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Abstract
The paper utilizes Hölder graphical derivatives for characterizing Hölder strong subregular-
ity, isolated calmness and sharp minimum. As applications, we characterize Hölder isolated
calmness in linear semi-infinite optimization and Hölder sharp minimizers of some penalty
functions for constrained optimization.
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marco.antonio@ua.es

Alexander Y. Kruger
alexander.kruger@rmit.edu.au

Xiaoqi Yang
xiao.qi.yang@polyu.edu.hk

Jiangxing Zhu
jxzhu@ynu.edu.cn

1 Centre for Informatics and Applied Optimization, Federation University Australia,
Ballarat, Australia

2 RMIT University, Melbourne, Australia
3 Department of Mathematics, University of Alicante, Alicante, Spain
4 Department of Applied Mathematics, The Hong Kong Polytechnic University,

Hung Hom, Hong Kong
5 Department of Mathematics, Yunnan University, Kunming, China

Set-Valued and Variational Analysis (2022) 30:1423–1441

Received: 10 June 2021 / Accepted: 17 January 2022 / Published online: 5 February 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s11228-022-00628-1&domain=pdf
http://orcid.org/0000-0002-7861-7380
http://orcid.org/0000-0002-0619-9618
mailto: marco.antonio@ua.es
mailto: alexander.kruger@rmit.edu.au
mailto: xiao.qi.yang@polyu.edu.hk
mailto: jxzhu@ynu.edu.cn


A.Y. Kruger et al.

Mathematics Subject Classification (2010) 49J53 · 90C25 · 90C31 · 90C34

1 Introduction

This paper continues our previous work [19] and utilizes Hölder graphical derivatives
(sometimes referred to as Studniarski derivatives) for characterizing certain regularity
properties of set-valued mappings and real-valued functions.

In the next Section 2, we discuss q-order (q > 0) positively homogeneous mappings and
q-order graphical (contingent) derivatives. The definitions and statements mostly follow the
corresponding linear ones in [8]. Two norm-like quantities are used for quantifying Hölder
graphical derivatives. One of them is a generalization of the well-known outer norm of a
positively homogeneous mapping, while the other seems new and allows to simplify some
statements (and proofs) even in the linear case.

In Section 3, Hölder graphical derivatives are used for characterizing Hölder strong sub-
regularity, isolated calmness and sharp minimum. In particular, we give characterizations
of Hölder sharp minimizers in terms of Hölder graphical derivatives of the subdifferential
mapping. The characterizations from Section 3 are used in Sections 4 and 5 to characterize
Hölder isolated calmness in linear semi-infinite optimization and sharp minimizers of �p

penalty functions, respectively.
Our basic notation is standard, see, e.g., [8, 23]. Throughout the paper, X and Y are

normed spaces. We use the same notation ‖·‖ for norms in all spaces. If not explicitly stated
otherwise, products of normed spaces are assumed equipped with the maximum norms,
e.g., ‖(x, y)‖ := max{‖x‖, ‖y‖}, (x, y) ∈ X × Y . If X is a normed space, its topological
dual is denoted by X∗, while 〈·, ·〉 denotes the bilinear form defining the pairing between
the two spaces. Symbols R, R+ and N denote the sets of all real numbers, all nonnegative
real numbers and all positive integers, respectively. For the empty subset of R+, we use the
conventions sup ∅ = 0 and inf ∅ = +∞. Given an α ∈ R, we denote α+ := max{0, α}.

For an extended-real-valued function f : X → R ∪ {+∞}, its domain and epigraph
are defined, respectively, by dom f := {x ∈ X | f (x) < +∞} and epi f := {(x, α) ∈
X × R | f (x) ≤ α}. A set-valued mapping F : X ⇒ Y between two sets X and Y is a
mapping, which assigns to every x ∈ X a subset (possibly empty) F(x) of Y . We use the
notations gph F := {(x, y) ∈ X × Y | y ∈ F(x)} and dom F := {x ∈ X | F(x) �= ∅}
for the graph and the domain of F , respectively, and F−1 : Y ⇒ X for the inverse of
F . This inverse (which always exists with possibly empty values at some y) is defined by
F−1(y) := {x ∈ X | y ∈ F(x)}, y ∈ Y . Obviously dom F−1 = F(X).

Recall that a mapping F : X ⇒ Y is outer semicontinuous (cf., e.g., [8]) at x ∈ X if

lim sup
u→x

F (u) ⊂ F(x),

i.e., if gph F �(xk, yk)→(x, y), then y ∈F(x). This is always the case when gph F is closed.
Throughout the paper, we assume the order of all Hölder properties to be determined by

a fixed number q > 0.

2 Hölder Graphical Derivatives

In this section, we discuss Hölder positively homogeneous mappings and Hölder versions
of the ubiquitous graphical (contingent) derivatives; cf. [3, 8, 12, 23].
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Definition 2.1 A mapping H : X ⇒ Y is q-order positively homogeneous whenever

0 ∈ H(0) and H(λx) = λqH(x) for all x ∈ X and λ > 0.

If q = 1, we simply say the H is positively homogeneous. The graph of a positively
homogeneous mapping is a cone. This is obviously not the case when q �= 1.

The next simple fact is a direct consequence of the definition.

Proposition 2.2 Let H : X ⇒ Y be q-order positively homogeneous. Then H−1 : Y ⇒ X

is 1
q
-order positively homogeneous.

For a q-order positively homogeneous mapping H : X ⇒ Y , we define two norm-like
quantities:

‖H‖+
q := sup

(x,y)∈gph H\{(0,0)}
‖y‖
‖x‖q

, ‖H‖�q := inf
(x,y)∈gph H\{(0,0)}

‖y‖
‖x‖q

. (2.1)

When q = 1, the first one reduces to the outer norm ‖H‖+ of H ; cf. [23, p. 364], [8, p. 218].
Note that ‖H‖�1 ≤ ‖H‖−, where ‖H‖− is the inner norm of H , and the inequality can be
strict. None of the quantities in (2.1) is actually a true “norm”; see the comments in [8].

Proposition 2.3 Let H : X ⇒ Y be q-order positively homogeneous.

(i) ‖H‖+
q = sup‖y‖=1 d(0, H−1(y))−q , ‖H‖�q = inf‖x‖=1 d(0, H(x)).

(ii) ‖H‖�q =
(

‖H−1‖+
1
q

)−q

.

(iii) If gphH �= {(0, 0)}, then ‖H‖�q ≤ ‖H‖+
q .

(iv) If gphH = {(0, 0)}, then ‖H‖+
q = 0 and ‖H‖�q = +∞.

(v) ‖H‖+
q = 0 if and only if H(X) = {0}.

(vi) ‖H‖�q = +∞ if and only if domH = {0}.
(vii) ‖H‖+

q < +∞ =⇒ H(0) = {0}. If dim Y < ∞ and H is outer semicontinuous at
0, the two conditions are equivalent.

(viii) ‖H‖�q > 0 =⇒ H−1(0) = {0}. If dim X < ∞ and H−1 is outer semicontinuous
at 0, the two conditions are equivalent.

Proof Assertions (i)–(vi) and the first parts of assertions (vii) and (viii) are direct con-
sequences of (2.1) and Definition 2.1. For instance, in the case of assertion (ii) using
definitions (2.1) we have:

‖H‖�q =
(

sup
(x,y)∈gph H\{(0,0)}

‖x‖
‖y‖ 1

q

)−q

=
(

‖H−1‖+
1
q

)−q

.

To prove the second part of (vii), we need to show that, under the assumptions, ‖H‖+
q =

+∞ =⇒ H(0) �= {0}. Let ‖H‖+
q = +∞. By (2.1), there exists a sequence (xk, yk) ∈

gph H (k ∈ N) such that ‖yk‖/‖xk‖q → +∞ as k → ∞. Without loss of generality,

yk �= 0 for all k ∈ N. Set uk := xk/‖yk‖
1
q , vk := yk/‖yk‖ (k ∈ N). Then uk → 0 as

k → ∞ and ‖vk‖ = 1 (k ∈ N). Without loss of generality, vk → v as k → ∞ and
‖v‖ = 1. Furthermore, by Definition 2.1, (uk, vk) ∈ gph H (k ∈ N) and, thanks to the outer
semicontinuity of H , v ∈ H(0).

The proof of the second part of (viii) is similar. Let dim X < ∞, H is outer semicon-
tinuous at 0, and ‖H‖�q = 0. By (2.1), there exists a sequence (xk, yk) ∈ gph H (k ∈ N)
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such that ‖yk‖/‖xk‖q → 0 as k → ∞. Without loss of generality, xk �= 0 for all k ∈ N,
and uk := xk/‖xk‖ → u with ‖u‖ = 1, while vk := yk/‖xk‖q → 0. By Definition 2.1,
(uk, vk) ∈ gph H (k ∈ N) and, thanks to the outer semicontinuity of H−1, u ∈ H−1(0).
Hence, H−1(0) �= {0}.

Assertions (i), (v), (vii) and (viii) in Proposition 2.3 generalize and expand the corre-
sponding parts of [8, Propositions 4A.6 and 5A.7, and Exercise 4A.9]. The above proof
of the second part of (vii) largely follows that of the corresponding part of [8, Proposi-
tion 4A.6].

Next we briefly consider the case Y = X∗.

Definition 2.4 A mapping H : X ⇒ X∗ is q-order positively definite if there exists a
number λ > 0 such that〈

x∗, x
〉 ≥ λ‖x‖q+1 for all (x, x∗) ∈ gph H .

The exact upper bound of all such λ > 0 is denoted by ‖H‖∗
q .

In Definition 2.4, it obviously holds

‖H‖∗
q = inf

(x,x∗)∈gph H, x �=0

〈x∗, x〉+
‖x‖q+1

. (2.2)

In general, the expression in (2.2) is nonnegative, and the case ‖H‖∗
q = 0 means that H is

not q-order positively definite.

Proposition 2.5 Let H : X ⇒ X∗.

(i) ‖H‖∗
q = +∞ if and only if domH ⊂ {0}.

(ii) If H is q-order positively homogeneous, then ‖H‖∗
q ≤ ‖H‖�q .

(iii) If H is q-order positively homogeneous and p-order positively definite with some
p > 0, then either domH = {0} or p = q.

Proof (i) is immediate from (2.2).
(ii) follows from comparing (2.2) and the second definition in (2.1).

(iii) Let H be q-order positively homogeneous and p-order positively definite with some
p > 0. Then 0 ∈ dom H , ‖H‖∗

p > 0 and, by Definition 2.1, (x, x∗) ∈ gph H if and
only if (λx, λqx∗) ∈ gph H for any λ > 0, and it follows from (2.2) that

‖H‖∗
p = inf

(x,x∗)∈gph H, x �=0, λ>0

〈λqx∗, λx〉+
‖λx‖p+1

= inf
λ>0

λq−p‖H‖∗
p.

Thus, either ‖H‖∗
p = +∞, i.e. dom H = {0}, or p = q.

Given a set-valued mapping H : X ⇒ Y and a function f : X → Y , their sum H + f is
a set-valued mapping from X to Y defined by

(H + f )(x) := H(x) + f (x) = {y + f (x) | y ∈ H(x)}, x ∈ X.

Note that dom (H + f ) = dom H ∩ dom f .
The next statement characterizes perturbed positively homogeneous mappings. It gener-

alizes [8, Theorem 5A.8] (and is accompanied by a much shorter proof).
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Theorem 2.6 Let both H : X ⇒ Y and f : X → Y be q-order positively homogeneous.
Then H + f is q-order positively homogeneous. Moreover,

‖H + f ‖�q ≥ ‖H‖�q − ‖f ‖+
q . (2.3)

Proof H + f is q-order positively homogeneous by Definition 2.1. If dom H ∩ dom f =
{0}, then ‖H + f ‖�q = +∞ by Proposition 2.3(vi), and condition (2.3) is satisfied trivially.
Let (x, y) ∈ gph H with x �= 0 and x ∈ dom f . Then (x, y + f (x)) ∈ gph (H + f ) and, in
view of (2.1),

‖y + f (x)‖
‖x‖q

≥ ‖y‖
‖x‖q

− ‖f (x)‖
‖x‖q

≥ ‖H‖�q − ‖f ‖+
q .

Since (x, y + f (x)) is an arbitrary point in gph (H + f ) with x �= 0, the second
representation in (2.1) yields condition (2.3).

Given a set-valued mapping F : X ⇒ Y , its q-order graphical derivative at (x̄, ȳ) ∈
gph F is a set-valued mapping DqF(x̄, ȳ) : X ⇒ Y defined for all x ∈ X by

DqF(x̄, ȳ)(x) := {
y ∈ Y | ∃(xk, yk) → (x, y), tk ↓ 0 such that

(x̄ + tkxk, ȳ + t
q
k yk) ∈ gph F, ∀k ∈ N

}
. (2.4)

DqF(x̄, ȳ) is sometimes referred to as q-order upper Studniarski derivative [27, Definition
3.1] of F at (x̄, ȳ). When q = 1, it reduces to the standard graphical (contingent) derivative;
cf. [2, 3, 8, 13, 17, 23]. Clearly, DqF(x̄, ȳ) is a q-order positively homogeneous mapping
with closed graph, and

DqF(x̄, ȳ)−1 = D 1
q
F−1(ȳ, x̄), (2.5)

Given a function f : X → Y and a point x̄ ∈ dom f , we write Dqf (x̄) instead of
Dqf (x̄, f (x̄)). If Dqf (x̄) is single-valued, i.e. the limit

Dqf (x̄)(x) = lim
u→x, t↓0

f (x̄ + tu) − f (x̄)

tq

exists for all x ∈ X, we say that f is q-order Hadamard directionally differentiable at x̄.
The next proposition provides a sum rule for q-order graphical derivatives. It is a

direct consequence of the definitions of q-order graphical derivative and q-order Hadamard
directional differentiability.

Proposition 2.7 Let F : X ⇒ Y , f : X → Y , (x̄, ȳ) ∈ gphF and x̄ ∈ dom f . If f is
q-order Hadamard directionally differentiable at x̄, then

Dq(F + f )(x̄, ȳ + f (x̄)) = DqF(x̄, ȳ) + Dqf (x̄).

Given a function f : X → R ∪ {+∞}, its q-order Hadamard directional subderiva-
tive [25, 26] at x̄ ∈ dom f is defined for all x ∈ X by (cf. [22, Definition 1.1] and
[23, Definition 8.1] for the case q = 1)

f ′
q(x̄; x) := lim inf

u→x, t↓0

f (x̄ + tu) − f (x̄)

tq
. (2.6)

If f is Lipschitz continuous near x̄ and 0 < q ≤ 1, the above definition takes a simpler
form:

f ′
q(x̄; x) = lim inf

t↓0

f (x̄ + tx) − f (x̄)

tq
.
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Observe that the function f ′
q(x̄; ·) : X → R ∪ {±∞} is lower semicontinuous and q-

order positively homogeneous in the sense that f ′
q(x̄; λx) = λqf ′

q(x̄; x) for all x ∈ X and
λ > 0. We are going to use for characterizing this function the following norm-like quantity:

‖f ′
q(x̄; ·)‖q := inf

x∈X\{0}
(f ′

q(x̄; x))+
‖x‖q

= inf‖x‖=1
(f ′

q(x̄; x))+. (2.7)

The next statement is a direct consequence of the definitions. It uses the epigraphical
mapping x �→ epi f (x) := {μ ∈ R | f (x) ≤ μ}. Note that the graph of the latter mapping
is the epigraph epi f of f . We use the same notation for the epigraph and the epigraphical
mapping.

Proposition 2.8 Let f : X → R ∪ {+∞} and x̄ ∈ dom f .

(i) Either f ′
q(x̄; 0) = 0 or f ′

q(x̄; 0) = −∞.
(ii) Dq(epi f )(x̄, f (x̄))(x) = {μ ∈ R | f ′

q(x̄; x) ≤ μ} for all x ∈ X.
(iii) ‖Dq(epi f )(x̄, f (x̄))‖+

q = +∞ and ‖Dq(epi f )(x̄, f (x̄))‖�q = ‖f ′
q(x̄; ·)‖q .

(iv) ‖f ′
q(x̄; ·)‖q > 0 =⇒ f ′

q(x̄; x) > 0 for all x �= 0. If dim X < ∞, the two
conditions are equivalent.

Proof (i) By definition (2.6), f ′
q(x̄; 0) ≤ 0. Suppose that f ′

q(x̄; 0) < 0. Then there exist
sequences uk → 0 and tk ↓ 0 such that

lim
k→+∞

f (x̄ + tkuk) − f (x̄)

t
q
k

= α < 0.

For any θ > 0 and k ∈ N, set u′
k := θ

1
q uk and t ′k := θ

− 1
q tk . We have u′

k → 0 and
t ′k ↓ 0 and

lim
k→+∞

f (x̄ + t ′ku′
k) − f (x̄)

(t ′k)q
= θα.

Hence, f ′
q(x̄; 0) = −∞.

(ii) The assertion is immediate from comparing definitions (2.4) and (2.6).
(iii) By (i) and (ii), (0, μ) ∈ gph Dq(epi f )(x̄, f (x̄)) for all μ ≥ 0, and it follows from

(2.1) that ‖Dq(epi f )(x̄, f (x̄))‖+
q = +∞. The second equality holds trivially when

f ′
q(x̄; x) = +∞ for all x �= 0. If x �= 0 and f ′

q(x̄; x) < +∞, then, in view of (ii),

inf
μ∈Dq(epi f )(x̄,f (x̄))(x)

|μ| = inf
μ≥f ′

q (x̄;x)
|μ| = (f ′

q(x̄; x))+,

and the second equality follows from (2.1) and (2.7).
(iv) If f ′

q(x̄; x) ≤ 0 for some x �= 0, then ‖f ′
q(x̄; ·)‖q = 0 by definition (2.7). This proves

the implication. Let dim X < ∞ and ‖f ′
q(x̄; ·)‖q = 0. By (2.7), there is a sequence

{xk} such that ‖xk‖ = 1 for all k ∈ N, and (f ′
q(x̄; xk))+ → 0 as k → ∞. Without

loss of generality, xk → x as k → ∞, ‖x‖ = 1 and (f ′
q(x̄; x))+ = 0 since f ′

q(x̄; ·) is
lower semicontinuous. This proves the opposite implication.

The next corollary is a consequence of Propositions 2.7 and 2.8.

Corollary 2.9 Let f : X → R ∪ {+∞}, g : X → R and x̄ ∈ dom f . If g is q-order
Hadamard directionally differentiable at x̄, then

(f + g)′q(x̄; x) = f ′
q(x̄; x) + Dqg(x̄)(x) for all x ∈ X.
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3 Hölder Strong Subregularity, Isolated Calmness and SharpMinimum

In this section, Hölder graphical derivatives are used for characterizing Hölder strong
subregularity, isolated calmness and sharp minimum.

Definition 3.1 (i) A mapping F : X ⇒ Y is q-order strongly subregular at (x̄, ȳ) ∈
gph F with modulus τ > 0 if there exist neighbourhoods U of x̄ and V of ȳ such that

τ‖x − x̄‖q ≤ d(ȳ, F (x) ∩ V ) for all x ∈ U . (3.1)

The exact upper bound of all such τ > 0 is denoted by srgq F(x̄, ȳ).
(ii) A mapping S : Y ⇒ X possesses q-order isolated calmness property at (ȳ, x̄) ∈ gph S

with modulus τ > 0 if there exist neighbourhoods U of x̄ and V of ȳ such that

τ‖x − x̄‖q ≤ ‖y − ȳ‖ for all y ∈ V and x ∈ S(y) ∩ U . (3.2)

The exact upper bound of all such τ > 0 is denoted by clmq S(ȳ, x̄).

If F is not q-order strongly subregular at (x̄, ȳ) or S does not possess q-order isolated
calmness property at (ȳ, x̄), we have srgq F(x̄, ȳ) = 0 or clmq S(ȳ, x̄) = 0, respectively.

The properties in the above definition are well known in the linear case q = 1 (see,
e.g., [8]), but have also been studied in the general setting (also for not necessarily strong
subregularity and not necessarily isolated calmness); cf. [7, 9, 20]. Because of the distance
involved in the right-hand side of (3.1) (and also in its left-hand side in the case of the not
strong version), the property in part (i) of Definition 3.1 is often referred to as q-order strong
metric subregularity.

Remark 3.2 (i) In both parts of Definition 3.1, it suffices to take V := Y ; cf.
[8, Exercise 3H.4].

(ii) Condition (3.2) implies that S(ȳ)∩U = {x̄}, i.e. x̄ is an isolated point in S(ȳ), which
justifies the word ‘isolated’ in the name of the property in Definition 3.1(ii).

(iii) The moduli srgq F(x̄, ȳ) and clmq S(ȳ, x̄) are usually introduced to characterize the
usual (not strong!) subregularity and (not isolated!) calmness. We do not consider
these two weaker properties in the current paper. If a respective (strong or isolated)
property in Definition 3.1 holds, then the corresponding modulus coincides with the
conventional one.

(iv) When V = Y , condition (3.1) is obviously implied by the following q-order strong
graph subregularity property:

τ‖x − x̄‖q ≤ d((x, ȳ), gph F) for all x ∈ U

(with the same τ and U ). It is not difficult to show that, when q ≥ 1, q-order (strong)
subregularity in part (i) of Definition 3.1 implies q-order (strong) graph subregularity
(with smaller τ and U ); cf. a characterization of subregularity in [12, Proposition
2.61]. A similar observation can be made about the calmness property in part (ii) of
Definition 3.1; cf. the well-known characterization of q-order calmness by Kummer
[20, Lemma 2.2], and the earlier result by Klatte and Kummer [18, Lemma 3.2] for
the case q = 1.

(v) There is some inconsistency in the literature concerning whether to place the con-
stants τ and/or q, which determine the properties in Definition 3.1, in the left or
right-hand sides of the inequalities (3.1) and (3.2) (and similar inequalities involved
in related definitions); cf., e.g., [17]. This applies also to our own recent paper [19],
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where we placed q in the right-hand sides of the inequalities. Of course, the position
of the constants does not effect the properties, but it has an effect on the values of the
respective moduli. Our choice in the current paper is determined by our desire to pro-
duce the simplest relations between these moduli and the quantitative characteristics
of Hölder graphical derivatives and more straightforward proofs.

The next proposition is an immediate consequence of Definition 3.1.

Proposition 3.3 Let F : X ⇒ Y and (x̄, ȳ) ∈ gphF . Then F is q-order strongly subregular
at (x̄, ȳ) if and only if F−1 possesses q-order isolated calmness property at (ȳ, x̄), and
srgq F(x̄, ȳ) = clmq F−1(ȳ, x̄).

The next proposition and its corollaries generalize [8, Theorem 4E.1 and Corollary 4E.2].

Proposition 3.4 Let F : X ⇒ Y and (x̄, ȳ) ∈ gphF . Then

srgq F(x̄, ȳ) ≤ ‖DqF(x̄, ȳ)‖�q . (3.3)

If dim X < +∞ and dim Y < +∞, then (3.3) holds as equality.

Proof If srgq F(x̄, ȳ) = 0 or ‖DqF(x̄, ȳ)‖�q = +∞, inequality (3.3) holds trivially. Let
τ ∈ (0, srgq F(x̄, ȳ)). Let u ∈ X \ {0} and v ∈ DqF(x̄, ȳ)(u), i.e. there exist sequences
(uk, vk) → (u, v) and tk ↓ 0 such that ȳ + t

q
k vk ∈ F(x̄ + tkuk) for all k ∈ N. By

Definition 3.1(i), τ‖uk‖q ≤ ‖vk‖ for all sufficiently large k ∈ N, and consequently,
τ ≤ ‖v‖/‖u‖q . In view of definition (2.1), we have τ ≤ ‖DqF(x̄, ȳ)‖�q . Inequality (3.3)
follows. Let dim X < +∞, dim Y < +∞, and τ > srgq F(x̄, ȳ). By Definition 3.1(i), there
exists a sequence (xk, yk) → (x̄, ȳ) such that (xk, yk) ∈ gph F and τ‖xk − x̄‖q > ‖yk − ȳ‖
for all k ∈ N. Then tk := ‖xk − x̄‖ ↓ 0. Set uk := (xk − x̄)/tk and vk := (yk − ȳ)/t

q
k

(k ∈ N). Without loss of generality, uk → u ∈ X, ‖u‖ = 1, and vk → v ∈ Y , ‖v‖ ≤ τ .
Thus, v ∈ DqF(x̄, ȳ)(u) and ‖DqF(x̄, ȳ)‖�q ≤ ‖v‖/‖u‖q ≤ τ . Hence, (3.3) holds as
equality.

The following statement provides a characterization of q-order strong subregularity of a
mapping in terms of its q-order graphical derivative.

Corollary 3.5 Let F : X ⇒ Y and (x̄, ȳ) ∈ gphF . Consider the following conditions:

(i) F is q-order strongly subregular at (x̄, ȳ);
(ii) ‖DqF(x̄, ȳ)‖�q > 0;

(iii) DqF(x̄, ȳ)−1(0) = {0}.
Then (i) ⇒ (ii) ⇒ (iii). If dim X < +∞ and dim Y < +∞, then (i) ⇔ (ii) ⇔ (iii).

Proof Thanks to Proposition 3.4, we have the implication (i) ⇒ (ii) in general, and the
equivalence (i) ⇔ (ii) when dim X < +∞ and dim Y < +∞. The implication (ii)
⇒ (iii) is an immediate consequence of Proposition 2.3(viii). The graph of DqF(x̄, ȳ)

is closed by definition, hence, DqF(x̄, ȳ)−1 is outer semicontinuous at 0. Employing
Proposition 2.3(viii) again, we conclude that (ii) ⇔ (iii) when dim X < +∞.
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Remark 3.6 A coderivative analogue (employing a special kind of limiting coderivative)
of the equality in Corollary 3.5(iii) is used in [29, Theorem 5.2] to characterize nonlinear
subregularity.

The next example illustrates application of Corollary 3.5 for checking Hölder strong
subregularity as well as computation of the Hölder graphical derivative and relevant norm-
like quantity.

Example 3.7 Let F : R ⇒ R be the epigraphical mapping: F(x) := [x2, +∞) for all
x ∈ R, and x̄ = ȳ = 0. By definition (2.4), y ∈ DqF(0, 0)(x) if and only if there exist

sequences (xk, yk) → (x, y) and tk ↓ 0 such that yk ≥ t
2−q
k x2

k for all k ∈ N, or equivalently,

y ≥ limk→∞ t
2−q
k x2. Thus, there are three distinct possibilities.

0 < q < 2. DqF(0, 0)(x) = R+ for all x ∈ R. Thus, DqF(0, 0)−1(0) = R and, by
(2.1), ‖DqF(0, 0)‖�q = 0. Each of the conditions (ii) and (iii) in Corollary 3.5 yields that
F is not q-order strongly subregular at (0, 0).
q = 2. DqF(0, 0)(x) = [x2,+∞) for all x ∈ R. Thus, DqF(0, 0)−1(0) = {0} and, by
(2.1), ‖DqF(0, 0)‖�q = 1. Each of the conditions (ii) and (iii) in Corollary 3.5 yields that
F is q-order strongly subregular at (0, 0).
q > 2. DqF(0, 0)(0) = {0}, and DqF(0, 0)(x) = ∅ for all x �= 0. Thus,

DqF(0, 0)−1(0) = {0} and, by (2.1), ‖DqF(0, 0)‖�q = +∞. Each of the conditions (ii)
and (iii) in Corollary 3.5 yields that F is q-order strongly subregular at (0, 0).

Of course, in this simple example, the same conclusions can be obtained directly from
Definition 3.1(i).

Corollary 3.8 Let S : Y ⇒ X and (ȳ, x̄) ∈ gph S. Then

clmq S(ȳ, x̄) ≤
(

‖D 1
q
S(ȳ, x̄)‖+

1
q

)−q

. (3.4)

If dim X < +∞ and dim Y < +∞, then (3.4) holds as equality.

Proof By Proposition 2.3(ii) and (2.5), we have

‖DqF(x̄, ȳ)‖�q =
(

‖DqF(x̄, ȳ)−1‖+
1
q

)−q

=
(

‖D 1
q
F−1(ȳ, x̄)‖+

1
q

)−q

.

The assertion follows from Propositions 3.3 and 3.4.

Corollary 3.9 Let S : Y ⇒ X and (ȳ, x̄) ∈ gph S. Consider the following conditions:

(i) S possesses q-order isolated calmness property at (ȳ, x̄);
(ii) ‖D 1

q
S(ȳ, x̄)‖+

1
q

< +∞;

(iii) D 1
q
S(ȳ, x̄)(0) = {0}.

Then (i) ⇒ (ii) ⇒ (iii). If dim X < +∞ and dim Y < +∞, then (i) ⇔ (ii) ⇔ (iii).

Proof Thanks to Corollary 3.8, we have the implication (i) ⇒ (ii) in general, and the equiv-
alence (i) ⇔ (ii) when dim X < +∞ and dim Y < +∞. The implication (ii) ⇒ (iii) is
an immediate consequence of Proposition 2.3(vii). The graph of D 1

q
S(ȳ, x̄) is closed by
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definition, hence, D 1
q
S(ȳ, x̄) is outer semicontinuous at 0. Employing Proposition 2.3(vii)

again, we conclude that (ii) ⇔ (iii) when dim Y < +∞.

The following theorem shows that q-order strong subregularity enjoys stability under
perturbations by functions with small q-order Hadamard directional derivatives.

Theorem 3.10 Let dim X < +∞, dim Y < +∞, F : X ⇒ Y , g : X → Y , (x̄, ȳ) ∈ gphF ,
x̄ ∈ dom g, and g be q-order Hadamard directionally differentiable at x̄. Then

srgq (F + g)(x̄, ȳ + g(x̄)) ≥ srgq F(x̄, ȳ) − ‖Dqg(x̄)‖+
q .

If ‖DqF(x̄, ȳ)‖�q > ‖Dqg(x̄)‖+
q , then F +g is q-order strongly subregular at (x̄, ȳ+g(x̄)).

Proof By Proposition 2.7 and Theorem 2.6,

‖Dq(F + g)(x̄, ȳ + g(x̄))‖�q = ‖DqF(x̄, ȳ) + Dqg(x̄)‖�q
≥ ‖DqF(x̄, ȳ)‖�q − ‖Dqg(x̄)‖+

q .

The assertion follows from Proposition 3.4 and Corollary 3.5.

The next proposition is a consequence of Propositions 2.5(ii) and 3.4.

Proposition 3.11 Let dim X < +∞, F : X ⇒ X∗ and (x̄, x∗) ∈ gphF . Then
‖DqF(x̄, x∗)‖∗

q ≤ srgq F(x̄, x∗). As a consequence, if DqF(x̄, x∗) is q-order positively
definite with modulus λ > 0, then F is q-order strongly subregular at (x̄, x∗) with any
modulus τ ∈ (0, λ).

Given a function f : X → R ∪ {+∞}, it is easy to check (taking into account
Remark 3.2(i)) that the q-order strong subregularity of its epigraphical mapping at (x̄, f (x̄))

reduces to the property in the next definition.

Definition 3.12 Let f : X → R∪ {+∞}. A point x̄ ∈ dom f is a q-order sharp minimizer
of f with modulus τ > 0 if there exists a neighbourhood U of x̄ such that

τ‖x − x̄‖q ≤ f (x) − f (x̄) for all x ∈ U . (3.5)

The exact upper bound of all such τ > 0 is denoted by shrpq f (x̄).

If x̄ is not a q-order sharp minimizer of f , we have shrpq f (x̄) = 0.

Remark 3.13 (i) The property in Definition 3.12 is also known as isolated local minimum
with order q; cf. [25].

(ii) If f (x̄) = 0 and x̄ is a q-order sharp minimizer of f , then shrpq f (x̄) coincides with
the q-order error bound modulus erq f (x̄) of f at x̄.

The next proposition is a consequence of Propositions 3.4 and 2.8(iii).

Proposition 3.14 Let f : X → R ∪ {+∞} and x̄ ∈ dom f . Then

shrpq f (x̄) ≤ ‖f ′
q(x̄; ·)‖q . (3.6)

If dim X < +∞, then (3.6) holds as equality.
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The following lemma describing Hölder sharp minimizers in terms of the Hölder strong
subregularity of the subdifferential mappings is a reformulation of [28, Theorem 4.1] in the
convex setting.

Lemma 3.15 Let X be a Banach space, f : X → R ∪ {+∞} lower semicontinuous and
convex, and x̄ ∈ dom f be a local minimizer of f . Consider the following assertions:

(i) x̄ is a (q + 1)-order sharp minimizer of f with modulus ρ > 0;
(ii) ∂f is q-order strongly subregular at (x̄, 0) with modulus τ > 0.

Then (i) ⇒ (ii) with τ := ρ, and (ii) ⇒ (i) with ρ := qq

(q+1)q+1 τ . As a consequence, x̄ is a

(q +1)-order sharp minimizer of f if and only if ∂f is q-order strongly subregular at (x̄, 0).

Next we give characterizations of Hölder sharp minimizers in terms of Hölder graph-
ical derivatives of the subdifferential mapping. The theorem below is partially motivated
by [1, Corollary 3.7], which provides a characterization of the strong subregularity in
terms of the positive-definiteness of the graphical derivative. The modulus estimate in the
following theorem is inspired by [21, Theorem 3.6], where a characterization of tilt stabil-
ity of local minimizers for extended-real-valued functions is derived via the second-order
subdifferential.

Theorem 3.16 Let X be a Banach space, f : X → R ∪ {+∞} lower semicontinuous and
convex, and x̄ ∈ dom f be a local minimizer of f . Consider the following assertions:

(i) x̄ is a (q + 1)-order sharp minimizer of f with modulus ρ > 0;
(ii) Dq∂f (x̄, 0) is q-order positively definite with modulus λ > 0.

Then (i) ⇒ (ii) with λ := ρ. If dim X < +∞, then, for any τ ∈ (0, λ), (ii) ⇒ (i) with
ρ := qq

(q+1)q+1 τ . As a consequence, if dim X < +∞, then x̄ is a (q + 1)-order sharp

minimizer of f if and only if Dq∂f (x̄, 0) is q-order positively definite, and

qq

(q + 1)q+1
‖Dq∂f (x̄, 0)‖∗

q ≤ shrpq+1 f (x̄) ≤ ‖Dq∂f (x̄, 0)‖∗
q . (3.7)

Proof Let (i) hold. Let u ∈ X and u∗ ∈ Dq∂f (x̄, 0)(u), i.e. there are sequences tk ↓ 0
and (uk, u

∗
k) → (u, u∗) such that t

q
k u∗

k ∈ ∂f (x̄ + tkuk) for all k ∈ N. For all sufficiently
large k, we have ρ(tk‖uk‖)q+1 ≤ f (x̄ + tkuk) − f (x̄) ≤ 〈tqk u∗

k, tkuk〉, and consequently,
ρ‖u‖q+1 ≤ 〈u∗, u〉, i.e. Dq∂f (x̄, 0) is q-order positively definite with modulus λ := ρ.
Let (ii) hold, dim X < +∞, and τ ∈ (0, λ). By Proposition 3.11, ∂f is q-order strongly
subregular at (x̄, 0) with modulus τ . By Lemma 3.15, x̄ is a (q + 1)-order sharp minimizer
of f with modulus qq

(q+1)q+1 τ .

The next example illustrates application of Theorem 3.16 for checking the order of sharp
minimizers.

Example 3.17 Let f (x) = x2n for some integer n > 0 and all x ∈ R, and x̄ = 0. Thus,
f ′(x) = x2n−1 for all x ∈ R and, by definition (2.4), y ∈ Dq∂f (0, 0)(x) if and only if there

exist sequences (xk, yk) → (x, y) and tk ↓ 0 such that yk = t
2n−1−q
k x2n−1

k for all k ∈ N, or

equivalently, y = limk→∞ t
2n−1−q
k x2n−1. Thus, there are three distinct possibilities.
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0 < q < 2n − 1. Dq∂f (0, 0)(x) = {0} for all x ∈ R. Thus, yx = 0 for all (x, y) ∈
gph Dq∂f (0, 0), i.e. Dq∂f (0, 0) is not q-order positively definite. By Theorem 3.16, 0 is
not a (q + 1)-order sharp minimizer of f .
q = 2n − 1. Dq∂f (0, 0)(x) = {x2n−1} for all x ∈ R. Thus, yx = x2n = |x|2n for all
(x, y) ∈ gph Dq∂f (0, 0), i.e. Dq∂f (0, 0) is (2n − 1)-order positively definite with any
modulus λ ∈ (0, 1], and ‖Dq∂f (0, 0)‖∗

q = 1. By Theorem 3.16, 0 is a 2n-order sharp

minimizer of f , and (2n−1)2n−1

(2n)2n ≤ shrp2n f (0) ≤ 1.
q > 2n − 1. Dq∂f (0, 0)(0) = {0}, and Dq∂f (0, 0)(x) = ∅ for all x �= 0. Thus, yx = 0
for all (x, y) ∈ gph Dq∂f (0, 0), i.e. Dq∂f (0, 0) is not q-order positively definite. By
Theorem 3.16, 0 is not a (q + 1)-order sharp minimizer of f .

Of course, in this simple example, the same conclusions can be obtained directly from
Definition 3.12. Moreover, shrp2n f (0) = 1, i.e. the lower estimate in (3.7) is not sharp.

Comparing the statements of Proposition 3.11, Lemma 3.15 and Theorem 3.16, we arrive
at the following corollary, which provides an important special case when the implication
in Proposition 3.11 holds as equivalence.

Corollary 3.18 Let dim X < +∞, f : X → R ∪ {+∞} be lower semicontinuous and
convex, and x̄ ∈ dom f be a local minimizer of f . Then Dq∂f (x̄, 0) is q-order positively
definite if and only if ∂f is q-order strongly subregular at (x̄, 0), and

‖Dq∂f (x̄, 0)‖∗
q ≤ srgq ∂f (x̄, 0) ≤ (q + 1)q+1

qq
‖Dq∂f (x̄, 0)‖∗

q .

4 q-Order Isolated Calmness in Linear Semi-infinite Optimization

In this section, we consider a canonically perturbed linear semi-infinite optimization
problem:

P(c, b) : minimize 〈c, x〉
subject to 〈at , x〉 ≤ bt , t ∈ T ,

where x ∈ R
n is the vector of variables, c ∈ R

n, 〈·, ·〉 represents the usual inner product in
R

n, T is a compact Hausdorff space, and the function t �→ (at , bt ) is continuous on T . In
this setting, the pair (c, b) ∈ R

n × C(T ,R) is regarded as the perturbation parameter. The
parameter space Rn × C(T ,R) is endowed with the uniform convergence topology through
the maximum norm ‖(c, b)‖ := max{‖c‖, ‖b‖∞}, where ‖ · ‖ is the Euclidean norm in R

n

and ‖b‖∞ := maxt∈T |bt |.
The feasible set and solution mappings corresponding to the above problem are defined,

respectively, by

F(b) := {x ∈ R
n | 〈at , x〉 ≤ bt , t ∈ T }, b ∈ C(T ,R), (4.1)

S(c, b) := {x ∈ F(b) | x solves P(c, b)}, (c, b) ∈ R
n × C(T ,R). (4.2)

From now on, we assume a point ((c̄, b̄), x̄) ∈ gphS to be given. We are going to
consider also the partial solution mapping Sc̄ : C(T ,R) ⇒ R

n given by Sc̄(b) = S(c̄, b)

and the level set mapping

L(α, b) := {x ∈ F(b) | 〈c̄, x〉 ≤ α}, (α, b) ∈ R × C(T ,R),
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and employ the following convex and continuous function:

f (x) := max{〈c̄, x − x̄〉, max
t∈T

(〈at , x〉 − b̄t )}, x ∈ R
n. (4.3)

Observe that f (x̄) = 0, and

S(c̄, b̄) = [f = 0] = [f ≤ 0] = L〈c̄, x̄〉, b̄). (4.4)

The problem P(c, b) satisfies the Slater condition if there exists a point x̂ ∈ R
n such

that
〈
at , x̂

〉
< bt for all t ∈ T . The set of active indices at x ∈ F(b) is defined by Tb(x) :=

{t ∈ T | 〈at , x〉 = bt }.
The following lemma is an analogue of [19, Proposition 4.5].

Lemma 4.1 Suppose that P(c̄, b̄) satisfies the Slater condition, and S(c̄, b̄) = {x̄}. If L
does not possess q-order isolated calmness property at ((〈c̄, x̄〉, b̄), x̄) ∈ gph (L), then there
exist a sequence {(bk, xk)} ⊂ gphF such that xk �= x̄ for all k ∈ N, and

lim
k→+∞(bk, xk) = (b̄, x̄), lim

k→+∞
‖bk − b̄‖∞
‖xk − x̄‖q = 0,

a finite subset T0 ⊂ ∩k∈NTbk
(xk), and positive scalars γt , t ∈ T0, satisfying

− c̄ ∈
∑
t∈T0

γtat . (4.5)

Theorem 4.2 Suppose that P(c̄, b̄) satisfies the Slater condition. Consider the following
assertions:

(i) S possesses q-order isolated calmness property at ((c̄, b̄), x̄);
(ii) Sc̄ possesses q-order isolated calmness property at (b̄, x̄);

(iii) L possesses q-order isolated calmness property at ((〈c̄, x̄〉, b̄), x̄);
(iv) x̄ is a q-order sharp minimizer of f ;
(v) ‖f ′

q(x̄; ·)‖q > 0;

(vi) ‖D 1
q
Sc̄(b̄, x̄)‖+

1
q

< +∞.

Then (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) ⇒ (vi). If T is finite, then all the assertions are
equivalent, and

clmq Sc̄(b̄, x̄) =
(∥∥∥D 1

q
Sc̄(b̄, x̄)

∥∥∥+
1
q

)−q

. (4.6)

If q > 1, then assertions (i)–(v) are equivalent to the next one:

(vii) Dq−1∂f (x̄, 0) is (q − 1)-order positively definite.

Proof (i) ⇒ (ii) is immediate from Definition 3.1(ii) in view of the definition of Sc̄.
(ii) ⇒ (iii). Suppose that L does not possess q-order isolated calmness property at

((〈c̄, x̄〉, b̄), x̄). To reach a contradiction with (ii), it suffices to show that, for
the sequence {(bk, xk)} ⊂ gphF in Lemma 4.1, it holds xk ∈ Sc̄(bk), k ∈ N,
which readily follows from the KKT conditions (4.5) (by continuity, it is not
restrictive to assume that P(c̄, bk) satisfies the Slater condition).

(iii) ⇔ (iv) follows from comparing Definitions 3.1(ii) and 3.12 in view of (4.3) and (4.4).
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(iv) ⇒ (i). By [19, Lemma 4.2] (with f ≡ 0), there exist a number M > 0 and
neighbourhoods U of x̄ and V of (c̄, b̄) such that

− c ∈ [0,M] co {at , t ∈ Tb (x)} for all (c, b) ∈ V and x ∈ S(c, b) ∩ U,

(4.7)
where ‘co’ stands for the convex hull. Let x̄ be a q-order sharp minimizer of
f . By Definition 3.12, condition (3.5) holds with some number τ > 0 and a
smaller neighbourhood U if necessary. Without loss of generality, we assume
that M > 1, and U is bounded: ‖x − x̄‖ < δ for some δ > 0 and all x ∈ U .
Let (c, b) ∈ V and x ∈ S(c, b) ∩ U . By (4.7),

− c =
∑

t∈Tb(x)

ηtat , (4.8)

for some ηt ≥ 0, t ∈ Tb (x) , satisfying
∑

t∈Tb(x) ηt ≤ M and only finitely
many being positive. Hence, in view of representation (4.8), and definitions
(4.1) and (4.2),

〈c, x − x̄〉 = −
∑

t∈Tb(x)

ηt 〈at , x − x̄〉 ≤
∑

t∈Tb(x)

ηt (b̄t − bt ) ≤ M‖b − b̄‖∞,

Recalling definition (4.3) and the fact that f (x̄) = 0, we have

τ ‖x − x̄‖q ≤ f (x) ≤ max{〈c̄, x − x̄〉, max
t∈T

(bt − b̄t )}
≤ max{〈c, x − x̄〉 + ‖c − c̄‖‖x − x̄‖, ‖b − b̄‖∞}
≤ max{M‖b − b̄‖∞ + δ‖c − c̄‖, ‖b − b̄‖∞}
≤ (M + δ)‖(c, b) − (c̄, b̄)‖.

By Definition 3.1(ii), S possesses q-order isolated calmness property at
((c̄, b̄), x̄). (iv) ⇔ (v) is immediate from Proposition 3.14. (ii) ⇒ (vi) and the
opposite implication when T is finite, together with the equality (4.6) follow
from Corollaries 3.8 and 3.9. It suffices to notice that, when T is finite, the
parameter space C(T ,R) is finite-dimensional. When q > 1, the equivalence
(iv) ⇔ (vii) is a consequence of Theorem 3.16.

Remark 4.3 Implication (iii) ⇒ (i) in Theorem 4.2 is a consequence of [16, Corollary 3]
and the fact that, under the Slater condition, F is calm and Lipschitz lower semicontinuous.

In the case q ≥ 1, implication (iv) ⇒ (i) is a special case of [14, Theorem 2.2]. For
the semi-infinite optimization model P(c, b), this implication was explicitly given, e.g., in
[15, Proposition 4.2]. Indeed, x̄ is a q-order sharp minimizer of f , then, using the notation
of Definition 3.1, one has in particular

τ ‖x − x̄‖q ≤ 〈c, x − x̄〉 , for all x ∈ F(b̄) ∩ U,

i.e., x̄ is a strict local minimizer of P(c̄, b̄) in the sense of [15]. Since the Slater condition
is equivalent to the extended Mangasarian-Fromovitz CQ (for this equivalence in rela-
tion to the linear SIP problem P(c, b) see, e.g., [10, Theorem 6.1] and [4, Theorem 2.1]),
[15, Proposition 4.2] applies and gives (in particular) that S possesses the q-order isolated
calmness property at ((c̄, b̄), x̄).

Next we recall the Extended Nürnberger Condition (ENC, in brief) [6, Definition 2.1].
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Definition 4.4 ENC is satisfied at ((c̄, b̄), x̄) when P(c̄, b̄) satisfies the Slater condition,
and there is no subset D ⊂ Tb̄(x̄) with |D| < n such that −c̄ ∈ cone {at , t ∈ D}.

The following lemma is [6, Theorem 2.1 and Lemma 3.1]).

Lemma 4.5 Suppose that ENC is satisfied at ((c̄, b̄), x̄). Then

(i) S is single valued and Lipschitz continuous in a neighbourhood of (c̄, b̄);
(ii) if a sequence {((ck, bk), xk)} ⊂ gphS converges to ((c̄, b̄), x̄), then (bk, xk) ∈ gphSc̄

for all k large enough.

Thanks to Lemma 4.5, we can show that the parameter c can be considered fixed in our
analysis, provided that ENC holds at ((c̄, b̄), x̄).

Theorem 4.6 If ENC is satisfied at ((c̄, b̄), x̄), then clmq S((c̄, b̄), x̄) = clmq Sc̄(b̄, x̄).

Proof It obviously holds clmq Sc̄(b̄, x̄) ≥ clmq S((c̄, b̄), x̄), and we need to show
the opposite inequality. If clmq S((c̄, b̄), x̄) = +∞, there is nothing to prove. Let
clmq S((c̄, b̄), x̄) < +∞. Then

clmq S((c̄, b̄), x̄) = lim
k→+∞

‖(ck, bk) − (c̄, b̄)‖
‖xk − x̄‖q

for some sequence {((ck, bk), xk)} ⊂ gphS such that ((ck, bk), xk) → ((c̄, b̄), x̄) and xk �=
x̄ for all k ∈ N. If ENC is satisfied at ((c̄, b̄), x̄), then, by Lemma 4.5, (bk, xk) ∈ gphSc̄ for
all k large enough. Hence,

clmq S((c̄, b̄), x̄) ≥ lim inf
k→+∞

‖bk − b̄‖∞
‖xk − x̄‖q ≥ clmq Sc̄(b̄, x̄).

This completes the proof.

Example 4.7 Consider the linear semi-infinite optimization problem in R
2:

P(c, b) : minimize c1x1 + c2x2

subject to (cos t) x1 + (sin t) x2 ≤ bt , t ∈ [0, 2π ].
Let c̄ := (1, 0) and b̄t := 1, for all t ∈ [0, 2π ]. It is easy to check that x̄ := (−1, 0) is
the unique solution of P

(
c̄, b̄

)
. It obviously satisfies the Slater condition. We are going to

use condition (v) in Theorem 4.2 to check the isolated calmness property of the solution
mapping S of P

(
c̄, b̄

)
. The function (4.3) takes the form

f (x) = max

{
x1 + 1,

√
x2

1 + x2
2 − 1

}
, x = (x1, x2) ∈ R

2.

Obviously, f (x̄) = 0 and, for any x = (x1, x2) ∈ R
2 and t > 0, we have

f (x̄ + tx) = max
{
tx1,

√
(tx1 − 1)2 + (tx2)2 − 1

}

= t max

{
x1,

−2x1 + t (x2
1 + x2

2 )√
(tx1 − 1)2 + (tx2)2 + 1

}
.
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Thus,

f ′
q(x̄; x) = lim inf

(u1,u2)→(x1,x2), t↓0
t1−q max

{
u1,−u1 + t (u2

1 + u2
2)

2

}
≥ 0. (4.9)

If x1 = 0 and q < 2, then, by (4.9),

f ′
q(x̄; x) = lim inf

u1→0, t↓0
t1−q |u1| = 0,

and consequently, ‖f ′
q(x̄; ·)‖q = 0. Thus, by Theorem 4.2, S does not possess q-order

isolated calmness property at ((c̄, b̄), x̄) when q < 2. With q = 1, this fact was established
in [5]. Similarly, if x1 = 0 and q = 2, then

f ′
2(x̄; x) = lim inf

u1→0, t↓0
max

{
u1

t
,−u1

t
+ x2

2

2

}
= inf

α∈R max

{
α, −α + x2

2

2

}
= x2

2

4
.

Finally, if x1 �= 0, it follows from (4.9) that f ′
2(x̄; x) ≥ limt↓0 t−1|x1| = +∞. Hence,

‖f ′
2(x̄; ·)‖2 = 1

4 > 0 and, by Theorem 4.2, S possesses 2-order isolated calmness property
at ((c̄, b̄), x̄).

5 q-Order SharpMinimizers of �p Penalty Functions

In this section, we consider an inequality constrained optimization problem

minimize f (x)

subject to gi(x) ≤ 0, i ∈ I := {1, . . . , m}, (5.1)

where f, gi : Rn → R ∪ {+∞}, i ∈ I . Given numbers p > 0 and r > 0, the lp penalty
optimization problem corresponding to (5.1) can be defined as follows:

minimize �p(x) := f (x) + r

m∑
i=1

(g+
i )p(x), (5.2)

where g+
i (x) := max{0, gi(x)}, i ∈ I .

By virtue of the optimal value function, relations between local minimizers of (5.1) and
(5.2) were given in [11, 24]. Below q-order Hadamard directional subderivatives are used
to identify q-order sharp minimizers of the penalty problem (5.2).

By Propositions 3.14 and 2.8(iv), a point x̄ ∈ ∩m
i=1dom gi ∩ dom f is a q-order sharp

minimizer of (5.2) if and only if

(�p)′q(x̄; x) > 0 for all x �= 0. (5.3)

Define

I (x̄) = {i ∈ I | gi(x̄) = 0},
K∗(x̄) = {x ∈ R

n | ‖x‖ = 1, f ′
q(x̄; x) ≤ 0},

a(x̄) = min

⎧⎨
⎩

∑
i∈I (x̄)

[
(g+

i )′q/p(x̄; x)
]p | x ∈ K∗(x̄)

⎫⎬
⎭ ,

b(x̄) = min{f ′
q(x̄; x) | ‖x‖ = 1}.
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Theorem 5.1 (i) Suppose that f ′
q(x̄; ·) is proper and

f ′
q(x̄; x) > 0 for all x �= 0 with (g+

i )′q/p(x̄; x) = 0, i ∈ I (x̄). (5.4)

Then x̄ is a q-order sharp minimizer of (5.2) for all r > ρ0, where

ρ0 :=
{ −b(x̄)/a(x̄), if K∗(x̄) �= ∅,

0, otherwise.

(ii) Suppose that f is q-order Hadamard directionally differentiable at x̄, m = 1 and x̄ is
a q-order sharp minimizer of (5.2) for some r > 0. Then (5.4) holds.

Proof (i) If K∗(x̄) �= ∅, then a(x̄) > 0 and b(x̄) ≤ 0. Therefore ρ0 is well defined
and nonnegative. Let r > ρ0. Let x �= 0. As (�p)′q(x̄; ·) is positively homogeneous,

without loss of generality, we assume that ‖x‖ = 1. Obviously, (g+
i )′q/p(x̄; x) ≥ 0 for

all i ∈ I . It is easy to show that

([g+
i ]p)′q(x̄; x) =

[
(g+

i )′q/p(x̄; x)
]p

for all i ∈ I (x̄).

Since f ′
q(x̄; ·) is proper, it follows that

(�p)′q(x̄; x) ≥ f ′
q(x̄; x) + r

∑
i∈I (x̄)

[
(g+

i )′q/p(x̄; x)
]p

. (5.5)

If x �∈ K∗(x̄), we have f ′
q(x̄; x) > 0, and consequently, (�p)′q(x̄; x) > 0. If x ∈

K∗(x̄), then b(x̄) ≤ 0. So, by definitions of ρ0 and a(x̄), we have

r
∑

i∈I (x̄)

[
(g+

i )′q/p(x̄; x)
]p

> −b(x̄),

and thus it follows from (5.5) that

(�p)′q(x̄; x) > f ′
q(x̄; x) − b(x̄) ≥ 0.

So, by (5.3), x̄ is a q-order sharp minimizer for (5.2).
(ii) It follows from Corollary 2.9 that (5.5) holds as equality. The conclusion is verified

by Propositions 3.14 and 2.8(iv).

Condition (5.4) in Theorem 5.1 uses (g+
i )′q/p(x̄; ·), which allows the treatment of q-order

sharp minimizers of rather general penalty functions. When p = q = 1, Theorem 5.1(i) is
a consequence of [26, Theorem 4.1].

Furthermore, for all i ∈ I (x̄), u ∈ R
n and t > 0, we obviously have

g+
i (x̄ + tu) − g+

i (x̄)

tq/p
= g+

i (x̄ + tu)

tq/p
= max {0, gi(x̄ + tu)}

tq/p

= max

{
0,

gi(x̄ + tu)

tq/p

}
= max

{
0,

gi(x̄ + tu) − gi(x̄)

tq/p

}
.

Hence, if gi (i ∈ I (x̄)) is (q/p)-order Hadamard directionally differentiable at x̄, then so
is g+

i , and
(g+

i )′q/p(x̄; x) = max{0, (gi)
′
q/p(x̄; x)}

for all x ∈ R
n. Therefore, if all gi (i ∈ I (x̄)) are (q/p)-order Hadamard directionally

differentiable at x̄, then (5.4) is equivalent to the following condition:

f ′
q(x̄; x) > 0 for all x �= 0 with (gi)

′
q/p(x̄; x) ≤ 0, i ∈ I (x̄).
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The following simple example shows the calculation of the exact upper bound of the
1-order sharp minimizer of the penalty problem (5.2).

Example 5.2 Consider the following problem on R:

minimize x subject to x2s ≤ 0,

where s > 0. Obviously x̄ = 0 is a minimizer of this problem. With any p > 0, we have

shrp1�p(0) =
⎧⎨
⎩

+∞, if sp < 1/2,

r + 1, if sp = 1/2,

0, otherwise.
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