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Abstract: In this study, a novel bonobo optimizer (BO) technique is applied to find the optimal
design for an off-grid hybrid renewable energy system (HRES) that contains a diesel generator,
photovoltaics (PV), a wind turbine (WT), and batteries as a storage system. The proposed HRES aims
to electrify a remote region in northern Saudi Arabia based on annualized system cost (ASC) mini-
mization and power system reliability enhancement. To differentiate and evaluate the performance,
the BO was compared to four recent metaheuristic algorithms, called big-bang–big-crunch (BBBC),
crow search (CS), the genetic algorithm (GA), and the butterfly optimization algorithm (BOA), to find
the optimal design for the proposed off-grid HRES in terms of optimal and worst solutions captured,
mean, convergence rate, and standard deviation. The obtained results reveal the efficacy of BO
compared to the other four metaheuristic algorithms where it achieved the optimal solution of the
proposed off-grid HRES with the lowest ASC (USD 149,977.2), quick convergence time, and fewer
oscillations, followed by BOA (USD 150,236.4). Both the BBBC and GA algorithms failed to capture
the global solution and had high convergence time. In addition, they had high standard deviation,
which revealed that their solutions were more dispersed with obvious oscillations. These simulation
results proved the supremacy of BO in comparison to the other four metaheuristic algorithms.

Keywords: hybrid renewable energy system; bonobo optimizer; annualized system cost; optimal
solution; convergence rate; renewable energy fraction; artificial intelligent algorithms

1. Introduction

Renewable energy resources, unlike conventional generation resources, are inex-
haustible and lasting sources of energy. The world requires renewable and reliable energy
resources since they are much cleaner and produce energy without the harmful effects of
pollution [1,2]. There are different renewable energy generation sources, like wind turbines
(WT), solar photovoltaics (PV), biomass energy, geothermal energy, etc. Besides their ad-
vantages, such as being environmental friendly, sustainability, etc., wind energy and solar
PV energy have been used frequently due to the reduction in their manufacturing cost and
growing industrial and residential applications [3]. These sources can be used individually
or connected as a hybrid to feed power to the grid. In addition, renewable energy sources
can be used to electrify remote areas, which considered off-grid loads and are unable to be
supplied from an attainable grid. Due to the non-reliability and excessive sizing of using a
single source (e.g., PV) to feed power to off-grid areas, hybrid renewable energy resources
are proposed to meet these challenges [4]. Hybrid renewable energy systems (HRES) can
comprise PVs, WT, diesel generators, batteries, fuel cells (FCs), etc. However, due to the
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nonlinear and random operation of renewable energy resources, challenges arise when they
are used to electrify off-grid loads [5,6]. The challenges include reduced reliability, more
control complexity, design and sizing considerations, unstable and less energy, etc. These
challenges represent complex and nonlinear optimization problems. Optimization means
reaching the optimal solution and the best design of the HRES with minimum cost [7,8].

There are numerous optimization algorithms that have been used to search for the opti-
mal sizing of hybrid renewable energy systems, including traditional algorithms, artificial
intelligence (soft computing) algorithms [9–17], hybrid algorithms [4,6,18], and software
tools [19–23]. Traditional algorithms can be classified as analytical algorithms [24–27], graph-
ical algorithms [28,29], probabilistic algorithms [24,30,31], and numerical techniques [32].
Traditional techniques are simple. However, they have certain requirements to define the
optimization problem. For example, graphical techniques depend on the solar irradiance
and wind speed to determine the sizing of the HRES, which causes over sizing or under
sizing [33]. Analytical algorithms cannot deal with many resources and may consume more
computational time compared to AI algorithms. On the other hand, other techniques such
as soft computing techniques, hybrid, and software tools have no specific requirements like
traditional techniques, which leads to solving the optimization problems effectively. Conse-
quently, this literature focuses on software tools, hybrid, and soft-computing techniques.

Spreading the use of HRES to electrify rural on-grid/off-grid areas motivated re-
searchers to explore more technical and economic feasibility issues. A techno-economic
analysis was implemented using the HOMER PRO software tool in [20–23]. The authors
in [20] studied, analyzed, and designed the techno-economic feasibility of a solar PV–diesel–
battery energy system to electrify a village in Pakistan, taking the availability time of the
grid as a constraint. The optimal sizing and the techno-economic feasibility were carried
out using HOMER PRO software. The findings of this study revealed that the levelized
cost of electricity (LCOE) in on-grid HRES is more economical than off-grid HRES. In [21],
a study was developed using the HOMER PRO software tool to redesign and refinance a
remote HRES (solar PV, diesel, and battery) on a small island in Thailand. The HRES was
optimized to attain the lowest cost of electricity. In [22], a study was carried out to study
the electrification of a rural community in Benin. The study found that the hybrid solar
PV–diesel–battery system attained the lowest cost optimal system.

As mentioned above, optimal sizing of an HRES is unavoidable since over-sizing re-
sults in increasing the initial cost and under sizing may result in reducing the shared power
from the HRES and consequently reducing system reliability. Recently, great attention has
been centered on studying the optimal sizing of an HRES. Some of the published studies
focused on a single objective mathematical model and others focused on multi-objective
models [13,34–36]. The authors in [34] developed a model based on fuzzy logic to minimize
the annualized cost of the HRES that encompasses solar PV–WT–battery. The authors
in [13] utilized a genetic algorithm (GA) to find the optimal sizing of an HRES in power
distribution networks based on minimizing the power losses and the expected energy not
supplied. The authors in [35] used GA for optimal sizing for a hybrid PV–WT–battery sys-
tem integrated into the energy management strategy. The energy management was attained
based on a proposed economic model predictive control approach [12]. The authors in [36]
combined a quasi-steady operational method and GA for optimal sizing of a solar PV–pump
storage hydroelectric energy system based on investment cost and loss of power supply
probability (LPSP) as an objective function. In [37], a MATLAB model was developed for
the optimal design of a wind–hydro system based on reduction the cost of energy (COE)
and CO2 emissions. The authors in [38] applied a crow search algorithm for the optimal
sizing of an autonomous microgrid including PV–WT to supply a research center based on
the annual system cost. In [39], particle swarm optimization (PSO) technique-based Monte
Carlo simulation was employed to reach the optimal size of a solar PV–WT–battery based
on minimizing the total annual cost (TAC). In [40], GA was used to find a multi-objectives
sizing solution for a solar PV–WT–solar collector–battery system based on minimizing the
net present cost (NPC). The authors in [41] utilized the Pareto evolutionary algorithm to
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minimize the LCOE and the CO2 life cycle emissions (LCE) for a solar PV–WT–DG–battery
standalone system. In [42], a water cycle algorithm in addition to moth-flame optimization
were used for the techno-economic optimal design of a solar PV–biogas generator–0umped
hydro energy storage–battery energy system. The objective function was a minimization of
TNPV. The water cycle and moth-flame optimizer techniques were compared and assessed
with the GA. The authors in [43] introduced the differential evolution algorithm (DEA)
incorporated with the fuzzy technique to optimally design a solar PV–WT–DG–hydrogen–
battery energy system based on minimum cost, emissions, and unmet load. An improved
fruit fly optimizer technique was proposed by [44] to optimally design a hybrid solar
PV–WT–diesel–battery system based on minimizing the TAC and the pollutant emission.
The authors in [45] utilized a line-up competition algorithm (LUCA) to determine the
optimal design of a solar PV–WT–DG–battery energy system based on minimizing the TAC
and CO2 emissions. The authors in [17] proposed a cuckoo search (CS) technique for the
optimal design of three HRESs: solar PV–battery, WT–battery, and solar PV–WT–battery
systems, minimizing total system cost. This algorithm was compared to the PSO and GA
algorithms, and the results show that CS gave better solutions and faster convergence.
The author in [46] utilized the grey wolf optimization algorithm for the optimal design of
an HRES encompassing a PV–WT–biomass system based on minimizing the TNPC and
LPSP. The findings obtained by GWO were compared to the findings obtained by GA and
simulated annealing (SA) algorithms, and the superiority of the GWO was confirmed. The
authors in [47] introduced a hybrid Big Bang–Big Crunch (BBBC) technique for the optimal
sizing of a solar PV–WT–battery standalone HRES. In [48], the authors utilized the ant
colony optimization (ACO) based integer continuous domain programming to optimally
size a PV–WT system based on minimizing the TAC.

Based on the preceding literature review, metaheuristic algorithms proved their effi-
cacy and robustness to deal with the optimal design optimization problem of an HRES in
comparison to the analytical and graphical ones. Therefore, this study proposes a novel
bonobo optimizer (BO) algorithm, which was applied to search for the optimal design of
the proposed off-grid HRES to electrify an urban region located in northern Saudi Arabia.
The main novelty and contributions of this study are manifested as shown below:

� A novel BO algorithm was applied for the first time in this research to find the optimal
design of the proposed off-grid HRES based on minimizing the annualized system
cost and enhancing the power system reliability level.

� Technical and economic evaluation were attained for the proposed off-grid HRES that
includes PV, WT, diesel, and batteries to electrify an urban region in northern Saudi
Arabia, namely, Al Sulaymaniyah.

� To validate the performance soundness and credibility, the BO algorithm was com-
pared to other four metaheuristic algorithms, namely, BBBC [47], GA [35], crow
search [38], and the butterfly optimization algorithm (BOA) [49] in terms of optimal
and worst solutions captured, mean, standard deviation (STDEV), convergence rate,
and oscillations around steady state.

� The simulation results revealed the supremacy performance of the BO algorithm
compared to the other four metaheuristic algorithms. It attained the optimal design
of the HRES with the minimum ASC (USD 149,977.2), quick convergence time, and
fewer oscillations, followed by BOA (USD 150,236.4). The BBBC and GA algorithms
failed to capture the global solution and had high STDEV, high oscillations, and high
convergence time.

This research paper is organized as follows: Section 2 describes the proposed off-grid
HRES components and their mathematical modeling. In Section 3, the problem formulation
is covered, including the objectives, constraints, and the proposed BO algorithm for HRES
optimal sizing. Section 4 covers the simulation results, analysis, and discussions. Finally,
Section 5 epitomizes the conclusions.
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2. Description of the Proposed Off-Grid Hybrid Renewable Energy System

The proposed HRES under study is shown in Figure 1. This HRES encompasses two
renewable sources—solar PV and WT—in addition to the diesel generator and battery
banks for energy storage. Both solar PV arrays and batteries are interconnected directly
to the DC busbar, whereas the WT and the diesel are interconnected to the AC busbar, as
demonstrated in Figure 1 below. The bidirectional DC/AC converter has two jobs. The
first job is converting the AC to DC, where it works as a bridge rectifier in this process.
The second job is converting the DC to AC, and it works as an inverter in this job. The
batteries are used to cover and supply the load once the renewable resources are not capable
of supplying the required load demand. The diesel generators are the second standby
generation source, which are used in case the renewables are not available and the energy
stored in the batteries is consumed. The mathematical modeling of the HRES components
under study are demonstrated in the following sections.

Figure 1. The hybrid renewable energy system (HRES) under study.

2.1. Modeling of PV Generation Source

The output power captured from the PV modules (PPV) as a function of the PV rated
power is [50]:

PPV = Pr fPV

(
GT

GT,STC

)
[1 + αP(Tc − Tc,STC)] (1)

where Pr is the PV rated power; GT,STC and GT are the solar PV radiation for standard test
conditions (STCs) and normal conditions, respectively; Tc,STC and Tc are the temperatures
under STCs and normal conditions, respectively; and αP and fPV are the power tempera-
ture coefficient and derating coefficient, respectively. The PV steady-state temperature is
formulated as shown below [50].

Tc =
Ta + (NOCT − Ta,NOCT)(1 − 1.11ηMPP(1 − αPTc,STC))

(
GT

GT,NOCT

)
1 + 1.11(αP ηMPP,STC)(NOCT − Ta,NOCT)

(
GT

GT,NOCT

) (2)

where
Ta and NOCT are the cell temperature at ambient and nominal operating, respectively.
Ta,NOCT and GT,NOCT are the ambient temperature and solar PV radiation under

nominal operating, respectively;
ηMPP,STC and ηMPP are the PV MPP efficiency under STCs and normal conditions, respectively.
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Each PV energy system is equipped with a maximum power point tracker (MPPT)
device, which is used to extract the maximum power captured from the PV system by
controlling the duty cycle of the DC/DC converter. The metaheuristic MPPT techniques
proved their efficacy and accuracy in comparison to the conventional techniques to deal
with both the normal and partial shading cases. The conventional techniques gave accept-
able performance under uniform conditions but may have trapped to the local peak under
partial shading.

2.2. Modeling of the WT Genertation System

As demonstrated in Figure 2, the wind turbine starts to generate the output power
once the wind speed exceeds the cut-in speed (uc). At the rated speed (ur), the wind power
reaches its rated value till the cut-off or furling speed (u f ), where the wind turbine stops
running if the wind speed exceeds its cut-off speed value. The output power captured by
the WT depends on Pr, uc, ur, and u f , which can be formulated as shown below [51].

PWT(u) =


0 u < uc or u > u f

Pr × u2−u2
c

u2
r−u2

c
uc ≤ u ≤ u f

Pr ur ≤ u ≤ u f

(3)

Figure 2. The WT power generated versus the wind speed characteristics.

2.3. Modeling of the Battery Bank as a Storage System

As a result of the intermittent nature of the renewable generation sources, whether WT
or PV, the battery bank is considered a compulsory component in the HRES. They act as a
storage element for the extra energy and supply it in case of deficiency by the WT and PV.
The batteries will be in charging mode if the generated output power from the renewables
(WT and PV) is higher than the demand, whereas they will be in discharging mode if the
generated output power from the renewable sources is lower than the demand. The state
of charge (SOC) or the charging power of the batteries at time t can be calculated with the
following formula [52].

SOC(t) = SOC(t − 1)(1 − σ) +

(
EGA(t)−

EL(t)
ηinv

)
ηBat. (4)

where
σ is the hourly self-discharging rate;
EL(t) is the total demand;
EGA(t) is the total output power;

ηinv is the inverter efficiency;
ηBat is the battery bank efficiency.
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During the discharging mode, the SOC must be more than or equal to the minimum al-
lowable limit (SOCmin), whereas it must not exceed the maximum allowable limit (SOCmax)
during the charging mode. These modes or cases are expressed as follows:

SOC(t) =


SOCmin SOC(t) < SOCmin
SOC(t) SOCmin < SOC(t) < SOCmax
SOCmax SOC(t) > SOCmax

(5)

2.4. Modeling of the Diesel Generator

The diesel generator is considered the secondary standby generation source, which is
utilized to cover the load if the renewables (WT and PV) and the batteries are not capable
of covering the load demand. The annual fuel cost depends on the diesel rated power and
output power generated, which can be formulated as follows [50]:

CDiesel = CF

8760

∑
t=1

A × PDiesel(t) + B × PR (6)

where
CF is the fuel cost per liter;
A and B are the fuel constants;
PR and PDiesel(t) are the diesel rated power and output power generated at time t, respectively.

3. Problem Formulation: Objectives and Constraints

The proposed BO technique is applied for the optimal design/sizing of the proposed
HRES, including solar PV, WT, diesel, and batteries. The objective of the HRES sizing
optimization problem is to minimize the total annualized system cost (ASC) at an acceptable
limit of reliability, taken as loss of power supply probability (LPSP). The objective function,
in addition to the constraints of this optimization problem, can be summarized as follows:

Min ASC,

subject to :



LPSP 6 LPSPdesired
REF 6 REFdesired
0 ≤ PPV ≤ PPV,max
0 ≤ PWT ≤ PWT,max

PBat.,min ≤ PBat. ≤ PBat.,max
PDiesel,min ≤ PDiesel ≤ PDiesel,max

(7)

where LPSPdesired is the predetermined limit of LPSP, which gives an indication about the
reliability, and REFdesired is the predetermined limit of the renewable energy fraction (REF).

Based on the minimum ASC, the proposed BO algorithm will determine the optimal
sizing of the solar PV, WT, diesel, and battery bank as follows:

x = [PPV , PWT , PDiesel , PBat.] (8)

where
PPV , and PWT are the optimal sizing in kW of PV and WT, respectively;
PDiesel and PBat. are thediesel ratedpower inkWandthecapacityofbattery inkWh, respectively;
PPV,max, PWT,max, PBat. ,max, and PDiesel,max are the maximum power limit of the PV,

WT, batteries, and diesel, respectively.
The ASC equals the annualized capital costs (CCap.), plus the O&M cost (CO&M) and

annualized replacement costs (CRep.), as follows [50]:

ASC = CCap. + CO&M + CRep. (9)
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The total capital cost is expressed as follows [50]:

CCap. = (CRen. + CBat. + CDiesel)
i(1 + i)Yproj

(1 + i)Yproj − 1
(10)

where CRen., CBat., and CDiesel are the capital costs of the renewable resources, battery bank,
and diesel, respectively.

The annualized replacement cost can be formulated as shown below [50].

CRep. = CRep.
i

(1 + i)Yrep − 1
(11)

where CRep. is the capital replacement cost and Yrep is the lifetime of each component.
The LPSP can be defined as the power supply loss potential, which means that the

HRES is not capable of supplying the load demand. On the other hand, it can be estimated
by the percentage of the energy deficit of the total energy production of the HRES. Therefore,
the LPSP gives us indication about the performance of the proposed HRES in terms of
reliability and can be formulated as follows [50]:

LPSP =
∑T

t=0 Power Failure Time (PFT)
T

(12)

The PFT is the time interval during which the load cannot be supplied. An LPSP that
equals 0% means that the load will be supplied all the time (T) and 100% LPSP means that
the load cannot supplied all the time (T).

The REF represents the energy portion submitted to the load demand that was gener-
ated by renewable generation sources and can be expressed as follows:

REF =

(
1 −

EL,Diesel

EL,served

)
× 100 (13)

where EL,Diesel represents the total load supplied by diesel. The REF changes from 0%
to 100%. A REF of 0% means that the diesel generator only supplies the load and no
renewables, and 100% means that the load is supplied only by renewables. Therefore, the
REF changes between 0% and 100%, which means that the power supplied is the result of
sharing all renewable and non-renewable generation sources.

4. Application of Bonobo Optimizer Technique for HRES Optimal Sizing

The bonobo optimizer (BO) is a new meta-heuristic technique that is influenced by
bonobos’ reproductive strategy and social behavior. Das et al. developed a population-
based method [53]. For efficient optimization, the algorithm uses bonobos’ fission–fusion
search approach. Bonobos divide into smaller groups known as fissions for the purpose
of locating food and then reuniting (fusion) at night to sleep, as demonstrated in Figure 3.
Females are depicted by light forms, whereas males are depicted by dark forms, as shown
in Figure 4. This one-of-a-kind method was incorporated into the algorithm to improve
the efficiency of the search mechanism. BO is like other heuristics, and each solution in the
population is termed a bonobo and the alpha bonobo (αbonobo) is the bonobo with the
highest rank in the population’s dominance hierarchy. More so, bonobos move forward
through the positive phase (pp) and negative phase (np) of their phase probability, which
indicates either population diversity or selection pressure (np). Positive phase count (ppc)
and negative phase count (npc) are the counts of the consecutive number of iterations of
pp and np, respectively. To reproduce young bonobos, the bonobo uses four main mating
strategies: promiscuous and restrictive, consortship, and extra-group mating [53].
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Figure 3. Bonobo social groups: both fission and fusion. Females are light forms; males are dark.

Figure 4. Movement directions of bonobos in pp (dark forms) and np (light forms) with higher probabilities.

The mating tactics alter depending on the phase condition (positive or negative). First,
the positive phase (pp) depicts the state of the bonobo community, in which there is enough
food, protection from other communities, breeding success, and genetic variation among
bonobos. The odds for the first two types of mating, i.e., promiscuous and restricted mating,
are higher during this phase. An oestrus female is available for both alpha bonobos (the
highest-ranking male among all bonobos in a society) and other lower-ranking males in
the promiscuous kind of mating. In the event of restricted mating, however, only the
higher-ranking males are allowed to join. Consortship mating and extra-group mating are
more likely in the case of negative phase (np), which signals a negative state in the society.
A pair is separated from their natal community and spend their time together in a type of
mating known as consortship. They rejoin with their community after a few days or weeks.
In the case of extra-group mating, a female bonobo is found engaging in mating with males
from other communities. Furthermore, compared to the other, the likelihood of extra-group
mating is quite low. In the proposed BO, these physical processes are artificially recreated
with the help of mathematics for optimization. The flowchart of the proposed bonobo
optimizer algorithm is shown in Figure 5.

4.1. Promiscuous and Restrictive Mating Approach

The bonobos’ mating approach is determined by the phase probability parameter (pp).
The value of pp is set to 0.5 at the start, and it is changed after each iteration. If a random
number r with a value between 0 and 1 is discovered to be less than or equal to pp, a new
bonobo is born, as indicated in the following formula [53].

n−bj = bi
j + r1sα

(
αb

j − bi
j

)
+ (1 − r1)ss f lag

(
bi

j − bp
j

)
(14)

where b is bonobo; n−bj and αb
j are the new offspring and α bonobo jth variables, respec-

tively; j is an integer that ranges from 1 to d (variables number); and the variables bi
j and bp

j
represent the ith and pth bonobo variable values, respectively. A value in the range of
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0 to 1 is represented by r1. The sharing coefficients for the αbonobo and pth bonobos are sα

and ss, respectively. The f lag argument has a value between −1 and 1. When the optimal
solution of the ith bonobo produces a better result than the pth bonobos, this is known
as promiscuous mating. In this case, the f lag is given one point. Restrictive mating is a
different term for the same thing. The f lag and αbonobo are given −1 in this regard.

Figure 5. The bonobo optimizer algorithm flowchart.
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4.2. Consortship and Extra-Group Mating Strategies

When phase pp is less than the random integer r, this type of mating occurs. If r2 is
equal to or less than the probability of extra-group mating (pxgm), the solution is updated
by extra-group mating [53].

n−bj =



bi
j + e(r

2
3+r3−2r−1

3 )
(

Var_maxj − bi
j

)
αbonobo

j ≥ bi
j

bi
j − e(−r2

4+2r4−2r−1
4 )
(

bi
j − Var_minj

)
r3 ≤ pd

bi
j − e(r

2
3+r3−2r−1

3 )
(

bi
j − Var_minj

)
αbonobo

j ≤ bi
j

bi
j + e(−r2

4+2r4−2r−1
4 )
(

Var_maxj − bi
j

)
r3 ≥ pd

(15)

The pd is set to 0.5 and is gradually updated based on the nature of evolution. The pd
optimizes the search process to find the best result. The lower and higher boundaries of the
jth variable are represented by Var_minj and Var_maxj respectively.

When the value of r2 is greater than the value of pxgm, a new offspring is produced
utilizing the consortship mating strategy, which is as follows [53]:

n−bj =

{
n−bj + er5 f lag(1 + r1)

(
bi

j − bp
j

)
r6 ≤ pd

bp
j otherwise

(16)

where r1, r2, r3, r4, and r5 are random numbers ranging from 0 to 1.

5. Simulation Results and Discussion

The bonobo optimizer (BO) was proposed and applied to the optimal design/sizing of
the proposed hybrid energy system including solar PV, WT, diesel, and batteries to electrify
an urban area called Al Sulaymaniyah village in Arar in the northern area of Saudi Arabia.
To validate the performance of the BO, it was compared to four other artificial intelligence
algorithms—BBBC, crow search, GA, and BOA—to search for the optimal solution of the
proposed HRES with a quick convergence rate. MATLAB R2019b/Windows 10/64-bit
was used for the implementation of this optimization problem with 500 iterations and
50 runs for all five artificial intelligence algorithms. The average hourly solar irradiance
and wind speed values were considered in this study. The parameters used in this study
for all artificial intelligence algorithms are summarized in Table 1.

Table 1. The parameters used in this study for all four artificial intelligence algorithms.

Algorithm Main Parameters Value

BO

Rate of change in phase probability 0.0035
Sharing coefficient for selected bonobo 1.3

Sharing coefficient for alpha bonobo 1.25
Extra-group mating probability 0.001

BBBC
Energy of rabbit 2
Population size 100

Crow search
Awareness probability 0.1

Flight length 2

GA
Population 100
Selection Roulette wheel

Mutation rate 0.2
Crossover rate 0.8

BOA
Sensory modality 0.01
Power exponent 0.1

The simulation results of the proposed BO compared to the four artificial intelligence
algorithms are shown in Table 2 for achieving the optimal design/sizing of the proposed
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HRES with an LPSP of 0%. The proposed HRES contains PV, WT, a diesel generator,
and batteries. As shown in Table 2, the BO had the best performance, followed by BOA,
compared to the other three artificial intelligence algorithms (BBBC, crow, and GA), where
it achieved the optimal solution/sizing of the proposed HRES with the lowest ASC. This
is also demonstrated in Figure 6, which shows the optimal ASC using BO compared to
the other four metaheuristic techniques for LPSP = 0%. In addition, the worst solution of
the BOA was better than the optimal solution of the BBBC, crow, and GA algorithms. The
optimal design/sizing of the PV, WT, diesel generator, and batteries for all five metaheuristic
algorithms is shown in Figure 7. Moreover, Figure 8a,b shows the five performance
indicators (optimal solution, worst solution, mean, median, and STDEV) that were used to
evaluate the performance of all five metaheuristic algorithms. As revealed in Figure 8, BO
had the best performance compared to the other four metaheuristic algorithms in terms
of optimal solution, worst solution, mean, median, and STDEV. The BO and crow search
algorithms achieved the smallest STDEV for the proposed HRES. A low STDEV means
that the optimal solutions are concentrated around the mean. Therefore, they have fewer
oscillations around steady state and follow the optimal solution quickly, taking less time
to converge. On the other hand, BBBC and GA had the lowest performance based on
these five performance indicators. They had high standard deviation. This means that the
optimal solutions were highly dispersed. Therefore, they had obvious oscillations around
the optimal solution and took more time to converge.

Table 2. Simulation results of the proposed BO compared to the other four artificial intelligence
techniques for achieving the optimal design/sizing of the proposed HRES with 0% LPSP.

Algorithm Performance
Indicators

PPV
(kW)

PWT
(kW)

PBat.
(kW) PDiesl (kW) ASC

(USD/year)
REF
(%)

BO

Optimal 341.3 403.9 499.8 215.9 149,977.2 82.7
Worst 342 353.7 500 220.12 150,320.8 81.04
Mean 340.62 400.36 499.83 215.84 150,033.1 82.61

STDEV 5.97 12.75 0.2996 2.894 95.397 0.4021

BBBC

Optimal 397.85 348.4 923.9 229.1 150,883.5 64.55
Worst 293.95 434.95 1436.3 248.06 158,884.5 70.52
Mean 372.75 364.27 844.21 239.71 154,138.5 86.67

STDEV 72.14 69.41 293.67 7.45 2007.99 10.379

Crow Search

Optimal 341.3 403.98 499.22 215.93 151,618.8 82.74
Worst 358.7 405.75 498.86 221.74 151,832.6 83.046
Mean 341.84 405.04 499.11 216 151,640.4 82.774

STDEV 4.568 2.931 0.3925 0.8840 50.772 0.0984

GA

Optimal 370.21 311.51 1027.5 210.8 150,718 85.22
Worst 496.29 260.45 1355.8 204.24 154,770 88.27
Mean 375.56 346.95 940.64 219.09 151,944.6 85.55

STDEV 45.92 52.921 161.35 21.43 927.45 1.6267

Optimal 361.28 373.70 950.01 227.34 150,236.4 63.32
Worst 352.07 331.31 657.54 228.07 151,968.8 61.28

BOA Mean 343.87 353.63 850.27 214.06 151,130.5 66.93
STDEV 26.359 27.982 161.531 11.461 422.106 6.2367
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Figure 6. The optimal ASC using BO compared to the other four metaheuristic techniques for LPSP = 0%.

Figure 7. The optimal sizing of the solar PV, WT, diesel generator, and batteries for all five meta-
heuristic algorithms.

Figure 8. Cont.
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Figure 8. The performance indicators with all eight metaheuristic algorithms: (a) optimal, worst,
mean, median, and (b) STDEV.

Figure 9 presents the ASC versus the run number for the BO technique in comparison
to the other four metaheuristic techniques. This graph proved that BO followed by BOA and
crow search followed the global solution and achieved the optimal sizing of the HRES with
less ASC and fewer oscillations. This is due to the fact that their standard deviation was
low. This means that the optimal solutions were concentrated around the mean. Therefore,
they had fewer oscillations around steady state, as shown in Figure 9, and followed the
optimal solution quickly, taking less time to converge, as shown in Figure 10. On the other
hand, BBBC and GA were trapped to the local solution with obvious oscillations around the
steady state, as shown in Figure 9. On the other hand, Figure 10 presents the convergence
rate of all five metaheuristic algorithms: BO, BBBC, crow search, GA, and BOA. This figure
shows that the BO followed the global solution with a faster convergence rate than the
other four metaheuristic algorithms (BBBC, crow search, GA, and BOA). This figure also
emphasizes that both BBBC and GA may have been trapped to the local solution and had
the lowest convergence rate compared to the other metaheuristic techniques.

Figure 9. The ASC versus run number using BO compared to the other four metaheuristic techniques.
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Figure 10. The convergence time of BO compared to the other four metaheuristic techniques.

Under different values of diesel prices (USD/liter), the simulation findings of the
proposed BO are introduced in Table 3 for achieving the optimal design/sizing of the
proposed HRES that includes solar PV, WT, a diesel generator, and batteries. As the diesel
price increased, the optimal design/sizing of the diesel generator decreased, and at the
same time, the renewable sizes (WT and PV) and REF% increased, as shown in Table 3.
This is also evident in Figure 11a,b. On the other hand, the CO2 emissions (kg/yr) reduced
dramatically from 454,729.3 to 94,232.7 kg/yr with the increase in diesel prices from 0.1 to
1.5 USD/liter, as shown in Figure 11c. In addition, both ASC and fuel cost doubled as the
diesel price increased from 0.1 to 1.5 USD/liter.

Table 3. Simulation results of the proposed BO algorithm under different diesel prices for achieving
the optimal sizing of the proposed HRES.

Diesel Price
(USD/Liter) PV WT Bat. Diesel REF Surplus Diesel

Hours
Fuel cost
(USD/yr)

CO2
(kg/yr)

ASC
(USD/yr)

0.1 315.7 7.1 109.5 289.3 43.1 6.6 6021.0 30,660.6 454,729.3 98,185.6
0.2 275.9 255.7 287.1 226.6 71.6 11.0 3520.0 29,593.7 229,691.9 116,353.0
0.3 288.8 312.6 493.1 215.8 77.8 68.9 2669.0 33,386.3 178,479.0 129,834.4
0.4 341.0 354.9 499.8 222.8 81.0 54.9 2242.0 38,296.3 152,589.4 140,686.4
0.5 341.3 403.9 499.8 215.9 82.7 3.5 2020.0 42,722.8 138,529.7 149,977.2
0.6 327.8 422.3 499.8 202.2 83.1 20.3 1992.0 48,897.7 135,260.3 158,364.8
0.7 347.3 455.7 499.5 187.7 84.5 56.3 1844.0 50,872.3 123,745.5 166,060.2
0.8 372.6 482.5 482.0 176.1 85.5 15.7 1724.0 52,893.3 115,260.1 173,061.2
0.9 372.6 482.5 482.0 176.1 85.5 17.8 1724.0 59,505.0 115,260.1 179,672.8
1.0 402.8 496.8 489.2 134.7 87.1 16.2 1659.0 54,689.9 101,971.3 185,830.4
1.1 402.5 496.9 489.0 134.7 87.1 55.9 1660.0 60,189.7 102,002.2 191,319.3
1.2 403.1 497.7 487.3 134.5 87.1 21.7 1657.0 65,512.1 101,843.4 196,821.0
1.3 404.9 498.9 499.8 126.6 87.5 64.2 1634.0 67,803.4 98,737.1 202,402.6
1.4 451.4 499.7 500.0 121.4 88.1 2.5 1583.0 69,060.1 94,232.8 207,520.9
1.5 451.4 499.7 500.0 121.4 88.1 88.3 1583.0 73,992.8 94,232.7 212,453.8
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Figure 11. Simulation results using the proposed BO algorithm under different diesel prices of
(a) optimal design/sizing of the solar PV, WT, diesel generator, and batteries; (b) REF %; (c) ASC, fuel
cost, and CO2 emissions.
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6. Conclusions

The bonobo optimizer (BO) was proposed and applied for the optimal design/sizing
of a hybrid renewable energy system (HRES) including PV, WT, diesel, and batteries to
electrify an urban area called Al Sulaymaniyah village, in Arar in the northern part of
Saudi Arabia. For the validation purposes, the BO was compared to four metaheuristic
algorithms—BBBC, crow search, GA, and BOA—to find the optimal solution for the HRES
with a quick convergence rate. These performance indicators (optimal solution, worst
solution, mean, median, STDEV, and convergence rate) were used to discern the most
appropriate performance among these five metaheuristic algorithms. The simulation
findings revealed that the BO outperformed the other four metaheuristic algorithms—
BBBC, crow search, GA, and BOA—where it achieved the optimal HRES solution/sizing
with minimum ASC (USD 149,977.2), quick convergence time, and fewer oscillations around
steady state. Both the BBBC and GA algorithms trapped into the local solution and failed
to capture the global solution. In addition, they had high standard deviation, which means
that the optimal solutions were highly dispersed. Hence, they had obvious oscillations
around the optimal solution and took longer to converge. On the other hand, both BO and
crow search had low standard deviation, which means that the optimal solutions were
concentrated around the mean. These results prove the efficacy and robustness of the
proposed BO algorithm compared to the other four metaheuristic optimization algorithms.
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