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Abstract
Recently, circumcentering reflection method (CRM) has been introduced for solving the
feasibility problem of finding a point in the intersection of closed constraint sets. It is closely
related with Douglas–Rachford method (DR). We prove local convergence of CRM in the
same prototypical settings of most theoretical analysis of regular nonconvex DR, whose
consideration is made natural by the geometry of the phase retrieval problem. For the pur-
pose, we show that CRM is related to the method of subgradient projections. For many
cases when DR is known to converge to a feasible point, we establish that CRM locally pro-
vides a better convergence rate. As a root finder, we show that CRM has local convergence
whenever Newton–Raphson method does, has quadratic rate whenever Newton–Raphson
method does, and exhibits superlinear convergence in many cases when Newton–Raphson
method fails to converge at all. We also obtain explicit regions of convergence. As an inter-
esting aside, we demonstrate local convergence of CRM to feasible points in cases when
DR converges to fixed points that are not feasible. We demonstrate an extension in higher
dimensions, and use it to obtain convergence rate guarantees for sphere and subspace fea-
sibility problems. Armed with these guarantees, we experimentally discover that CRM is
highly sensitive to compounding numerical error that may cause it to achieve worse rates
than those guaranteed by theory. We then introduce a numerical modification that enables
CRM to achieve the theoretically guaranteed rates. Any future works that study CRM for
product space formulations of feasibility problems should take note of this sensitivity and
account for it in numerical implementations.
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1 Introduction

The Douglas–Rachford method (DR) is frequently used to solve feasibility problems of the
form

find x ∈ A ∩ B, (1)

where, here and throughout,A andB are closed subsets of a finite dimensional Hilbert space
H andA∩B �= ∅. For such problems the method consists of iterating the DR operator, which
is an averaged composition of two over-relaxed projection operators defined as follows:

TA,B := 1

2
RBRA + 1

2
Id with RC := 2PC − Id, (2)

where, here and throughout, Id is the identity map and the projection map PS is as defined
below in Eq. 3. The DR operator owes its colloquial name to its indirect introduction in the
context of nonlinear heat flow problems [28], though it was independently discovered by
Fienup in the nonconvex setting of phase retrieval [30], and so it has been known under
various other names [39].

Its broader versatility in the nonconvex context was highlighted in by Elser and Gravel
[34], who applied it to solve various nonconvex combinatorial problems modeled as feasi-
bility problems with stochastic constraints. The method has since been applied to a host of
other discrete feasibility problems, including Sudoku puzzles [3, 5], matrix completion [4,
21], graph coloring [6, 7], and bit retrieval [29], among others. For a more comprehensive
overview of its history, including the broader context of DR as a splitting method in solving
optimization problems, see for example, [39]. For more on the use of DR for solving both
nonconvex and convex feasibility problems, refer to [9].

The aforementioned seminal work of Elser and Gravel [34] piqued the interests of Bor-
wein and Sims, who in 2011 made the first rigorous attempt at analysing the behaviour
of DR in the nonconvex setting of hypersurfaces [20]. The spiraling convergence pattern
they observed characterizes performance when DR is applied to many other nonconvex
hypersurface feasibility problems, which we recall in Section 4.

In the convex setting, the idea of circumcentering with the reflections has been recently
introduced [12, 13, 15, 17]. Other methods have also been designed, based on using the
past performance to predict future iterates [38, 44]. What motivates the present work is the
tendency of splitting methods to solve nonconvex problems [2, 19, 20, 31, 36, 40], and the
appetizing prospect of accelerating convergence in the nonconvex setting.

For the more general monotone inclusion problem, Douglas–Rachford method is dual to
the Alternating DirectionMethod of Multipliers (ADMM) [32, 39]. This motivated the recent
introduction of a class of novel methods [38] that, for some feasibility problems, includes
CRM. The author introduced this class with the motivation of building algorithms that are
primal/dual implementable. The simplest of them, LT , may also be used for a feasibility
problem. We will include it for comparison in our computed examples; for some problems,
it exhibits apparently quadratic convergence, which is certainly interesting. However, as LT

was derived through a somewhat different framework to what we develop here, we will not
make a theoretical comparison to it.
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1.0.1 Goal

The goal of the present work is to furnish local convergence analysis for CRM in related
nonconvex settings to those considered for DR, namely, the case when one set is a hyper-
plane and the other is a hypersurface that can be represented locally by the graph of a
function [2, 18–20, 24, 40]. The purpose and value of this investigation (and those others
like it) is, ultimately, not to develop a superior root finder on R, but rather to understand
the performance of CRM more generally. Since the construction of a single step of CRM is
always computed in a 2-dimensional subspace, the study of 2-dimensional problems offers
us such insights, as 2-dimensional problems are often prototypical of the 2-dimensional
slices of problems in higher dimensions. This is why they have been used so often in the lit-
erature. As a natural example, we furnish Examples 1 and 2, which show that our results on
plane curves admit quadratic convergence rate guarantees for spheres and subspaces. When
our numerical experiment in Example 2 at first achieves only a linear rate, we then know,
because a quadratic rate is guaranteed by theory, that the observed linear rate is a conse-
quence of very small numerical errors. Armed with this knowledge, we locate the source of
the error, and compensate for it to recover the superior convergence rate guaranteed by the
theory. The discovery of this sensitivity to small numerical error will be invaluable to further
efforts to study CRM with the usual product space formulation of the feasibility problem,
for reasons we explain.

1.1 Outline

The remainder of this paper is outlined as follows. In Section 2, we provide the preliminar-
ies on Douglas–Rachford and CRM. In Section 3, we introduce a modified version of CRM
that is generically proper, and show that it has a reasonable fixed point property (Proposi-
tion 1). In Section 4, we show that CRM, in the case when the sets are a hyperplane and the
graph of a function on Rη, is related to subgradient projection on a lower dimensional space
(Theorem 2). In R

2, the subgradient projection method is just Newton–Raphson method.
In Section 5, we establish local convergence of CRM to a feasible point in the hypersur-
face settings considered previously for DR, along with convergence rate guarantees that are
quadratic in many cases (Theorem 3). Our analysis, in cases with quadratic convergence,
exploits the connection with Newton–Raphson method. More interestingly, in many cases
when Newton–Raphson method fails to converge at all, we use the generalized angle bisec-
tor theorem to show local superlinear convergence of CRM (Lemma 5) in R2. In Section 6,
we provide some examples to show one way in which our rate guarantees from Section 5
may extend to guarantees for certain problems in R

η. Specifically, we show quadratic con-
vergence rates for spheres and affine subspaces, the problem that has gained particular
interest for being prototypical of phase retrieval. We also provide numerical evidence that
the convergence rate for CRM when one set is a subspace can be particularly sensitive to
compounding numerical error, and we explain how we overcame this sensitivity to achieve
the theoretical rate. We conclude in Section 7.

2 Preliminaries

Splitting methods such as the Douglas–Rachford method (DR) are frequently used to solve
feasibility problems as in Eq. 1. When the sets of interests are closed, we often employ
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iterative algorithms that make use of the projector operator

PSx :=
{
z ∈ S : ‖x − z‖ = inf

v∈S
‖x − v‖

}
.

In the nonconvex setting, PS is a set-valued map where image values may contain more
than one point. For the cases we will consider in this paper, PS is always nonempty, and we
simplify the exposition by working with a selector

PS : H → S : x �→ PSx ∈ PSx. (3)

The classical result for the feasibility problem using DR, when A and B are closed and
convex, is a consequence of a more general result of Lions & Mercier [41]. We provide the
feasibility-specific version.

Theorem 1 (Lions & Mercier [41]) Let A,B ⊂ H be closed, convex, and nonempty, with
A ∩ B �= ∅ and the sum of their normal cone operators NA + NB also maximal monotone.
For any x0 ∈ H, the sequence given by xn+1 = TA,Bxn converges to some v ∈ H as
n → ∞ such that PAv ∈ A ∩ B.

Note that the condition thatNA+NB be monotone may be relaxed for the convex feasibil-
ity problem [10, Fact 5.9]. The operator described in Eq. 2 is called the Douglas–Rachford
operator.

Generically, the fixed points of this operator may not themselves be feasible; see [39,
Figure 5b] for a pictorial example. This example also illustrates the useful fact that, even in
the nonconvex context, fixed points satisfy (see [39, Proposition 3.1])

(x ∈ Fix TA,B) =⇒ PAx ∩ A ∩ B �= ∅. (4)

Various extensions of DR to accommodate N -set (where N > 2) feasibility problems
have also been considered. The most utilized is the product space reformulation [34, 43].
With such a reformulation, convergence is guaranteed for N closed and convex sets (with
nonempty intersection) by the two set result in Theorem 1. An augmented discussion of the
above details are given in the recent survey article [39].

2.1 Circumcentering

Given three points u, v,w ∈ H, we denote the circumcenter by C(u, v,w) and define it to
be the point equidistant to u, v,w, and lying on the affine subspace they generate.

It may be readily verified that when u, v and w are not colinear, C(u, v,w) is the inter-
section of the perpendicular bisectors of the sides of the triangle formed by u, v and w.
Figure 1 illustrates that C(u, v,w) is not necessarily contained within the convex hull of the
triangle formed by u, v, and w.

When {u, v,w} has cardinality 1, the definition clearly implies that C(u, v,w) = u =
v = w. When {u, v,w} has cardinality 2, C(u, v,w) is the average of the two distinct points.

When “circumcentering” the reflections, we compute a new iterate by taking the
circumcenter of x, RAx, and RBRAx. Following [16], we denote this operation by

CRM(x) := C(x, RAx, RBRAx). (5)

The case where x, RAx, and RBRAx are distinct and colinear does not occur when the sets
in question are intersecting affine subspaces as in [15, 17]. It may also be avoided when the
product space method is used for convex feasibility problems as in [16]. In such a case, the
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Fig. 1 The circumcenter of a triangle

operator CRM is said to be proper. Sufficient conditions for the operator CRM to be proper
are given in [12, 13]. For a convex example where the operator CRM is not proper, let A

be the unit ball in R
2, B = {(λ, 3/4) | λ ∈ R}, and x = (0, 2). Then RAx = (0, 0) and

RBRAx = (0, 3/2), and so x, RAx, RBRAx are distinct and colinear.
For explicit formulas for computing the circumcenter, and for a generalization of the

circumcenter of a triangle to the circumcenter of sets containing finitely many points, see
[13]. For extensions of linear convergence results to infinite dimensional spaces, refer to
[14]. A primal/dual centering approach that does not make use of reflection substeps was
introduced in [38].

3 A Generically Implementable Nonconvex Adaptation

For nonconvex feasibility problems, CRM generically fails to be proper, and so we must
choose a reasonable definition for the mapping in the nonconvex setting. This is impor-
tant to ensure numerical stability in the computation, because applying the circumcentering
operator to colinear (or nearly colinear) substeps may result in errors that disrupt computa-
tion. For a nonconvex problem, we may not know when this colinearity or near-colinearity
might occur. The definition, therefore, should rely on conditions that are easy to check from
a computational standpoint.

Fortunately, a clear choice presents itself. When x, RAx, and RBRAx are colinear, the
possibilities are as follow.

(i) RBx = RAx = x, in which case x ∈ A ∩ B ∩ Fix TA,B and CRM(x) = TA,Bx.
(ii) RBRAx �= RAx = x or RBRAx = RAx �= x, in which case the average of the two

distinct points is just 1
2x + 1

2RBRAx = TA,Bx, and so again CRM(x) = TA,Bx.
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(iii) RBRAx = x �= RAx, in which case x ∈ Fix TA,B , and so PAx ∈ A ∩ B. In this case,
CRM(x) = 1

2RAx + 1
2x = PAx ∈ A ∩ B.

(iv) RBRAx, RAx, and x are distinct, in which case CRM(x) = ∅ while TA,Bx �= ∅.
Altogether, in cases (i) and (ii) CRM(x) and TA,Bx coincide, and in case (iii) it does not mat-
ter whether one updates with CRM(x) or TA,Bx, since PAx solves the feasibility problem.
We choose to update with TA,Bx in case (iv), which is consistent but is also a reasonable
choice, given what is known about the “searching” behaviour of DR for many nonconvex
problems (specifically, it sometimes walks in a straight line before finding the local basin;
see [19]). Finally, for the sake of simplicity, we will also choose to “update” with TA,Bx in
case (iii); in this way, our definition differs in the convex setting from that in [17], but it does
not differ in a consequential way, since case (iii) only occurs when we have already solved
the problem. The complete definition of our generically proper circumcentering reflection
operator is

CT : H → H : x �→
{

TA,Bx if x, RAx, and RBRAx are colinear;

CRM(x) otherwise.
(6)

From a computational standpoint, this definition is easy to employ. One need only specify
some small numerical tolerance ε > 0 and verify noncolinearity by checking that

|〈x − RBRAx, RAx − RBRAx〉|
‖x − RBRAx‖‖RAx − RBRAx‖ < 1 − ε,

before using the closed form for the circumcenter from [13, Theorems 8.4,8.5].
Since CT specifies to CRM when CRM(x) is proper—except in the uninteresting case of

(iii) when the feasibility problem is essentially solved—we immediately have the following
fixed point result.

Proposition 1 (Fixed points of CT ) If x ∈ FixCT then PAx ∩ A ∩ B �= ∅.

Proof Let x ∈ FixCT . Then we have from Eq. 6 that either x = TA,Bx or x = CRM(x). If
x ∈ TA,Bx, then the result follows from Eq. 4. If x ∈ CRM(x), then x is equidistant from
x, RAx, and RBRAx, and so x = RAx = RBRAx. Thus x ∈ A ∩ B, and so PAx = x ∈
A ∩ B.

Definition 1 (Generically proper CRM) Let x0 ∈ H. Define (xn)n∈N by

xn+1 := CT xn, (7)

where CT is as in Eq. 6.

For nonconvex problems, DR often has colinear substeps at the beginning of the search;
see, for example, the example of Section 5.4 item 3 or the example of the ellipse and line
from [19]. However, for many problems, this co-linear case never occurs (e.g. Examples 1,
2, and 3 from this paper), or at least never occurs when the algorithm starts sufficiently
near to a solution (e.g. the ellipse and line example in [19]). For this reason, the local anal-
ysis of convergence for CT often reduces to the analysis of CRM. For our part, we do not
view “Generically proper CRM” to be a distinct algorithm from CRM, casewise definition
notwithstanding. We simply consider it to be the natural way to adapt CRM for a noncon-
vex feasibility problem. Unless one knows a local theoretical guarantee that the co-linear
case will not occur (as we use in our convergence analysis in Section 5), one simply must,
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for computational safety, include a co-linearity check and have a plan in place for handling
the co-linear case.

4 Hypersurface Feasibility Problems

For DR, Borwein and Sims considered in detail the case of a unit sphere A in Rη and a line
B [20]. Based on experimentation with the dynamical geometry software Cinderella [1],
they hypothesized global convergence of the sequence for starting points not on the singular
set – the line perpendicular to B and passing through the center of A. Aragón Artacho and
Borwein later provided a conditional proof based on the piecewise study of regions [2], and
Benoist showed convergence definitively by constructing a Lyapunov function [18].

With the proof of Benoist [18], the case of a 2-sphere and a line was mostly resolved,
though Borwein and Sims’ conjecture of chaos on the singular manifold [20] was later
disproven in the seemingly different context of [11], where Bauschke, Dao, and Lindstrom
proved it to be aperiodic but fully describable in terms of generalized Beatty sequences.
Two generalizations of the 2-sphere were considered in [19]. In this setting, the singular
set has nonzero measure, and the dynamical system is characterized by basins of varying
periodicities.

In contradistinction, as long as x0 is not in the singular set of measure zero, CRM exhibits
global convergence for any configuration of an ellipse and line, and spiralling is entirely
absent. This is actually implicitly proven in [16, see Remark 1], because the CRM sequence,
after the first update, coincides with the CRM sequence for the convex problem of the ball
and a hyperplane. Figure 2 is a representative example of what the behaviour looks like, and
it suggests the following result.

Lemma 1 Let x ∈ H. The following hold.

1. If A is a hyperplane and x, RAx, RBRAx are not colinear, then CT x ∈ A;

Fig. 2 Several iterates of CRM for a sphere and line
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2. If B is a hyperplane and x, RAx, RBRAx are not colinear, then CT x ∈ B;
3. If B is a hyperplane and x = RAx, then CT x ∈ B;
4. If B is an affine subspace and x ∈ B and x, RAx, RBRAx are not colinear, then CT x ∈

B.

Proof (i): Since x, RAx, and RBRAx are not colinear, CT x = CRM(x), and so CT x is
equidistant from RAx and RBRAx. Since RAx and RBRAx are distinct and A is a hyper-
plane, we first claim that A is the set of points equidistant from RAx and RBRAx. To see
why, we assume without loss of generality that 0 ∈ A, to simplify our notation. We can
decompose x into components that are in A and its orthogonal complement A⊥, that is,
x = zA + zA⊥ . This implies that PAx − zA, and so RAx = zA − zA⊥ . For any point y ∈ A,
the Pythagorean theorem yields

‖y − x‖2 = ‖y − zA‖2 + ‖zA⊥‖2 = ‖y − RAx‖2.
Since y is arbitrary, then any point y is equidistant from x andRAx. Suppose now that y ∈ H
is equidistant from x and RAx. We may similarly write y = yA + yA⊥ and obtain that

‖yA − zA‖2 + ‖yA⊥ − zA⊥‖2 = ‖yA + yA⊥ − zA − zA⊥‖2 = ‖y − x‖2 (�)= ‖y − RAx‖2
= ‖yA + yA⊥ − zA + zA⊥‖2 = ‖yA − zA‖2 + ‖yA⊥ + zA⊥‖2,

and so ‖yA⊥ − zA⊥‖2 = ‖yA⊥ + zA⊥‖2. (8)

Here (�) uses the equidistance assumption. Notice that Eq. 8 forces 〈zA⊥ , yA⊥〉 = 0, and
since A⊥ is one-dimensional, then zA⊥ = 0 or yA⊥ = 0. If zA⊥ = 0, then x = RAx, which
is a contradiction. Therefore yA⊥ = 0, and so y ∈ A. Altogether, the set of equidistant
points is exactly A, and so CT x ∈ A.

(ii): Since x, RAx, and RBRAx are not colinear, CT x = CRM(x), and so CT x is equidis-
tant from RAx and RBRAx. Since RAx and RBRAx are distinct and B is a hyperplane, we
first claim that B is the set of points equidistant from RAx and RBRAx. To see why, we
assume without loss of generality that 0 ∈ B, to simplify our notation. We can decom-
pose RAx into components that are in B and in its orthogonal complement B⊥, that is,
RAx = zB + zB⊥ . This implies that PBRAx = zB , and so RBRAx = zB − zB⊥ and
PBRBRAx = zB . For any point y ∈ B, the Pythagorean theorem yields

‖y − RAx‖2 = ‖y − zB‖2 + ‖zB⊥‖2 = ‖y − RBRAx‖2.
Since y is arbitrary, then any point y ∈ B is equidistant from RAx and RBRAx. Suppose
now that y ∈ H is equidistant from RAx and RBRAx. We may similarly write y = yB +yB⊥
and obtain that

‖yB − zB‖2 + ‖yB⊥ − zB⊥‖2 = ‖yB + yB⊥ − zB − zB⊥‖2 = ‖y − RAx‖2 (�)= ‖y − RBRAx‖2
= ‖yB + yB⊥ − zB + zB⊥‖2 = ‖yB − zB‖2 + ‖yB⊥ + zB⊥‖2,

and so ‖yB⊥ − zB⊥‖2 = ‖yB⊥ + zB⊥‖2. (9)

Here (�) uses the equidistance assumption. Notice that Eq. 9 forces 〈zB⊥ , yB⊥〉 = 0, and
since B⊥ is one-dimensional then zB⊥ = 0 or yB⊥ = 0. If zB⊥ = 0, then RAx = RBRAx,
which is a contradiction. Therefore yB⊥ = 0, and so y ∈ B. Altogether, the set of equidistant
points is B, and so CT x ∈ B.
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(iii): Since x = RAx, we have CT x = TA,Bx which expands to

CT x = (1/2)x + (1/2)RBRAx = (1/2)x + (1/2)RBx = PBx,

where the second equality uses the condition that x = RAx. Thus, CT x ∈ B.
(iv): Let L be the set of points that are equidistant from RAx and RBRAx. To show that

CT (x) ∈ B, it suffices to show that

L ∩ aff(x, RAx, RBRAx) ⊂ B.

Because x, RAx, RBRAx are not colinear, it must be true that RAx �= RBRAx, and so the
inclusion

L ∩ aff(x, RAx, RBRAx) � aff(x, RAx, RBRAx)

is not an equality. Combining with the fact that the affine subspace on the right side is
2-dimensional, we have

dim(L ∩ aff(x, RAx, RBRAx)) = 1.

Notice that in our proof of (ii), the argument that shows that B is contained in the subset
of equidistant points (i.e. B ⊂ L) depended only upon B being an affine subspace (only
the reverse inclusion ⊃ relied upon B being a hyperplane) and so B ⊂ L holds now by the
same argument. More specifically, since x ∈ B and PBRAx ∈ B, we have that

B∗ := aff{x, PBRAx} ⊂ B ⊂ L.

Of course, we also have
B∗ ⊂ aff{x, RAx, RBRAx}.

Moreover, since x, RAx, and RBRAx are not colinear B∗ is of dimension 1. Altogether, we
have that B∗ is a one-dimensional affine subspace contained in L ∩ aff(x, RAx, RBRAx).
As the two affine subspaces are of dimension 1, and one is contained in the other, they must
be equal. This concludes the result.

Of the above proposition, the following should be noted:

1. Items (i) and (ii) of the above proposition are not necessarily true if the set that is
assumed to be a hyperplane is, instead, only assumed to be an affine subspace of arbi-
trary dimension. In case (ii), for instance, if one assumes B is only an affine subspace
instead of a hyperplane, then one can only obtain yB⊥ ∈ {zB⊥}⊥. As an example, the
perpendicular bisector of a reflection across a line in R

3 is a hyperplane containing the
line; the circumcenter will be in the hyperplane, but not necessarily the line.

2. Item (iv) is already known in the case when A is convex, due to [16, Lemma 3]. That
result uses in its proof the convexity of A; if it did not, then we would simply cite the
extension as vacuous.

Throughout the remaining part of this section, we write x = (x, x′) ∈ R
η × R = R

η+1

where x is the component of x in R
η and x′ is the component of x in R. Furthermore, we

set A,B ⊂ R
η+1 as

A = graf = {(y, f (y)) | y ∈ domf ⊂ R
η} and B = R

η × {0}.
Here, gra f denotes the graph of a function f : R

η → R. Furthermore, we use ∂0f to
denote the symmetric subdifferential of f , which is given by ∂0f := ∂f ∪ (−∂(−f )),
where ∂f (x) := {x∗ ∈ X | (x∗, 1) ∈ Nepif (x, f (x))} is the limiting subdifferential of f

at x [24, Section 2.3]. The following lemma establishes a relationship between CRM and
subgradient projections in R

η.
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Theorem 2 Let x = (x, x′) ∈ R
η × R, B = {(t, 0) : t ∈ R

η} and A = gra f where f :
R

η → R is proper and has a closed graph. Suppose further that f is Lipschitz continuous
locally at y where (y, f (y)) =: PAx. Then the following hold.

(i) If x, RAx, RBRAx are not colinear, then

CT x =
(

y − f (y)

‖y∗‖2 y∗, 0
)

where y∗ ∈ ∂0(f (y)) satisfies x = y + (f (y) − x′)y∗

(ii) Otherwise, CT x = (
y, x′ − f (y)

)
.

Proof First note that the existence of y∗ that satisfies

x = y + (f (y) − x′)y∗ (10)

is assured by [24, Lemma 3.4].
(i) The assumption of non-colinearity forces CT x = CRM(x). We must have y∗ �= 0,

since (y∗ = 0) =⇒ (x = y), which forces x, RAx, RBRAx to be colinear, a contradiction.
Similarly note also that (f (y)−x′ = 0) =⇒ (x = y), which forces the same contradiction;
therefore f (y) − x′ �= 0. Any point w = (w,w′) in the perpendicular bisector of (x, RAx)
satisfies

0 = 〈
x − PAx, (w,w′) − PAx

〉
= 〈

(x − y, x′ − f (y)), (w − y, w′ − f (y))
〉

= 〈(
(f (y) − x′)y∗, x′ − f (y)

)
, (w − y,w′ − f (y))

〉
(using Eq. 10)

= (f (y) − x′)
〈(
(y∗,−1

)
, (w − y, w′ − f (y))

〉
(a)= (f (y) − x′)

(〈(w − y), y∗〉 − w′ + f (y))
)

⇐⇒ (w,w′) (b)= (y + λ, f (y) + 〈λ, y∗〉) for some λ ∈ R
η.

To see why (b) holds, remember that f (y) − x′ �= 0, and so the equality (a) is equivalent
to

(〈(w − y), y∗〉 − w′ + f (y)
) = 0, which is equivalent to w′ = f (y) + 〈w − y, y∗〉.

Defining λ := w − y, (b) and (a) are equivalent.
Altogether, we have shown that the perpendicular bisector of the segment (x, RAx) is

the tangent plane (y + λ, f (y) + 〈λ, y∗〉)
λ∈Rη =: H . Combining with Lemma 1 and the

definition of CRM, we have that CRM(x) ∈ H ∩ B ∩ aff(x, RAx, RBRAx). We also have
that

aff(x, RAx, RBRAx) = {(y + αy∗, β) | (α, β) ∈ R
2}. (11)

To see why Eq. 11 holds, let v ∈ aff(x, RAx, RBRAx). Then

v = αxx + αRAxRAx + αRBRAxRBRAx with αx + αRAx + αRBRAx = 1 (12a)

= αx(x, x′) + αRAx(2y − x, 2f (y) − x′) + αRBRAx(2y − x, −2f (y) + x′) (12b)
= (

y + α∗y∗, β∗) (12c)

where α∗ := (2αx − 1)(f (y) − x′) (12d)

and β∗ := αxx
′ + (2f (y) − x′)(αRAx − αRBRAx). (12e)

Here Eq. 12a simply uses the definition of the affine hull; Eq. 12b uses the definition of B,
whereby RBRAx is obtained by taking RAx and simply reversing the sign on its (η + 1)th
coordinate; Eq. 12c uses the fact that x = y + (f (y) − x′)y∗ and the equality αx + αRAx +
αRBRAx = 1. Altogether, we have shown v = (y+α∗, β∗) ∈ {(y+αy∗, β) | (α, β) ∈ R

2},
showing the inclusion ⊂ in Eq. 11. Moreover, as both affine subspaces in Eq. 11 are of the
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same dimension and one is contained in the other, they must be equal, and so the equality
holds in Eq. 11.

Altogether, we have

aff(x, RAx, RBRAx) ∩ H ∩ B =

⎧⎪⎨
⎪⎩(y + λ, f (y) + 〈λ, y∗〉)︸ ︷︷ ︸

constraint H

| λ = αy∗︸ ︷︷ ︸
constraint aff(. . . )

, f (y) + 〈λ, y∗〉 = 0︸ ︷︷ ︸
constraint B

⎫⎪⎬
⎪⎭

=
{(

y − f (y)

‖y∗‖2 y∗, 0
)}

.

This shows the desired result.
(ii): In the colinear case,CT x = TA,Bx. Computing, one hasRAx = (2y−x, 2f (y)−x′),

and RBRAx = (2y −x, −2f (y)+x′), and finally (1/2)RBRAx+ (1/2)x = (y, x′ −f (y)),
which shows the result.

Remark 1 (A subgradient projections characterization) Notice that y �→ y − f (y)

‖y∗‖2 y
∗ is a

step of subgradient projections applied to the function f at y. For a differentiable function
f : R → R, it reduces to a step of Newton–Raphson method: y �→ y − f (y)/f ′(y)

where y ∈ R. Thus, Theorem 2 shows that, for problems when CT x = CRM(x) and x ∈
R
2, the method reduces to a step of alternating projections PBPAx, followed by a step of

subgradient descent for the function f . Figure 3 illustrates this in the case when A is the
graph of the function x �→ x/

√|x| (x ∈ R) and B is the horizontal axis. Solving the
feasibility problem amounts to finding the root of the function x �→ x/

√|x| (x ∈ R), a
problem that Newton’s method on R fails to solve.

Interestingly, [38, Proposition 3.6] has described a relationship between CRM and the
method of subgradient projections applied for a different function: one that describes the
dynamical system admitted by repeated application of the DR operator. This function, called
a Lyapunov function, is defined on a lifted space. The author used the theory of Lyapunov
functions to motivate their introduction of different algorithm, LT , which we will include
for comparison in our computed examples.

The use of DR to find roots of functions onR, as well as for x/
√|x| (x ∈ R) in particular,

was first considered in [40]. Dao and Tam adapted Benoist’s Lyapunov function approach in
order to demonstrate local convergence for non-tangentially intersecting cases thereof [24].

5 A Line and a Plane Curve

Most local convergence results in the nonconvex setting of hypersurfaces have focused on
hyperplanes and graphs of functions [2, 18–20, 24, 40] with R

2 as a setting of particular
focus. One motivation is that the phase retrieval problem may be thought of as a feasibility
problem on n-tuples of R2. Another reason is that DR has variously been observed to spiral
in lower dimensional subspaces, a phenomenon theorized to often occur in a lower dimen-
sional affine subspace ofRη. For example, Aragón Artacho has created an image that shows
this behaviour for a line and sphere in R

3 [22, slide 33]. For CRM, R2 is especially a natu-
ral context for investigation because the circumcenter construction for x is performed in the
affine hull of x, RAx, and RBRAx, which in the non-colinear case is always a copy of R2.
Thus, sets in R

2 generically represent slices of sets in the affine hull of reflection substeps
for higher dimensional problems. Similar planar results motivated, in part, the introduction
of the first primal/dual centering method in [38].
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Fig. 3 CRM applied to find a root of x �→ x/
√|x| where (x ∈ R)

Under mild assumptions, we will show local convergence in R
2 for the algorithm gen-

erated by iteratively applying the map CT with a curve A and line B. Our approach differs
from those in previous works both in terms of the methods used and the results obtained.
In particular, the use of the generalized angle bisector theorem suggests a path forward for
more complicated problems.

5.0.1 Comparing Approaches

The first theoretical result on the convergence of DR in the nonconvex setting is that of
Borwein and Sims [20] who used Perron theorem [20, Theorem 6.1] [35, Corollary 4.7.2]
on the stability of almost linear difference equations to show local convergence in the setting
where A is a unit sphere in Rη and B is a line. This approach has since been adapted [19] to
show local convergence for plane curves more generally. The strategy relies upon the fact
that TA,Bxmay be described as a continuous function of the 3-tuple (x, RAx, RBRAx). This
continuity does not extend to the case of the operator CT , and so the same approach does
not immediately extend to this new context.

The approach of Benoist, Dao, and Tam relies on a Lyapunov function [18, 24, 38].
It is less clear how to adapt such an approach when the spiral itself is obviated by
circumcentering the method.

Our approach is to use Theorem 2 and employ trigonometry to show results about the
intersections of the tangents taken for the curveAwith the lineB. Without loss of generality,
we let B be the horizontal axis. We then use the observation in Remark 1 that, under mild
assumptions, CT locally behaves like a step of alternating projections for A and B followed
by a step of Newton–Raphson method employed to find a root of the function whose graph
is the curve A. Figure 4 is helpful in understanding this observation. Here, when B is the
horizontal axis and A is the graph of a function f : R → R, we may associate the points
xn, xn+1, and (yn, f (yn)) in R2 = {t = (t, t ′) | t, t ′ ∈ R} with their horizontal components
xn, xn+1, and yn. We then have the relationship

xn+1 = gf (yn) := yn − f (yn)

f ′(yn)
, where (yn, 0) = PBPA(xn). (13)
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Fig. 4 Cases for proof of local convergence

Here, gf is the Newton–Raphson operator that is commonly used to search for a root of the
function f , and for which convergence results are well known. For the sake of cleanliness in
Fig. 4, we abuse notation slightly by assigning the label gf (xn) to the point that is actually
(gf (xn), 0). Note that when f is strictly differentiable at y ∈ R, ∂0f (y) = f ′(y) [42,
Corollary 1.82], an identity we will implicitly use in this section whenever appealing to
Theorem 2.

5.1 Auxiliary Results on Newton–RaphsonMethod

Because our results will exploit the connection with Newton–Raphson method, we will need
two preliminary lemmas that tailor the classical theory to our purpose.

Lemma 2 (When Newton–Raphson rate is quadratic) Let θ : R → R and g(t) = t −
θ(t)/θ ′(t) for t ∈ [−ε, ε] and θ(0) = 0. Suppose there exist hLEFT, hRIGHT ∈ C2[−ε, ε]
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such that

(∀t ∈ [0, ε]) hRIGHT(t) = θ(t) and (∀t ∈ [−ε, 0]) hLEFT(t) = θ(t),

with h′
LEFT(0), h

′
RIGHT(0) ∈ R \ {0}. Then there exists δ > 0 such that for p0 ∈ [−δ, δ],

the sequence defined by pn = g(pn−1), when n ≥ 1, converges at least quadratically to 0.
Moreover, for t sufficiently near 0,

|g(t)| <
M

2
|t |2,

for some M ∈ R.

Proof By the classical result on Newton–Raphson (see [23, Theorem 2.9]) , there exist
δLEFT, δRIGHT, MLEFT, MRIGHT such that

t ∈ [−δLEFT, δLEFT] =⇒ |gLEFT(t)| <
MLEFT

2
|t |2

and t ∈ [−δRIGHT, δRIGHT] =⇒ |gRIGHT(t)| <
MRIGHT

2
|t |2

where gRIGHT : t → t − hRIGHT(t)/h′
RIGHT(t)

and gLEFT : t → t − hLEFT(t)/h′
LEFT(t).

Letting MMAX := max{MLEFT,MRIGHT} and δMIN := min{δLEFT, δRIGHT} and using the
fact that

g(t) =
{

gLEFT(t) if t ≤ 0

gRIGHT(t) if t ≥ 0,
we have that

t ∈ [−δMIN, δMIN] =⇒ |g(t)| <
MMAX

2
|t |2. (14)

Lemma 3 (When Newton–Raphson rate is linear) Let h ∈ Cm [−ε, ε] and p = 0 be a root
of h of multiplicity m. Let g : t �→ t − h(t)/h′(t). Then there exists k < 1 and δLIN > 0
such that

t ∈ [−δLIN, δLIN] =⇒ |g(t) − p| < k|t − p|.

Proof Using the fact that

g′(t) = h(t)h′′(t)
h′(t)2

,

we have that

g′(p) = lim
t→0

h(p + t)h′′(p + t)

h′(p + t)2

= lim
t→0

(∑m
j=0

hj (p)
j ! tj + O(tm+1)

) (∑m
j=2

hj (p)
(j−2)! t

j−2 + O(tm−1)
)

(∑m
j=1

hj (p)
(j−1)! tj−1 + O(tm)

)2

(��)= lim
t→0

hm(p)2

m!(m−2)! t
2m−2 + O(t2m−1)

hm(p)2

(m−1)!2 t
2m−2 + O(t2m−1)

= (m − 1)!2
m!(m − 2)! = m − 1

m
< 1.



Circumcentering Reflection Methods

Notice that (��) uses the fact that hj (p) = 0 for j < m (since p is a root of h of multiplicity
m). Letting k = 1

2 (
m−1
m

+ 1), we have that, for t sufficiently near to p, g′(t) < k < 1. In
particular, we may choose δLIN so that

t ∈ [−δLIN, δLIN] =⇒ g′(t) < k.

Applying [23, Theorem 2.8] , we have that

t ∈ [−δLIN, δLIN] =⇒ |g(t) − p| < k|t − p|,
which shows the result.

5.2 Convergence of CRM: Basic Conditions

Throughout the rest of this section, A is the graph of a function f : R → R, B is the
horizontal axis R × {0} ⊂ R

2, x = (x, x′) ∈ R
2, (y, f (y)) := PAx, and B0(r) := [−r, r].

As the projection onto B is computable, one can always start with the first iterate x0 ∈ B. In
particular, we will show that for x0 ∈ B started sufficiently near to the solution, the iterated
scheme xn := (CT )nx0 reduces to xn := (CRM)nx0 and converges to the solution 0. In
particular, the conditions we will impose on f will locally prevent colinearity of x, RAx
and RBRAx (as will be shown in Lemma 4) so that we always have Theorem 2(i), which
simplifies our analysis greatly. We will consider the case when the following hold.

(I) the curve A is the graph of a continuous function f and where 0 ∈ A ∩ B is an
isolated feasible point;

(II) there exists ε1 > 0 such that 0 is the only root of f on B0(ε1);
(III) f is continuous on B0(ε1) and differentiable on B0(ε1) \ {0};
(IV) there exists ε2 > 0 such that zerf ′ ∩ B0(ε2) ⊂ {0}, that is, f ′ has no other roots in

B0(ε2) except possibly for 0.

The isolated root condition we have imposed on f excludes such pathological cases as
f : t �→ sin(1/t)

(
where t ∈ R\{0}), while the analogous condition we have imposed on f ′

further excludes such pathological cases as f : t �→ t sin(1/t)
(
where t ∈ R\{0}). Finally,

we will assume a similar condition about f ′′ namely

(V) there exists ε3 > 0 such that f ′ is continuous and differentiable on B0(ε3) \ {0} with
zerf ′′ ∩ B0(ε3) ⊂ {0}.

In other words, f ′′ has no other roots in B0(ε3) except, possibly, for 0. Since the sign of f

does not change on ]0, ε1], we may by symmetry work in the first quadrant by assuming
(without loss of generality) further that

(VI) f is positive on ]0, ε1].

When f satisfies the conditions (I)–(VI), we write εf := min{ε1, ε2/2, ε3}. The reason
for the choice of ε2/2 will be apparent in Lemma 4. Since f is positive on

]
0, εf

]
and f ′

does not have a root on ]0, εf ], then we further have that f is increasing on
]
0, εf

]
, or

equivalently, f ′ is positive on
]
0, εf

]
.

Remark 2 (When A is a line segment locally) Our conditions have excluded the possibility
that there exists δ > 0 such that f ′′ is zero on [0, δ]. Of course, in this case, the graph of A

is a line segment locally, and so we have convergence in a single step, by Theorem 2. Our
use of the graph of a single-valued function f to represent A also precludes the possibility
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that A is locally a vertical line segment, another case when local convergence is immediate.
Thus, we do not lose any (new) insights by disregarding such cases.

5.3 Convergence of CRM

In what follows, x+ := CT x. For the supposed conditions in the following Lemma 4, if
one remembers that we are only writing x ≥ 0 because we may do so by symmetry and
without loss of generality, then the conditions we have assumed, in essence, are implied by
x lying in B and within a certain local ball about the solution, a standard assumption used
for studying local convergence.

Lemma 4 (Newton–Raphson as a convergence rate bound) Suppose f satisfies the basic
conditions (I)–(VI) and that x = (x, 0) with 0 < x ≤ εf . Then, whenever 0 �= (y, f (y)) =
PAx, the following hold.

(i) y ∈ ]0, x[
(ii) CT x = (gf (y), 0)
(iii) If f ′′(t) > 0 for t ∈ ]0, ε3], then 0 ≤ gf (y) < gf (x);
(iv) If f ′′(t) < 0 for t ∈ ]0, ε3], then gf (x) < gf (y) ≤ 0;

(v) ‖x+‖
‖x‖ = |gf (y)|

|x| ≤ |gf (x)|
|x| .

Proof (i) Since x ≤ ε2/2 and (0, 0) ∈ A, one has ‖x − PA(x)‖ ≤ ‖(x, 0) − (0, 0)‖ = x ≤
ε2/2. Since (x, f (x)) ∈ A, one also has ‖x − PA(x)‖ ≤ ‖(x, 0) − (x, f (x))‖ = f (x). It
then follows that

‖x − PA(x)‖ ≤ min{x, f (x)} ≤ ε2/2. (15)

Suppose, for a contradiction, that PA(x) = (t, f (t)) for t /∈ ]0, x]. If t > ε2, then ‖x −
PA(x)‖ = ‖(x − t, −f (t))‖ ≥ ‖t − x‖ > εf which contradicts Eq. 15. Thus t ≤ ε2. Since
f is monotone increasing on [0, ε2], any point (t, f (t)) ∈ A that satisfies ε2 > t > x must
also satisfy f (t) > f (x), which forces ‖x − PA(x)‖ = ‖(x, 0) − (t, f (t))‖ > f (t) >

f (x) contradicting Eq. 15. Lastly, if t < 0, one has ‖x − PA(x)‖ > x, which is again a
contradiction of Eq. 15. Thus, we have established that y ∈ ]0, x]. Consequently, we also
have that f is Lipschitz continuous on an open ball about y. Since (y, f (y)) = PA((x, 0)),
we may apply [24, Lemma 3.4] to obtain Eq. 10, which simplifies to

x = y + f (y)f ′(y).

If f (y) = 0, then y = 0, which is a case we may ignore. Otherwise, we have f (y)f ′(y) >

0, and so x > y. Thus y ∈ ]0, x[.
(ii): Having shown(i), we have that

RA(x) = (2y − x, 2f (y)), RBRA(x) = (2y − x,−2f (y)), and x = (x, 0)

are not colinear. Thereupon applying Theorem 2, we obtain (ii).
(iii): By the mean value theorem, there exists c ∈ ]y, x[ with

(x − y)f ′(c) = f (x) − f (y). (16)
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Combining with the fact that f ′′(t) > 0 for t ∈ [y, x], we have that f ′ is monotone
increasing on [y, x], and so f ′(y) < f ′(c) < f ′(x). Combining with Eq. 16,

(x − y)f ′(x) > f (x) − f (y),

and so x − y − f (x)

f ′(x)
> − f (y)

f ′(x)
> − f (y)

f ′(y)
,

which shows x − f (x)

f ′(x)
> y − f (y)

f ′(y)
. (17)

Applying the mean value theorem again, there exists c′ ∈ ]0, y[ such that

(y − 0)f ′(c′) = f (y) − f (0) (18)

Since f ′ is monotone increasing on [0, y], we have f ′(c′) < f ′(y). Combining this fact
with Eq. 18, we have yf ′(y) ≥ f (y), and so

0 ≤ y − f (y)/f ′(y). (19)

Together, Eq. 17 and Eq. 19 show (iii). Combining with (ii), we have

x+ = (x+, 0), and 0 ≤ x+ = gf (y) ≤ gf (x),

which together yield (v).
(iv): The proof is similar to (iii), with the only change being that f ′ is monotone decreas-

ing instead of increasing, which reverses the directions of the analogous inequalities. The
proof of (v) then follows in the same way.

As we have already noted, because f ′′ has no roots on
]
0, εf

]
, f ′ is monotone on

]
0, εf

]
.

Consequently, if f ′ is bounded on
]
0, εf

]
, then we have limt↓0 f ′(t) ∈ [0,∞[ exists

by the monotone convergence theorem, and if f ′ is unbounded, then limt↓0 f ′(t) = ∞.
Taken together with Lemma 4, the conditions we have assumed about f ′′ leave us with the
following four natural cases to consider – those illustrated in Fig. 4.

(i)† f ′′(t) < 0 for t ∈ [
0, εf

]
, and f is right differentiable at 0 with

lim
t↓0 f ′(t) ∈ ]0,∞[ .

(ii)† f ′′(t) < 0 for t ∈ [
0, εf

]
, and

lim
t↓0 f ′(t) = ∞.

(iii)† f ′′(t) > 0 for t ∈ [
0, εf

]
, and f ′(0) �= 0.

(iv)† f ′′(t) > 0 for t ∈ [
0, εf

]
, and f ′(0) = 0 and there exists h ∈ Cm

[−εf , εf

]
such

that h(t) = f (t) for t > 0 and 0 is a root of h of multiplicity m (for example, any
function analytic at 0 whose Taylor series has 0 as a root of multiplicity greater than
1 will meet this criterion).

Lemma 4 essentially shows that the convergence rate of Newton–Raphson serves as an
upper bound on the convergence rate of CRM in many cases. Now we use the generalized
angle bisector theorem to obtain superlinear results in cases when Newton–Raphson cycles.
Here, ∠(a,b, c) denotes, as usual, the angle at which the segments ab and bc meet.

Lemma 5 (Cases (i)† and (ii)† superlinear) Let f satisfy the basic conditions (I)–(VI),
f ′′(t) < 0 for t ∈ ]0, ε3], and x = (x, 0). Then for any K > 0 there exists εKf

> 0 such
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that (
x ∈ ]

0, εKf

]) =⇒ ‖x+‖
‖x‖ ≤ 1

K
. (20)

Proof We illustrate our construction in Figs. 4a and 4b. We can and do assume that 0 <

x < εf so that the characterizations in Lemma 4 always hold. For the sake of simplicity,
when limt↓0 f ′(t) < ∞, we write f ′(0) := limt↓0 f ′(t). We also denote

(ϕ, τ ) :=
{(

arctan(f ′(0)),
(
y − f (y)/f ′(0), 0

))
if limt↓0 f ′(t) < ∞

(π/2, (y, 0)) otherwise,

where ϕ is an angle measure and τ is a point. By considering these two cases, we will first
show that

∃δf > 0 such that (x ∈ ]
0, δf

]
) =⇒ cot (∠(x, x+, PAx)) ≤ cot ((1/2)ϕ) . (21)

Case: limt↓0 f ′(t) = ∞.
Combining this assumption with the continuity of f ′, and the fact that f ′′ is negative on

[0, ε],

(∃δf ∈ [0, ε]) such that (t ≤ δf ) =⇒ f ′(t) ≥ 1. (22)

Letting x ∈ ]
0, δf

]
, we have from Lemma 4 that y ∈ [

0, δf

]
, and so f ′(y) ≥ 1.

Consequently, we have that

arctan(f ′(y)) = ∠(x, x+, PAx) ≥ π/4 ≥ (1/2)(π/2) = (1/2)ϕ.

and so cot (∠(x, x+, PAx)) ≤ cot ((1/2)ϕ) ,

which shows Eq. 21.
Case: limt↓0 f ′(t) < ∞.
Since f ′(0) < ∞ and ϕ := arctan(f ′(0)), there exists δf ∈ [0, ε] so that

(x ≤ δf ) =⇒ arctan(f ′(t)) ≥ (1/2) arctan(f ′(0)) = (1/2)ϕ,

whereupon arctan(f ′(y)) ≥ (1/2)ϕ. Consequently,

arctan(f ′(y)) = ∠(x, x+, PAx) ≥ (1/2)ϕ.

and so cot (∠(x, x+, PAx)) ≤ cot ((1/2)ϕ) ,

which again shows Eq. 21. This concludes our need for separate cases.
Next, notice that

‖x+‖ ≤ ‖x+ − τ‖ (23a)

and ‖x‖ ≥ ‖x − τ‖. (23b)

To see why, recall that x+ = (gf (x), 0)with gf (x) ≤ 0 (Lemma 4(iv)). By definition, either
τ = (τ̂ , 0) satisfies τ̂ = y ∈ ]0, x[ or τ̂ = y −f (y)/f ′(0). In the case when τ̂ = y ∈ ]0, x[,
we have

‖x+‖ = |gf (x)| < |y| + |gf (x)| = |y − gf (x)| = ‖x+ − τ‖, which shows Eq. 23a

and ‖x‖ = |x| > |x − y| = ‖x − τ‖, which shows Eq. 23b.

In the other case when τ̂ = y − f (y)/f ′(0), we know that ∞ > f ′(0) ≥ f ′(y) > 0 (this
is just from the definition of τ ). We have from the mean value theorem that some c ∈ [0, y]
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satisfies f (y) − f (0) = f ′(c)(y − 0), which is just y = f (y)/f ′(c). By monotonicity,
f ′(0) ≥ f ′(c). Altogether,

τ̂ = y − f (y)

f ′(0)
≥ y − f (y)

f ′(c)
= y − y = 0.

Combined with the fact that x+ = (gf (x), 0) with gf (x) ≤ 0, we again obtain Eq. 23a.
Noticing further that

τ̂ = y − f (y)

f ′(0)
≤ y < x,

we have that τ̂ ∈ [0, x] , which shows Eq. 23b.
Now we have the following.

‖x+‖
‖x‖ ≤ ‖x+ − τ‖

‖x − τ‖ (24a)

= ‖x+ − PAx‖
‖x − PAx‖ · sin (∠(x+, PAx, τ ))

sin (∠(x, PAx, τ ))
(24b)

= cot (∠(x, x+, PAx)) · sin (∠(x+, PAx, τ ))

sin (∠(x, PAx, τ ))
(24c)

≤ cot ((1/2)ϕ) · sin (∠(x+, PAx, τ ))

sin (∠(x, PAx, τ ))
. (24d)

Here Eq. 24a follows from Eq. 23. We have the identity Eq. 24b from the generalized angle
bisector theorem, and Eq. 24c is mere trigonometry. Finally, Eq. 24d is from Eq. 21. Now
notice that

∠(x+, PAx, τ ) = π − ∠(x+, τ, PAx) − ∠(PAx, x+, τ ) (25a)

= π − (π − ∠(PAx, τ, (y, 0))) − ∠(PAx, x+, τ ) (25b)

= ∠(PAx, τ, (y, 0)) − ∠(PAx, x+, τ )

= arctan(f ′(0)) − arctan(f ′(y)) (25c)

= ↓ 0 as x ↓ 0. (25d)

Here Eq. 25a is simply the fact that the sum of the angles of the triangle (x+, PAx, τ ) is π ,
Eq. 25b uses the fact that∠(PAx, τ, (y, 0)) is complementary to∠(x+, τ, PAx), and Eq. 25c
simply uses the fact that tan(∠(PAx, τ, (y, 0))) = ‖PAx − (y, 0)‖/‖(y, 0) − τ‖ = f ′(0)
while tan(∠(PAx, x+, τ )) = tan(∠(PAx, x+, (y, 0))) = ‖PAx − (y, 0)‖/‖(y, 0) − x+‖ =
f ′(y). Finally, Eq. 25d uses continuity and the fact that 0 ≤ y < x. Additionally, we have
that

∠(x, PAx, τ ) = π/2 − ∠(x+, PAx, τ ) (26a)

↑ π/2 as x ↓ 0, (26b)

where Eq. 26a uses the fact that the sum of the two angles ∠(x, PAx, τ ) and ∠(x+, PAx, τ )

is ∠(x+, PAx, x) = π/2, and Eq. 26b uses Eq. 25. Combining Eqs. 25 and 26 and the
continuity of the sine function, we have that

sin (∠(x+, PAx, τ ))

sin (∠(x, PAx, τ ))
↓ 0 as x ↓ 0. (27)

As a consequence of Eq. 27, for any K > 0, we may choose εKf
> 0 small enough to

ensure that

(x ≤ εKf
) =⇒ sin (∠(x+, PAx, τ ))

sin (∠(x, PAx, τ ))
≤ 1

cot ((1/2)ϕ)K
,
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which combines with Eq. 24d to ensure that

(x ≤ εKf
) =⇒ ‖x+‖

‖x‖ ≤ 1

K
,

This shows the desired result.

Lemma 5 essentially shows local superlinear convergence rate for a setting in which
Newton–Raphson method is not guaranteed to converge at all, and for settings where it has
provably failed. One such example is t �→ t/

√|t | (where t ∈ R). The behaviour of CRM
for this problem is shown in Fig. 3.

Note that the basic conditions (I)–(V) in Section 5.2 allowed us to prove Lemmas 4 and 5
under the assumption of condition (VI), requiring that the graph of f sits (at least locally) in
the first quadrant. Of course, there is nothing special about this quadrant. We now formalize
our more general results in Theorem 3. Owing to the sheer number of cases that can be
reduced to our framework, Theorem 3 is wide but not all-encompassing.

Theorem 3 Let θ : R → R be defined such that the functions f = |θ | and f = |θ ◦ (−Id)|
satisfy the basic conditions (I)–(V). Then the following hold.

(I) Let θ be such that the functions f = |θ | and f = |θ ◦ (−Id)| satisfy (i)†. Let K ′ > 1
and

ε = min
{
ε|θ |, ε|θ◦(−Id)|, εK ′|θ | , εK ′|θ◦(−Id)|

}
, (28)

where ε|θ |, ε|θ◦(−Id)| are as defined in the basic conditions for the functions |θ | and
|θ ◦ (−Id)| respectively, and εK ′|θ | , εK ′|θ◦(−Id)| are as defined in Lemma 5. Let x0 =
(x0, 0) with x0 ∈ [−ε, ε]. Then xn → 0 as n → ∞ with convergence rate that is
never worse than 1/K ′ and ultimately either finite or quadratic.

(II) Let θ be such that the functions f = |θ | and f = |θ ◦ (−Id)| satisfy (ii)†. Let K ′ > 1
and ε be as in Eq. 28. Let x0 = (x0, 0) with x0 ∈ [−ε, ε]. Then xn → 0 as n → ∞
with convergence rate that is never worse than 1/K ′ and ultimately either finite or
superlinear.

(III) If f = |θ | satisfies (iii)†, and x0 = (x0, 0) with x0 ∈ [
0,min{ε|θ |, δRIGHT}

]
where

δRIGHT is as in Lemma 2, then xn → 0 as n → ∞ with convergence rate that is
ultimately either finite or quadratic.

(IV) Let f = |θ | satisfy (iv)†and x0 = (x0, 0) with x0 ∈ [
0,min{ε|θ |, δLIN}] where δLIN

is as defined in Lemma 3 for the function h specified in (iv)† with f = |θ |. Then
xn → 0 as n → ∞ with convergence rate that is ultimately either finite or linear.

Proof (II): Suppose the convergence is not finite. Combining our assumptions with
Lemma 5,

‖xn+1‖
‖xn‖ ≤ 1

K ′ ,

which shows that xn → 0 with convergence rate that is no worse than 1/K ′. From Lemma 5
we also have that, for any K > 0, there exist constants εK|θ | and εK|θ◦(-Id)| such that

(
xn ∈ [−εK|θ | , εK|θ |

] ∩ [−εK|θ◦(−Id)| , εK|θ◦(−Id)|
]) =⇒ ‖xn+1‖

‖xn‖ ≤ 1

K
. (29)

Since xn → 0, we have that there exists NK sufficiently large that

(n ≥ NK) =⇒ xn ∈ [−εK|θ | , εK|θ |
] ∩ [−εK|θ◦(−Id)| , εK|θ◦(−Id)|

]
(30)
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Combining Eqs. 29 and 30, we have that

(n ≥ NK) =⇒ ‖xn+1‖
‖xn‖ ≤ 1

K
,

which shows the claimed superlinear convergence.
(I): By the same arguments we just used for (II), we have that xn → 0. Suppose the

convergence is not finite. For n sufficiently large, xn ∈ [−δMIN, δMIN] where δMIN is as
defined in Lemma 2, and so we may combine with Lemma 4(v) to obtain

‖xn+1‖
‖xn‖2 ≤ |gθ (xn)|

|xn|2 <
MMAX

2
,

where MMAX is as given in Lemma 2, which shows the eventual quadratic convergence rate.
(III): Suppose the convergence is not finite. Because xn ∈ [

0,min{ε|θ |, δRIGHT}],
applying Lemma 2 together with Lemma 4(v) yields

‖xn+1‖
‖xn‖2 = |xn+1|

|xn|2 ≤ |gθ (xn)|
|xn|2 <

MRIGHT

2
,

which shows the quadratic convergence.
(IV): Suppose the convergence is not finite. Using the fact that f = |θ | satisfies (iv)†,

we apply Lemma 3 for the corresponding function h and combine Lemma 4(v) with the
equality of f and h on

[
0,min{ε|θ |, δLIN}] to obtain

‖xn+1‖
‖xn‖ = |xn+1|

|xn| ≤ |gθ (xn)|
|xn| = |gh(xn)|

|xn| < k,

where k = 1
2 (

m−1
m

+ 1) < 1. This shows the linear convergence.

5.4 Plane Curve Examples

Local convergence of CRM to a feasible point for a line B together with many plane curves
A may be handled by piecewise appeal to Theorem 3. We will mention a few examples that
highlight the importance of these results.

1. We have convergence whenever A is an algebraic curve and B is a line. This includes
the classical problems of ellipses and p-spheres [19]. We also have the following results
about the rate of convergence.

(a) When A and B meet with multiplicity greater than one, as when B is the horizontal
axis and A is the graph of t �→ t2 (where t ∈ R), we have linear convergence to the
feasible point. This is in contrast with the setting of DR, where convergence is usu-
ally observed to be to a fixed point rather than a feasible point. Local convergence
results about DR with plane curves have typically excluded such cases.

(b) When A and B meet with multiplicity one, as when B is the horizontal axis and
A is the graph of t �→ t2 − 1 (where t ∈ R), we have superlinear convergence.
When, additionally, the curves are not perpendicular at their point of meeting, the
convergence is quadratic.

2. We have local superlinear convergence for the case where A is the graph of t �→ t/
√|t |(

where t ∈ R\{0}) and B is the horizontal axis, a case where the Newton–Raphson
method cycles. This particular example is shown in Fig. 3. Such cases highlight the
importance of the projection onto the curve for preventing instability.
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3. As an example where the generically proper characterization of CT is useful, let B =
R × {0} and A = graf with

f : t �→
{

−t if t ≤ 1;
−1 otherwise.

Then, for any xn such that PAxn ∈ {(t, −1) | t ≥ 1} has the same first coordinate as xn,
one has a colinear case, whereupon xn+1 = TA,Bxn = xn + (0, 1). Consequently, for n

sufficiently large, PAxn ∈ {(t, −t) | t ∈ R}, whereupon xn+1 = CRM(xn) = (0, 0) ∈
A ∩ B.

Succinctly put, for all cases when Douglas–Rachford exhibits local convergence to a
feasible point, CRM provides a better convergence rate. Finally, as a root finder, CRM has
local convergence in all cases when Newton–Raphson does, exhibits quadratic convergence
in all cases when Newton–Raphson does, and exhibits superlinear convergence in many
cases when Newton–Raphson fails to converge at all. Figure 5 shows the performance of
the three methods, as measured by distance to solution, when B is the horizontal axis and A

is the unit sphere centered at (0,−1/2); the starting point used is (0.9999, 0). These results
reveal a local robustness of CRM that may be prototypical of convergence for more general
feasibility problems for more complicated problems of interest, such as phase retrieval. The
method LT from [38] is also shown; as its performance appears similar to CRM, it is worth
remembering that the cost of computing an update of LT is double the cost of computing
an update of CRM, because it requires the computation of 4 projections instead of 2.

6 Rate Guarantees and Numerical Discoveries inR
η

While we were able to furnish Theorem 2 in R
η, the fast rate results of Section 5 are (ini-

tially) limited toR2. This restriction was somewhat unavoidable, because the framework we
built was designed to be compatible with tying rate results explicitly to those of Newton–
Raphson method. Interestingly, it is still possible to lift some of these results back into R

η

for certain problems. Of course, given that superlinear and quadratic rate guarantees are very

Fig. 5 Finding a point in the intersection of the sphere and line
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strong, and also that they have been experimentally observed not to hold for many prob-
lems, one would expect that meaningful structural assumptions would be needed in order to
guarantee a quadratic convergence result.

Owing to complexity, a “most general extension” in R
η is not practicable. Indeed, even

in R
2, we reduced the statement of Theorem 3 to just four cases ((I)–(IV)) for simplicity,

but one could afford far greater generality by stating it in 16 cases (simply mix and match
the properties of |θ | and |θ ◦ (−Id)| to obtain many more guarantees).

What we will do in this section, then, is demonstrate one approach to adapting the theory
from Section 5 for a selection of feasibility problems that have received significant attention
in the literature: (1) spheres and hyperplanes, and (2) spheres and subspaces. Accordingly,
we build one particular extension of our theory in Rη (Theorem 4) that is designed with the
specific purpose of working for the examples we care about, and use this specific extension
to provide rates for these problems.

In the process, we stumble upon a much more significant discovery. Our numerical exper-
iment for Example 2 reveals an extreme sensitivity to numerical error that may cost CRM the
superior convergence rates that are guaranteed by the theory. We correct for the numerical
error, and recover the superior rate guaranteed by the theory. As the sensitivity is especially
relevant to problem architectures that involve subspaces, all future works that use numerical
experiment to study CRM with the product space formulation of feasibility problems (e.g.
[8, 16, 25, 26]) should take note of this sensitivity and account for it appropriately.

The particular extension theorem we introduce will be easier to understand if we first
present one of the examples that motivates it. Spheres and subspaces are of interest because
they are prototypical of phase retrieval. They were studied for the Douglas–Rachford
method in [2, 18, 20], and the Lyapunov function discovered in [18] has been catalytic
in other nonconvex investigations [24, 33]. Interestingly, global convergence for CRM for
spheres and hyperplanes is implicitly shown in [16, see Remark 1]. We can furnish the first
quadratic rate guarantees for these problems. For each of our computed examples, we will
include the method LT from [38]; for comparison, it is useful to remember that computing
a step of LT has double the cost (4 projections instead of 2) of computing a step of CRM.

Example 1 (Sphere and hyperplane) By symmetry, the (consistent) feasibility problem for
a unit sphere A and hyperplane not containing zero, B, in R

η+1 may always be rotated so
that B := R

η × {b} where b ∈ ]0, 1]. For x0 started in the axis of symmetry {0}η × R, the
Douglas–Rachford method is known to fail to converge, producing colinear reflections for
all n (see [11]).

For x0 started inB and also outside of this chaotic set, it suffices by symmetry to consider
x0 = (0, . . . , 0, t, b) for some t ∈ ]0,∞[. Suppose xn = (0, . . . , 0, t, b) for some t ∈
]0,∞[. Because the projection of xn onto A is given by xn/‖xn‖, its reflection across the
sphere is

RAxn = 2xn/‖xn‖ − xn = (0, . . . , 0, (2/‖xn‖ − 1)t, (2/‖xn‖ − 1)b)

and so RBRAxn = (0, . . . , 0, (2/‖xn‖ − 1)t, 2b − (2/‖xn‖ − 1)b)

and so CRM(xn) ∈ {0}η−1 × R × {b} =: D (by Lemma 1(iv)).

Consequently, for all n, xn ∈ {0}η−1 × R × {b}, while PAxn ∈ A ∩ ({0}η−1 × R × R). In
other words, the computation xn, including all of the associated projections and reflections,
takes place entirely within a subspace of dimension 2, and this subspace is the same for all
n. The projections PAxn are projections onto the graph {(x,Θ(x)) ∈ R

η+1 | x ∈ R
η} of the

function Θ : Rη → R : x �→
√
1 − ‖x‖2

R
η . More specifically, though, they are projections
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onto the slice of this graph that is given by {(x,Θ(x)) ∈ R
η × R | x ∈ {0} × · · · × {0} ×

R × {b}}. This slice is the embedded lower-dimensional graph {v + θ(v) · (0, . . . , 0, 1) ∈
R

η+1 | v ∈ D} of the function θ : D → R : v →
√
1 − |vη|2 − b. Moreover for all n, the

point s := (0, . . . , 0,
√
1 − b2, b) belongs to A ∩ B ∩ aff{xn, RAxn, RBRAxn}. With these

conditions, Theorem 4, which we will introduce momentarily, guarantees that xn converges
to s with a quadratic rate (where the set {sn}n in the theorem is exactly equal to the singleton
{s}).

Computed example: In Fig. 6 we show performance for a 10-sphere centered at
(0, . . . , 0,−1/2). In this example, we include the method of subgradient projections for
comparison, where we treat the first 9 variables as the domain space and the function for

which we apply subgradient projections is f : x �→
√
1 − (x21 + · · · + x29)−1/2. Of course,

this algorithm is only defined on B \ {0} where B is the unit ball in R
9. Moreover, for any

dampened version of subgradient projections, if we start near enough to 0, our first update
will be outside of this domain. Consequently, in order for subgradient projections to con-
verge for this problem, we must start very close to the solution. For our experiments, we
actually used CRM to obtain a starting point very near to the feasible set, and started all
algorithms thereat.

We now introduce our particular extension theorem, whose many conditions can all be
verified for the sphere and subspace feasibility problems in Examples 1 and 2. As we have
already explained, many other generalizations in higher dimensions are possible, but Exam-
ple 1 may be read as a template for motivating the specific conditions we chose to work
with in this particular extension.

Theorem 4 Let A be a subset, and B a proper subspace, of Rη. Let x0 ∈ B and xn :=
CRMn(x0). Suppose further that the following hold:

(i) For all n, xn ∈ B;
(ii) xn → y ∈ B ∩ A with ξ > 0 satisfying xn ∈ Bξ (y) for all n;

Fig. 6 Finding a point in the intersection of the 10-sphere and hyperplane from Example 1
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(iii) There exists u ∈ B⊥ ∩ B1(0) such that, for all n, PA(xn) = PgraΘ(xn) where Θ :
B → R and graΘ := {x + Θ(x) · u | x ∈ B};

(iv) For all n, the sets

{r(xn − xn+1) | r ∈ R} ∩ A ∩ L ∩ Bξ (x)

are singletons, which we name sn+1 respectively;
(v) For the functions

θn : r �→ Θ

(
r

(xn − sn)
‖xn − sn‖ + sn

)
,

(which, as we have defined them, possess a root at 0), it holds that |θn| and |θn ◦ Id|
satisfy the basic conditions (I)–(V).

(vi) The functions fn = |θn| satisfy (iii)† with corresponding εfn > 0 and δ
fn

RIGHT > 0

(where δ
fn

RIGHT is as in Lemma 2), as well as min{εfn, δ
fn

RIGHT} ≥ ‖xn − sn‖ > 0 for
all n ≥ N for some N > 0.

Then for all n > N , it holds that xn satisfies

‖xn+1 − sn‖
‖xn − sn‖2 ≤ MRIGHT

2
.

Proof Suppose convergence is not finite. Let n > N . By a suitable translation, we can
and do without loss of generality let sn = 0, which simplifies the notation and assures that
‖xn‖ ≤ min{εfn, δ

fn

RIGHT}. Define
graθn := {x + Θ(x) · u | x ∈ aff{xn, xn+1}.

Suppose for a contradiction that PA(xn) /∈ graθn. Then, combining with the fact that
PA(xn) ∈ graΘ , there exists y ∈ B\aff{xn, xn+1}with PA(xn) = y+Θ(y)·u. Consequently,

RA(xn) = 2y + 2Θ(y) · u − x

and so RBRA(xn) = 2y − 2Θ(y) · u − x

whereupon aff{xn, RAxn, RBRAxn} ∩ B = aff{2y − xn, xn}
= aff{y, xn} �� xn+1, (31)

where the final �� must hold because we assumed y ∈ B \ aff{xn, xn+1}. However, in view
of the definition of CRM, it must hold that xn+1 ∈ aff{xn, RAxn, RBRAxn}, while in view
of Lemma 1(iv), it must also hold that xn+1 ∈ B. Consequently,

xn+1 ∈ aff{xn, RAxn, RBRAxn} ∩ B,

and this contradicts Eq. 31. Thus we have shown that PA(xn) ∈ graθn. This fact combines
with the fact that PA(xn) = PgraΘ(xn) and the fact that graθn ⊂ graΘ , to guarantee that

PA(xn) = Pgraθn(xn).

Therefore the entire CRM construction at step n + 1 lives entirely in the 2-dimensional
subspace aff{xn, xn+1} ⊕ span{u}. As we have 0 = sn ∈ aff{xn, xn+1}, we may use the
change of coordinates:

B ⊕ span{u} → R × R : (x, x) �→ (〈x, xn〉/‖xn‖, 〈x, u〉) ,

whereupon xn = (xn, 0) with xn = ‖xn‖ ≤ min{εfn, δ
fn

RIGHT} ≤ εfn . Thus we have all the
necessary conditions to apply Lemma 4(v), whereupon ‖xn+1‖ ≤ gθn(‖xn‖). Combining
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with the fact that ‖xn‖ ≤ min{εfn, δ
fn

RIGHT}, Lemma 2 yields

‖xn+1‖
‖xn‖2 ≤ gθn(‖xn‖)

‖xn‖2 <
MRIGHT

2
.

The more general subspace case in Example 2 will be a straightforward adaptation of the
hyperplane case in Example 1. However, the phenomenon we observed in our numerical
experiments is quite distinct from the hyperplane case. It demonstrates an extreme sensi-
tivity of convergence rate for methods like CRM to small compounding numerical error
that may cause sequences to depart from subspaces in which they are theoretically guaran-
teed to remain. This small, numerically introduced, departure from the subspace results in a
completely different convergence rate.

Example 2 (A sphere and an affine subspace) In R
η+m, let A be the unit sphere and B be a

subspace not containing zero. More specifically, letB have dimension η. Then by symmetry,
the (consistent) feasibility problem may always be rotated so that B := R

η × {b} where
b ∈ ]0, 1]m and ‖b‖

R
m ≤ 1. We will consider the subset of cases where ‖b‖

R
m < 1. For

x0 started in the axis of symmetry {0}η × R
m, the Douglas–Rachford method is known to

fail to converge, producing colinear reflections for all n (see [11]).
For x0 started in B and also outside of the axis of symmetry, it suffices by symmetry to

consider x0 = (0, . . . , 0, t, b1, . . . , bm) =: (0, . . . , 0, t, b) for some t ∈ ]0,∞[. Suppose
xn = (0, . . . , 0, t, b) for some t ∈ ]0,∞[. Because the projection of xn onto A is given by
xn/‖xn‖, its reflection across the sphere is

RAxn = 2xn/‖xn‖ − xn = (0, . . . , 0, (2/‖xn‖ − 1)t, (2/‖xn‖ − 1)b)

and so RBRAxn = (0, . . . , 0, (2/‖xn‖ − 1)t, 2b − (2/‖xn‖ − 1)b)

and so CRM(xn) ∈ {0}η−1 × R × {b} =: D. (by Lemma 1(iv))

Consequently, for all n, xn ∈ {0}η−1×R×{b}, while PAxn ∈ A∩({0}η−1×R×span{b}). In
other words, the computation xn, including all of the associated projections and reflections,
takes place entirely within a subspace of dimension 2, and this subspace is the same for
all n. The projections PAxn are projections onto the graph {(x,Θ(x)) ∈ R

η+m | x ∈
R

η+m−1} of the function Θ : Rη+m−1 → R : x �→ √
1 − ‖x‖. More specifically, though,

they are projections onto the slice of this graph that is given by {(x,Θ(x)) ∈ R
η+m−1 ×

R | x ∈ {0}η−1 ×R× {b}}. This slice is the embedded lower-dimensional graph {v+ θ(v) ·
(0, . . . , 0, 1) ∈ R

η+m | v ∈ D} of the function θ : D → R : v →
√
1 − |vη|2 − ‖b‖

R
m .

Moreover sn = (0, . . . , 0,
√
1 − ‖b‖2

R
m, b) =: s for all n. Applying Theorem 4, we have

that xn converges to s with a quadratic rate.
Computed example: For our subspace B, we used a line. As there is no longer a sin-

gle obvious way to define subgradient projections for this problem, we omit it. In our first
numerical experiment, we begin with a x0 /∈ B, and we observe apparently only linear con-
vergence in Fig. 7a. This is interesting, because it suggests that the condition x0 ∈ B cannot
be relaxed without losing the quadratic rate. In our second experiment in Fig. 7b, we begin
with x0 ∈ B and see early apparent quadratic convergence degrade into only linear con-
vergence. However, our theoretical results guarantee a quadratic rate. Investigating further,
we discover that compounding numerical error has ultimately caused xn to be outside of B,
and this small difference has caused the loss of the superior convergence rate. For our final
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Fig. 7 Computational results from Example 2

experiment in Fig. 7c, we correct this compounding numerical error with an extra projec-
tion onto B; in other words, we are iteratively applying CRM ◦ PB . Having corrected for
the numerical error in this way, we see the quadratic convergence that the theory guaran-
tees. This is quite interesting, because it illustrates the sensitivity of the convergence rate to
very small numerical error. Purely for the sake of curiosity, in Fig. 7c we also replace LT

with LT ◦PB ; in this case, the modification does not simply correct for numerical error, but
actually defines a new algorithm. The apparent quadratic convergence of this algorithm is
interesting and may merit future investigation.

For our next and final example, we choose an application that has some similarities to the
context we have worked in (one set is a subspace and the other an implicitly defined surface),
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but for which the rate is unknown. Naively, we are hoping to be pleasantly surprised by an
improved rate, without necessarily expecting to be.

Example 3 (A boundary value ordinary differential equation) The task of numerically
finding a discretized solution for a boundary value ordinary differential equation may be
reformulated as a 2-set feasibility problem, where one of the sets is an implicitly defined
surface and the other is a subspace [36, 37]. In [36], the Douglas–Rachford method and
method of alternating projections are applied to such problems. We test CRM and LT for
the specific boundary value problem from [36, Example 6.6] (with a grid consisting of 20
mesh points for 21 segments; problem dimension 202). The details for how to compute
projections are described in [36].

Computed example: We use the starting point that corresponds to a constant function
that returns the value 0.5 on the open interval between the boundary points (see [36] for
full details). A traditional solver—based on Newton’s method—finds a false solution from
this starting point, but each of the methods DR, CRM, and LT solved the problem in our
experiment. Having learned the lesson about compounding numerical error from Example 2,
we iterate CRM ◦ PB , where B is the agreement subspace and the inclusion of PB serves to
prevent compounding numerical error from pushing the sequence of updates out of B. We
also replace LT with LT ◦ PB .

Partial solutions obtained by DR, CRM, and LT (paused at 2,000 iterations), in addi-
tion to the true solution to the discretised problem and the false solution obtained by the
traditional solver, are shown in Fig. 8a.

In spite of the aforementioned similarities with our framework, we observe only linear
convergence in Fig. 8b. Here we record the norm distance between the shadow sequence
of partial solutions for each method (PBxn) and the true solution to the discretised prob-
lem. For a more detailed explanation of why error is reported this way, see [36]. The

Fig. 8 Computational results from Example 3
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progress of DR towards the solution is best measured by tracking the “peaks” of the visible
“tombstones” in its performance profile; for more information about this, see [36] or [38].

The fact that we observe only (apparently) linear convergence for CRM is unsurprising;
it indicates that many conditions must all be met in order for CRM to have a superlinear
convergence rate for a more general problem. When interpreting this graph, it is valuable to
remember that one update of LT is twice as costly (requires 4 projections to be computed
instead of 2) to compute as one update of CRM. It is also worth noting that the case where
xn, RAxn, RBRAxn are distinct and colinear did not occur in our experiment.

7 Conclusion

The results in Sections 4 and 5 are natural analogs of those already in the literature for DR
[2, 19, 20, 24, 40]. The framework, which relies on Theorem 2, is novel, and it illuminates a
connection between CRM and subgradient projections in R

η. In Section 6, the roadmap for
adaptation in R

η, and the convergence rate guarantees for spheres and hyperplanes, while
interesting in their own regards, are both overshadowed in importance by the numerical
revelations of Example 2. Now that this numerical sensitivity has been documented, all
future investigations of CRM on feasibility problems built with the traditional agreement
subspace architecture must account for such numerical deviations. If they do not do so, it is
entirely possible that experiments will fail to reveal convergence rates that are theoretically
achievable. The apparent quadratic convergence of the modified version of algorithm LT

also clearly merits further investigation.
Even as recently as while this paper was in peer review, [8] has used the epigraph-

ical subgradient-descent characterization from Theorem 2 to furnish rates for convex
feasibility problems that are related to those here. For the product space formulation
of a feasibility problem, one of the constraint sets is a subspace B. Under some local
assumptions, (Lemma 1), subsequences (xj )j that have x0 ∈ B satisfy (xj )j ⊂ B, where-
upon the 2-dimensional affine subspace aff(xj , RAxj , RBRAxj ) always contains a line
B ∩ aff(xj , RAxj , RBRAxj ). The rate guarantee from [8], when the angle between sets
“vanishes” is related to Theorem 3(IV), while the superlinear guarantees when the angle
does not vanish are related to Theorem 3(I)–(III).

This is just one example of how these results are also of broader interest, because plane
curve problems shed light on how such methods are thought to behave more generally.
They motivated the introduction of 2 stage DR–CRM search algorithm in [25, 26]. Now
that the groundwork has been laid for the prototypical settings, another natural next step
of investigation is to conduct a detailed study on CRM for the phase retrieval problem
specifically. Methods for accelerating convergence for Newton–Raphson are well known
and are found in any numerical calculus textbook. The connections discussed in Section 5.2
indicate that another natural possible step is to attempt such methods with CRM.
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33. Giladi, O., Rüffer, B.S.: A Lyapunov function construction for a non-convex douglas–Rachford iteration.

J. Optim. Theory Appl. 180(3), 729–750 (2019)
34. Gravel, S., Elser, V.: Divide and concur: A general approach to constraint satisfaction. Phy. Rev. E 78(3),

036706 (2008)
35. Lakshmikantham, V., Trigiante, D.: Theory of difference equations - numerical methods and applications

marcel dekker (2002)
36. Lamichhane, B.P., Lindstrom, S.B., Brailey, S.: Application of projection algorithms to differential

equations: boundary value problems. The ANZIAM Journal 61(1), 23–46 (2019)
37. Lindstrom, S.B.: Proximal Point algorithms, dynamical systems, and Associated Operators: Modern

Perspectives from Experimental Mathematics. PhD thesis, University of Newcastle (2019)
38. Lindstrom, S.B.: Computable centering methods for spiraling algorithms and their duals, with motiva-

tions from the theory of Lyapunov functions. arXiv:2001.10784 (2020)
39. Lindstrom, S.B., Brailey, S.: Survey: sixty years of douglas–Rachford. J. Aust. Math. Soc. 110(3), 333–

370 (2021)
40. Lindstrom, S.B., Brailey, S., Skerritt, M.P.: Computing intersections of implicitly specified plane curves.

Nonlinear and Conv. Anal. 18(3), 347–359 (2017)
41. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer

Anal. 16(6), 964–979 (1979)
42. Boris, S.M.: Variational analysis and generalized differentiation i: Basic theory, volume 330 Springer

Science & Business Media (2006)
43. Pierra, G.: Decomposition through formalization in a product space. Math. Program. 28(1), 96–115

(1984)
44. Poon, C., Liang, J.: Trajectory of alternating direction method of multipliers and adaptive acceleration.

NeurIPS 2019 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://carma.newcastle.edu.au/{{DR}}methods/paseky/{{III}}-nonconvex{{DRS}}mall.pd f
https://carma.newcastle.edu.au/{{DR}}methods/paseky/{{III}}-nonconvex{{DRS}}mall.pd f
https://github.com/lindstromscott/Circumcentering--Reflection--Methods--for--Nonconvex--Feasibility--Problems
https://github.com/lindstromscott/Circumcentering--Reflection--Methods--for--Nonconvex--Feasibility--Problems
http://hdl.handle.net/1959.13/1395028
http://arxiv.org/abs/2001.10784

	Circumcentering Reflection Methods
	Abstract
	Introduction
	Goal
	Outline

	Preliminaries
	Circumcentering

	A Generically Implementable Nonconvex Adaptation
	Hypersurface Feasibility Problems
	A Line and a Plane Curve
	Comparing Approaches
	Auxiliary Results on Newton–Raphson Method
	Convergence of CRM: Basic Conditions
	Convergence of CRM
	Plane Curve Examples

	Rate Guarantees and Numerical Discoveries in R
	Conclusion
	References


