RT : (2h); (3) ∀T1 ⊆T s.t. λ−λ′+1≤
|T1| ≤ λ; 0≤ xt ≤C ∀t∈ T }.

Note that the size of the inequality family (3) is exponential in T . The following proposition

states that the separation can be done in polynomial time.

Proposition 5. Given an optimal solution of the linear programming (LP) relaxation of Prob-

lem (1), there exists an O(T logT ) time algorithm to find the most violated inequality (3), if any.

Inequality (3) is usually not facet-defining for conv(D) because the ramping constraints are not

considered in Dsc. In Section 3.2, we introduce two families of strong valid inequalities for conv(D)

that take into account the supply limit, minimum-up/-down time, generation lower/upper bounds,

and ramping constraints.
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3.2. Look Forward and Look Backward Inequalities

Here we define some functions and variables that will be used for describing our strong valid

inequalities.

Definition 1. For n1, n2 ∈Z, define

∆(n1, n2) =
n1(n1 +1)

2
+
n2(n2 +1)

2
;

ω1(n1, n2) =C (n1 +n2 +1)+

[
n1(n1 − 1)+n2(n2 − 1)

2
+max{n1, n2}

]
V ;

ω2(n1, n2) =C (n1 +n2 +1)+

[
|n1(n1 +1)−n2(n2 +1)|

2
+n1n2

]
V ;

ω3(n1, n2) = 2C +V (n1 +n2 +1)+

[
n1(n1 − 1)+n2(n2 − 1)

2
+max{n1, n2}

]
V ;

ω4(n1, n2) =C +V (n1 +n2 +1)+

[
|n1(n1 +1)−n2(n2 +1)|

2
+n1n2

]
V.

Definition 2. For any t∈ T , define

αt =


max{n∈Z : ω1(n,n)≤Q}, if Q<QB1;

max{n∈Z : ω2(n,T − t)≤Q}, if QB1 ≤Q<QB2 and t− 2≥ T − t;

t− 1, otherwise;

βt =


max{n∈Z : ω1(n,n)≤Q}, if Q<QB1;

max{n∈Z : ω2(t− 1, n)≤Q}, if QB1 ≤Q<QB2 and t≤ T − t;

T − t, otherwise;

τt1 =


1, if (αt ̸= t− 1, βt ̸= T − t, and ω3(αt, βt)≤Q)

or (αt ̸= t− 1, βt = T − t, and ω4(αt, βt)≤Q);

0, otherwise;

τt2 =


1, if (αt ̸= t− 1, βt ̸= T − t, and ω3(αt, βt)≤Q)

or (αt = t− 1, βt ̸= T − t, and ω4(αt, βt)≤Q);

0, otherwise

where QB1 = ω1(min{t− 1, T − t},min{t− 1, T − t}) and QB2 = ω2(t− 1, T − t).

Proposition 6. Given any t∈ T , (i) the values of αt, βt, τt1, and τt2 can be obtained in O(1)

time, provided that the floor function and square root function can be evaluated in constant time,

and (ii) αt, βt ≥ 0.

The quantities αt, βt, τt1, and τt2 are used for describing the ramping pattern of the generator

if it is online for the maximum number of periods allowed by the supply limit. For instance, if we

would like to maximize the generation amount in period t with a given limited fuel supply limit

Q, then αt and τt1 (resp. βt and τt2) are used to describe the maximum number of online time

periods before (resp. after) period t. Specifically, the generation amount will increase continuously

at the maximum ramp-up rate V from period t−αt to period t, and then decrease continuously at
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the maximum ramp-down rate V from period t to period t+βt. If the generator is also able to be

online in period t−αt−1 (resp. t+βt+1) under the supply limit, then τt1 = 1 (resp. τt2 = 1). Note

that in such a case, the generation difference between periods t−αt − 1 and t−αt (resp. between

periods t+ βt and t+ βt +1) is strictly smaller than V . The following proposition provides some

properties of these quantities.

Proposition 7. For any t∈ T , (i) if Q<QB1, then αt = βt and τt1 = τt2; (ii) if QB1 ≤Q<QB2,

then Q≥ ω2(αt, βt), and τt1 = 0 or τt2 = 0; (iii) αt + τt1 ≤ t− 1 and βt + τt2 ≤ T − t.
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(a) Left- and right-bounded case
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(b) Right-bounded case
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(c) Left-bounded case
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(d) Unbounded case

Figure 1 Ramping Patterns

Figure 1 depicts four exemplary cases, where we consider a generator with C = 1000, C = 100,

V = 150, V = 100, and L= ℓ= 1, and an operation horizon of T = 12.

• First, consider a low fuel supply limit Q= 1155, and suppose that we want to maximize the

generation amount in period t= 4. Note that QB1 = ω1(3,3) = 1600, and thus Q<QB1. It is

easy to verify that αt = βt = 2 and τt1 = τt2 = 0. As shown in Figure 1(a), the generator should
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start up in period 2 (i.e., the period t− αt − τt1) with the generation amount 150, ramp up

at the maximum ramp-up rate until period 4, ramp down at the maximum ramp-down rate

until period 6 (i.e., the period t+βt+ τt2), and shut down in period 7. We refer to such a case

as the “left- and right-bounded case.”

• Second, consider a medium fuel supply limit Q= 3755, and suppose that we want to maximize

the generation amount in period t= 4. Note that QB1 = ω1(3,3) = 1600 and QB2 = ω2(3,8) =

6600, and thus QB1 ≤ Q < QB2. It is easy to verify that αt = 3, βt = 5, and τt1 = τt2 = 0.

As shown in Figure 1(b), the generator should stay online starting in period 1 (i.e., the

period t− αt − τt1), ramp up at the maximum ramp-up rate until period 4, ramp down at

the maximum ramp-down rate until the generation amount reaches 150 in period 9 (i.e., the

period t+βt+ τt2), and shut down in period 10. We refer to such a case as the “right-bounded

case.”

• Third, consider a slightly larger fuel supply limit Q = 3850, and suppose that we want to

maximize the generation amount in period t = 9. Note that QB1 = ω1(3,3) = 1600, QB2 =

ω2(8,3) = 6600, and ω4(5,3) = 3850, and thus QB1 ≤Q<QB2 and ω4(5,3)≤Q. It is easy to

verify that αt = 5, βt = 3, τt1 = 1, and τt2 = 0. As shown in Figure 1(c), the generator should

start up in period 3 (i.e., the period t−αt− τt1) with the generation amount 100, ramp up to

the generation amount 150 in period 4, ramp up at the maximum ramp-up rate from period

4 until period 9, and ramp down at the maximum ramp-down rate until period 12 (i.e., the

period t+βt + τt2). We refer to such a case as the “left-bounded case.”

• Fourth, consider a large fuel supply limit Q= 5805, and suppose that we want to maximize

the generation amount in period t= 5. Note that QB2 = ω2(4,7) = 5800, and thus Q≥QB2. It

is easy to verify that αt = 4, βt = 7, and τt1 = τt2 = 0. As shown in Figure 1(d), the generator

should stay online throughout the entire operation horizon. It should ramp up at the maximum

ramp-up rate from period 1 (i.e., period t−αt − τt1) until period 5, and then ramp down at

the maximum ramp-down rate until period 12 (i.e., the period t+ βt + τt2). We refer to such

a case as the “unbounded case.”

We now derive strong valid inequalities to bound the generation amount xt in period t. Note that

if we attempt to reach the largest possible generation amount xt in period t, then the generator

should be online immediately before and after period t, and the ramp-up (resp. ramp-down) rate

from periods t− i to t (resp. from periods t to t+ j) should be set equal to its maximum possible

value V for some i ∈ [0, t − 1]Z (resp. j ∈ [0, T − t]Z). When there is no supply restriction, the

values of i and j can be as large as t− 1 and T − t, respectively. However, with the supply limit

constraint (2h), we can restrict the values of i and j to tighter ranges. We can shrink the range

for i from [0, t− 1]Z to [0, αt]Z and shrink the range for j from [0, T − t]Z to [0, βt]Z. With such
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a reduced number of online time periods before and after period t, we are able to derive tighter

upper bounds on xt. The following propositions present two families of strong valid inequalities

developed based on this idea. Proposition 8 presents inequalities that bound the generation amount

xt in period t by considering the generator’s online/offline status after period t, while Proposition 9

presents inequalities that bound the generation amount xt in period t by considering the generator’s

online/offline status before period t. We refer to the families of inequalities in Propositions 8 and

9 as look forward inequalities and look backward inequalities, respectively.

Proposition 8. Consider any L ≥ 2, t ∈ [L+ 1, T ]Z, k ∈ [2, βt]Z, S
′ ⊆ [t′, t+ k − 1]Z, and S =

[t+1, t′ − 1]Z ∪S′, where t′ =min{t+L, t+ k}. The inequality

xt ≤ V

 L−1∑
j=[L−k]+

min{L− 1− j, j}ut−j +
L−k−1∑
j=1

jut−j

+
∑
i∈S

(di − i)V

(
yi −

L−1∑
j=0

ui−j

)

+

(
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V −V

)(
yt+k −

L−1∑
j=0

ut+k−j

)
+V yt (4)

is valid for conv(D), where di =min{a∈ S ∪{t+ k} : a> i} for any i∈ S.

Remark 4. Under certain conditions, the valid inequality stated in Proposition 8 is facet-

defining. Specifically, if Q ≥ QB2, C ≥ [Q + ∆(t − 1, T − t)V ]/T , t + k = T , k ≥ (L + 1)/2, and

S′ = [t′, t + k − 1]Z, then inequality (4) is facet-defining for conv(D). The proof is provided in

Appendix A.10.

For notational convenience, we define an auxiliary variable wt = yt−1 − yt + ut to represent the

shut-down action in period t. Thus, wt = 1 when the generator is online in period t− 1 and offline

in period t (i.e., yt−1 = 1 and yt = 0), and wt = 0 otherwise.

Proposition 9. Consider any L ≥ 2, t ∈ [2, T − L]Z, k ∈ [2, αt]Z, S
′ ⊆ [t− k + 1, t′]Z, and S =

S′ ∪ [t′ +1, t− 1]Z, where t
′ =max{t−L, t− k}. The inequality

xt ≤ V

 L∑
j=[L−k]++1

min{L− j, j− 1}wt+j +
L−k∑
j=1

(j− 1)wt+j

+
∑
i∈S

(i− di)V

(
yi −

L∑
j=1

wi+j

)

+

(
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V −V

)(
yt−k −

L∑
j=1

wt−k+j

)
+V yt (5)

is valid for conv(D), where di =max{a∈ {t− k}∪S : a< i} for any i∈ S.

Example 2. Consider an FSUC problem with T = 8, a generator with C = 13, C = 111, V = 11,

V = 18, L= ℓ= 2, and a fuel supply limit Q= 296. When t= 5, it is easy to verify that α5 = 4, β5 =



15

3, τ51 = 0, and τ52 = 0. In Proposition 8, when k= 3, we have t′ = 7, S′ ⊆ {7}, and S = {6}∪S′. We

obtain the following two look forward inequalities below if we set S′ = ∅ and S′ = {7}, respectively:

x5 − 18y5 − 22y6 − 19y8 +22u5 +22u6 +19u7 +19u8 ≤ 0;

x5 − 18y5 − 11y6 − 11y7 − 19y8 +11u5 +22u6 +30u7 +19u8 ≤ 0.

Note that according to Remark 4, the second inequality is facet-defining for conv(D). When t= 6,

it is easy to verify that α6 = 4, β6 = 2, τ61 = 0, and τ62 = 0. In Proposition 9, when k= 3, we have

t′ = 4, S′ ⊆ {4}, and S = S′ ∪{5}. We obtain the look backward inequalities below if we set S′ = ∅

and S′ = {4}, respectively:

x6 −
159

7
y5 − 18y6 − 22y7 +

159

7
u4 +

159

7
u5 +22u6 +22u7 ≤ 0;

x6 −
159

7
y5 − 29y6 − 11y7 +

159

7
u4 +

236

7
u5 +22u6 +11u7 ≤ 0.

The sizes of the inequality families (4) and (5) are exponential in T . The following propositions

state that the separation can be done in polynomial time.

Proposition 10. Given an optimal solution of the LP relaxation of Problem (1), there exists

an O(T 4) time algorithm to find the most violated inequality (4), if any.

Proposition 11. Given an optimal solution of the LP relaxation of Problem (1), there exists

an O(T 4) time algorithm to find the most violated inequality (5), if any.

The strong valid inequalities (3)–(5) can be added to commercial solvers as user cuts. In our

computational experiments, as described in the next section, we select a subset of these inequalities

and add them to the user cut pool of the CPLEX optimizer, from which CPLEX can efficiently

select the effective user cuts to help solve the problem in the branch-and-bound process, leading

to a branch-and-cut algorithm.

4. Computational Experiments

In this section, we conduct computational experiments to demonstrate the effectiveness of our pro-

posed strong valid inequalities in solving application problems, by focusing on solving the multistage

stochastic FSUC problems faced by IPPs. We provide a description of the multistage stochastic

FSUC problem in Section 4.1, describe the computational setting in Section 4.2, and present the

computational results in Sections 4.3 and 4.4. All the instance data used in this section are publicly

available in Pan et al. (2022).
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4.1. Problem Description

We consider an IPP that owns a natural gas-fired generator. The IPP is facing volatile electricity

prices when it devises an optimal natural gas procurement strategy for the next planning horizon.

More importantly, it has to evaluate the gas procurement strategy by solving a stochastic FSUC

problem, in which the uncertainty comes from the electricity price volatility. Since the planning

horizon comprises multiple days and the power generation schedule is arranged on a day-by-day

basis, the IPP faces a multistage stochastic FSUC problem.

In this computational study, we consider such a multistage stochastic FSUC problem. We let R

denote the number of stages in the planning horizon, where each stage represents one day. For each

stage r = 1, . . . ,R, there are T time periods (e.g., T = 24 hours). Given a gas supply Qr (i.e., the

gas procurement strategy) in each stage r, we use a multistage stochastic scenario tree as shown

in Figure 2 to represent electricity price uncertainty. The corresponding daily generation schedule

is obtained at each node of the scenario tree. All the constraints in set D should be respected in

each stage of the problem. It follows that our strong valid inequalities derived in Section 3 are also

valid for the whole problem and are therefore able to help solve this multistage problem. Note that

such a scenario tree has been applied in various practical settings to solve power system problems

under uncertainty; see, for example, Takriti et al. (1996), Pan & Guan (2016b), Zou et al. (2019a),

and Huang et al. (2021b).

1 n−

n

|V|

Stage 1 Stage r(n) Stage R

Figure 2 Multistage Stochastic Scenario Tree

Let A= (V,E) denote the scenario tree with R stages, where V is the collection of all scenario

nodes. Each node n ∈ V in stage r of the tree provides the state of the system that can be distin-

guished by the information available up to stage r, with the root node denoted by 1. The root node,

which is the only node in stage 1, represents the current state of the system. For each node n∈ V,
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we let r(n) denote its stage, n− denote its unique parent node, and pn ∈ [0,1] denote the probability

of occurrence of the state corresponding to node n. We let 1− represent a dummy parent node of

root node 1. Note that r(1) = 1, and
∑

n∈V:r(n)=r′ pn = 1 for any stage r′. The decisions correspond-

ing to each node n ∈ V are made after observing the realization of the problem parameters along

the path from the root node to the current node n, but are nonanticipative with respect to future

realizations.

To formulate the multistage stochastic FSUC problem, we use all the notations defined

in Section 2 and add a superscript n to each decision variable to indicate the sce-

nario node n ∈ V. In addition, we assume that the initial conditions are given as

u1−

T−L̄+2
, u1−

T−L̄+3
, . . . , u1−

T−1, u
1−
T , y1

−
T−ℓ+1, y

1−
T−ℓ+2, . . . , y

1−
T−1, y

1−
T , x1−

T . The mathematical formulation for

the multistage stochastic FSUC problem is given as follows:

Problem (6): min
∑
n∈V

pn

[[
f1(x

n
1 )+ c1y

n
1 +Uun

1 +U(yn
−

T − yn1 +un
1 )− ξn1 x

n
1

]
+

T∑
t=2

[
ft(x

n
t )+ cty

n
t +Uun

t +U(ynt−1 − ynt +un
t )− ξnt x

n
t

]]
(6a)

s.t.
t∑

i=t−L+1

un
i ≤ ynt , ∀n∈ V, t∈ [L+1, T ]Z, (6b)

t∑
i=t−ℓ+1

un
i ≤ 1− ynt−ℓ, ∀n∈ V, t∈ [ℓ+1, T ]Z, (6c)

ynt − ynt−1 −un
t ≤ 0, ∀n∈ V, t∈ T \ {1}, (6d)

−xn
t +Cynt ≤ 0, ∀n∈ V, t∈ T , (6e)

xn
t −Cynt ≤ 0, ∀n∈ V, t∈ T , (6f)

xn
t −xn

t−1 ≤ V ynt−1 +V (1− ynt−1), ∀n∈ V, t∈ T \ {1}, (6g)

xn
t−1 −xn

t ≤ V ynt +V (1− ynt ), ∀n∈ V, t∈ T \ {1}, (6h)
T∑

t=1

xn
t ≤Qr(n), ∀n∈ V, (6i)

T∑
i=T−(L−t)+1

un−

i +
t∑

i=1

un
i ≤ ynt , ∀n∈ V, t∈ [1,L]Z, (6j)

T∑
i=T−(ℓ−t)+1

un−

i +
t∑

i=1

un
i ≤ 1− yn

−

T−(ℓ−t), ∀n∈ V, t∈ [1, ℓ]Z, (6k)

yn1 − yn
−

T −un
1 ≤ 0, ∀n∈ V, (6l)

xn
1 −xn−

T ≤ V yn
−

T +V (1− yn
−

T ), ∀n∈ V, (6m)

xn−

T −xn
1 ≤ V yn1 +V (1− yn1 ), ∀n∈ V, (6n)

ynt ∈ {0,1}, un
t ∈ {0,1}, ∀n∈ V, t∈ T . (6o)
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In objective function (6a), the per-unit electricity price ξnt is dependent on n, while other objective

coefficients are scenario-independent. For each n∈ V, constraints (6b)–(6i) repeat those constraints

in set D (i.e., (2a)–(2h)). Constraints (6j)–(6n) are the minimum-up/-down time and ramping rate

constraints between a given scenario node n∈ V and its parent node n−.

Problem (6) is a generalization of the deterministic multistage FSUC problem in which no

uncertainty is considered. Note that there are other ways (e.g., stochastic dynamic programming) to

formulate the multistage stochastic FSUC problem, and Problem (6) is a deterministic equivalent

formulation that can be solved as a deterministic integer program via commercial solvers.

The valid inequalities derived in Section 3 are also valid for Problem (6) and can be used to help

solve the problem. However, adding too many inequalities may increase the computational time,

because the resulting problem will become very large. Since the size of each of the inequality families

(3)–(5) is an exponential function of T , in our computational experiments we use an offline selection

process to select a subset of these valid inequalities and add them to the user cut pool of CPLEX.

Specifically, for the family of inequality (3), we let (π(1), . . . , π(T )) be a permutation of (1, . . . , T )

such that ξ∗π(1) ≥ · · · ≥ ξ∗π(T ), and we select those inequalities that satisfy T1 = {π(1), . . . , π(s)} with

λ−λ′+1≤ s≤ λ. This selection is used because when solving our problem, a high electricity price in

a period t will potentially lead to a large generation amount, and the corresponding LP relaxation

solution will more likely violate inequality (3). Hence, those inequalities associated with set T1

that include time periods with high electricity prices should be added to cut off the LP relaxation

solutions. For the family of inequality (4), for every t ∈ [L+1, T ]Z and k ∈ [2, βt]Z, we select those

inequalities that satisfy S′ = [t′, t+ k− 1]Z, where t
′ =min{t+L, t+ k}, because according to the

conditions presented in Remark 4, they are more likely to be facet-defining for conv(D) and are

more efficient. Similarly, for the family of inequality (5), for every t ∈ [2, T −L]Z and k ∈ [2, αt]Z,

we select those inequalities that satisfy S′ = [t− k+1, t′]Z, where t
′ =max{t−L, t− k}.

4.2. Data Generation

In this subsection, we create data instances based on the modified IEEE 118-bus system available

at motor.ece.iit.edu/data/SCUC 118. Four different natural gas-fired generators are selected for

the experiments, and we use Gi (i= 1, . . . ,4) to denote them. The physical characteristics of these

generators are provided in Table 1. In all test instances, we set T = 24. In each period t ∈ T of

each node n ∈ V, the convex non-increasing piecewise linear function ft(·) in (6a) is obtained by

approximating the quadratic cost function c′′t (x
n
t )

2 + c′tx
n
t , where the c′′t and c′t values are shown

in Table 1. We apply a method developed by Carrión & Arroyo (2006) to perform the piecewise

linear approximation, using eight line segments with the x-coordinates of the breakpoints spread

motor.ece.iit.edu/data/SCUC_118
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Table 1 Generator Data

Gen.
L
(h)

ℓ
(h)

C
(MW)

C
(MW)

V
(MW/h)

V
(MW/h)

U
($/h)

U
($/h)

c′′t
($/MW2h)

c′t
($/MWh)

ct
($/h)

G1 4 4 10 65 15 17.5 0 600 0.0398 19.7 75

G2 3 3 25 150 32 41 0 800 0.0211 16.5 120

G3 5 5 50 310 70 85 0 1600 0.0031 17.26 192.5

G4 4 4 59 440 51 76 0 300 0.02 22 100

evenly between the lower bound C and the upper bound C (see formulation (6)–(11) in Carrión &

Arroyo 2006).

Generators G1–G3 are used in Section 4.3 to solve relatively small instances of Problem (6), while

generator G4 is used in Section 4.4 to solve larger instances. In both subsections, different scenarios

of the uncertain electricity price are created for the scenario tree in Figure 2. For simplicity,

we assume that the electricity prices are uniformly distributed, since the uniform distribution is

often used in the literature for modeling electricity prices and for generating electricity prices in

computational studies; see, for example, Ren & Galiana (2004a,b), Pan & Guan (2016b), Melamed

et al. (2018), and De Souza et al. (2021). Specifically, we let the electricity price ξnt be uniformly

distributed on [0,40] in each period t of each scenario node n. The fuel supply limit Qr is uniformly

distributed on [0, TC/3] in each stage r. In addition, to test the variations of the proposed instances,

we consider different numbers of stages and scenarios. For each parameter setting, we create a

scenario tree, generate five test instances with different electricity prices and fuel supply limits,

and report the average result. All of the computational experiments are conducted on a computer

node with Intel(R) Xeon(R) CPU E5-2637 v3 at 3.50GHz and sixteen cores. IBM ILOG CPLEX

12.9 with a single thread is used as the MIP solver and the addressable memory is 8GB.

Next, we describe how the scenario trees are created in our computational study. For ease of

exposition, we let V(r) denote the set of nodes in stage r. Those nodes in stage R do not have

children and are called leaf nodes, while those nodes in the other stages have children and are

called non-leaf nodes. The path from a leaf node to the root node forms a complete scenario. Thus,

|V(R)| is the total number of scenarios. For each small test instance discussed in Section 4.3, the

scenario tree is generated as follows. Given the number of stages R and the number of scenarios

|V(R)|, we perform the following steps:

(i) Create a deterministic scenario with one child per non-leaf node.

(ii) Among those nodes with one child, select one node randomly with equal probability, and let

r be the stage of the selected node.

(iii) Add a child node to the selected node, add a child node to the newly added child node, and

so on, until the newly added child node is in stage R. This leads to a new scenario in the tree.
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(iv) Repeat steps (ii) and (iii) until the number of scenarios equals |V(R)|.

(v) If a scenario node has two children, then we assign a conditional probability of 0.5 to each

of them. If a scenario node has one child, then we assign a conditional probability of 1 to it.

We then determine the probability of occurrence pn of each node n using these conditional

probabilities.

For the larger instances discussed in Section 4.4, we create larger scenario trees by having k children

per non-leaf node, where k= 2,3,4, and assigning a conditional probability of 1/k to each non-leaf

node. Thus, there are kR−1 scenarios in the scenario tree.

4.3. Small Instances

In this subsection, we present the results of the first part of our computational study, in which we

consider test instances with relatively small scenario trees and short planning horizons. We consider

generators G1–G3, and setR= 6,8,10 and |V(R)|= 16,27,32. Thus, there are 27 parameter settings

and 27×5 = 135 test instances in total. We use CPLEX to solve formulation (6) of these instances,

and we compare the computational performance of two approaches. The first approach is “Default

CPLEX,” where Problem (6) is solved by CPLEX without any of our valid inequalities added.

The second approach is “Branch-and-Cut,” where Problem (6) is solved by CPLEX with all of our

selected valid inequalities added as user cuts at each scenario node n∈ V. We set the time limit to

one hour per run and use CPLEX’s default optimality gap criterion (i.e., 0.01%).

We first report the extent to which our valid inequalities can tighten the relaxation of the feasible

region of Problem (6). In Table 2, the “LP (%)” columns report the average LP relaxation gap

of the original problem obtained by solving the five test instances using the “Default CPLEX”

approach. The “Cut (%)” columns report the average LP relaxation gap of the five test instances

Table 2 Tightness of LP Relaxation

R |V(R)| G1 G2 G3

LP (%) Cut (%) Pct (%) LP (%) Cut (%) Pct (%) LP (%) Cut (%) Pct (%)

6
16 16.0 10.3 35.1 6.2 3.6 43.9 3.5 2.3 32.6

24 15.1 8.2 43.6 9.7 5.8 41.1 8.7 4.4 50.7

32 9.8 5.7 42.1 5.7 3.0 47.8 4.3 2.3 46.8

8
16 14.2 9.3 32.8 5.4 3.3 39.4 8.8 5.8 33.2

24 17.3 10.1 39.8 6.7 3.9 39.9 6.2 3.8 40.3

32 12.4 7.7 37.7 4.2 2.3 46.2 5.0 2.5 49.6

10
16 14.1 7.8 43.7 4.3 2.7 37.0 7.6 4.1 47.0

24 14.6 8.2 44.2 9.7 5.4 45.6 9.8 5.2 46.8

32 10.8 5.9 44.8 7.4 3.9 47.5 9.4 4.9 46.6
Note: Each row represents the average result of five instances.
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after adding our strong valid inequalities (i.e., using the “Branch-and-Cut” approach). Here, the

LP relaxation gap of the original problem is defined as (ZLP −ZMILP)/ZMILP × 100%, and the LP

relaxation gap using the “Branch-and-Cut” approach is defined as (ZCut
LP −ZMILP)/ZMILP × 100%,

where ZLP is the objective value of the original LP relaxation without adding our valid inequalities,

ZCut
LP is the objective value of the LP relaxation after adding our valid inequalities, and ZMILP

is the objective value of Problem (6) with the best integer solution obtained by CPLEX using

either approach. The average percentage reduction is reported in the “Pct (%)” columns, where

the percentage reduction is given by

(the “LP (%)” value)− (the “Cut (%)” value)

the “LP (%)” value
× 100%.

From this table, we observe that our valid inequalities can help reduce the average LP relaxation

gap by around 40% in all 27 parameter settings.

Next, we report the extent to which our branch-and-cut approach can speed up the solution

process. In Table 3, the “TGap (%)” columns report the average terminating gap of the five test

instances when CPLEX reaches the terminating criterion. The “# Nodes” columns report the

average number of branch-and-bound nodes explored by CPLEX among the five test instances,

and the “Time” columns report the average computational time in seconds. The “# Cuts” column

reports the average number of user cuts used by CPLEX. The numbers in square brackets in the

“TGap (%)” columns indicate the number of instances (out of five) that are not solved to optimality

within the one hour time limit. From this table, we observe that our “Branch-and-Cut” approach

reduces the computational time significantly and solves many more instances to optimality within

the time limit than the “Default CPLEX” does. In addition, the reduced terminating gaps and the

reduced number of branch-and-bound nodes indicate that our valid inequalities can help tighten

the LP relaxation solved at each branch-and-bound node and thus help reduce the searching space.

4.4. Large Instances

In this subsection, we present the results of the second part of our computational study, in which

we consider test instances with relatively large scenario trees and long planning horizons. We use

generator G4, and set R= 21,26,31. As mentioned in Section 4.2, in this part we make use of larger

scenario trees with k children per non-leaf node, where k = 2,3,4. The deterministic equivalent

formulation for these large instances is extremely difficult to solve, so we adopt stochastic dynamic

programming approaches. Specifically, we assume stage-wise independence within the multistage

stochastic FSUC problem and adopt the stochastic dual dynamic integer programming (SDDiP)

approach developed by Zou et al. (2019b) accordingly.



22

Table 3 Results of the Branch-and-Cut Scheme (Small Instances)

R Gen. |V(R)| Default CPLEX Branch-and-Cut

TGap (%) # Nodes Time TGap (%) # Nodes Time # Cuts

6

G1
16 0.10 [1] 100295.8 1006.8 0.06 [1] 82306.4 918.9 140.9

24 0.15 [3] 54986.3 2748.8 0.08 [1] 38598.6 1286.9 162.8

32 0.01 [1] 100105.1 1537.1 0.01 49803.7 725.5 151.3

G2
16 0.01 162143.2 1183.3 0.01 12423.2 82.0 102.5

24 0.05 [2] 45023.7 2608.1 0.01 14261.2 960.1 150.1

32 0.01 52097.4 335.2 0.01 13352.0 86.4 157.3

G3
16 0.01 112577.0 1386.2 0.01 28269.6 302.6 166.3

24 0.21 [4] 53994.2 1808.5 0.03 [1] 25421.8 976.1 263.6

32 0.04 [3] 166577.0 2180.1 0.01 8644.9 91.2 311.2

8

G1
16 0.02 [1] 87035.4 1084.0 0.01 64898.6 717.5 147.6

24 0.16 [4] 143292.9 3001.8 0.05 [1] 19731.4 2301.6 279.4

32 0.08 [2] 94422.5 1814.5 0.02 [1] 90849.5 912.4 200.8

G2
16 0.01 [1] 86558.8 1046.1 0.01 2253.8 37.2 132.9

24 0.12 [3] 61974.1 2376.5 0.04 [1] 56473.7 1574.7 282.4

32 0.01 29515.0 578.4 0.01 10579.9 192.4 164.8

G3
16 0.04 [2] 140908.5 1827.9 0.01 68435.8 812.9 213.5

24 0.27 [5] 65381.4 2217.5 0.03 [1] 69368.1 1163.2 262.7

32 0.06 [2] 95113.1 2447.1 0.02 [1] 86772.9 1609.8 479.2

10

G1
16 0.02 [4] 171001.8 2899.6 0.01 47802.6 717.1 198.5

24 0.31 [5] 182754.3 3600.0 0.14 [4] 149000.1 3119.3 197.8

32 0.13 [5] 98715.3 3600.0 0.08 [3] 92987.7 2259.2 291.3

G2
16 1.29 [3] 117048.8 2295.6 0.01 93606.5 764.5 258.4

24 1.65 [5] 78232.2 3600.0 0.95 [3] 82954.7 2547.3 480.7

32 1.46 [5] 65809.3 3600.0 0.95 [5] 66960.7 3600.0 1525.1

G3
16 0.40 [5] 182251.7 3600.0 0.05 [1] 36316.7 729.1 296.2

24 1.15 [5] 75155.5 3600.0 0.35 [3] 57176.7 2163.6 254.2

32 0.87 [5] 76780.6 3600.0 0.42 [5] 64414.7 3600.0 474.1
Note: Each row represents the average result of five instances. The number in square brackets indicates
the number of instances that are not solved to optimality.

Given a multistage stochastic integer program formulated over a scenario tree, the SDDiP algo-

rithm solves it by iteratively solving subproblems until a certain convergence criterion is met. In

each iteration, there are three steps: a sampling step, a forward step, and a backward step. In the

sampling step, a subset of all the scenarios is randomly sampled based on a certain probability

distribution (uniform distribution is used in our experiments). Here, a scenario represents a path

from the root node to a leaf node in the scenario tree. Thus, after this step, we have a number of

sampled paths (i.e., sampled scenarios). In the forward step, for each sampled scenario the algo-
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rithm proceeds stage-wise from stage 1 to stage R by solving a dynamic programming recursion

with an approximated expected cost-to-go function at each node of the sampled scenario. Such

a dynamic program recursion is solved as an MIP, where the approximated expected cost-to-go

function (i.e., function ψi
n(·) in problem (3.1a)–(3.1d) in Zou et al. (2019b)) is represented by a

decision variable (i.e., variable θn in (3.2a)–(3.2b) in Zou et al. (2019b)) together with a set of lin-

ear constraints (i.e., constraints (3.2a)–(3.2b) in Zou et al. (2019b)). After completing the forward

step for all the sampled scenarios, we have a statistical upper bound of the overall problem. In

the backward step, for each sampled scenario the algorithm proceeds stage-wise from stage R to

stage 1. For each scenario node at stage r (r= 1, . . . ,R) of a sampled scenario, the algorithm first

solves a relaxation of the MIP (using LP relaxation and Lagrangian relaxation) at this node as

well as its sibling nodes, which share a parent node with this node. It then derives three types of

cuts, namely strengthened Benders’ cuts, integer optimality cuts, and Lagrangian cuts, and then

obtains an updated approximated expected cost-to-go function (with the derived cuts added as

linear constraints) for the shared parent node. Note that the forward problem solved at the root

node of the scenario tree provides a lower bound of the entire problem. The algorithm terminates

when this lower bound is sufficiently close to the statistical upper bound.

Note that our valid inequalities presented in Section 3 are valid for the subproblem solved at each

stage using the SDDiP approach. In this part of our computational study, we solve Problem (6)

using two approaches and compare their computational performance. The first approach is “Default

SDDiP,” where Problem (6) is solved by the SDDiP algorithm without any of our valid inequalities

added. The second approach is “Branch-and-Cut in SDDiP,” where Problem (6) is solved by the

SDDiP algorithm with our strong valid inequalities added as user cuts at each scenario node. When

solving each test instance with these two approaches, we try a different number of sampled paths

in the forward step. For example, if the test instance has 21 days and 3 children at each non-leaf

node, then the total number of sampled paths is 320, and the sampling step of the SDDiP algorithm

will select a number of sampled paths among them. In our experiments, we set the numbers of

sampled paths to 5, 10, and 15.

When implementing the SDDiP algorithm, we use all the cuts derived in Zou et al. (2019b) (i.e.,

strengthened Benders’ cuts, integer optimality cuts, and Lagrangian cuts) in the backward step.

We set the minimum and maximum numbers of iterations to 50 and 100, respectively. The MIP is

solved by CPLEX with the optimality gap set to 0.5%, and the Lagrangian relaxation problem is

solved by a basic subgradient algorithm with an optimality tolerance of 0.5%. The time limit for

solving each single MIP is set to 1800 seconds, while the time limit for each complete run is set to

18000 seconds. In addition, we follow the SDDiP enhancements designed by Zou et al. (2019a) to

use backward parallelization to improve computational performance.
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Table 4 Results of the Branch-and-Cut Scheme (Large Instances)

R
#
Ch

#
SP

Default SDDiP Branch-and-Cut in SDDiP

LB Stat UB
Gap
(%)

Time # Ite LB Stat UB
Gap
(%)

Time # Ite

21

2
5 -295899 -284801 3.96 746.8 73.0 -290205 -280415 3.57 274.9 78.3

10 -312873 -305559 2.44 871.4 74.7 -307357 -304262 0.99 288.1 72.3

15 -311051 -306480 1.53 575.6 71.7 -307009 -303003 1.38 429.3 74.0

3
5 -297723 -291163 2.20 1540.8 82.3 -294800 -290668 1.43 476.3 80.0

10 -301063 -294263 2.41 1674.5 80.7 -298264 -294127 1.45 415.3 70.3

15 -312922 -304690 2.76 1823.3 71.7 -309218 -302689 2.19 404.3 71.7

4
5 -307659 -299390 2.79 1379.8 83.0 -302267 -291793 3.67 390.2 87.0

10 -306937 -299284 2.50 2653.0 96.0 -301390 -294396 2.38 653.4 77.3

15 -308048 -303431 1.48 2935.6 85.7 -304402 -299573 1.55 924.0 90.3

26

2
5 -455197 -442475 2.92 1568.5 72.7 -447031 -438758 1.90 333.8 76.7

10 -448403 -443363 1.19 1297.2 71.7 -440003 -436162 0.92 332.5 72.7

15 -434416 -428614 1.39 1077.6 65.7 -426238 -421751 1.07 441.3 69.0

3
5 -454520 -438995 3.44 1840.0 70.3 -445641 -433224 2.96 600.3 80.0

10 -445226 -435651 2.23 2349.5 81.0 -438191 -427613 2.45 686.0 70.7

15 -444461 -437280 1.59 2446.4 80.0 -436806 -430234 1.60 872.8 78.3

4
5 -460480 -448386 2.56 3677.1 80.3 -453204 -446734 1.46 766.1 79.0

10 -458493 -450062 1.81 6472.4 87.7 -450240 -437432 2.80 681.1 76.3

15 -427557 -422748 1.15 2866.6 77.0 -420202 -414637 1.35 816.8 76.7

31

2
5 -557917 -549861 1.49 2523.0 83.0 -547894 -541660 1.13 848.4 73.7

10 -607778 -602622 0.83 1170.9 73.0 -597588 -592653 0.83 614.8 78.7

15 -569424 -562669 1.26 1631.1 72.0 -558540 -552801 1.06 627.6 71.7

3
5 -558473 -548619 1.73 3014.0 86.7 -549132 -542066 1.34 662.6 75.7

10 -577292 -569453 1.41 1862.0 83.0 -565894 -556384 1.64 956.1 78.7

15 -586400 -576273 1.68 6071.6 87.7 -576629 -568623 1.39 1900.2 69.3

4
5 -570628 -555320 2.85 5625.8 86.0 -563840 -552450 2.08 1217.2 83.7

10 -617597 -607393 1.75 4474.7 83.3 -607451 -597057 1.69 1909.7 87.3

15 -565101 -558802 1.16 6555.2 96.0 -556050 -550471 1.01 2906.8 77.3
Note: Each row represents the average result of five instances.

The computational results are presented in Table 4, with each row summarizing the results of

five test instances. The “# Ch” column indicates the number of children of each non-leaf node in

the scenario tree. The “# SP” column indicates the number of different sampled paths selected

by the sampling step. The “LB” columns report the average value of the lower bounds obtained

for the five test instances, where each test instance’s lower bound is obtained by selecting the

best lower bound value generated by different iterations of the SDDiP algorithm. As mentioned

by Zou et al. (2019b), when a forward step of the SDDiP algorithm is completed, the objective
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values corresponding to all sampling scenarios are obtained. Based on these objective values, a

95%-confidence range for the objective values is constructed by assuming that they are normally

distributed. The right-end point of this range corresponding to the forward step in the last iteration

is the statistical upper bound obtained for the test instance. The “Stat UB” columns report the

average value of the statistical upper bounds obtained for the five test instances. The “Gap (%)”

columns report the average SDDiP gap. The SDDiP gap is the relative gap between “LB” and

“Stat UB,” and is given by

(the “Stat UB” value)− (the “LB” value)

|the “Stat UB” value|
× 100%.

The “Time” columns report the average computational time of the SDDiP algorithm per instance

in seconds, and the “# Ite” columns report the average number of iterations per instance. From

this table, we observe that the computational time is significantly reduced by adding our valid

inequalities to the SDDiP algorithm. Our branch-and-cut approach also helps reduce the SDDiP

gap in most of the cases.

5. Conclusions

Natural gas-fired generators are increasingly entering electricity markets due to their environmental

friendliness, high flexibility, and affordable running costs. However, natural gas is mainly used in

residential, commercial, and industrial sectors rather than for electricity generation, thus limiting

supplies for IPPs. The limited fuel supply becomes an increasing challenge for IPPs that own gas-

fired generators, because production decisions in different time periods in the operation horizon are

linked. More important, such a linking constraint occurs frequently for other types of generators in

different ways in terms of coal supply limit, carbon emission limit, and pollutant limit. In this paper,

the challenge of the fuel constraint is addressed by a comprehensive polyhedral study in which

several families of strong valid inequalities are derived. Extensive computational experiments have

been performed to demonstrate the effectiveness of our proposed inequalities in solving practical

problems (i.e., multistage stochastic FSUC problems) in various settings. Meanwhile, our model

provides a scenario analysis tool to efficiently explore a good fuel procurement strategy. In our

model, the fuel supply limit Q is an input parameter, and the IPP can vary the value of Q to

perform sensitivity analyses. For each value of Q, the IPP can apply our derived inequalities to

efficiently solve Problem (1) and obtain the corresponding optimal profit. It can then devise a good

fuel procurement strategy by choosing an appropriate value of Q.

This research can be extended in various directions. First, our semi-continuous inequalities are

constructed by including constraint (2h) and the upper- and lower-limit requirements of the x
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variables in the semi-continuous knapsack set Dsc. It would be interesting to consider other con-

straints in the set D and include some of them in Dsc. This leads to a new convex hull conv(Dsc),

which may provide us with stronger valid inequalities. Second, our look forward and look backward

inequalities involve only one x variable. It would be interesting to derive strong valid inequalities

that contain more than one x variable. Third, with significant gas supply and electricity price

uncertainties, it would be an interesting problem to consider fuel procurement and unit commit-

ment together. In our computational experiments, we have assumed that the fuel procurement

strategy is given, and then solved the multistage stochastic FSUC problems to efficiently evaluate

this strategy. Integrating fuel procurement and unit commitment decisions will lead to an even

more challenging problem. Fourth, it would be appealing to consider the fuel supply limit enforced

over multiple generators. When multiple gas-fired generators share the same source of fuel supply

or share a single carbon emission limit, the fuel supply limit may jointly constrain the schedule of

all the generators.
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Online Appendix

Appendix A: Mathematical Proofs

A.1. Proof of Proposition 1

We transform the Equal-size Partition problem, a variant of the Partition problem, to Problem (1). Given

a set A= {1, . . . ,2n} and a positive integer size s(i) for each i ∈ A, the Equal-size Partition problem asks

if there is a subset A′ ⊆ A such that |A′| = |A|/2 and
∑

i∈A′ s(i) =
∑

i∈A\A′ s(i). The Equal-size Partition

problem is known to be NP-hard (Garey & Johnson 1979, p. 223).

Consider an arbitrary given instance of Equal-size Partition with n≥ 2. We let B = (1/2)
∑

i∈A
s(i) and

R= (2n−3)B+n−1, and construct a corresponding instance of Problem (1) as follows: T = 4n; Q= nR+B;

C = V = V =R+2B; C =R; L= ℓ= 1; U =U = 0; and x0 = y0 = 0. For t= 1, . . . ,4n,

ft(xt) =

{
max

{
0, Q

(
xt −R− s(t/2)

)}
, if t is even;

0, if t is odd;

ct =

{
R+ s(t/2), if t is even;

Q+1, if t is odd;

and

ξt =

{
2, if t is even;

0, if t is odd.

Clearly, this construction can be done in polynomial time. Note that ft(·) is a non-decreasing convex piecewise

linear function for each t= 1, . . . ,4n. We will show that there exists a feasible solution of this constructed

instance of Problem (1) with a total cost no greater than −Q if and only if there exists a solution to the

given instance of Equal-size Partition.

Suppose that in the given instance of Equal-size Partition, there is a subset A′ ⊆A such that |A′|= |A|/2

and
∑

i∈A′ s(i) =
∑

i∈A\A′ s(i). Then, consider the following solution of the constructed instance of Problem

(1): For t= 1, . . . ,4n, if t is even and t/2 ∈A′, then xt =R+ s(t/2) and yt = ut = 1, otherwise let xt = yt =

ut = 0. It is easy to check that this solution satisfies constraints (1b)–(1h) and (1j). This solution also satisfies

constraint (1i), because
∑T

t=1 xt =
∑2n

i=1 x2i =
∑

i∈A′(R+ s(i)) = |A′| ·R+
∑

i∈A′ s(i) = nR+B =Q. Hence,

this solution is feasible for Problem (1). The total cost of this solution is

T∑
t=1

[
ft(xt)+ ctyt +Uut +U(yt−1 − yt +ut)− ξtxt

]
=

2n∑
i=1

[
f2i(x2i)+ c2iy2i +Uu2i +U(y2i−1 − y2i +u2i)− ξ2ix2i

]
=
∑
i∈A′

[
f2i(R+ s(i))+ c2i · 1+U · 1+U(0− 1+1)− ξ2i(R+ s(i))

]
=
∑
i∈A′

[
0+ (R+ s(i))(1)+ (0)(1)+ (0)(0)− (2)(R+ s(i))

]
=−

∑
i∈A′

(R+ s(i))
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=−|A′| ·R−
∑
i∈A′

s(i)

=−nR−B

=−Q.

Conversely, suppose that the constructed instance of Problem (1) has a feasible solution (x∗
1, . . . , x

∗
T ;

y∗1, . . . , y
∗
T ;u

∗
1, . . . , u

∗
T ) with a total cost no greater than −Q. This feasible solution has the following properties:

(i) The generator is offline in periods 1,3, . . . ,4n− 1. This property holds, since otherwise a fixed cost of

Q+1 would be incurred in some odd period, implying that the total cost of this solution will be at least

(Q+ 1)−
∑T

t=1 ξtx
∗
t ≥ (Q+ 1)− 2Q > −Q, which is a contradiction. Note that this property implies

that for i= 1, . . . ,2n, if the generator is online in period 2i, then it starts up in period 2i.

(ii) For any i = 1, . . . ,2n, if the generator is online in period 2i, then the cost incurred in period 2i is

at least −x∗
2i, and this cost equals −x∗

2i if and only if x∗
2i = R + s(i). To show the validity of this

property, we consider three different cases. If x∗
2i = R + s(i), then the cost incurred in period 2i is

f2i(x
∗
2i) + c2iy

∗
2i +Uu∗

2i +U(y∗2i−1 − y∗2i + u∗
2i)− ξ2ix

∗
2i = 0+ (R+ s(i)) + 0 + 0− 2(R+ s(i)) =−x∗

2i. If

0<x∗
2i <R+ s(i), then the cost incurred in period 2i is f2i(x

∗
2i)+ c2iy

∗
2i+Uu

∗
2i+U(y∗2i−1− y∗2i+u∗

2i)−

ξ2ix
∗
2i = 0 + (R+ s(i)) + 0 + 0− 2x∗

2i > −x∗
2i. If x

∗
2i > R+ s(i), then the cost incurred in period 2i is

f2i(x
∗
2i) + c2iy

∗
2i +Uu∗

2i +U(y∗2i−1 − y∗2i + u∗
2i)− ξ2ix

∗
2i =Q(x∗

2i −R− s(i)) + (R+ s(i)) + 0+ 0− 2x∗
2i =

(Q− 1)(x∗
2i −R− s(i))−x∗

2i >−x∗
2i.

(iii) For any t= 1, . . . , T , the cost incurred in period t is at least −x∗
t . Clearly, this property is valid if the

generator is offline in period t. If the generator is online in period t, then by property (i), t must be

even, and the validity of this property follows from property (ii).

(iv) The total generation amount is Q (i.e.,
∑T

t=1 x
∗
t =Q). This property holds because by property (iii), the

total cost of this solution is least −
∑T

t=1 x
∗
t . Thus, if

∑T

t=1 x
∗
t <Q, then the total cost of the solution

would be greater than −Q.

(v) The generator is online for at most n even periods. This property holds, since otherwise
∑T

t=1 x
∗
t ≥

(n+1)C = (n+1)R>nR+B =Q, which violates constraint (1i).

(vi) The generator is online for at least n even periods. To show the validity of this property, suppose the

opposite—that the generator is online for no more than n−1 even periods. Then, by properties (i) and

(iv), there exists an even period t′ in which the generation amount is at least Q/(n−1). The total cost of

this solution is at least ft′(Q/(n−1))−
∑T

t=1 ξtx
∗
t ≥ ft′(Q/(n−1))−2Q= ft′((nR+B)/(n−1))−2Q=

ft′(R+2B+1)−2Q=Q(2B+1− s(t′/2))−2Q=Q(2B− s(t′/2))−Q>−Q, which is a contradiction.

From properties (v) and (vi), in the solution (x∗
1, . . . , x

∗
T ;y

∗
1, . . . , y

∗
T ;u

∗
1, . . . , u

∗
T ), the generator is online in

exactly n even periods. Consider the following solution of the given instance of Equal-size Partition: For each

i= 1, . . . ,2n, i∈A′ if and only if the generator is online in period 2i. Clearly, |A′|= |A|/2. In the following,

we show that
∑

i∈A′ s(i) =
∑

i∈A\A′ s(i). By property (i), the generator is offline in periods 1,3, . . . ,4n− 1.

Thus, the generator is online in period t only if t is even and t/2∈A′. Hence, by property (iv),
∑

i∈A′ x∗
2i =Q,

or equivalently,
∑

i∈A′(−x∗
2i) =−Q. By property (ii), the cost incurred in period 2i is at least −x∗

2i for all
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i ∈ A′. Suppose that, on the contrary, the cost incurred in period 2i is greater than −x∗
2i for some i ∈ A′.

Then, the total cost of this solution must be greater than
∑

i∈A′(−x∗
2i) = −Q, which is a contradiction.

Thus, the cost incurred in period 2i is exactly −x∗
2i for all i ∈A′. By property (ii), x∗

2i =R+ s(i) if i ∈A′.

Hence,
∑

i∈A′ x∗
2i =

∑
i∈A′(R+ s(i)), which implies that Q= nR+

∑
i∈A′ s(i). Therefore,

∑
i∈A′ s(i) =B, or

equivalently,
∑

i∈A′ s(i) =
∑

i∈A\A′ s(i). □

A.2. Proof of Proposition 2

Because there are 3T − 1 variables in D, it suffices to show that dim(conv(D)) = 3T − 1. Note that 0 ∈
conv(D). Thus, it suffices to show that there exist 3T − 1 linearly independent non-zero points in conv(D).

We create these 3T − 1 points and divide them into three groups, namely groups (A1), (A2), and (A3). We

use (x̃r, ỹr, ũr), (x̂r, ŷr, ûr), and (x̄r, ȳr, ūr) to denote point r in groups (A1), (A2), and (A3), respectively,

and we refer to r as the index of the point within the group. Let

ϵ=min

{
V −C, C −C,

Q

L+1
−C

}
.

Because C <V , C <C, and (L+1)C <Q, we have ϵ > 0. The 3T − 1 points are created as follows:

(A1) For each r ∈ T , we create a point (x̃r, ỹr, ũr) ∈ conv(D) as follows: (a) For each s ∈ T , set x̃r
s = C + ϵ

and ỹrs = 1 if s ∈ [max{1, r − L}, r]Z, and set x̃r
s = ỹrs = 0 otherwise. (b) If r < L+ 2, then set ũr

s = 0

for each s ∈ T \ {1}. (c) If r ≥ L+2, then for each s ∈ T \ {1}, set ũr
s = 1 if s= r−L, and set ũr

s = 0

otherwise. There are T points created in this group.

(A2) For each r ∈ T , we create a point (x̂r, ŷr, ûr) ∈ conv(D) as follows: (a) For each s ∈ T , set x̂r
s =C and

ŷrs = 1 if s∈ [max{1, r−L}, r]Z, and set x̂r
s = ŷrs = 0 otherwise. (b) If r < L+2, then set ûr

s = 0 for each

s∈ T \ {1}. (c) If r≥L+2, then for each s∈ T \ {1}, set ûr
s = 1 if s= r−L, and set ûr

s = 0 otherwise.

There are T points created in this group.

(A3) For each r ∈ T \ {1}, we create a point (x̄r, ȳr, ūr)∈ conv(D) as follows: (a) For each s∈ T , set x̄r
s =C

and ȳrs = 1 if s ∈ [r,min{r + L− 1, T}]Z, and set x̄r
s = ȳrs = 0 otherwise. (b) For each s ∈ T \ {1}, set

ūr
s = 1 if s= r, and set ūr

s = 0 otherwise. There are T − 1 points created in this group.

Table EC.1 shows a matrix in which each row represents a point created by the above process. It is easy

to check that each of these 3T − 1 points satisfies constraints (2a)–(2h). Thus, these points are in conv(D).

In the following, we show that the matrix in Table EC.1 can be transformed into a lower triangular matrix

via Gaussian elimination. The transformed matrix is shown in Table EC.2, where the rows are divided into

Groups 1, 2, and 3. The Gaussian elimination process is as follows:

(i) For each r ∈ T , point r of Group 1, denoted (x̃r, ỹr, ũr), is obtained by setting (x̃r, ỹr, ũr) = (x̃r, ỹr, ũr)−
(x̂r, ŷr, ûr). Here, (x̃r, ỹr, ũr) is the point with index r in group (A1), and (x̂r, ŷr, ûr) is the point with

index r in group (A2).

(ii) For each r ∈ T , point r of Group 2, denoted (x̂r, ŷr, ûr), is obtained by setting (x̂r, ŷr, ûr) = (x̂r, ŷr, ûr)

if r ≤ L+ 1, and setting (x̂r, ŷr, ûr) = (x̂r, ŷr, ûr)− (x̄r−L, ȳr−L, ūr−L) if r > L+ 1. Here, (x̂r, ŷr, ûr) is

the point with index r in group (A2), and (x̄r−L, ȳr−L, ūr−L) is the point with index r − L in group

(A3).



ec4Table EC.1 A matrix with the rows representing 3T − 1 linearly independent points in conv(D)

Grp Index
x y u

1 2 3 . . . L+1 L+2 L+3 . . . T−L T−L+1 . . . T−1 T 1 2 3 . . . L+1 L+2 L+3 . . . T−L T−L+1 . . . T−1 T 2 3 . . . L+1 L+2 L+3 . . . T−L T−L+1 . . . T−1 T

(A1)

1 C+ϵ 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0 1 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0
2 C+ϵ C+ϵ 0 . . . 0 0 0 . . . 0 0 . . . 0 0 1 1 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0
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L+1 C+ϵ C+ϵ C+ϵ . . . C+ϵ 0 0 . . . 0 0 . . . 0 0 1 1 1 . . . 1 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0
L+2 0 C+ϵ C+ϵ . . . C+ϵ C+ϵ 0 . . . 0 0 . . . 0 0 0 1 1 . . . 1 1 0 . . . 0 0 . . . 0 0 1 0 . . . 0 0 0 . . . 0 0 . . . 0 0
L+3 0 0 C+ϵ . . . C+ϵ C+ϵ C+ϵ . . . 0 0 . . . 0 0 0 0 1 . . . 1 1 1 . . . 0 0 . . . 0 0 0 1 . . . 0 0 0 . . . 0 0 . . . 0 0
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.
T 0 0 0 . . . 0 0 0 . . . C+ϵ C+ϵ . . . C+ϵ C+ϵ 0 0 0 . . . 0 0 0 . . . 1 1 . . . 1 1 0 0 . . . 0 0 0 . . . 1 0 . . . 0 0

(A2)

1 C 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0 1 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0
2 C C 0 . . . 0 0 0 . . . 0 0 . . . 0 0 1 1 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0
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T 0 0 0 . . . 0 0 0 . . . C C . . . C C 0 0 0 . . . 0 0 0 . . . 1 1 . . . 1 1 0 0 . . . 0 0 0 . . . 1 0 . . . 0 0

(A3)

2 0 C C . . . C 0 0 . . . 0 0 . . . 0 0 0 1 1 . . . 1 0 0 . . . 0 0 . . . 0 0 1 0 . . . 0 0 0 . . . 0 0 . . . 0 0
3 0 0 C . . . C C 0 . . . 0 0 . . . 0 0 0 0 1 . . . 1 1 0 . . . 0 0 . . . 0 0 0 1 . . . 0 0 0 . . . 0 0 . . . 0 0
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Table EC.2 Lower-triangular matrix obtained by Gaussian elimination

Grp Index
x y u

1 2 3 . . . L+1 L+2 L+3 . . . T−L T−L+1 . . . T − 1 T 1 2 3 . . . L+1 L+2 L+3 . . . T−L T−L+1 . . . T − 1 T 2 3 . . . L+1 L+2 L+3 . . . T−L T−L+1 . . . T − 1 T

1

1 ϵ 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0
2 ϵ ϵ 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.
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.
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.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
L+1 ϵ ϵ ϵ . . . ϵ 0 0 . . . 0 0 . . . 0 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0
L+2 0 ϵ ϵ . . . ϵ ϵ 0 . . . 0 0 . . . 0 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0
L+3 0 0 ϵ . . . ϵ ϵ ϵ . . . 0 0 . . . 0 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0

.
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.
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.
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.
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.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
T 0 0 0 . . . 0 0 0 . . . ϵ ϵ . . . ϵ ϵ 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0

2

1 C 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0 1 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0
2 C C 0 . . . 0 0 0 . . . 0 0 . . . 0 0 1 1 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0

.
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.
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.
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.
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.
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.
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.

.

.

.

.

.
L+1 C C C . . . C 0 0 . . . 0 0 . . . 0 0 1 1 1 . . . 1 0 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0
L+2 0 0 0 . . . 0 C 0 . . . 0 0 . . . 0 0 0 0 0 . . . 0 1 0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0
L+3 0 0 0 . . . 0 0 C . . . 0 0 . . . 0 0 0 0 0 . . . 0 0 1 . . . 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0
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.
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.
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.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
T 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 C 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 1 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0

3

2 0 C C . . . C 0 0 . . . 0 0 . . . 0 0 0 1 1 . . . 1 0 0 . . . 0 0 . . . 0 0 1 0 . . . 0 0 0 . . . 0 0 . . . 0 0
3 0 0 C . . . C C 0 . . . 0 0 . . . 0 0 0 0 1 . . . 1 1 0 . . . 0 0 . . . 0 0 0 1 . . . 0 0 0 . . . 0 0 . . . 0 0

.
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.

.

.

.

.

.
T−L 0 0 0 . . . 0 0 0 . . . C C . . . C 0 0 0 0 . . . 0 0 0 . . . 1 1 . . . 1 0 0 0 . . . 0 0 0 . . . 1 0 . . . 0 0

T−L+1 0 0 0 . . . 0 0 0 . . . 0 C . . . C C 0 0 0 . . . 0 0 0 . . . 0 1 . . . 1 1 0 0 . . . 0 0 0 . . . 0 1 . . . 0 0
T−L+2 0 0 0 . . . 0 0 0 . . . 0 0 . . . C C 0 0 0 . . . 0 0 0 . . . 0 0 . . . 1 1 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0
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T 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 C 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 1 0 0 . . . 0 0 0 . . . 0 0 . . . 0 1
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(iii) For each r ∈ T \ {1}, point r of Group 3, denoted (x̄r, ȳr, ūr), is obtained by setting (x̄r, ȳr, ūr) =

(x̄r, ȳr, ūr), where (x̄r, ȳr, ūr) is the point with index r in group (A3).

For each r ∈ T , point (x̃r, ỹr, ũr) is a row vector, where the last non-zero component is x̃r
r (i.e., x̃r

r ̸= 0;

x̃r
i = 0 for i > r; ỹr

i
= 0 for i∈ T ; and ũr

i = 0 for i∈ T \{1}). For each r ∈ T , point (x̂r, ŷr, ûr) is a row vector,

where the last non-zero component is ŷr
r
(i.e., ŷr

r
̸= 0; ŷr

i
= 0 for i > r; and ûr

i = 0 for i ∈ T \ {1}). For each

r ∈ T \{1}, point (x̄r, ȳr, ūr) is a row vector, where the last nonzero component is ūr
r (i.e., ūr

r ̸= 0 and ūr
i = 0

for i > r). Hence, the points in Groups 1, 2, and 3 form a lower triangular matrix with nonzero entries on

the diagonal (see Table EC.2), and thus they are linearly independent. This implies that the 3T − 1 points

in groups (A1), (A2), and (A3) are linearly independent. This completes the proof of the proposition. □

A.3. Proof of Lemma 1

Recall that Dsc =
{
x∈RT : (2h); xt ∈ {0}∪ [C,C] ∀t∈ T

}
. Clearly, given any extreme point (x∗

1, . . . , x
∗
T )

of conv(Dsc), it remains an extreme point of conv(Dsc) if we permute the components of (x∗
1, . . . , x

∗
T ). In

other words, to characterize an extreme point of conv(Dsc), the order of the x∗
t ’s is irrelevant. Recall that

λ=
⌊
Q/C

⌋
, λ′ =

⌈
(C +λC −Q)/(C −C)

⌉
, and θ∗ =Q−λC +λ′(C −C). Note that

θ∗ ≥Q−λC +
C +λC −Q

C −C
· (C −C) =C

and

θ∗ <Q−λC +

(
C +λC −Q

C −C
+1

)
(C −C) =C.

Thus, θ∗ ∈ [C,C).

Let x be any extreme point of conv(Dsc). Note that x ∈Dsc. Because Dsc is a knapsack set, at most one

component of x belongs to the interval (C,C), while all other components belong to {0,C,C}. Hence, one

of the following two cases holds:

(a) xi ∈ {0,C} ∀i∈ T .

(b) x contains one component with value in the interval [C,C), while each of the other T − 1 components

is equal to 0, C, or C.

Note that the definition of λ implies that (λ+1)C >Q. Thus, in case (a), no more than λ components are

equal to C. This case belongs to the category 1 in Lemma 1. Hence, it suffices to show that the lemma is

valid in case (b). In this case, we let θ denote the value of the component in the interval [C,C). Among

the remaining T − 1 components, we let τu, τl, and τ0 denote the number of components with values C,

C, and 0, respectively, where τu, τl ≥ 0 and τ0 = T − τu − τl − 1 ≥ 0. It suffices to show that θ = θ∗, τu =

λ− λ′, and τl = λ′. Note that x must satisfy the knapsack inequality (2h) with equality, since otherwise

x= xi

xi+ϵ
(x+ ϵei)+

ϵ
xi+ϵ

(x−xiei) and x+ ϵei, x−xiei ∈ conv(Dsc) for some small positive value ϵ, where xi is

a component of x with xi <C, and ei = (0, . . . ,0,1,0, . . . ,0) is the unit vector with the ith component equal

to 1, contradicting that x is an extreme point of conv(Dsc). This implies that τuC + τlC + θ=Q.

We first prove that τu + τl = λ. Note that

τu + τl ≥
τuC + τlC

C
>
τuC + τlC + θ−C

C
=
Q−C

C
≥
⌊
Q

C

⌋
− 1 = λ− 1,



ec7

which implies that τu+τl ≥ λ. Thus, to prove τu+τl = λ, it suffices to show that τu+τl ≤ λ. By contradiction,

suppose τu+τl ≥ λ+1. Note that under this supposition, τl ≥ 1, since otherwise the sum of all components of

x exceeds (λ+1)C = (⌊Q/C⌋+1)C >Q. Let x′ denote the extreme point of conv(Dsc) obtained by permuting

the components of x such that the components are arranged in non-increasing order of their values; that is,

x′ = (C, . . . ,C︸ ︷︷ ︸
τu terms

, θ,C, . . . ,C︸ ︷︷ ︸
τl terms

,0, . . . ,0︸ ︷︷ ︸
τ0 terms

).

We consider two different cases, namely the case with τl ≥C/(C −C) and the case with τl <C/(C −C).

Case (i): τl ≥C/(C −C). Let C ′ = τl
τl−1

·C. It is easy to verify that C <C ′ ≤C. Then,

x′ =
1

τl
· (C, . . . ,C︸ ︷︷ ︸

τu terms

, θ,C ′, . . . ,C ′,0︸ ︷︷ ︸
τl terms

,0, . . . ,0︸ ︷︷ ︸
τ0 terms

)

+
1

τl
· (C, . . . ,C︸ ︷︷ ︸

τu terms

, θ,C ′, . . . ,C ′,0,C ′︸ ︷︷ ︸
τl terms

,0, . . . ,0︸ ︷︷ ︸
τ0 terms

)

+ · · ·

+
1

τl
· (C, . . . ,C︸ ︷︷ ︸

τu terms

, θ,0,C ′, . . . ,C ′︸ ︷︷ ︸
τl terms

,0, . . . ,0︸ ︷︷ ︸
τ0 terms

),

and the τl vectors on the right-hand side of this equation are distinct elements of Dsc. Hence, x′ is a convex

combination of τl distinct elements of conv(Dsc).

Case (ii): τl <C/(C −C). Let θ′ = θ− (τl − 1)C + τlC and C ′′ = θ
τl
+C. Note that

θ′ = θ+(C −C)

(
C

C −C
− τl

)
> θ

and

θ′ = τuC + τlC + θ− (τu + τl − 1)C =Q− (τu + τl − 1)C ≤Q−λC =Q−
⌊
Q

C

⌋
·C ≤C,

which together imply that θ′ ∈ [C,C] and θ′ ≥ θ. Note also that C ′′ >C and

C ′′ =
1

τl

[
τuC + τlC + θ− (τu + τl)C

]
+C =

1

τl

[
Q− (τu + τl)C

]
+C ≤ 1

τl

[
Q− (λ+1)C

]
+C

=
1

τl

[
Q−

(⌊
Q

C

⌋
+1

)
C

]
+C ≤C,

which together imply that C ′′ ∈ [C,C]. It is easy to verify that

x′ =
θ′ − θ

θ′
· (C, . . . ,C︸ ︷︷ ︸

τu terms

,0,C ′′, . . . ,C ′′︸ ︷︷ ︸
τl terms

,0, . . . ,0︸ ︷︷ ︸
τ0 terms

)+
θ

θ′

[
1

τl
· (C, . . . ,C︸ ︷︷ ︸

τu terms

, θ′,C, . . . ,C,0︸ ︷︷ ︸
τl terms

,0, . . . ,0︸ ︷︷ ︸
τ0 terms

)

+
1

τl
· (C, . . . ,C︸ ︷︷ ︸

τu terms

, θ′,C, . . . ,C,0,C︸ ︷︷ ︸
τl terms

,0, . . . ,0︸ ︷︷ ︸
τ0 terms

)

+ · · ·

+
1

τl
· (C, . . . ,C︸ ︷︷ ︸

τu terms

, θ′,0,C, . . . ,C︸ ︷︷ ︸
τl terms

,0, . . . ,0︸ ︷︷ ︸
τ0 terms

)

]

(note: if τl = 1, then the right-hand side of this equation becomes θ′−θ
θ′

(C, . . . ,C,0,C ′′,0, . . . ,0) +

θ
θ′
(C, . . . ,C, θ′,0,0, . . . ,0)). Hence, x′ is a convex combination of τl +1 distinct elements of conv(Dsc).
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In both cases, x′ is a convex combination of two or more distinct elements of conv(Dsc), which contradicts

that x′ is an extreme point of conv(Dsc). Therefore, τu + τl = λ.

Note that

τl =
θ+(τu + τl)C − (τuC + τlC + θ)

C −C
=
θ+λC −Q

C −C
.

Because C ≤ θ <C, we have

C +λC −Q

C −C
≤ θ+λC −Q

C −C
<
C +λC −Q

C −C
+1.

Thus,

τl =

⌈
C +λC −Q

C −C

⌉
= λ′.

This implies that τu = λ− λ′, and that θ =Q− τuC + τlC =Q− (λ− λ′)C + λ′C = θ∗. This completes the

proof of the Lemma. □

A.4. Proof of Proposition 3

Consider any T1 ⊆T such that λ−λ′ +1≤ |T1| ≤ λ. We show that inequality (3) is valid for conv(D) and is

a semi-continuous inequality. To show that inequality (3) is valid for conv(D), because Dsc ⊆D, it suffices

to show that inequality (3) is valid for conv(Dsc). To do so, we show that every extreme point of conv(Dsc)

satisfies inequality (3). To show that inequality (3) is a semi-continuous inequality, it suffices to show that

inequality (3) is facet-defining for conv(Dsc).

First, we show that every extreme point of conv(Dsc) satisfies inequality (3). Note that because

Q−λC =Q−
⌊
Q

C

⌋
·C ≥ 0

and

C − (λ− |T1|)(C −C)≥C − (λ′ − 1)(C −C)>C − C +λC −Q

C −C
· (C −C) =Q−λC,

we have 0<ρ≤ 1. Let x∗ be any extreme point of conv(Dsc). Suppose x
∗ belongs to category 1 in Lemma 1.

Let su be the number of components of x∗ with value C that belong to T1, and let s′u be the number of

components of x∗ with value C that belong to T \ T1, where su + s′u ≤ λ. Then,∑
t∈T1

xt + ρ
∑

t∈T \T1

xt = suC + ρs′uC

≤ suC + ρs′uC +(1− ρ)(|T1| − su)C (as su ≤ |T1| and ρ≤ 1)

= |T1|C + ρ(s′u + su − |T1|)C

≤
[
|T1|+ ρ(λ− |T1|)

]
C

= ζ,

and thus x∗ satisfies inequality (3).

Now, suppose x∗ belongs to category 2 in Lemma 1. Let sm = 1 and s′m = 0 if the component of x∗ with

value θ∗ belongs to T1, and let sm = 0 and s′m = 1 otherwise. Among the other T −1 components of x∗, let su

and sl be the number of components with value C and C, respectively, that belong to T1, and let s′u and s′l
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be the number of components with value C and C, respectively, that belong to T \T1, where su+s
′
u = λ−λ′

and sl + s′l = λ′. Then,∑
t∈T1

xt + ρ
∑

t∈T \T1

xt

= (suC + slC + smθ
∗)+ ρ(s′uC + s′lC + s′mθ

∗)

≤ (suC + slC + smθ
∗)+ ρ(s′uC + s′lC + s′mθ

∗)+ (1− ρ)
[
s′u(C −C)

+ s′m(θ∗ −C)+ (|T1| − su − sl − sm)C
]

(as C >C, θ∗ ≥C, su + sl + sm ≤ |T1|, and ρ≤ 1)

= (su + s′u)C +(sl + s′l)C +(sm + s′m)θ∗ +(1− ρ)(|T1| − su − s′u − sl − s′l − sm − s′m)C

= (λ−λ′)C +λ′C +(1)
[
Q− (λ−λ′)C −λ′C

]
+(1− ρ)(|T1| −λ− 1)C

=
[
|T1|+ ρ(λ− |T1|)

]
C +(Q−λC)− (1− ρ)

[
C − (λ− |T1|)(C −C)

]
=
[
|T1|+ ρ(λ− |T1|)

]
C

= ζ,

and thus x∗ satisfies inequality (3).

Next, we show that inequality (3) is facet-defining for conv(Dsc). To do so, we construct T affinely inde-

pendent and feasible points on the face of conv(Dsc) defined by inequality (3). Note that λ < T (because

λC ≤Q<TC). Note also that λ′ ≥ 1, since otherwise T1 does not exist. Without loss of generality, we assume

that T1 = {1, . . . , |T1|}. We consider two different cases.

Case 1: C < θ∗ <C. For j = 1, . . . , T , define

xj =



(C, . . . , θ∗, . . . ,C︸ ︷︷ ︸
λ−λ′+1terms

,C, . . . ,C︸ ︷︷ ︸
λ′ terms

,0, . . . ,0), if j ≤ λ−λ′ +1, where θ∗ is in the jth position;

(C, . . . ,C︸ ︷︷ ︸
λ−λ′ terms

,C, . . . , θ∗, . . . ,C︸ ︷︷ ︸
λ′+1terms

,0, . . . ,0), if λ−λ′ +2≤ j ≤ |T1|, where θ∗ is in the jth position;

(C, . . . ,0, . . . ,C︸ ︷︷ ︸
λ+1terms

,0, . . . ,0), if |T1|+1≤ j ≤ λ+1, where the first 0 is in the jth position;

(C, . . . ,C︸ ︷︷ ︸
λ−1 terms

,0, . . . ,0,C,0, . . . ,0), if j ≥ λ+2, where the last C is in the jth position.

It is easy to verify that xj is an element of Dsc, and it satisfies inequality (3) with equality. For j = 2, . . . , T ,

define

x̄j = xj −x1.

We consider two subcases.

Case 1.1: |T1| = λ. In this case, for each j = 2, . . . , T , the jth component of x̄j is nonzero, while the ith

component of x̄j is zero for all i= j+1, . . . , T . Thus, x̄2, . . . , x̄T are linearly independent.

Case 1.2: |T1|<λ. For j = 2, . . . , T , define

x̂j =


x̄j , if j ≤ |T1| or j ≥ λ+2;

x̄j − x̄j−1, if |T1|+2≤ j ≤ λ+1;

x̄|T1|+1 +φ(x̄|T1|+2 + · · ·+ x̄λ+1), if j = |T1|+1;

where φ= (C−C)/[C− (λ−|T1|)(C−C)]. Note that the ith component of x̄j is zero for all i= j+1, . . . , T .

It is easy to see that if j ̸= |T1|+ 1, then the jth component of x̂j is non-zero. The (|T1|+ 1)st component
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of x̂|T1|+1 is −C + φ(λ − |T1|)(C − C). Note that λ − |T1| ≠ C/(C − C) (since otherwise |T1| is less than

λ−λ′ +1). Thus, φ ̸= 1 and the (|T1|+1)st component of x̂|T1|+1 is non-zero. Hence, x̂2, . . . , x̂T are linearly

independent. This implies that x̄2, . . . , x̄T are linearly independent.

Therefore, for both Cases 1.1 and 1.2, x̄2, . . . , x̄T are linearly independent, which implies that x1, . . . , xT

are affinely independent.

Case 2: θ∗ =C. For j = 1, . . . , T , define

xj =



(C, . . . ,C, . . . ,C︸ ︷︷ ︸
λ−λ′+1terms

,C, . . . ,C︸ ︷︷ ︸
λ′ terms

,0, . . . ,0), if j ≤ λ−λ′ +1, where the first C is in the jth position;

(C, . . . ,C︸ ︷︷ ︸
λ−λ′−1 terms

,C, . . . ,C, . . . ,C︸ ︷︷ ︸
λ′+2terms

,0, . . . ,0), if λ−λ′+2≤ j ≤ |T1|, where the last C is in the jth position;

(C, . . . ,0, . . . ,C︸ ︷︷ ︸
λ+1terms

,0, . . . ,0), if |T1|+1≤ j ≤ λ+1, where the first 0 is in the jth position;

(C, . . . ,C︸ ︷︷ ︸
λ−1 terms

,0, . . . ,0,C,0, . . . ,0), if j ≥ λ+2, where the last C is in the jth position.

It is easy to verify that xj is an element of Dsc, and it satisfies inequality (3) with equality. For j = 2, . . . , T ,

define

x̄j = xj −x1.

We consider two subcases.

Case 2.1: |T1|= λ. In this case, for each j = 2, . . . , T , the jth component of x̄j is non-zero, while the ith

component of x̄j is zero for all i= j+1, . . . , T . Thus, x̄2, . . . , x̄T are linearly independent.

Case 2.2: |T1|<λ. For j = 2, . . . , T , define

x̂j =


x̄j , if j ≤ |T1| or j ≥ λ+2;

x̄j − x̄j−1, if |T1|+2≤ j ≤ λ+1;

x̄|T1|+1 +φ(x̄|T1|+2 + · · ·+ x̄λ+1), if j = |T1|+1;

where φ= (C−C)/[C− (λ−|T1|)(C−C)]. Following the same argument as in Case 1.2, the jth component

of x̂j is non-zero, while the ith component of x̂j is zero for all i= j+1, . . . , T . Hence, x̂2, . . . , x̂T are linearly

independent. Thus, x̄2, . . . , x̄T are linearly independent.

Therefore, for both Cases 2.1 and 2.2, x̄2, . . . , x̄T are linearly independent, which implies that x1, . . . , xT

are affinely independent. □

A.5. Proof of Proposition 4

We first state the following property, which will be used in the proof.

Property 1. Consider any two valid inequalities “
∑

t∈T α1txt ≤ β1” and “
∑

t∈T α2txt ≤ β2” of conv(Dsc).

If the inequality “
∑

t∈T α1txt ≤ β1” is facet-defining for conv(Dsc) and{
x∈Dsc :

∑
t∈T

α1txt = β1

}
⊆

{
x∈Dsc :

∑
t∈T

α2txt = β2

}
,

then the inequalities “
∑

t∈T α1txt ≤ β1” and “
∑

t∈T α2txt ≤ β2” are equivalent; that is, there exists a positive

scalar k such that α1t = kα2t for all t∈ T and that β1 = kβ2.
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To show the validity of this property, we note that 0∈ conv(Dsc) and that Cei ∈Dsc ⊆ conv(Dsc) for any

i∈ T , where ei = (0, . . . ,0,1,0, . . . ,0) is a unit vector with the ith component equal to 1. Thus, conv(Dsc) is

full dimensional, because 0,Ce1,Ce2, . . . ,CeT are T +1 affinely independent points. For i= 1,2, denote

Fi =

{
x∈Dsc :

∑
t∈T

αitxt = βi

}
.

Because conv(Dsc) is full dimensional and the inequality “
∑

t∈T α1txt ≤ β1” is facet-defining, F1 is a (T −1)-

dimensional face of conv(Dsc). In addition, because the inequality “
∑

t∈T α2txt ≤ β2” is valid for conv(Dsc)

and F1 ⊆ F2, the inequality “
∑

t∈T α2txt ≤ β2” is also a (T − 1)-dimensional face of conv(Dsc). Since F1 and

F2 are both (T − 1)-dimensional faces of conv(Dsc) and F1 ⊆ F2, the inequalities “
∑

t∈T α1txt ≤ β1” and

“
∑

t∈T α2txt ≤ β2” are equivalent. Hence, Property 1 is valid.

To prove the proposition, we refer to inequality (2h) and the inequality “0≤ xt ≤C” as trivial inequalities

of conv(Dsc), as they are obviously facet-defining for conv(Dsc). Without loss of generality, we assume that

any non-trivial facet-defining inequality for conv(Dsc) is expressed in the following form:

a
∑
t∈N1

xt +
∑
t∈N2

αtxt ≤ β, (EC.1)

where N1 and N2 are subsets of T such that N1 ∩N2 = ∅, N1 ∪N2 = T , N1 ̸= ∅, and a >max{αt : t ∈N2}.
Note that N2 ̸= ∅, since otherwise (EC.1) becomes (2h) which is a trivial facet-defining inequality.

We first show that αt ≥ 0 for all t ∈ N2. Suppose that, on the contrary, αs < 0 for some s ∈ N2. Then,

for any x ∈ conv(Dsc) that satisfies (EC.1) with equality, we must have xs = 0, since otherwise the point

x′ ∈ conv(Dsc) obtained by setting x′
s = 0 and x′

t = xt ∀t ∈ T \ {s} will violate (EC.1). Hence, the facet of

conv(Dsc) defined by (EC.1) is one of the facets defined by the trivial inequalities “xt ≥ 0” for t ∈N2. This

contradicts that (EC.1) is a non-trivial inequality. Therefore, αt ≥ 0 for all t ∈ N2. This also implies that

a> 0, because a>max{αt : t∈N2}.
Next, we show that αt > 0 for all t ∈ N2. Define N+

2 = {t ∈ N2 : αt > 0} and N 0
2 =N2 \ N+

2 . Note that

N+
2 ̸= ∅, since otherwise αt = 0 for all t∈N2, and thus (EC.1) is dominated by (2h). We show that N 0

2 = ∅. To
do so, we first show that for any s∈N 0

2 , we must have xs = 0 for all x∈ conv(Dsc) that satisfies (EC.1) with

equality. By contradiction, suppose xs > 0 for some x∈ conv(Dsc) that satisfies (EC.1) with equality. Then,

xt = C for all t ∈ N1 ∪N+
2 , since otherwise there exists some t′ ∈ N1 ∪N+

2 with xt′ < C, and thus we can

construct an x̂ ∈ conv(Dsc) such that x̂ violates inequality (EC.1) by letting x̂s = 0, x̂t′ =min{C,xt′ + xs},
and x̂t = xt for all t∈ T \{s, t′} (because a,αt′ > 0). Since (EC.1) is a facet-defining inequality for conv(Dsc),

there exist T affinely independent points that satisfy xt = C for all t ∈ N1 ∪N+
2 . This is possible only if

|N1∪N+
2 | ≤ 1, which contradicts that N1 ̸= ∅ and N+

2 ̸= ∅. Hence, for any s∈N 0
2 , xs = 0 for all x∈ conv(Dsc)

that satisfies (EC.1) with equality. This implies that the facet of conv(Dsc) defined by (EC.1) is one of the

facets defined by the trivial inequalities “xt ≥ 0” with t ∈N 0
2 . This is impossible unless N 0

2 = ∅. Therefore,
αt > 0 for all t∈N2.

Consider any extreme point x∗ of conv(Dsc) that satisfies (EC.1) with equality. We will show that x∗ also

satisfies (3) with equality when T1 =N1. To do so, we first show that λ− λ′ + 1≤ |N1| ≤ λ. Suppose that,

on the contrary, |N1| ≤ λ−λ′. Then we consider three different cases.
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Case (i): x∗ belongs to category 1 of Lemma 1 and x∗
t = 0 for all t∈N2. In this case, x∗

s =C for all s∈N1,

since otherwise x∗
s <C for some s∈N1, which implies that there exists x̂∈ conv(Dsc) with

x̂i =

{
x∗
i , if i∈ T \ {s};
C, if i= s;

that violates inequality (EC.1), as a> 0 (note: x̂∈Dsc ⊆ conv(Dsc), because |N1| ≤ λ−λ′ ≤ λ and x∗
t = 0 for

all t∈N2, and thus x̂ satisfies (2h)).

Case (ii): x∗ belongs to category 1 of Lemma 1 and x∗
t = C for some t ∈N2. In this case, x∗

s = C for all

s∈N1, since otherwise x∗
s <C for some s∈N1, which implies that there exists x̂∈ conv(Dsc) with

x̂i =


x∗
i , if i∈ T \ {s, t};
x∗
t , if i= s;

x∗
s, if i= t;

that violates inequality (EC.1) (note: x̂ ∈ conv(Dsc) because any extreme point of conv(Dsc) remains an

extreme point of conv(Dsc) if we permute its components, and x̂ violates (EC.1) because a> αt).

Case (iii): x∗ belongs to category 2 of Lemma 1. In this case, at least λ− λ′ components of x∗ are equal

to C. Since |N1| ≤ λ−λ′, we have x∗
t =C for some t ∈N2. Thus, similar to Case (ii), x∗

s =C for all s ∈N1,

since otherwise x∗
s <C for some s∈N1, which implies that there exists x̂∈ conv(Dsc) with

x̂i =


x∗
i , if i∈ T \ {s, t};
x∗
t , if i= s;

x∗
s, if i= t;

that violates inequality (EC.1).

In all three cases, x∗
s =C for all s∈N1. This implies that the facet of conv(Dsc) defined by (EC.1) is one of

the facets defined by the trivial inequalities “xt ≤C” for t∈N1. This contradicts that (EC.1) is a non-trivial

inequality. Hence, |N1| ≥ λ−λ′ +1.

Now, suppose, on the contrary, that |N1| ≥ λ+1. By Lemma 1, x∗ has at most λ+1 non-zero components.

Thus, x∗
t = 0 for all t∈N2, since otherwise x∗

t > 0 for some t∈N2 and x∗
s = 0 for some s∈N1, which implies

that there exists x̂∈ conv(Dsc) with

x̂i =


x∗
i , if i∈ T \ {s, t};
x∗
t , if i= s;

x∗
s, if i= t;

that violates inequality (EC.1) (because a> αt). This implies that the facet of conv(Dsc) defined by (EC.1)

is one of the facets defined by the trivial inequalities “xt ≥ 0” for t ∈N2. This contradicts that (EC.1) is a

non-trivial inequality. Hence, λ−λ′ +1≤ |N1| ≤ λ.

Recall that (EC.1) is an arbitrary non-trivial facet-defining inequality for conv(Dsc), and x
∗ is an arbitrary

extreme point of conv(Dsc) satisfying (EC.1) with equality. We show that x∗ also satisfies (3) with equality

when T1 =N1. We consider two different cases.

Case (i): x∗ belongs to category 1 of Lemma 1. In this case, |{t∈ T : x∗
t =C}|= λ, since otherwise x∗

s = 0

for some s∈ T , which implies that there exists x′ ∈ conv(Dsc) with

x′
i =

{
x∗
i , if i∈ T \ {s};
C, if i= s;
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that violates inequality (EC.1) (because a > 0 and αt > 0 for all t ∈ N2). Suppose that, on the contrary,

x∗
s = 0 for some s∈N1. Then, because |N1| ≤ λ, there exists t∈N2 such that x∗

t =C. Consider x̂∈ conv(Dsc)

with

x̂i =


x∗
i , if i∈ T \ {s, t};
x∗
t , if i= s;

x∗
s, if i= t.

Because a> αt, x̂ violates inequality (EC.1), which is a contradiction. Hence, x∗
s =C for all s∈N1. Letting

T1 =N1, we have ∑
t∈T1

x∗
t + ρ

∑
t∈T \T1

x∗
t = |T1|C + ρ(λ− |T1|)C = ζ.

Case (ii): x∗ belongs to category 2 of Lemma 1. In this case, x∗
s > x∗

t for any s ∈ N1 and t ∈ N2, since

otherwise there exists x̂∈ conv(Dsc) with

x̂i =


x∗
i , if i∈ T \ {s, t};
x∗
t , if i= s;

x∗
s, if i= t;

that violates inequality (EC.1) because a > αt. Because λ− λ′ +1≤ |N1| ≤ λ, we have C,θ∗ ∈ {x∗
s : s ∈N1}

and 0 /∈ {x∗
s : s∈N1}. Letting T1 =N1, we have

∑
t∈T1

x∗
t + ρ

∑
t∈T \T1

x∗
t = (λ−λ′)C + θ∗ +(|T1| −λ+λ′ − 1)C + ρ(λ+1− |T1|)C

=Q−λ′C +(|T1| −λ+λ′ − 1)C + ρ(λ+1− |T1|)C

=Q−λC −
[
C − (λ− |T1|)(C −C)

]
+ |T1|C + ρ

[
C − (λ− |T1|)(C −C)

]
+ ρ(λ− |T1|)C

= ζ.

In both cases, x∗ satisfies (3) with equality when T1 =N1. Hence, by setting T1 =N1, any extreme point

x∗ of conv(Dsc) satisfying (EC.1) with equality also satisfies (3) with equality. By Property 1, any non-trivial

facet-defining inequality for conv(Dsc) of the form (EC.1) is equivalent to (3). This completes the proof of

the proposition. □

A.6. Proof of Proposition 5

Consider any given LP relaxation optimum (x∗, y∗, u∗) of Problem (1) with x∗ = (x∗
1, . . . , x

∗
T ). Let

(π(1), . . . , π(T )) be a permutation of (1, . . . , T ) such that x∗
π(1) ≥ · · · ≥ x∗

π(T ). Let υ(|T1|) = ζ −(∑|T1|
t=1 x

∗
π(t) + ρ

∑T

t=|T1|+1 x
∗
π(t)

)
for |T1|= λ−λ′+1, . . . , λ. Note that ρ≤ 1. Thus, for any given value of |T1|,∑

t∈T1
x∗
t +ρ

∑
t∈T \T1

x∗
t is the largest possible when T1 = {π(1), . . . , π(|T1|)}. Hence, υ(|T1|) measures by how

much the given solution violates (3). Let υ∗ =max|T1|∈[λ−λ′+1,λ] {υ(|T1|)}. If υ∗ < 0, then υ∗ is the largest

possible violation of inequality (3). The permutation (π(1), . . . , π(T )) can be obtained in O(T logT ) time.

The values of υ(λ−λ′ +1), . . . , υ(λ) can be obtained in O(T ) time. Therefore, the most violated inequality,

if exists, can be identified in O(T logT ) time. □
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A.7. Proof of Proposition 6

Define

ψ0(s) =C(2s+1)+ s2V

for s∈R. Let s0 be the positive root of the quadratic equation “ψ0(s) =Q”; that is,

s0 =
1

V

[√
C2 +V (Q−C)−C

]
> 0.

Define

ψ1(s) =C(s+T − t+1)+

[
s(s+1)− (T − t)(T − t+1)

2
+ s(T − t)

]
V

for s∈R. Let s1 be the positive root of the quadratic equation “ψ1(s) =Q”; that is,

s1 =
1

V

[√[
C +

V

2
+ (T − t)V

]2
+(T − t+1)V

[
(T − t)V − 2C

]
+2QV −

[
C +

V

2
+ (T − t)V

]]
> 0.

Define

ψ2(s) =C(t+ s)+

[
s(s+1)− (t− 1)t

2
+ (t− 1)s

]
V

for s∈R. Let s2 be the positive root of the quadratic equation “ψ2(s) =Q”; that is,

s2 =
1

V

[√[
C +

V

2
+ (t− 1)V

]2
+ tV

[
(t− 1)V − 2C

]
+2QV −

[
C +

V

2
+ (t− 1)V

]]
> 0.

We now consider αt. Consider the case where Q<QB1. In this case, ω1(n,n) =C(2n+1)+n2V =ψ0(n),

which is increasing in n when n≥ 0. Thus, αt =max{n∈Z :ψ0(n)≤Q}= ⌊s0⌋. Now, consider the case where

QB1 ≤Q<QB2 and t− 2≥ T − t. Note that in this case ω2(t− 1, T − t) =QB2 >Q. Note also that because

t− 2≥ T − t, we have

ω2(T − t, T − t) = ω1(T − t, T − t) = ω1(min{t− 1, T − t},min{t− 1, T − t}) =QB1 ≤Q.

It is easy to see that ω2(n,T − t) is increasing in n when n≥ T − t. Thus,

αt =max
{
n∈Z : T − t≤ n< t− 1 and ω2(n,T − t)≤Q

}
. (EC.2)

When T − t≤ n< t− 1,

ω2(n,T − t) =C(n+T − t+1)+

[
n(n+1)− (T − t)(T − t+1)

2
+n(T − t)

]
V =ψ1(n).

Hence, in this case, αt = ⌊s1⌋. Thus,

αt =


⌊s0⌋, if Q<QB1;

⌊s1⌋, if QB1 ≤Q<QB2 and t− 2≥ T − t;

t− 1, otherwise.

Therefore, αt ≥ 0, and αt can be determined in O(1) time.

Next, we consider βt. If Q < QB1, then βt = αt = ⌊s0⌋. Consider the case where QB1 ≤ Q < QB2 and

t≤ T − t. Note that in this case ω2(t− 1, T − t) =QB2 >Q. Note also that because t≤ T − t, we have

ω2(t− 1, t− 1) = ω1(t− 1, t− 1) = ω1(min{t− 1, T − t},min{t− 1, T − t}) =QB1 ≤Q.
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It is easy to see that ω2(t− 1, n) is increasing in n when n≥ t− 1. Thus,

βt =max
{
n∈Z : t− 1≤ n< T − t and ω2(t− 1, n)≤Q

}
. (EC.3)

When t− 1≤ n< T − t,

ω2(t− 1, n) =C(t+n)+

[
n(n+1)− (t− 1)t

2
+ (t− 1)n

]
V =ψ2(n).

Hence, in this case, βt = ⌊s2⌋. Thus,

βt =


⌊s0⌋, if Q<QB1;

⌊s2⌋, if QB1 ≤Q<QB2 and t≤ T − t;

T − t, otherwise.

Therefore, βt ≥ 0, and βt can be determined in O(1) time.

Obviously, once αt and βt are determined, τt1 and τt2 can be obtained in O(1) time. This completes the

proof of the proposition. □

A.8. Proof of Proposition 7

(i) Consider the case where Q < QB1. The validity of the equation “αt = βt” follows directly from the

definitions of αt and βt. By Definition 2, ω1(αt, αt) ≤ Q < QB1 = ω1(min{t− 1, T − t},min{t− 1, T − t}).
Because ω1(n,n) is strictly increasing in n, this implies that αt <min{t−1, T − t}. Thus, αt ̸= t−1. Because

αt = βt, we have βt ̸= T − t. Hence, by the definitions of τt1 and τt2, we have τt1 = τt2.

(ii) Consider the case where QB1 ≤Q<QB2. We first show that t− 1 ̸= T − t. By contradiction, suppose

t − 1 = T − t. Then, QB1 = ω1(min{t − 1, T − t},min{t − 1, T − t}) = ω1(t − 1, t − 1) = ω2(t − 1, t − 1) =

ω2(t − 1, T − t) = QB2, which contradicts the condition “QB1 ≤ Q < QB2.” Thus, either t − 2 ≥ T − t or

t≤ T − t. If t− 2≥ T − t, then ω2(αt, T − t)≤Q (by the definition of αt) and βt = T − t (by the definition

of βt), which together imply that Q≥ ω2(αt, βt). If t≤ T − t, then αt = t− 1 (by the definition of αt) and

ω2(t− 1, βt)≤Q (by the definition of βt), which together imply that Q≥ ω2(αt, βt). Hence, in both cases,

Q≥ ω2(αt, βt). If t−2≥ T − t, then because βt = T − t, we have τt2 = 0 (by the definition of τt2). If t≤ T − t,
then because αt = t− 1, we have τt1 = 0 (by the definition of τt1). Hence, we have τt1 = 0 or τt2 = 0.

(iii) We first show that αt + τt1 ≤ t− 1. Consider the case where Q<QB1. In this case, by the definition

of αt, ω1(αt, αt)≤Q<QB1 = ω1(min{t− 1, T − t},min{t− 1, T − t}). Note that ω1(n,n) = (2n+1)C+n2V ,

which is increasing in n when n≥ 0. Thus, αt <min{t− 1, T − t} ≤ t− 1, which implies that αt + τt1 ≤ t− 1.

Next, consider the case where QB1 ≤ Q < QB2 and t− 2 ≥ T − t. In this case, by (EC.2) in the Proof of

Proposition 6, we have αt < t− 1, which implies that αt + τt1 ≤ t− 1. Finally, consider the case where the

conditions “Q<QB1” and “QB1 ≤Q<QB2 and t− 2 ≥ T − t” do not hold. In this case, by Definition 2,

αt = t− 1 and τt1 = 0, which implies that αt + τt1 ≤ t− 1.

Next, we show that βt+ τt2 ≤ T − t. Consider the case where Q<QB1. In this case, by the definition of βt,

ω1(βt, βt)≤Q<QB1 = ω1(min{t− 1, T − t},min{t− 1, T − t}). Since ω1(n,n) is increasing in n when n≥ 0,

we have βt <min{t− 1, T − t} ≤ T − t, which implies that βt + τt2 ≤ T − t. Next, consider the case where

QB1 ≤Q<QB2 and t≤ T − t. In this case, by (EC.3) in the Proof of Proposition 6, βt < t−1, which implies

that βt + τt2 ≤ T − t. Finally, consider the case where the conditions “Q<QB1” and “QB1 ≤Q<QB2 and

t≤ T − t” do not hold. In this case, by Definition 2, βt = T − t and τt2 = 0, which implies that βt + τt2 ≤
T − t. □
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A.9. Proof of Proposition 8

We show that inequality (4) holds for any element of D. To do so, we first prove that for any t∈ T and any

element of D,
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
≥ (max{αt, βt}− 1)V +V (EC.4)

and

xt ≤
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
. (EC.5)

To prove inequality (EC.4), we first note that for any t∈ T ,[
|αt(αt +1)−βt(βt +1)|

2
+αtβt

]
V +∆(αt, βt)V

=

[
|αt(αt +1)−βt(βt +1)|

2
+αtβt

]
V +

[
αt(αt +1)

2
+
βt(βt +1)

2

]
V

= [max{αt(αt +1), βt(βt +1)}+αtβt]V

= (αt +βt +1)max{αt, βt}V. (EC.6)

Then, we consider three different cases.

Case 1:Q<QB1. In this case, by Proposition 7, αt = βt and τt1 = τt2. By the definition of αt,Q≥ ω1(αt, αt).

If τt1 = τt2 = 0, then Q+∆(αt, βt)V − (τt1 + τt2)C = Q+∆(αt, αt)V ≥ ω1(αt, αt) + ∆(αt, αt)V = C(2αt +

1)+ [αt(αt − 1)+αt]V +∆(αt, αt)V =C(2αt +1)+ (2α2
t +αt)V = (C + V )(2αt +1)+ (2αt +1)(αt − 1)V >

V (2αt + 1) + (2αt + 1)(αt − 1)V . If τt1 = τt2 = 1, then by the definitions of τt1 and τt2, Q ≥ ω3(αt, βt),

and thus Q + ∆(αt, βt)V − (τt1 + τt2)C ≥ ω3(αt, βt) + ∆(αt, βt)V − 2C = ω3(αt, αt) + ∆(αt, αt)V − 2C =

V (2αt +1)+ [αt(αt − 1) +αt]V +αt(αt +1)V > V (2αt +1)+ (2αt +1)(αt − 1)V . Hence, in both scenarios,

Q+∆(αt, βt)V − (τt1 + τt2)C >V (αt +βt +1)+ (αt +βt +1)(max{αt, βt}− 1)V .

Case 2: QB1 ≤Q<QB2. In this case, by Proposition 7, Q≥ ω2(αt, βt), and τt1 + τt2 equals either 0 or 1.

If τt1 + τt2 = 0, then Q+∆(αt, βt)V − (τt1 + τt2)C ≥ ω2(αt, βt)+∆(αt, βt)V =C(αt +βt +1)+ [|αt(αt +1)−
βt(βt +1)|/2+αtβt]V +∆(αt, βt)V = (C +V )(αt +βt +1)+ (αt +βt +1)(max{αt, βt}− 1)V , where the last

equality follows from (EC.6). Thus,Q+∆(αt, βt)V −(τt1+τt2)C >V (αt+βt+1)+(αt+βt+1)(max{αt, βt}−
1)V . If τt1 + τt2 = 1, then by the definitions of τt1 and τt2, Q≥ ω4(αt, βt), and thus Q+∆(αt, βt)V − (τt1 +

τt2)C ≥ ω4(αt, βt) +∆(αt, βt)V −C = V (αt + βt + 1) + [|αt(αt + 1)− βt(βt + 1)|/2 + αtβt]V +∆(αt, βt)V =

V (αt + βt + 1) + (αt + βt + 1)max{αt, βt}V , where the last equality follows from (EC.6). Hence, in both

scenarios, Q+∆(αt, βt)V − (τt1 + τt2)C >V (αt +βt +1)+ (αt +βt +1)(max{αt, βt}− 1)V .

Case 3: QB2 ≤ Q. In this case, by Definition 2, αt = t − 1, βt = T − 1, and τt1 = τt2 = 0. Hence, Q ≥
QB2 = ω2(αt, βt). Thus, Q+∆(αt, βt)V − (τt1 + τt2)C ≥ ω2(αt, βt) +∆(αt, βt)V =C(αt + βt +1)+ [|αt(αt +

1)− βt(βt + 1)|/2 + αtβt]V +∆(αt, βt)V = (C + V )(αt + βt + 1) + (αt + βt + 1)(max{αt, βt} − 1)V , where

the last equality follows from (EC.6). Hence, Q+∆(αt, βt)V − (τt1 + τt2)C ≥ V (αt + βt + 1) + (αt + βt +

1)(max{αt, βt}− 1)V .

In all three cases,

Q+∆(αt, βt)V − (τt1 + τt2)C ≥ V (αt +βt +1)+ (αt +βt +1)(max{αt, βt}− 1)V.

Thus, inequality (EC.4) holds.
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To prove inequality (EC.5), we define

D̂= {(x, y,u)∈RT ×{0,1}T ×{0,1}T−1 : (x, y,u) satisfies (2c), (2d), (2f), (2g), (2h), and xs ≤Qys ∀s∈ T }

which is a superset of D, and we first show that for any t∈ T , there exists (x̂, ŷ, û)∈ D̂ such that x̂t =max{xt :

(x, y,u) ∈ D̂} and ŷs = 1 for all s ∈ [t− αt − τt1, t+ βt + τt2]Z (note: by Proposition 7(iii), αt + τt1 ≤ t− 1

and βt + τt2 ≤ T − t, and thus [t− αt − τt1, t+ βt + τt2]Z ⊆ T ). Let (x∗, y∗, u∗) be any element of D̂ with

x∗
t =max{xt : (x, y,u)∈ D̂}. If y∗s = 1 for all s∈ [t−αt−τt1, t+βt+τt2]Z, then (x̂, ŷ, û) exists. Thus, it suffices

to consider the situation where y∗r = 0 for some r ∈ [t−αt− τt1, t+βt+ τt2]Z. For the case where r < t, we let

r′ be the largest integer such that t−αt − τt1 ≤ r′ < t and y∗r′ = 0. Hence, y∗r′+1 = · · ·= y∗t−1 = 1 and x∗
r′ = 0.

By (2f),
∑t

s=r′+1(x
∗
s − x∗

s−1) ≤
∑t

s=r′+1(V y
∗
s−1 + V (1− y∗s−1)), which implies that x∗

t ≤ V + (t− r′ − 1)V .

For the case where r > t, we let r′ be the smallest integer such that t < r′ ≤ t+ βt + τt2 and y∗r′ = 0. Hence,

y∗t+1 = · · ·= y∗r′−1 = 1 and x∗
r′ = 0. By (2g),

∑r′

s=t+1(x
∗
s−1 − x∗

s)≤
∑r′

s=t+1(V y
∗
s + V (1− y∗s )), which implies

that x∗
t ≤ V +(r′ − t− 1)V . For the case where r= t, we have x∗

t = 0≤ V −V , and we let r′ = t. Thus, in all

three cases, x∗
t ≤ V +(|r′ − t| − 1)V and |r′ − t| ≤max{αt + τt1, βt + τt2}. Therefore,

x∗
t ≤ V +(max{αt + τt1, βt + τt2}− 1)V. (EC.7)

Consider (x̂, ŷ, û)∈RT ×{0,1}T ×{0,1}T−1, where

x̂s =


V +(max{αt + τt1, βt + τt2}− 1− |s− t|)V, if |s− t| ≤max{αt + τt1, βt + τt2}− 1;

C, if |s− t|=max{αt + τt1, βt + τt2};
0, if |s− t| ≥max{αt + τt1, βt + τt2}+1;

ŷs =

{
1, if s∈ [t−αt − τt1, t+βt + τt2]Z;

0, otherwise;

ûs =

{
1, if s= t−αt − τt1;

0, otherwise.

It is easy to see that (x̂, ŷ, û) satisfies (2c), (2d), and that for any s∈ T , x̂s is non-zero only when ŷs = 1. In

the following, we show that (x̂, ŷ, û) also satisfies (2f), (2g), and (2h) (which implies that (x̂, ŷ, û) ∈ D̂). We

consider four different cases.

Case 1: Q < QB1. In this case, by Proposition 7(i), αt = βt and τt1 = τt2. We consider two subcases.

Case 1.1: τt1 = τt2 = 0. In this subcase, x̂t−αt
= x̂t+βt

=C and |x̂s− x̂s−1| ≤ V for s∈ [t−αt+1, t+βt]Z, which

imply that (x̂, ŷ, û) satisfies (2f) and (2g). Furthermore, if αt = βt = 0, then
∑T

s=1 x̂s =C ≤Q. Otherwise,
T∑

s=1

x̂s = 2C +(αt +βt − 1)V +

t−1∑
s=t−αt+1

(αt − 1− t+ s)V +

t+βt−1∑
s=t

(βt − 1+ t− s)V

= 2C +(αt +βt − 1)V +

[
(αt − 2)(αt − 1)

2
+

(βt − 2)(βt − 1)

2
+ (βt − 1)

]
V

≤ 2C +(αt +βt − 1)(C +V )+

[
(αt − 2)(αt − 1)

2
+

(βt − 2)(βt − 1)

2
+ (βt − 1)

]
V

= ω1(αt, αt)≤Q,

where the last inequality follows from the definition of αt. Case 1.2: τt1 = τt2 = 1. In this subcase, x̂t−αt−1 =

x̂t+βt+1 =C and |x̂s − x̂s−1| ≤ V for s∈ [t−αt, t+βt +1]Z, which imply that (x̂, ŷ, û) satisfies (2f) and (2g).

Furthermore,
T∑

s=1

x̂s = 2C +(αt +βt +1)V +

t−1∑
s=t−αt

(αt − t+ s)V +

t+βt∑
s=t

(βt + t− s)V
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= 2C +(αt +βt +1)V +

[
(αt − 1)αt

2
+

(βt − 1)βt

2
+βt

]
V

= ω3(αt, βt)≤Q,

where the inequality follows from the condition “τt1 = τt2 = 1” and the definitions of τt1 and τt2. Hence, in

both Cases 1.1 and 1.2, (x̂, ŷ, û) satisfies (2h).

Case 2: QB1 ≤Q<QB2 and t− 2≥ T − t. In this case, by Definition 2, αt =max{n∈Z : ω2(n,T − t)≤Q}

and βt = T − t. By Proposition 7(iii), τt2 = 0. Note that ω2(T − t, T − t) = ω1(T − t, T − t) =QB1 ≤Q and

ω2(t− 1, T − t) =QB2 >Q. Note also that ω2(n,T − t) increases as n increases when n> T − t. Thus, by the

definition of αt, T − t≤ αt < t− 1. Hence, αt + τt1 ≥ βt + τt2. In this case, x̂t−αt−τt1 =C and |x̂s − x̂s−1| ≤ V

for s ∈ [t− αt − τt1 + 1, T ]Z, which together imply that (x̂, ŷ, û) satisfies (2f) and (2g). We consider three

subcases. Case 2.1: τt1 = 1. In this subcase, αt + τt1 >βt + τt2. We have

T∑
s=1

x̂s =C +(αt +βt +1)V +
t∑

s=t−αt

(αt − t+ s)V +

t+βt∑
s=t+1

(αt + t− s)V

=C +(αt +βt +1)V +

[
αt(αt +1)

2
− βt(βt +1)

2
+αtβt

]
V

= ω4(αt, βt)≤Q,

where the inequality follows from the definition of τt1. Case 2.2: τt1 = 0 and αt = βt. In this subcase, αt+τt1 =

βt + τt2. We have

T∑
s=1

x̂s = 2C +(2βt − 1)V +

t−1∑
s=t−βt+1

(βt − 1− t+ s)V +

t+βt−1∑
s=t

(βt − 1+ t− s)V

= 2C +(2βt − 1)V +

[
(βt − 2)(βt − 1)

2
+

(βt − 2)(βt − 1)

2
+ (βt − 1)

]
V

≤ 2C +(2βt − 1)(C +V )+

[
(βt − 2)(βt − 1)

2
+

(βt − 2)(βt − 1)

2
+ (βt − 1)

]
V

= ω1(βt, βt) = ω1(T − t, T − t) =QB1 ≤Q.

Case 2.3: τt1 = 0 and αt >βt. In this subcase, αt + τt1 >βt + τt2. We have

T∑
s=1

x̂s =C +(αt +βt)V +

t∑
s=t−αt+1

(αt − 1− t+ s)V +

t+βt∑
s=t+1

(αt − 1+ t− s)V

=C +(αt +βt)V +

[
(αt − 1)αt

2
− βt(βt +1)

2
+ (αt − 1)βt

]
V

≤C +(αt +βt)(C +V )+

[
(αt − 1)αt

2
− βt(βt +1)

2
+ (αt − 1)βt

]
V

= ω2(αt, βt)≤Q,

where the last inequality follows from Proposition 7(ii). Hence, in Cases 2.1–2.3, (x̂, ŷ, û) satisfies (2h).

Case 3: QB1 ≤ Q < QB2 and t ≤ T − t. In this case, by Definition 2, αt = t − 1 and βt = max{n ∈ Z :

ω2(t− 1, n)≤Q}. By Proposition 7(iii), τt1 = 0. Note that ω2(t− 1, t− 1) = ω1(t− 1, t− 1) =QB1 ≤Q and

ω2(t− 1, T − t) =QB2 >Q. Note also that ω2(t− 1, n) increases as n increases when n> t− 1. Thus, by the

definition of βt, t− 1≤ βt <T − t. Hence, βt + τt2 ≥ αt + τt1. In this case, x̂t+βt+τt2 =C and |x̂s − x̂s−1| ≤ V
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for s∈ [2, t+βt+ τt2]Z, which together imply that (x̂, ŷ, û) satisfies (2f) and (2g). We consider three subcases.

Case 3.1: τt2 = 1. In this subcase, βt + τt2 >αt + τt1. We have

T∑
s=1

x̂s =C +(αt +βt +1)V +

t−1∑
s=t−αt

(βt − t+ s)V +

t+βt∑
s=t

(βt + t− s)V

=C +(αt +βt +1)V +

[
βt(βt +1)

2
− αt(αt +1)

2
+αtβt

]
V

= ω4(αt, βt)≤Q,

where the inequality follows from the definition of τt2. Case 3.2: τt2 = 0 and βt = αt. In this subcase, βt+τt2 =

αt + τt1. We have

T∑
s=1

x̂s = 2C +(2αt − 1)V +

t−1∑
s=t−αt+1

(αt − 1− t+ s)V +

t+αt−1∑
s=t

(αt − 1+ t− s)V

= 2C +(2αt − 1)V +

[
(αt − 2)(αt − 1)

2
+

(αt − 2)(αt − 1)

2
+ (αt − 1)

]
V

≤ 2C +(2αt − 1)(C +V )+

[
(αt − 2)(αt − 1)

2
+

(αt − 2)(βt − 1)

2
+ (αt − 1)

]
V

= ω1(αt, αt) = ω1(t− 1, t− 1) =QB1 ≤Q.

Case 3.3: τt2 = 0 and βt >αt. In this subcase, βt + τt2 >αt + τt1. We have

T∑
s=1

x̂s =C +(αt +βt)V +

t−1∑
s=t−αt

(βt − 1− t+ s)V +

t+βt−1∑
s=t

(βt − 1+ t− s)V

=C +(αt +βt)V +

[
(βt − 1)βt

2
− αt(αt +1)

2
+αt(βt − 1)

]
V

≤C +(αt +βt)(C +V )+

[
(βt − 1)βt

2
− αt(αt +1)

2
+αt(βt − 1)

]
V

= ω2(αt, βt)≤Q,

where the last inequality follows from Proposition 7(ii). Hence, in Cases 3.1–3.3, (x̂, ŷ, û) satisfies (2h).

Case 4: (QB1 ≤Q<QB2 and t− 1 = T − t) or Q≥QB2. By Definition 2, αt = t− 1 and βt = T − t. By

Proposition 7(iii), τt1 = τt2 = 0. In this case, |x̂s− x̂s−1| ≤ V for s∈ [2, T ]Z, which together imply that (x̂, ŷ, û)

satisfies (2f) and (2g). We consider three subcases. Case 4.1: αt <βt. In this subcase, βt + τt2 >αt + τt1. We

have

T∑
s=1

x̂s =C +(αt +βt)V +

t−1∑
s=t−αt

(βt − 1− t+ s)V +

t+βt−1∑
s=t

(βt − 1+ t− s)V

=C +(αt +βt)V +

[
(βt − 1)βt

2
− αt(αt +1)

2
+αt(βt − 1)

]
V

≤C +(αt +βt)(C +V )+

[
(βt − 1)βt

2
− αt(αt +1)

2
+αt(βt − 1)

]
V

= ω2(αt, βt).

Case 4.2: αt = βt. In this subcase, βt + τt2 = αt + τt1. We have

T∑
s=1

x̂s = 2C +(2βt − 1)V +

t−1∑
s=t−βt+1

(βt − 1− t+ s)V +

t+βt−1∑
s=t

(βt − 1+ t− s)V
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= 2C +(2βt − 1)V +

[
(βt − 2)(βt − 1)

2
+

(βt − 2)(βt − 1)

2
+ (βt − 1)

]
V

≤ 2C +(2βt − 1)(C +V )+

[
(βt − 2)(βt − 1)

2
+

(βt − 2)(βt − 1)

2
+ (βt − 1)

]
V

= ω1(βt, βt) = ω2(αt, βt).

Case 4.3: αt >βt. In this subcase, αt + τt1 >βt + τt2. We have

T∑
s=1

x̂s =C +(αt +βt)V +

t∑
s=t−αt+1

(αt − 1− t+ s)V +

t+βt∑
s=t+1

(αt − 1+ t− s)V

=C +(αt +βt)V +

[
(αt − 1)αt

2
− βt(βt +1)

2
+ (αt − 1)βt

]
V

≤C +(αt +βt)(C +V )+

[
(αt − 1)αt

2
− βt(βt +1)

2
+ (αt − 1)βt

]
V

= ω2(αt, βt).

Thus, in Cases 4.1–4.3,
∑T

s=1 x̂s ≤ ω2(αt, βt). If QB1 ≤Q<QB2 and t− 1 = T − t, then by Proposition 7(ii),

ω2(αt, βt)≤Q. If Q≥QB2, then ω2(αt, βt) = ω2(t−1, T − t) =QB2 ≤Q. Hence, in both scenarios,
∑T

s=1 x̂s ≤
Q. Therefore, (x̂, ŷ, û) satisfies (2h).

In Cases 1–4, (x̂, ŷ, û) satisfies (2f), (2g), and (2h). Hence, (x̂, ŷ, û)∈ D̂. Note that

x̂t =

{
C, if αt + τt1 = βt + τt2 = 0;

V +(max{αt + τt1, βt + τt2}− 1)V, otherwise.

Thus, by (EC.7), x̂t ≥ x∗
t , which implies that x̂t =max{xt : (x, y,u)∈ D̂}; that is, (x̂, ŷ, û) is an element of D̂

where the xt value is the largest possible. Note that

x̂t − x̂t−i ≤ iV, ∀i∈ [1, αt]Z;

x̂t − x̂t+i ≤ iV, ∀i∈ [1, βt]Z;

− τt1x̂t−αt−τt1 ≤−τt1C;

− τt2x̂t−βt−τt2 ≤−τt2C;
t+βt+τt2∑

i=t−αt−τt1

x̂i ≤Q.

Summing up these inequalities, we have

(αt +βt +1)x̂t ≤Q+

αt∑
i=1

iV +

βt∑
i=1

iV − (τt1 + τt2)C,

or equivalently,

x̂t ≤
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
.

Because D⊆ D̂ and (x̂, ŷ, û) is an element of D̂ where the xt value is the largest possible,

xt ≤
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1

for all (x, y, y)∈D. Therefore, inequality (EC.5) holds for any t∈ T and any element of D.

Next, we show that inequality (4) holds for any element of D. For any t ∈ T , if the generator is online

in period t (i.e., yt = 1), then we refer to max{r | yr−1 = 0; yr = 1; r ∈ [2, t]Z} as the “latest start-up period
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before period t+1” when yr−1 = 0 and yr = 1 for some r ∈ [2, t]Z, and we refer to min{s | ys−1 = 1; ys = 0; s∈
[t+1, T ]Z} as the “earliest shut-down period after period t” when ys−1 = 1 and ys = 0 for some s∈ [t+1, T ]Z.

For ease of exposition, we let −(ϱ − 1) be the latest start-up period before period t + 1 if yr = 1 for all

r ∈ [1, t]Z, and let T + ϱ+ 1 be the earliest shut-down period after period t if ys = 1 for all s ∈ [t+ 1, T ]Z,

where ϱ= ⌈(C −V )/V ⌉.
By (2a), yt+k −

∑L−1
j=0 ut+k−j ≥ 0. Because k ∈ [2, βt]Z, inequality (EC.4) implies that

Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
≥ (k− 1)V +V . (EC.8)

Thus, the third term on the right-hand side of inequality (4) is non-negative. By (2a), yi −
∑L−1

j=0 ui−j ≥ 0

for all i ∈ S. Thus, the second term on the right-hand side of inequality (4) is non-negative. It is easy to

see that the other terms on the right-hand side of (4) are also non-negative. Hence, all four terms on the

right-hand side of (4) are non-negative. Thus, inequality (4) holds when xt = 0. Therefore, to prove the

validity of (4), it suffices to show that inequality (4) holds for any element of D such that xt > 0 (i.e.,

yt = 1). Consider such an element of D. Let t − p and t + q + 1 denote the latest start-up period before

period t+1 and the earliest shut-down period after period t, respectively, where p, q≥ 0. From (2g), we have

xi−1−xi ≤ V yi+V (1− yi) for i∈ [t+1, t+ q+1]Z∩T . If t+ q+1≤ T , then yt+1 = yt+2 = · · ·= yt+q = 1 and

yt+q+1 = xt+q+1 = 0, and thus xt =
∑t+q+1

i=t+1 (xi−1 − xi) ≤
∑t+q+1

i=t+1 [V yi + V (1− yi)] = qV + V . If t+ q + 1 =

T + ϱ+ 1, then yt+1 = yt+2 = · · · = yT = 1, and thus xt =
∑T

i=t+1(xi−1 − xi) + xT ≤
∑T

i=t+1[V yi + V (1−
yi)] +C = (T − t)V +C = (q − ϱ)V +C ≤ qV + V . From (2f), we have xi − xi−1 ≤ V yi−1 + V (1− yi−1) for

i ∈ [t− p, t]Z ∩ T . If t− p ≥ 2, then yt−p = yt−p+1 = · · · = yt−1 = 1 and yt−p−1 = xt−p−1 = 0, and thus xt =∑t

i=t−p
(xi−xi−1)≤

∑t

i=t−p
[V yi−1+V (1−yi−1)] = pV +V . If t−p=−(ϱ−1), then y1 = y2 = · · ·= yt−1 = 1,

and thus xt =
∑t

i=2(xi−xi−1)+x1 ≤
∑t

i=2[V yi−1+V (1−yi−1)]+C = (t−1)V +C = (p−ϱ)V +C ≤ pV +V .

Hence,

xt ≤min{q, p}V +V . (EC.9)

Note that for any r, s∈Z, if r ∈ S and r− 1≤ s≤ t+ k− 1, then∑
i∈S∩[r,s]Z

(di − i)≥ s− r+1. (EC.10)

This is because (i) if s= r− 1, then both sides of this inequality equal 0; and (ii) if s≥ r, then when the

elements of S∩ [r, s]Z are arranged in increasing order, the jth term of the summation “
∑

i∈S∩[r,s]Z
di” equals

the (j + 1)st term of the summation “
∑

i∈S∩[r,s]Z
i” for any j, except that the last term of the summation

“
∑

i∈S∩[r,s]Z
di” is at least s+1, while the first term of the summation “

∑
i∈S∩[r,s]Z

i,” equals r. When r= t+1

and s= t+ k− 1, we have ∑
i∈S

(di − i) = k− 1. (EC.11)

Let RHS denote the right-hand side of inequality (4). We consider five different cases.

Case (1): p≤max{L− k− 1,0}. In this case,

RHS ≥ V

 L−1∑
j=[L−k]+

min{L− 1− j, j}ut−j +

L−k−1∑
j=0

jut−j

+V yt
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≥ V

L−k−1∑
j=0

jut−j +V

≥ pV +V

≥ xt,

where the third inequality holds because ut−p = 1 and p≤max{L− k− 1,0}, and the last inequality is due

to (EC.9). Therefore, inequality (4) holds.

Case (2): p ≥ L− 1 and q ≤ k − 1. Note that the condition “q ≤ k − 1” implies that t+ q + 1 ≤ t+ k ≤
t+βt ≤ T , where the last inequality follows from Proposition 7(iii). Thus, the earliest shut-down period after

period t is at most T . In this case, yj = 1 and uj = 0 for all j ∈ [t−L+2, t+ q]Z. Hence, yi −
∑L−1

j=0 ui−j = 1

for all i∈ [t+1, t+ q]Z. This, together with (EC.10), implies that
∑

i∈S∩[t+1,t+q]Z
(di− i)V (yi−

∑L−1
j=0 ui−j) =∑

i∈S∩[t+1,t+q]Z
(di − i)V ≥ qV . Thus,

RHS ≥
∑
i∈S

(di − i)V

(
yi −

L−1∑
j=0

ui−j

)
+V yt

≥
∑

i∈S∩[t+1,t+q]Z

(di − i)V

(
yi −

L−1∑
j=0

ui−j

)
+V

≥ qV +V

≥ xt,

where the last inequality is due to (EC.9). Therefore, inequality (4) holds.

Case (3): p≥ L− 1 and q ≥ k. In this case, t+ k ≤min{t+ q, t+ βt} ≤min{t+ q,T}, which implies that

t+ k ∈ [t+1,min{t+ q,T}]Z and S ⊆ [t+1,min{t+ q,T}]Z. Note that in this case, yj = 1 and uj = 0 for all

j ∈ [t− L+ 2,min{t+ q,T}]Z. Thus, yt = 1, yt+k −
∑L−1

j=0 ut+k−j = 1, and yi −
∑L−1

j=0 ui−j = 1 for all i ∈ S.
Hence, by (EC.5) and (EC.11),

RHS ≥
∑
i∈S

(di − i)V

(
yi −

L−1∑
j=0

ui−j

)

+

(
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V −V

)(
yt+k −

L−1∑
j=0

ut+k−j

)
+V yt

=
∑
i∈S

(di − i)V +
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V

=
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1

≥ xt.

Therefore, inequality (4) holds.

Case (4): max{L − k,1} ≤ p ≤ L − 2 and q ≤ k − 1. The condition “p ≤ L − 2” implies that t − p ≥
t− (L− 2) ≥ 2, and the condition “q ≤ k − 1” implies that t+ q + 1 ≤ t+ k ≤ t+ βt ≤ T . Thus, the latest

start-up period before period t+1 is at least 2, and the earliest shut-down period after period t is at most

T . Note that

RHS ≥ V

 L−1∑
j=[L−k]+

min{L− 1− j, j}ut−j +

L−k−1∑
j=0

jut−j

+
∑
i∈S

(di − i)V

(
yi −

L−1∑
j=0

ui−j

)
+V yk
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≥ V min{L− 1− p, p}ut−p +
∑
i∈S

(di − i)V

(
yi −

L−1∑
j=0

ui−j

)
+V yk

=min{L− 1− p, p}V +
∑
i∈S

(di − i)V

(
yi −

L−1∑
j=0

ui−j

)
+V , (EC.12)

where the second inequality holds because [L−k]+ ≤ p≤L− 1, and the equality holds because ut−p = 1. By

inequality (2a),
∑t+q+1

i=(t+q+1)−L+1 ui ≤ yt+q+1 = 0, which implies that ui = 0 for all i ∈ [(t+ q+1)−L+1, t+

q+1]Z. This in turn implies that (t+ q+1)−L+1≥ t−p+1, or equivalently, q≥L−p−1. If q=L−p−1,

then min{L−1−p, p}=min{q, p}, and thus by (EC.9) and (EC.12), RHS ≥ xt. Hence, it suffices to consider

the situation where q ≥ L− p. In this situation, t− p+L ∈ [t+ 1, t′ − 1]Z ⊆ S. This is because (i) if k ≥ L,

then t′ = t+L, and thus t−p+L∈ [t+1, t+L−1]Z = [t+1, t′−1]Z; and (ii) if k <L−1, then t′ = t+k, and

thus t− p+L∈ [t+1, t+ k− 1]Z = [t+1, t′ − 1]Z (as the condition “p≤L− 2” implies that t− p+L≥ t+1,

while the conditions “q ≤ k − 1” and “q ≥ L − p” imply that t − p + L ≤ t + k − 1). Hence, by (EC.10),∑
i∈S∩[t−p+L,t+q]Z

(di − i) ≥ p+ q + 1− L. Note that yj = 1 and uj = 0 for all j ∈ [t− p+ 1, t+ q]Z. Thus,

yi −
∑L−1

j=0 ui−j = 1 for all i∈ [t− p+L, t+ q]Z. Hence,

∑
i∈S

(di − i)V

(
yi −

L−1∑
j=0

ui−j

)
≥

∑
i∈S∩[t−p+L,t+q]Z

(di − i)V

(
yi −

L−1∑
j=0

ui−j

)
=

∑
i∈S∩[t−p+L,t+q]Z

(di − i)V

≥ (p+ q+1−L)V. (EC.13)

By (EC.9), (EC.12), and (EC.13), we have

RHS ≥min{L− 1− p, p}V +(p+ q+1−L)V +V

≥min{(L− 1− p)+ (p+ q+1−L), p}V +V =min{q, p}V +V ≥ xt.

Therefore, inequality (4) holds.

Case (5): max{L−k,1} ≤ p≤L−2 and q≥ k. The condition “p≤L−2” implies that t−p≥ t−(L−2)≥ 2.

Thus, the latest start-up period before period t+1 is at least 2. We first show that∑
i∈S∩[t−p+L,t+k−1]Z

(di − i)≥ k+ p−L. (EC.14)

Note that t− p+L≤ t+ k. If t− p+L= t+ k, then inequality (EC.14) holds because both the left-hand

side and right-hand side are zero. If t− p+L≤ t+ k− 1, then t− p+L ∈ [t+1, t′ − 1]Z ⊆ S (because (i) if

k ≥L, then t′ = t+L and t− p+L ∈ [t+1, t+L− 1]Z = [t+1, t′ − 1]Z; and (ii) if k < L, then t′ = t+ k and

t− p+L ∈ [t+1, t+ k− 1]Z = [t+1, t′ − 1]Z). Thus, by (EC.10), inequality (EC.14) holds. Note that yj = 1

and uj = 0 for all j ∈ [t− p+1, t+ k− 1]Z. Hence, yi −
∑L−1

j=0 ui−j = 1 for all i ∈ [t− p+L, t+ k− 1]Z. Thus,

by (EC.14), ∑
i∈S

(di − i)V

(
yi −

L−1∑
j=0

ui−j

)
≥

∑
i∈S∩[t−p+L,t+k−1]Z

(di − i)V

(
yi −

L−1∑
j=0

ui−j

)
=

∑
i∈S∩[t−p+L,t+k−1]Z

(di − i)V
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≥ (k+ p−L)V.

This implies that

V

 L−1∑
j=[L−k]+

min{L− 1− j, j}ut−j +

L−k−1∑
j=0

jut−j

+
∑
i∈S

(di − i)V

(
yi −

L−1∑
j=0

ui−j

)

≥ V

 L−1∑
j=[L−k]+

min{L− 1− j, j}ut−j +

L−k−1∑
j=0

jut−j

+(k+ p−L)V

≥ V min{L− 1− p, p}ut−p +(k+ p−L)V

= [min{L− 1− p, p}+(k+ p−L)]V

≥min{k− 1, p}V,

where the second inequality holds because [L − k]+ ≤ p ≤ L − 1. Note that yt+k = 1 and ut+k−j = 0 for

j = 0,1, . . . ,L− 1, which implies that yt+k −
∑L−1

j=0 ut+k−j = 1. Hence,

RHS = V

 L−1∑
j=[L−k]+

min{L− 1− j, j}ut−j +

L−k−1∑
j=0

jut−j

+
∑
i∈S

(di − i)V

(
yi −

L−1∑
j=0

ui−j

)

+

(
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V −V

)(
yt+k −

L−1∑
j=0

ut+k−j

)
+V

≥min{k− 1, p}V +

(
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V −V

)(
yt+k −

L−1∑
j=0

ut+k−j

)
+V

=
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V +min{k− 1, p}V. (EC.15)

If p≥ k−1, then min{k−1, p}V = (k−1)V , and thus by (EC.5) and (EC.15), we have RHS ≥ xt. If p < k−1,

then by (EC.9), min{k− 1, p}V = pV ≥min{q, p}V ≥ xt − V , and thus from (EC.8) and (EC.15), we have

RHS ≥ xt. Therefore, inequality (4) holds.

Summarizing Cases (1)–(5), we conclude that inequality (4) holds for any element of D. □

A.10. Proof of Remark 4

First, we show that under the condition “k≥ (L+1)/2,” inequality (4) can be rewritten as

xt ≤ V

L−1∑
j=1

min{L− 1− j, j}ut−j +
∑
i∈S

(di − i)V

(
yi −

L−1∑
j=0

ui−j

)

+

(
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V −V

)(
yt+k −

L−1∑
j=0

ut+k−j

)
+V yt. (EC.16)

If L ≤ k, then clearly,
∑L−1

j=[L−k]+ min{L− 1− j, j}ut−j +
∑L−k−1

j=0 jut−j =
∑L−1

j=1 min{L− 1− j, j}ut−j , and

thus inequality (4) can be rewritten as (EC.16). If L> k, then because k≥ (L+1)/2, we have j ≤ (L− 1)/2

for all j = 0,1, . . . ,L− k− 1, which implies that min{L− 1− j, j}= j for all j = 0,1, . . . ,L− k− 1. Thus, in

this case, inequality (4) can also be rewritten as (EC.16).

To prove that the look forward inequalities are facet-defining, we show that there exist 3T − 1 affinely

independent points in conv(D) that satisfy (EC.16) with equality when Q ≥ QB2, C ≥ [Q+∆(t− 1, T −
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t)V ]/T , t+k= T , k≥ (L+1)/2, and S′ = [t′, t+k−1]Z. Because 0∈ conv(D) and this point satisfies (EC.16)

with equality, it suffices to create the remaining 3T − 2 non-zero linearly independent points. We denote

these 3T −2 points as (x̃r, ỹr, ũr) for r ∈ T \{T}, (x̄r, ȳr, ūr) for r ∈ T \{1}, and (x̂r, ŷr, ûr) for r ∈ T , and we

divide these 3T − 2 points into nine groups. Let ϵ=min
{
V −C,C −C

}
> 0. The 3T − 2 points are created

as follows:

(A1) For each r ∈ [1, t− 1]Z, we create a point (x̃r, ỹr, ũr) as follows: For each s ∈ T , set x̃r
s =C and ỹrs = 1

if s≤ r− 1, set x̃r
s =C + ϵ and ỹrs = 1 if s= r, and set x̃r

s = ỹrs = 0 otherwise. For each s ∈ T \ {1}, set

ũr
s = 0. There are t−1 points in this group. It is easy to verify that these t−1 points satisfy (2a)–(2g).

Note that
∑T

s=1 x̃
r
s = rC+ ϵ < (T −1)C+V < TC+V ≤ ω2(t−1, T − t) =QB2 ≤Q for all r ∈ [1, t−1]Z.

Thus, these points also satisfy (2h) and are in D. It is easy to verify that these points satisfy (EC.16)

with equality.

(A2) For each r ∈ [t, T − 1]Z, we create a point (x̃r, ỹr, ũr) as follows: For each s ∈ T , set x̃r
s = C + ϵ and

ỹrs = 1 if s= r+1, set x̃r
s = C and ỹrs = 1 if r+2≤ s≤ r+L, and set x̃r

s = ỹrs = 0 otherwise. For each

s ∈ T \ {1}, set ũr
s = 1 if s= r+ 1, and set ũr

s = 0 otherwise. There are T − t points in this group. It

is easy to verify that these T − t points satisfy (2a)–(2g). Note that
∑T

s=1 x̃
r
s ≤ (L+ 1)C < Q for all

r ∈ [t, T − 1]Z. Thus, these points also satisfy (2h) and are in D. It is easy to verify that these points

satisfy (EC.16) with equality.

(A3) For each r ∈ [2, t−L]Z, we create a point (x̄r, ȳr, ūr) as follows: For each s∈ T , set x̄r
s =C and ȳrs = 1 if

r≤ s≤ r+L− 1, and set x̄r
s = ȳrs = 0 otherwise. For each s∈ T \ {1}, set ūr

s = 1 if s= r, and set ūr
s = 0

otherwise. There are t−L−1 points in this group. It is easy to verify that these t−L−1 points satisfy

(2a)–(2g). Note that
∑T

s=1 x̄
r
s < (L+1)C <Q for all r ∈ [2, t−L]Z. Thus, these points also satisfy (2h)

and are in D. It is easy to verify that these points satisfy (EC.16) with equality.

(A4) For each r ∈ [t−L+1, t]Z, we create a point (x̄r, ȳr, ūr) as follows: For each s∈ T , set x̄r
s = V +min{s−

r, r+L−1−s}V and ȳrs = 1 if r≤ s≤ r+L−1, and set x̄r
s = ȳrs = 0 otherwise. For each s∈ T \{1}, set

ūr
s = 1 if s= r, and set ūr

s = 0 otherwise. There are L points in this group. It is easy to verify that these

L points satisfy (2a)–(2d) and (2f)–(2g). Note that under the condition “Q≥QB2,” we have αt = t−1,

βt = T − t, and τt1 = τt2 = 0 (by Definition 2 and Proposition 7). Thus, by inequality (EC.8) in the

proof of Proposition 8, [Q+∆(t− 1, T − t)]/T ≥ (k− 1)V +V , which implies that C ≥ (k− 1)V +V ≥
L−1
2

·V +V . Thus, x̄r
s ≤C for any s∈ T . Hence, these L points satisfy (2e). Note that

T∑
s=1

x̄r
s ≤LV +

⌊
L− 1

2

⌋⌊
L

2

⌋
V

<L(C +V )+

⌊
L− 1

2

⌋⌊
L

2

⌋
V

< TC +
L2

2
·V

≤ TC +
(t− 1)2

2
·V

≤ TC +

[
|(t− 1)t− (T − t)(T − t+1)|

2
+ (t− 1)(T − t)

]
V
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= ω2(t− 1, T − t) =QB2 ≤Q

for any r ∈ [t−L+1, t]Z. Thus, these points also satisfy (2h) and are in D. Note that ȳri −
∑L−1

j=0 ū
r
i−j = 0

for any i ∈ [t+1, t+ k]Z. Note also that for any r ∈ [t−L+1, t]Z, x̄
r
t = V +min{t− r, r+L− 1− t}V ,

ȳrt = 1, and
∑L−1

j=0 min{L− 1− j, j}ūr
t−j =min{L− 1− t+ r, t− r}. Hence, (x̄r, ȳr, ūr) satisfies (EC.16)

with equality for any r ∈ [t−L+1, t]Z.

(A5) For each r ∈ [t+1, T ]Z, we create a point (x̄r, ȳr, ūr) as follows: For each s ∈ T , set x̄r
s =C and ȳrs = 1

if r ≤ s ≤ r + L− 1, and set x̄r
s = ȳrs = 0 otherwise. For each s ∈ T \ {1}, set ūr

s = 1 if s = r, and set

ūr
s = 0 otherwise. There are T − t points in this group. It is easy to verify that these T − t points satisfy

(2a)–(2g). Note that
∑T

s=1 x̄
r
s < (L+1)C <Q for all r ∈ [t+1, T ]Z. Thus, these points also satisfy (2h)

and are in D. It is easy to verify that these points satisfy (EC.16) with equality.

(A6) For each r ∈ [1, t− 1]Z, we create a point (x̂r, ŷr, ûr) as follows: For each s∈ T , set x̂r
s =C and ŷrs = 1 if

s≤ r, and set x̂r
s = ŷrs = 0 otherwise. For each s∈ T \{1}, set ûr

s = 0. There are t−1 points in this group.

It is easy to verify that these t− 1 points satisfy (2a)–(2g). Note that
∑T

s=1 x̂
r
s = rC < (T − 1)C +V <

TC + V ≤ ω2(t− 1, T − t) =QB2 ≤Q for all r ∈ [1, t− 1]Z. Thus, these points also satisfy (2h) and are

in D. It is easy to verify that these points satisfy (EC.16) with equality.

(A7) We create a point (x̂t, ŷt, ût) as follows: For each s ∈ T , set x̂t
s = C and ŷts = 1 if s≤ t− 1, set x̂t

s = V

and ŷts = 1 if s= t, and set x̂t
s = ŷts = 0 otherwise. For each s∈ T \{1}, set ût

s = 0. There is one point in

this group. It is easy to verify that this point satisfies (2a)–(2g). Note that
∑T

s=1 x̂
t
s ≤ (T − 1)C +V <

TC+V ≤ ω2(t−1, T − t) =QB2 ≤Q. Thus, this point also satisfies (2h) and is in D. It is easy to verify

that this point satisfies (EC.16) with equality.

(A8) For each r ∈ [t+1, T −1]Z, we create a point (x̂r, ŷr, ûr) as follows: For each s∈ T , set x̂r
s =max{C,V +

(s+ r − 2t)V } and ŷts = 1 if s ≤ t, set x̂r
s = V + (r − s)V and ŷts = 1 if t < s ≤ r, and set x̂r

s = ŷts = 0

otherwise. For each s∈ T \ {1}, set ûr
s = 0. There are T − t− 1 points in this group. It is easy to verify

that these T − t− 1 points satisfy (2a)–(2d) and (2f)–(2g). Under the condition “Q≥QB2,” we have

αt = t − 1, βt = T − t, and τt1 = τt2 = 0. Then, by inequality (EC.8) in the proof of Proposition 8,

[Q + ∆(t − 1, T − t)]/T ≥ (k − 1)V + V = (T − t − 1)V + V ≥ V + (s + r − 2t)V for any s ≤ t and

r ∈ [t+1, T −1]Z. Thus, x̄
r
s ≤C for any s∈ T . Hence, these L points satisfy (2e). Consider the quantity

“
∑T

s=1 x̂
r
s,” which increases as r increases. If t− 1≥ T − t, then for any r ∈ [t+1, T − 1]Z,

T∑
s=1

x̂r
s ≤

T∑
s=1

x̂T−1
s

= (2t−T )C +(2T − 2t− 1)V +(T − t− 1)2V

< (2t−T )C +(2T − 2t− 1)(C +V )+ (T − t− 1)2V

= (T − 1)C +(T − t)2V

< TC +(t− 1)(T − t)V

≤ ω2(t− 1, T − t).
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If t− 1<T − t, then for any r ∈ [t+1, T − 1]Z,

T∑
s=1

x̂r
s ≤

T∑
s=1

x̂T−1
s

= (T − 1)V +(T − t− 1)2V − 1

2
(T − 2t− 1)(T − 2t)V

< (T − 1)(C +V )+ (T − t− 1)2V − 1

2
(T − 2t− 1)(T − 2t)V

< TC +
1

2
(T − t)(T − t+1)V − 1

2
(t− 1)tV +(t− 1)(T − t)V

= ω2(t− 1, T − t).

Thus, in both cases,
∑T

s=1 x̂
r
s <ω2(t− 1, T − t) =QB2 ≤Q for all r ∈ [t+1, T − 1]Z. Hence, these points

also satisfy (2h) and are in D. We consider the left-hand side and right-hand side values of (EC.16)

when (x, y, z) = (x̂r, ŷr, ûr). The left-hand side equals V + (r − t)V . The first and third terms of the

right-hand side of (EC.16) equal 0. The second and fourth terms of the right-hand side equal (r− t)V

and V , respectively. Hence, (x̄r, ȳr, ūr) satisfies (EC.16) with equality for any r ∈ [t+1, T − 1]Z.

(A9) We create a point (x̂T , ŷT , ûT ) as follows: For each s ∈ T , set x̂T
s = [Q+∆(t− 1, T − t)V ]/T − |s− t|V

and ŷTs = 1. For each s ∈ T \ {1}, set ûT
s = 0. There is one point in this group. It is easy to verify that

this point satisfies (2a)–(2c) and (2e)–(2g). For any s∈ T ,

x̂T
s ≥ QB2 +∆(t− 1, T − t)V

T
−max{t− 1, T − t}V

=
ω2(t− 1, T − t)+∆(t− 1, T − t)V

T
−max{t− 1, T − t}V =C.

Thus, this point satisfies (2d). Note that
∑T

s=1 x̂
T
s =Q+∆(t− 1, T − t)V −

∑T

s=1 |s− t|V =Q. Hence,

this point satisfies (2h). Therefore, this point is in D. We consider the left-hand side and right-hand side

values of (EC.16) when (x, y, z) = (x̂T , ŷT , ûT ). Recall that αt = t−1, βt = T − t, and τt1 = τt2 = 0. Thus,

the left-hand side of (EC.16) equals [Q+∆(αt, βt)V − (τt1 + τt2)C]/(αt +βt +1). The first term of the

right-hand side of (EC.16) equals 0. The second, third, and fourth terms of the right-hand side equal

(k− 1)V , [Q+∆(αt, βt)V − (τt1 + τt2)C]/(αt + βt +1)− (k− 1)V − V , and V , respectively. Therefore,

(x̄T , ȳT , ūT ) satisfies (EC.16) with equality.

Let L(p, q) denote the T -dimensional row vector, in which the jth component equals 1 if j ∈ [p, q]Z∩T , and

it equals 0 otherwise. Let I(q) denote the (T − 1)-dimensional row vector, in which the (j− 1)st component

equals 1 if j = q and j ∈ T \{1}, and it equals 0 otherwise. Let 0 denote the row vector with all components

equal to 0 (0 is T -dimensional if it appears in the y column, and is (T −1)-dimensional if it appears in the u

column). Table EC.3 shows a matrix in which each row represents a point created by the above process. In

the following, we show that the matrix in Table EC.3 can be transformed into a lower triangular matrix (i.e.,

a (3T −2)× (3T −1) matrix in which the element in ith row and jth column is zero if j > i+1) via Gaussian

elimination. The transformed matrix is shown in Table EC.4, where the rows are divided into Groups 1–4.

The Gaussian elimination process is as follows:

(i) For each r ∈ [1, t− 1]Z, point r of Group 1, denoted (x̃r, ỹr, ũr), is obtained by setting (x̃r, ỹr, ũr) =

(x̃r, ỹr, ũr)− (x̂r, ŷr, ûr). Here, (x̃r, ỹr, ũr) is the point with index r in group (A1), and (x̂r, ŷr, ûr) is the

point with index r in group (A6).
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8Table EC.3 A matrix with the rows representing 3T − 2 points that satisfy the Look Forward Inequality with equality∗

Group Point Index r
x y u

1 2 3 . . . t−2 t−1 t t+1 t+2 . . . t+L t+L+1 . . . T−1 T 1 2 . . . T − 1 T 2 3 . . . T − 1 T

(A1)

(x̃r, ỹr, ũr)

1 C+ϵ 0 0 . . . 0 0 0 0 0 . . . 0 0 . . . 0 0 L(1,1) 0
2 C C+ϵ 0 . . . 0 0 0 0 0 . . . 0 0 . . . 0 0 L(1,2) 0

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
t− 1 C C C . . . C C+ϵ 0 0 0 . . . 0 0 . . . 0 0 L(1, t− 1) 0

(A2)

t 0 0 0 . . . 0 0 0 C+ϵ C . . . C 0 . . . 0 0 L(t+1, t+L) I(t+1)
t+1 0 0 0 . . . 0 0 0 0 C+ϵ . . . C C . . . 0 0 L(t+2, t+L+1) I(t+2)

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
T − 1 0 0 0 . . . 0 0 0 0 0 . . . 0 0 . . . 0 C+ϵ L(T,T +L− 1) I(T )

(A3)

(x̄r, ȳr, ūr)

2

(omitted)

L(2,L+1) I(2)
3 L(3,L+2) I(3)

.

.

.

.

.

.

.

.

.
t−L L(t−L, t− 1) I(t−L)

(A4)

t−L+1

(omitted)

L(t−L+1, t) I(t−L+1)
t−L+2 L(t−L+2, t+1) I(t−L+2)

.

.

.

.

.

.

.

.

.
t L(t, t+L− 1) I(t)

(A5)

t+1 0 0 0 . . . 0 0 0 C C . . . C 0 . . . 0 0 L(t+1, t+L) I(t+1)
t+2 0 0 0 . . . 0 0 0 0 C . . . C C . . . 0 0 L(t+2, t+L+1) I(t+2)

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
T 0 0 0 . . . 0 0 0 0 0 . . . 0 0 . . . 0 C L(T,T +L− 1) I(T )

(A6)

(x̂r, ŷr, ûr)

1 C 0 0 . . . 0 0 0 0 0 . . . 0 0 . . . 0 0 L(1,1) 0
2 C C 0 . . . 0 0 0 0 0 . . . 0 0 . . . 0 0 L(1,2) 0

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
t− 1 C C C . . . C C 0 0 0 . . . 0 0 . . . 0 0 L(1, t− 1) 0

(A7) t (omitted) L(1, t) 0

(A8)

t+1

(omitted)

L(1, t+1) 0
t+2 L(1, t+2) 0

.

.

.

.

.

.

.

.

.
T − 1 L(1, T − 1) 0

(A9) T (omitted) L(1, T ) 0

∗The x values of the points in (A3)–(A4) and (A7)–(A9) are not shown in this table.
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Table EC.4 Lower triangular matrix obtained by Gaussian elimination∗

Group Point Index r
x y u

1 2 . . . t−1 t t+1 t+2 . . . T 1 2 . . . T − 1 T 2 3 . . . T − 1 T

1

(x̃r, ỹr, ũr)

1 ϵ 0 . . . 0 0 0 0 . . . 0 0 0
2 0 ϵ . . . 0 0 0 0 . . . 0 0 0

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
t− 1 0 0 . . . ϵ 0 0 0 . . . 0 0 0

2

t 0 0 . . . 0 0 ϵ 0 . . . 0 0 0
t+1 0 0 . . . 0 0 0 ϵ . . . 0 0 0

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
T − 1 0 0 . . . 0 0 0 0 . . . ϵ 0 0

3 (x̂r, ŷr, ûr)

1

(omitted)

L(1,1) 0
2 L(1,2) 0

.

.

.

.

.

.

.

.

.
T L(1, T ) 0

4 (x̄r, ȳr, ūr)

2

(omitted) (omitted)

I(2)
3 I(3)

.

.

.

.

.

.
T I(T )

∗The x values in Groups 3–4 and the y values in Group 4 are not shown in this table.

(ii) For each r ∈ [t, T − 1]Z, point r of Group 2, denoted (x̃r, ỹr, ũr), is obtained by setting (x̃r, ỹr, ũr) =

(x̃r, ỹr, ũr) − (x̄r+1, ȳr+1, ūr+1). Here, (x̃r, ỹr, ũr) is the point with index r in group (A2), and

(x̄r+1, ȳr+1, ūr+1) is the point with index r+1 in group (A5).

(iii) For each r ∈ [1, T ]Z, point r of Group 3, denoted (x̂r, ŷr, ûr), is obtained by setting (x̂r, ŷr, ûr) =

(x̂r, ŷr, ûr), which is the point with index r in groups (A6), (A7), (A8), and (A9).

(iv) For each r ∈ [2, T ]Z, point r of Group 4, denoted (x̄r, ȳr, ūr), is obtained by setting (x̄r, ȳr, ūr) =

(x̄r, ȳr, ūr), which is the point with index r in groups (A3), (A4), and (A5).

As shown in Table EC.4, the points in Groups 1–4 form a lower triangular matrix in which the column

index of the last nonzero entry of the ith row is greater than that of the (i− 1)st row, for i= 2, . . . ,3T − 2.

Thus, these points are linearly independent. Hence, the 3T − 2 points in groups (A1)–(A9) are linearly

independent. □

A.11. Proof of Proposition 9

We show that inequality (5) holds for any element of D. From the proof of Proposition 8, for any t∈ T and

any element of D,
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
≥ (max{αt, βt}− 1)V +V (EC.17)

and

xt ≤
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
. (EC.18)

Using (2a), it is easy to verify that yt−k −
∑L

j=1wt−k−j ≥ 0. Because k ∈ [2, αt]Z, inequality (EC.17) implies

that
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
≥ (k− 1)V +V . (EC.19)

Thus, the third term on the right-hand side of inequality (5) is non-negative. Similarly, yi −
∑L

j=1wi+j ≥ 0

for all i ∈ S. Thus, the second term on the right-hand side of inequality (5) is non-negative. It is easy to

see that the other terms on the right-hand side of (5) are also non-negative. Hence, all four terms on the
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right-hand side of (5) are non-negative. Thus, inequality (5) is valid when xt = 0. Therefore, to prove the

validity of (5), it suffices to show that inequality (5) is valid for any element of D such that xt > 0 (i.e.,

yt = 1). Consider such an element of D. We define the “latest start-up period before period t+1” and the

“earliest shut-down period after period t” in the same way as in the proof of Proposition 8. Let t− p and

t+ q+1 denote the latest start-up period before period t+1 and the earliest shut-down period after period

t, respectively, where p, q≥ 0. Following the same argument as in the proof of Proposition 8, we have

xt ≤min{q, p}V +V . (EC.20)

Note that for any r, s∈Z, if s∈ S and t− k+1≤ r≤ s+1, then∑
i∈S∩[r,s]Z

(i− di)≥ s− r+1. (EC.21)

This is because (i) if r = s + 1, then both sides of this inequality equal 0; and (ii) if r ≤ s, then when

the elements of S ∩ [r, s]Z are arranged in increasing order, the jth term of the summation “
∑

i∈S∩[r,s]Z
i”

equals the (j + 1)st term of the summation “
∑

i∈S∩[r,s]Z
di” for any j, except that the last term of the

summation “
∑

i∈S∩[r,s]Z
i” equals s, while the first term of the summation “

∑
i∈S∩[r,s]Z

di” is at most r− 1.

When r= t− k+1 and s= t− 1, we have ∑
i∈S

(i− di) = k− 1. (EC.22)

Let RHS denote the right-hand side of (5). We consider five different cases.

Case (1): q≤max{L− k− 1,0}. In this case,

RHS ≥ V

 L−1∑
j=[L−k]++1

min{L− j, j− 1}wt+j +

L−k∑
j=1

(j− 1)wt+j

+V yt

≥ V

L−k∑
j=1

(j− 1)wt+j +V

≥ qV +V

≥ xt,

where the third inequality holds because wt+q+1 = 1 and q + 1 ≤max{L− k,1}, and the last inequality is

due to (EC.20). Therefore, inequality (5) holds.

Case (2): q ≥ L− 1 and p ≤ k − 1. Note that the condition “p ≤ k − 1” implies that t− p ≥ t− k + 1 ≥
t−αt+1≥ 2, where the last inequality follows from Proposition 7(iii). Thus, the latest start-up period before

period t+1 is at least 2. In this case, yj = 1 and wj = 0 for all j ∈ [t−p, t+L−1]Z. Hence, yi−
∑L

j=1wi+j = 1

for all i∈ [t−p, t− 1]Z. This, together with (EC.21), implies that
∑

i∈S∩[t−p,t−1]Z
(i−di)V (yi −

∑L

j=1wi+j) =∑
i∈S∩[t−p,t−1]Z

(i− di)V ≥ pV . Thus,

RHS ≥
∑
i∈S

(i− di)V

(
yi −

L∑
j=1

wi+j

)
+V yt

≥
∑

i∈S∩[t−p,t−1]Z

(i− di)V

(
yi −

L∑
j=1

wi+j

)
+V
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≥ pV +V

≥ xt,

where the last inequality is due to (EC.20). Therefore, inequality (5) holds.

Case (3): q ≥ L− 1 and p ≥ k. In this case, t− k + 1 ≥ max{t− p+ 1, t− αt + 1} ≥ max{t− p+ 1,2},
which implies that t− k+ 1 ∈ [max{t− p+ 1,2}, t]Z and S ⊆ [max{t− p+ 1,2}, t]Z. Note that in this case,

yt−k = 1, yj = 1, and wj = 0 for all j ∈ [max{t− p+1,2}, t+L− 1]Z. Thus, yt = 1, yt−k −
∑L

j=1wt−k+j = 1,

and yi −
∑L

j=1wi+j = 1 for all i∈ S. Hence, by (EC.18) and (EC.22),

RHS ≥
∑
i∈S

(i− di)V

(
yi −

L∑
j=1

wi+j

)

+

(
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V −V

)(
yt−k −

L∑
j=1

wt−k+j

)
+V yt

=
∑
i∈S

(i− di)V +
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V

=
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1

≥ xt.

Therefore, inequality (5) holds.

Case (4): max{L−k,1} ≤ q≤L−2 and p≤ k−1. The condition “p≤ k−1” implies that t−p≥ t−k+1≥
t−αt +1≥ 2, and the condition “q≤L− 2” implies that t+ q+1≤ t+L− 1≤ T . Thus, the latest start-up

period before period t+1 is at least 2, and the earliest shut-down period after period t is at most T . Note

that

RHS ≥ V

 L∑
j=[L−k]++1

min{L− j, j− 1}wt+j +

L−k∑
j=1

(j− 1)wt+j

+
∑
i∈S

(i− di)V

(
yi −

L∑
j=1

wi+j

)
+V yk

≥ V min{L− q− 1, q}wt+q+1 +
∑
i∈S

(i− di)V

(
yi −

L∑
j=1

wi+j

)
+V yk

=min{L− q− 1, q}V +
∑
i∈S

(i− di)V

(
yi −

L∑
j=1

wi+j

)
+V , (EC.23)

where the second inequality holds because [L−k]++1≤ q+1≤L, and the equality holds because wt+q+1 = 1.

By inequality (2a),
∑t+q+1

i=(t+q+1)−L+1 ui ≤ yt+q+1 = 0, which implies that ui = 0 for all i ∈ [(t+ q + 1)− L+

1, t + q + 1]Z. This in turn implies that (t + q + 1) − L + 1 ≥ t − p + 1, or equivalently, p ≥ L − q − 1. If

p= L− q− 1, then min{L− q− 1, q}=min{q, p}, and thus by (EC.20) and (EC.23), RHS ≥ xt. Hence, it

suffices to consider the situation where p ≥ L− q. In this situation, t+ q − L ∈ [t′ + 1, t− 1]Z ⊆ S. This is

because (i) if k≥L, then t′ = t−L, and thus t+q−L∈ [t−L+1, t−1]Z = [t′+1, t−1]Z; and (ii) if k <L−1,

then t′ = t−k, and thus t+q−L∈ [t−k+1, t−1]Z = [t′+1, t−1]Z (as the condition “q≤L−2” implies that

t+ q−L≤ t− 1, while the conditions “p≤ k− 1” and “p≥ L− q” imply that t+ q−L≥ t− k+1). Hence,

by (EC.21),
∑

i∈S∩[t−p,t+q−L]Z
(i− di)≥ p+ q+ 1−L. Note that yj = 1 and wj = 0 for all j ∈ [t− p, t+ q]Z.

Thus, yi −
∑L

j=1wi+j = 1 for all i∈ [t− p, t+ q−L]Z. Hence,∑
i∈S

(i− di)V

(
yi −

L∑
j=1

wi+j

)
≥

∑
i∈S∩[t−p,t+q−L]Z

(i− di)V

(
yi −

L∑
j=1

wi+j

)
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=
∑

i∈S∩[t−p,t+q−L]Z

(i− di)V

≥ (p+ q+1−L)V. (EC.24)

By (EC.20), (EC.23), and (EC.24), we have

RHS ≥min{L− q− 1, q}V +(p+ q+1−L)V +V

≥min{(L− q− 1)+ (p+ q+1−L), q}V +V =min{p, q}V +V ≥ xt.

Therefore, inequality (5) holds.

Case (5): max{L−k,1} ≤ q≤L−2 and p≥ k. The condition “q≤L−2” implies that t+q+1≤ t+L−1≤

T . Thus, the earliest shut-down period after period t is at most T . We first show that∑
i∈S∩[t−k+1,t+q−L]Z

(i− di)≥ k+ q−L. (EC.25)

Note that t+ q −L≥ t− k. If t+ q −L= t− k, then inequality (EC.25) holds because both the left-hand

side and right-hand side are zero. If t+ q−L≥ t− k+1, then t+ q−L ∈ [t′ +1, t− 1]Z ⊆ S (because (i) if

k ≥L, then t′ = t−L and t+ q−L ∈ [t−L+1, t− 1]Z = [t′ +1, t− 1]Z; and (ii) if k < L, then t′ = t− k and

t+ q−L ∈ [t− k+1, t− 1]Z = [t′ +1, t− 1]Z). Thus, by (EC.21), inequality (EC.25) holds. Note that yj = 1

and wj = 0 for all j ∈ [t− k+1, t+ q]Z. Hence, yi −
∑L

j=1wi+j = 1 for all i ∈ [t− k+1, t+ q−L]Z. Thus, by

(EC.25),

∑
i∈S

(i− di)V

(
yi −

L∑
j=1

wi+j

)
≥

∑
i∈S∩[t−k+1,t+q−L]Z

(i− di)V

(
yi −

L∑
j=1

wi+j

)
=

∑
i∈S∩[t−k+1,t+q−L]Z

(i− di)V

≥ (k+ q−L)V.

This implies that

V

 L∑
j=[L−k]++1

min{L− j, j− 1}wt+j +

L−k∑
j=1

(j− 1)wt+j

+
∑
i∈S

(i− di)V

(
yi −

L∑
j=1

wi+j

)

≥ V

 L∑
j=[L−k]++1

min{L− j, j− 1}wt+j +

L−k∑
j=1

(j− 1)wt+j

+(k+ q−L)V

≥ V min{L− q− 1, q}wt+q+1 +(k+ q−L)V

= [min{L− q− 1, q}+(k+ q−L)]V

≥min{k− 1, q}V,

where the second inequality holds because [L− k]+ +1≤ q+1≤ L. Note that yt−k = 1 and wt−k+j = 0 for

j = 1, . . . ,L, which implies that yt−k −
∑L

j=1wt−k+j = 1. Hence,

RHS = V

 L∑
j=[L−k]++1

min{L− j, j− 1}wt+j +

L−k∑
j=1

(j− 1)wt+j

+
∑
i∈S

(i− di)V

(
yi −

L∑
j=1

wi+j

)
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+

(
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V −V

)(
yt−k −

L∑
j=1

wt−k+j

)
+V

≥min{k− 1, q}V +

(
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V −V

)(
yt−k −

L∑
j=1

wt−k+j

)
+V

=
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V +min{k− 1, q}V. (EC.26)

If q ≥ k − 1, then min{k − 1, q}V = (k − 1)V , and thus by (EC.18) and (EC.26), we have RHS ≥ xt. If

q < k−1, then by (EC.20), min{k−1, q}V = qV ≥min{q, p}V ≥ xt−V , and thus from (EC.19) and (EC.26),

we have RHS ≥ xt. Therefore, inequality (5) holds.

Summarizing Cases (1)–(5), we conclude that inequality (5) holds for any element of D. □

A.12. Proof of Proposition 10

Consider any given LP relaxation optimum (x∗, y∗, u∗) of Problem (1) with x∗ = (x∗
1, . . . , x

∗
T ), y

∗ =

(y∗1, . . . , y
∗
T ), and u

∗ = (u∗
1, . . . , u

∗
T ). For any t∈ [L+1, T ]Z and k ∈ [2, βt]Z, let

Ψ(t, k) = V

 L−1∑
j=[L−k]+

min{L− 1− j, j}u∗
t−j +

L−k−1∑
j=1

ju∗
t−j

+ min
S′⊆[t′,t+k−1]Z

∑
i∈S

(di − i)V

(
y∗i −

L−1∑
j=0

u∗
i−j

)

+

(
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V −V

)(
y∗t+k −

L−1∑
j=0

u∗
t+k−j

)
+V y∗t −x∗

t ,

where t′ = min{t + L, t + k}, S = [t + 1, t′ − 1]Z ∪ S′, and di = min{a ∈ S ∪ {t + k} : a > i} for any i ∈ S.

Given any t∈ [L+1, T ]Z and k ∈ [2, βt]Z, if Ψ(t, k)< 0, then Ψ(t, k) measures how much (x∗, y∗, u∗) violates

inequality (4).

For any t∈ [L+1, T ]Z, k ∈ [2, βt]Z, and S
′ ⊆ [t′, t+ k− 1]Z, let

Φ(t, k,S′) =
∑

i∈{t′−1}∪S′

(di − i)V

(
y∗i −

L−1∑
j=0

u∗
i−j

)
.

Then,

Ψ(t, k) = V

 L−1∑
j=[L−k]+

min{L− 1− j, j}u∗
t−j +

L−k−1∑
j=1

ju∗
t−j


+

t′−2∑
i=t+1

V

(
y∗i −

L−1∑
j=0

u∗
i−j

)
+ min

S′⊆[t′,t+k−1]Z
Φ(t, k,S′)

+

(
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V −V

)(
y∗t+k −

L−1∑
j=0

u∗
t+k−j

)
+V y∗t −x∗

t .

The quantity “minS′⊆[t′,t+k−1]Z Φ(t, k,S
′)” can be obtained by solving a shortest path problem on a directed

acyclic network G= (V,A). The nodes and arcs of G are as follows:

(i) Node set V= {t′ − 1, t′, . . . , t+ k}, which is a set of time indices from t′ − 1 to t+ k.

(ii) Arc set A= {(t1, t2) : t′−1≤ t1 < t2 ≤ t+k}, where the length of (t1, t2) is (t2− t1)V (y∗t1 −
∑L−1

j=0 u
∗
t1−j).
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The shortest path from node t′ − 1 to node t+ k represents the optimal choice of the set S′, where a node

t1 ∈ [t′, t+k−1]Z is on the shortest path if and only if t1 is included in the set S′. The shortest distance from

node t′ − 1 to node t+ k is equal to minS′⊆[t′,t+k−1]Z Φ(t, k,S
′) (see Damcı-Kurt et al. (2016) for a similar

shortest path approach to separation algorithm development).

For each t and k, solving the shortest path problem requires O(T 2) time. Hence, Ψ(t, k) can be determined

in O(T 2) time. Given (x∗, y∗, u∗), the most violated inequality can be obtained in O(T 4) time by selecting t

and k with the smallest Ψ(t, k) value. □

A.13. Proof of Proposition 11

Consider any given LP relaxation optimum (x∗, y∗, u∗) of Problem (1) with x∗ = (x∗
1, . . . , x

∗
T ), y

∗ =

(y∗1, . . . , y
∗
T ), and u

∗ = (u∗
1, . . . , u

∗
T ). For any t∈ [2, T −L]Z and k ∈ [2, αt]Z, let

Ψ(t, k) = V

 L∑
j=[L−k]+

min{L− j, j− 1}w∗
t+j +

L−k−1∑
j=1

(j− 1)w∗
t+j

+ min
S′⊆[t+k−1,t′]Z

∑
i∈S

(i− di)V

(
y∗i −

L∑
j=1

w∗
i+j

)

+

(
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V −V

)(
y∗t−k −

L∑
j=1

w∗
t−k+j

)
+V y∗t −x∗

t ,

where w∗
t = y∗t−1−y∗t +u∗

t , t
′ =max{t−L, t−k}, S = S′∪ [t′+1, t−1]Z, and di =max{a∈ {t−k}∪S : a< i}

for any i ∈ S. Given any t ∈ [2, T − L]Z and k ∈ [2, αt]Z, if Ψ(t, k) < 0, then Ψ(t, k) measures how much

(x∗, y∗, u∗) violates inequality (5).

For any t∈ [2, T −L]Z, k ∈ [2, αt]Z, and S
′ ⊆ [t+ k− 1, t′]Z, let

Φ(t, k,S′) =
∑

i∈S′∪{t′+1}

(i− di)V

(
y∗i −

L∑
j=1

w∗
i+j

)
.

Then,

Ψ(t, k) = V

 L∑
j=[L−k]+

min{L− j, j− 1}w∗
t+j +

L−k−1∑
j=1

(j− 1)w∗
t+j


+

t−1∑
i=t′+2

V

(
y∗i −

L∑
j=1

w∗
i+j

)
+ min

S′⊆[t+k−1,t′]Z
Φ(t, k,S′)

+

(
Q+∆(αt, βt)V − (τt1 + τt2)C

αt +βt +1
− (k− 1)V −V

)(
y∗t−k −

L∑
j=1

w∗
t−k+j

)
+V y∗t −x∗

t .

The quantity “minS′⊆[t+k−1,t′]Z Φ(t, k,S
′)” can be obtained in O(T 2) time by solving a shortest path problem

on a directed acyclic network similar to that in the proof of Proposition 10. Hence, Ψ(t, k) can be determined

in O(T 2) time for each combination of t and k. Given (x∗, y∗, u∗), the most violated inequality can be obtained

in O(T 4) time by selecting t and k with the smallest Ψ(t, k) value. □
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