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Abstract: Due to the country’s rapid economic growth, the problem of air pollution in China is
becoming increasingly serious. In order to achieve a win-win situation for the environment and
urban development, the government has issued many policies to strengthen environmental protec-
tion. PM2.5 is the primary particulate matter in air pollution, so an accurate estimation of PM2.5
distribution is of great significance. Although previous studies have attempted to retrieve PM2.5
using geostatistical or aerosol remote sensing retrieval methods, the current rough resolution and
accuracy remain as limitations of such methods. This paper proposes a fine-grained spatiotemporal
PM2.5 retrieval method that comprehensively considers various datasets, such as Landsat 8 satellite
images, ground monitoring station data, and socio-economic data, to explore the applicability of
different machine learning algorithms in PM2.5 retrieval. Six typical algorithms were used to train
the multi-dimensional elements in a series of experiments. The characteristics of retrieval accuracy in
different scenarios were clarified mainly according to the validation index, R2. The random forest
algorithm was shown to have the best numerical and PM2.5-based air-quality-category accuracy,
with a cross-validated R2 of 0.86 and a category retrieval accuracy of 0.83, while both maintained
excellent retrieval accuracy and achieved a high spatiotemporal resolution. Based on this retrieval
model, we evaluated the PM2.5 distribution characteristics and hourly variation in the sample area, as
well as the functions of different input variables in the model. The PM2.5 retrieval method proposed
in this paper provides a new model for fine-grained PM2.5 concentration estimation to determine
the distribution laws of air pollutants and thereby specify more effective measures to realize the
high-quality development of the city.

Keywords: air pollution; PM2.5 retrieval; fine-grained spatiotemporal resolution; machine learning
algorithms; remote sensing

1. Introduction

With the continuous advancement of urbanization and industrialization, the problem
of air pollution has become increasingly serious. Ambient air pollution, mostly PM2.5, can
cause severe harm to the regional ecological environment and human health [1,2]. For every
10% increase in PM2.5, lung cancer mortality increases by 15–27% [3]. Thus, monitoring
PM2.5 concentrations is key to PM2.5 pollution research [4]. The spatiotemporal resolutions
used in relevant studies on PM2.5 concentration estimation are mostly at the kilometer-
scale [5,6] and daily-scale [7,8], which limits the dynamic assessment of air pollution and
human exposure in local areas. Therefore, under the background of building an ecologically
civilized society in a holistic way and pursuing sustainable urban development, PM2.5
retrieval with a high spatiotemporal resolution and a high level of accuracy is crucial.

The existing methods for estimating spatial concentrations of PM2.5 can be divided
into two major types: One type of method uses interpolation according to the data of
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ground stations. However, the number of ground stations is limited, and the spatial dis-
tribution is discontinuous, which yields great uncertainty for the calculations of PM2.5
concentrations [9,10]. Therefore, only using the method of interpolation can cause a high
level of deviation in the results [11]. Another method is to use remote sensing images to es-
tablish a PM2.5 retrieval model. Remote sensing images offer wide spatial coverage [12,13],
which can effectively make up for the defects in the discontinuous spatial distribution of
monitoring stations and improve retrieval accuracy [14]. Much work has been conducted
on the data sources, estimation methods, and parameter settings in this field.

The earliest satellites used for the retrieval of PM2.5 were the Moderate-resolution
Imaging SpectroRadiometer (MODIS) [10,15], the Multi-angle Imaging SpectroRadiome-
ter [16,17], and the Visible Infrared Imaging Radiometer [18]. The aerosol optical depth
(AOD) products provided by these satellites provide key physical quantities of atmo-
spheric turbidity and can be used to estimate the amount of particulate matter in the
atmosphere [19]. However, the spatial resolution of these products is at the kilometer level.
This low spatial resolution makes it difficult to capture the PM2.5 concentration distri-
butions on an urban block scale [20,21]. Moreover, satellite observations based on AOD
often measure the whole atmospheric columns, making PM2.5 near the surface difficult
to retrieve from the integrated quantities [22,23]. With the rising popularity of medium
and high resolution remote sensing satellites, Landsat images have gradually been used to
retrieve particulate matter concentrations [24,25]. Its 30 m spatial resolution is relatively
high among the many satellites used for PM2.5 retrieval. Estimations with high spatial
resolution and full spatial coverage can be realized by directly building a retrieval model
between an image’s spectral value and the particle concentration [11,26]. Although the
spatial resolution of retrieval results has been significantly improved, it remains difficult
to describe the real-time distribution pattern of PM2.5 concentrations in polluted areas
because the revisit period of Landsat is as long as 16 days [26]. Therefore, it is a challenge
to obtain PM2.5 concentration distributions with high spatiotemporal resolutions using
remote sensing images [27].

At the same time, the choice of modeling methods also has a great impact on the
accuracy of PM2.5 retrieval. With the continuous improvement of computing power
and algorithms, increasingly more machine learning methods have been used in PM2.5
estimations [28], such as multiple linear regression (MLR) [29], support vector regression
(SVR) [30,31], random forest (RF) [10], and artificial neural network (ANN) [32]. Compared
to traditional statistical methods, machine learning algorithms have a strong ability to
describe nonlinear relationships with massive amounts of data, which can effectively reduce
estimation errors [33]. Although machine learning algorithms have great advantages in
PM2.5 estimation, most studies only focus on the application or improvement of a certain
algorithm, so there remains a lack of applicability evaluations for different algorithms in
the same scenario.

In addition, most related PM2.5 estimation models only take the meteorological condi-
tions and remote sensing image characteristics as the influencing factors [34]. However,
the PM2.5 distribution has complex spatiotemporal distribution characteristics and is
easily affected by many other factors, such as urban functional zones [35], road vehicle
flows [36], industrial layout, and department settings [37]. The different pollutant emission
characteristics of these factors makes it necessary to input more elements into the PM2.5
retrieval model.

To solve the above problems, this paper proposes a retrieval model with a fine-grained
spatiotemporal resolution that comprehensively considers Landsat 8 satellite images with
a spatial resolution of 30 m, ground monitoring station data with a time resolution of 1 h,
and a 1 km grid of socio-economic data. Landsat satellite images offer spatially continuous
surface coverage information with a high spatial resolution and the meteorological and
socio-economic data provide auxiliary variable information that affects PM2.5 concentration.
These products were used together as the input parameters for the calculation of the
retrieval model. On this basis, retrieval models based on MLR, k-nearest neighbor (kNN),
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SVR, regression tree (RT), RF, and back-propagation neural network (BPNN) were built,
and the applicability of different algorithms was assessed. According to these analyses,
PM2.5 concentration data of a high quality can be obtained, thus providing a reference for
further epidemiological research on data dimension expansion and model selection.

The main innovations of this paper include the following:

1. A PM2.5 retrieval model that integrates high-resolution satellite images with meteoro-
logical and socio-economic variables was proposed. The retrieval results had a high
level of accuracy while realizing a fine-grained spatiotemporal resolution.

2. Six typical machine learning algorithms were used to build a PM2.5 retrieval model.
By comparing the results of these algorithms using quantitative validation indexes,
the optimal algorithm recommendation for a specific application is given.

The rest of the paper is organized as follows: The study area, the dataset and the
methodology are briefly introduced in Section 2. The experimental results are illustrated in
Section 3 and the discussion and conclusion are presented in Sections 4 and 5.

2. Materials and Methods
2.1. Study Area

Hangzhou, the capital city of Zhejiang, is an important central city in the Yangtze
River Delta and a transportation hub in southeastern China (Figure 1). The total area of
Hangzhou is around 16,853 km2, and the urbanization rate is 78.5%. Hangzhou is located in
a subtropical monsoon climate area, with low terrain, a dense river network, and abundant
rainfall. There are 15 air quality monitoring stations and 13 meteorological stations in the
area, so the air quality and meteorological data are relatively sufficient.
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Figure 1. Location map and topographic map of the study area.

2.2. Datasets and Data Preprocessing
2.2.1. Remote Sensing Image Data

In total, we used 53 Landsat 8 Operational Land Imager multispectral images with
less cloud cover from the United States Geological Survey (USGS). These images were
acquired from 22 May 2015, to 20 July 2019 and were preprocessed via radiometric calibra-
tion and Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) atmospheric
correction [38] on the PIE-Basic platform. These images feature 8 multispectral bands with
a spatial resolution of 30 m and an image width of 185 × 170 km. The revisit period in
China is 16 days.
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2.2.2. Ground Monitoring Station Data

The hourly data of PM2.5 and weather conditions from 1 April 2015 to 31 August 2019,
were provided, respectively, by the China National Environmental Monitoring Center
(CNEMC) and the China Meteorological Administration (CMA). The meteorological ele-
ments included temperature (TEMP), precipitation (PREC), relative humidity (RH), and
wind speed (WS).

2.2.3. Socio-Economic Data

Other datasets included gross domestic product (GDP), population (POP), industry,
and road networks. The GDP and POP data were obtained from the Resource and Envi-
ronment Science and Data Center (RESDC). The industry data were acquired from Baidu
Map’s Application Programming Interface using a web crawler, and the road network
data were acquired from OpenStreetMap, which offers the latest road network data. These
datasets were preprocessed by georeferencing, format conversion, and density calculations.

The categories, sources, and download links of the above multi-source datasets are
provided in Table 1.

Table 1. The list of datasets with their sources and download links.

Category Source Accessed Date Uniform Resource Location

Landsat images USGS 15 January 2020 https://earthexplorer.usgs.gov/
PM2.5 CNEMC 15 January 2020 http://www.cnemc.cn/

Meteorological CMA 15 January 2020 http://www.cma.gov.cn/
GDP RESDC 2 March 2020 http://www.resdc.cn/
POP RESDC 2 March 2020 http://www.resdc.cn/

Industry BaiduMap 5 March 2020 https://lbsyun.baidu.com/
Road Networks OpenStreetMap 5 March 2020 https://www.openstreetmap.org/

2.3. Methodology

Figure 2 illustrates the framework of this study and the details were as follows:

1. Preprocess the input data of the model. Because there were some data abnormalities,
inconsistent data dimensions, and site-location mismatch problems in the input data,
the data were first standardized, the outliers were removed, and Thiessen polygons
were constructed to find the nearest-neighbor sites.

2. Build the retrieval model based on different machine learning algorithms. The MLR,
kNN, SVR, RT, RF, and BPNN algorithms were used separately in this step to build
the model. Validation index: MAE, RMSE, and R2, combined with the cross-validation
method, were then used to evaluate the retrieval results.

3. Compare and analyze the indicators of different models. The pollution value and
pollution categories of the retrieval results of different machine learning algorithms
were compared, and the spatiotemporal resolution of the retrieval method in this
study was compared with the resolutions presented in similar studies.

2.3.1. Data Integration

Different dimensions of datasets affect the comparability of indicators, so the raw data
must be normalized. We used the min-max scaler method to linearly transform the raw
data to a value between 0 and 1 to balance the data dimensions and, at the same time, speed
up the model to find the global optimal hyper parameters. The formula was as follows:

Y =
x− xmin

xmax − xmin
(1)

where x and Y, respectively, refer to the values before and after normalization, and xmin
and xmax refer to the minimum and maximum values before normalization.

https://earthexplorer.usgs.gov/
http://www.cnemc.cn/
http://www.cma.gov.cn/
http://www.resdc.cn/
http://www.resdc.cn/
https://lbsyun.baidu.com/
https://www.openstreetmap.org/
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Figure 2. Methodological framework of the study.

Because the locations of the meteorological stations and air quality monitoring stations
are not co-located, the Thiessen polygon method was used to spatially associate the two
groups of data. The Thiessen polygon, also known as the Voronoi diagram, is widely used to
assess the traffic accessibility of traffic stations, schools, and shopping malls. Each polygon
contains only one input point feature, and any position in the polygon is closer to its
associated point than to any other point. According to Tobler’s first law of geography [39],
the meteorological data from the air quality monitoring stations located in a certain Thiessen
polygon can be expressed by the meteorological data of the associated points.

2.3.2. Machine Learning Algorithms

In this paper, the Python machine learning library scikit-learn was used for model
building, and six typical machine learning algorithms (MLR, kNN, SVR, RT, RF, and BPNN)
were used to retrieve the PM2.5 concentrations. The grid-search module of scikit-learn
was employed for parameter optimization, and the parameter dictionary was used to
adjust the candidate values of the hyper parameters to determine the best value. The final
determination rule of hyper parameters was as follows: When the parameters are set in this
way, the quantitative validation index of the model has the highest score. The validation
index is introduced in the following Section 2.3.3. The main theory and hyper parameter
values of the different models were as follows:

(1) MLR

The multivariable linear regression model is an extension of the one-variable linear
regression [40], in which there are often two or more independent variables that affect
the dependent variable. For a given instance x = (x1; x2; · · · ; xd), the general form of the
multivariable linear regression model is as follows:

f (x) = w1x1 + w2x2 + · · ·+ wdxd + b (2)
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where d refers to the number of elements contained in x, xi refers to the value of the ith
attribute of X, w refers to the regression coefficient, and b refers to the constant term.

(2) kNN

The kNN algorithm uses a certain distance to determine the nearest k samples in the
training set and then predicts other samples based on the k neighbors. As one of the most
important parameters, k determines the neighborhood range of the training set, which will
affect the estimation results of the kNN algorithm [41].

The distance between two sample points in feature space can reflect the degree of
similarity between those points. The feature space of the kNN model is generally an
n-dimensional vector space, and the distance between two points is usually measured
by the Euclidean distance. The calculation process is shown in Formula (3). The final
hyper parameters of this model were determined as follows: n_neighbors = 10, p = 2, and
weights = distance.

d(x, y) =
√

Σn
k=1(xk − yk)

2 (3)

where xk and yk refer to the coordinates of point X and point Y, respectively, in the kth
dimension, and n refers to the dimension of the data.

(3) SVR

The SVR algorithm is an important application branch of support vector machines
(SVM) [42]. In a given sample D = {(x1, y1), (x2, y2), · · · , (xn, yn), xi, yi ∈ R} , the equation
f (x) = ωTx + b can be trained to make f (x) as close to y as possible. When measuring
model accuracy, the prediction result is considered correct when the deviation between
f (x) and y is not too large. Specifically, the tolerable deviation, ε, is set, and the loss is
calculated only when the absolute value of the difference is greater than ε, which can
improve the robustness of the model. Specifically, the tolerable deviation ε is set to improve
the robustness of the model. Only when the absolute value of the difference between
f (x) and y is greater than εwill the loss be calculated. The final hyper parameters of this
model were determined as follows: C = 1.0, degree = 3, epsilon = 0.1, kernel = rbf, and
max_iter = −1.

(4) RT

The RT algorithm is a tree model that contains a root node, several internal nodes
and several leaf nodes. When RT is used for regression, the input space x is divided into
m units R1, R2, · · · , RM, which means that there will be at most M predicted values. The
calculation used for minimizing the mean square error is shown in Formula (4). The final
hyper parameters of this model were determined as follows: max_depth = 14, max_features
= None, min_impurity_decrease = 0.0, min_impurity_split = None, min_samples_leaf = 1,
and min_samples_split = 2.

Y = min
1
n

ΣM
m=1Σ1

xi∈Rm
(cm − yi)

2 (4)

where Y refers to the minimum mean square error, n refers to the number of samples, M
refers to the number of divided input space, Rm refers to the mth units after division, and
cm refers to the predicted value of the mth leaf.

(5) RF

The basic unit of RF is RT and it integrates multiple trees based on ensemble learn-
ing [43]. During the training stage, RF collects different sub-training datasets by bootstrap
sampling and trains different decision trees based on these training datasets. During the pre-
diction stage, RF averages the prediction values to obtain the final result, which prevents RF
from falling into overfitting and tends to offer excellent anti-noise ability [43]. The final hyper
parameters of this model were determined as follows: max_depth = 5, max_features = 19,
min_impurity_split = None, min_samples_leaf = 10, and min_samples_split = 4.
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(6) BPNN

BPNN is a multi-layer feed-forward neural network characterized by signal-forward
propagation and error-backward propagation. In BPNN, each neuron receives input signals
from other neurons and transmits signals through weighted connections. The neurons sum
these signals to obtain the total input value and compare it with the threshold value of the
neurons. The output data of nodes can be calculated through nonlinear transformation
using the transfer function. Moreover, nonlinear mapping of BPNN can solve the linear
inseparable problem, greatly improving prediction accuracy [44]. The sigmoid transfer
function is shown in Formula (5). The final hyper parameters of this model were determined
as follows: activation = logistic, batch_size = auto, hidden_layer_sizes = (100, 100, 100, 100,
and 100), learning_rate = constant, learning_rate_init = 0.001, and solver = sgd.

sigmoid(z) =
1

1 + e−z (5)

where z refers to a linear combination of the inputs in the network’s last layer.

2.3.3. Model Validation

(1) Validation method

K-fold cross-validation divides the dataset into a training set, a validation set and a test
set. The three subsets are used to train the model, adjust the parameters and test the quality
of the model under the current parameter settings. The schematic diagram of 10-fold
cross-validation is shown in Figure 3, the dataset is divided randomly into 10 samples
by non-repetitive sampling, then, 9 folds are used for training, and the remaining fold
is used to test. This step is repeated 10 times to obtain 10 models and their evaluation
results. Finally, the average result of these models is used to check the accuracy of the
model. Overfitting is avoided by applying this method [45].
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(2) Validation Index

This paper uses the determination coefficient (R2), mean absolute error (MAE), and
root mean square error (RMSE) as the validation indices of model accuracy. R2 represents
the percentage of the fluctuation of y that can be described by the fluctuation of x, MAE
presents the average absolute difference between the predicted value and the observed
value, and RMSE presents how well the predicted value curve fits the observed value curve.
The corresponding calculation formulas are as follows:

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (6)



Remote Sens. 2022, 14, 599 8 of 19

MAE =
1
n

n

∑
i=1
|yi − ŷi| (7)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (8)

where n refers to the number of data, yi refers to the ith observed value, ŷi refers to the ith
predicted value, y refers to the average of all observed values.

3. Results
3.1. Analysis of PM2.5 Retrieval Results
3.1.1. Prediction of the PM2.5 Concentration Distribution

Six machine learning algorithms were used to estimate the spatial distribution of
PM2.5 at 11:00 on 15 April 2019 in Hangzhou, as shown in Figure 4. It can be found that
except for the retrieval results of the RT model, which has several high PM2.5 areas in
the southwest, the distribution estimated by the other models is consistent, which reflects
the overall accuracy of the retrieval model. High values of PM2.5 are concentrated in the
northeast, while low values are concentrated in the southwest. These results are closely
related to the topography of Hangzhou. The southwest region is a hilly area and includes
Tianmu Mountain, while the northeast region is the plain area of northern Zhejiang, which
features low terrain, developed industry, dense population, and an active socio-economic
life, which, again, indicates that PM2.5 concentrations are highly correlated with socio-
economic factors.

The comparison of the results of the monitoring data and model fitting are shown in
Figure 5. In general, when the concentration of PM2.5 is relatively low, the scatter distri-
bution tends to be closer to the identity line. When the concentration exceeds 150 µg/m3,
the prediction values of the MLR, kNN, SVR, and RF models are generally lower than the
observed values, which indicates that these four models lack the ability to predict high
PM2.5 concentration values. Although the BPNN model showed a better fitting effect in
the high concentration area, this model still falsely estimated low values as high values.

The results of comparing the PM2.5 distribution eigenvalues calculated by the different
models with the PM2.5 eigenvalues of the observed data are shown in Table 2. These results
indicate that the RT model offers the best estimation of the maximum and minimum values
of PM2.5, while the results of the MLR model were the worst, showing large deviations
from the data distribution of the observed values. However, in calculating the average
values of the data, the MLR model achieved the best results. In calculating the median of
the data, the calculation result of the SVR model was the closest to the observed values.
This result reflects the different strategies used by different algorithms to obtain the best
and most optimized results. For example, the MLR algorithm employs a mean regression.
The straight line corresponding to the regression equation will pass through the average
center of the training data, so MLR will also have the best effect on the test set. This result
shows that different algorithms should be used to solve different specific problems.

The scores of different validation indexes are shown in Table 3. By comparing the
MAE, RMSE, and R2, we found that the MAE of all models were between 6.72 and 13.29, the
RMSE were between 10.11 and 18.78, and the R2 were between 0.51 and 0.86, indicating that
the feature selections and algorithm applications in this paper achieved good results. Here,
the RF model performed best, with an R2 of up to 0.86, which means that the retrieval model
could explain 86% of the training data. The R2 values of the kNN and BPNN models were
above 0.8, but the R2 of the MLR model was relatively poor (0.51), indicating that the simple
structure of the MLR model could not describe the complex nonlinear relationship between
the PM2.5 concentration and the model elements. Estimations of the PM2.5 pollution
value tended to improve the overall accuracy, while R2 best reflected the overall fit of the
regression equation, so the RF model is more suitable for PM2.5 retrieval modeling.



Remote Sens. 2022, 14, 599 9 of 19

Table 2. Eigenvalues of different models. The number in the double brackets represents the difference
between the predicted value and the observed value. The ‘+’ sign means larger than the observed
value, and the ‘−’ sign means smaller than the observed value. Bold numbers indicate the closest
result to the observed value.

Model Min (µg/m3) Max (µg/m3) Mean (µg/m3) Median (µg/m3)

Observed 1.0 198.08 42.30 35.77
MLR −57.73 (−58.73) 121.56 (−76.52) 42.30 (0) 39.96 (+4.19)
KNN 3.92 (+2.92) 162.91 (−35.17) 42.34 (+0.04) 36.47 (+0.70)
SVR 1.36 (+0.36) 152.31 (−45.77) 41.00 (−1.30) 36.32 (+0.55)
RT 1.0 (0) 195.88 (−2.20) 42.49 (+0.19) 36.36 (+0.59)
RF 5.74 (+4.74) 154.19 (−43.89) 42.42 (+0.12) 37.00 (+1.23)

BPNN 7.34 (+6.34) 182.94 (15.14) 41.51 (−0.79) 34.45 (−1.32)
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Table 3. Validation index score.

Model MAE (µg/m3) RMSE (µg/m3) R2

MLR 13.29 18.78 0.51
kNN 8.28 11.80 0.80
SVR 10.11 15.05 0.68
RT 8.24 12.60 0.78
RF 6.72 10.11 0.86

BPNN 7.14 10.37 0.85

3.1.2. Prediction of PM2.5-Based Air Quality Categories

According to the air quality standards in China, daily PM2.5 concentrations are classified
as “excellent” (0–35 µg/m3), “favorable” (35–75 µg/m3), “light pollution” (75–115 µg/m3),
“moderate pollution” (115–150 µg/m3), “heavy pollution” (150–250 µg/m3), or “ultra-
serious pollution” (>250 µg/m3). The performance of different machine learning algorithms
in predicting PM2.5 pollution categories is shown in Figure 6.
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categories: (a) MLR, (b) kNN, (c) SVR, (d) RT, (e) RF, (f) BPNN. Each subplot presents a comparison
of the predicted results of an algorithm with the observed results. The closer the predicted result was
to the observed result, the stronger the algorithm’s ability to predict the pollution categories. The
X-axis represents the different pollution categories, the main Y-axis represents the number of each
category, and the secondary Y-axis represents the prediction accuracy for each category. The detailed
data used for developing this figure are shown in Table A1.

The overall accuracy of the MLR, kNN, SVR, RT, RF, and BPNN algorithms in predict-
ing the PM2.5 pollution categories were 66%, 78%, 75%, 79%, 83%, and 82%, respectively.
Here, the RF algorithm had the highest accuracy. However, the RF accuracy for excellent,
favorable, light pollution, moderate pollution, and heavy pollution was 91%, 78%, 68%,
54%, and 0%, respectively. These results indicate an overall trend where the prediction
accuracy decreases with an increase of PM2.5 concentration, which was also observed
in the experimental results of related studies [46]. There are two main reasons for this
phenomenon. The first reason is that the sample size of the high-pollution-value interval in
the training dataset is small, which makes the model lack learning experience. Another
reason is that, although air pollution is mainly determined by factors, such as the indus-
trial structure [47], economic development level [48], and meteorological conditions [46],
pollution will still be affected by other incidents, such as the centralized opening of heating
equipment in winter [49]. Moreover, the emissions of dust from construction sites [50] can
lead to outbreaks of PM2.5 concentrations. However, these incidents are difficult to be
incorporated into a model. Therefore, the higher the PM2.5 concentration is, the lower the
signal-to-noise ratio will be, gradually decreasing the performance of the model.

3.1.3. Analysis of the Model Input Variables

The RF model was proven to be the best predictor of the pollution value and the
pollution categories. Another advantage is that RF can reflect the importance of variables.
The importance rankings of the variables in this experiment are shown in Table 4. The
variable with the highest importance was the daily PM2.5 concentration in the past day,
and the variable with the lowest importance was band 2 of Landsat 8. The ranking
results for the importance of variables were roughly consistent with the correlation ranking
results. However, the ranking of the importance of daily PM2.5 concentration in the past
2–7 days was generally found to be opposite to the ranking of the correlation, because
these variables have correlations with each other. When relevant features exist, after one
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feature is selected, the importance of the features related to that selected feature will decline,
because the impurities reduced by those features were already removed by the previous
feature. Therefore, RF can automatically eliminate the influence of multi-collinearity among
multiple variables without affecting the understanding of data features. Moreover, RF can
simplify the data preprocessing step when building the model.

Table 4. Comparison of variable importance and correlation ranking. xDB refers to the average PM2.5
concentration x day(s) before. The ‘↑’ sign indicates that the ranking of variable importance has
increased compared to the rank of the correlation, the ‘↓’ sign indicates that the ranking of variable
importance has decreased compared to the rank of the correlation, and the ‘-’ sign indicates that the
ranking did not change.

Variable Importance Ranking Correlation Ranking Ranking Change

1DB 1 1 -
PREC 2 10 ↑ 8

WS 3 9 ↑ 6
TEMP 4 3 ↓ 1
2DB 5 2 ↓ 3
RH 6 18 ↑ 12
6DB 7 7 -
7DB 8 5 ↓ 3
4DB 9 6 ↓ 3
3DB 10 4 ↓ 6
POP 11 13 ↑ 2

Industry 12 14 ↑ 2
Road 13 12 ↓ 1
GDP 14 16 ↑ 2

Band 5 15 11 ↓ 4
NDVI 16 23 ↑ 7
Band 7 17 22 ↑ 5
Band 6 18 15 ↓ 3
Band 4 19 21 ↑ 2
Band 3 20 17 ↓ 3
Band 1 21 20 ↓ 1
Band 2 22 19 ↓ 3

3.2. Spatiotemporal Granularity Analysis of the Retrieval Result

Here, Landsat 8 satellite images with a high spatial resolution of 30 m were used as
the input variable of the retrieval model, which helps to describe the spatial details of the
retrieval results. Compared with the interpolation results, these data can better reflect the
spatial heterogeneity of PM2.5 distribution. Meanwhile, with the hourly meteorological
data, the retrieval model realizes hourly updates of the spatial distribution of PM2.5 and can
readily capture the characteristics of PM2.5 distribution. Figure 7 shows the distribution
of PM2.5 at 8:00, 9:00, and 10:00 on 18 May 2019, in Hangzhou. Generally, the PM2.5
concentration in the northeast is higher than that in the southwest. However, with a change
of time, the PM2.5 concentration shows a slow downward trend overall. Because around
8:00 is the peak time for work, this peak often causes the PM2.5 concentration to reach the
first peak of the day, but as the traffic volume decreases, the concentration slowly decreases.
At the same time, with the continuous influence of wind, the PM2.5 concentration is diluted,
and the area of highly polluted regions gradually decreases. At 10:00, a highly polluted
region still existed in the center of Hangzhou. This area has a high building density, a
high floor, and a compact layout, which play a role in the accumulation of PM2.5 particles
and are not conducive to the diffusion of particles. Therefore, the retrieval result enables a
fine-grained characterization of PM2.5 in both space and time.
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4. Discussion
4.1. Time Efficiency of the Retrieval Model

In addition to the fitting effect, the time efficiency of the model must also be considered
when performing PM2.5 remote sensing retrieval. In this paper, we used the big O notation
method to express the time complexity of different algorithms and to test the time consump-
tion of the algorithm during model training, based on different training sample sizes (100,
500, 1000, 5000, and 10,000). Here, we only focus on the difference in running time caused
by the change in sample size, so each test is run based on the optimal parameters, ignoring
the time consumption caused by the hyper parameters of different algorithms. The result is
shown in Figure 8. Notably, the Y-axis is logarithmically scaled. This figure shows that the
differences in time consumption will become more obvious with an increase of the number
of samples. When the research area becomes larger or the time scale becomes longer, the
time consumption of the retrieval model will increase greatly, especially when applied to
the aspects that require the real-time concentration of PM2.5. Thus, time consumption will
have to be considered, e.g., by using a real-time route planning with a minimum PM2.5
as the criterion [51]. Among the six algorithms, kNN achieved a relative balance between
model accuracy and running time. Although the R2 (0.80) fitted by kNN was lower than
the R2 (0.86) fitted by RF, when the sample size reached 10,000, the running time of kNN
was only 5% of RF. With a larger sample size, this running time advantage will be more
obvious. Therefore, when modeling large data volumes, decision makers must choose
between time efficiency and accuracy.
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4.2. Potential Room for Model Improvement

Due to the differences in PM2.5 concentration at different times, the accuracy of the
retrieval model will be affected by time. In order to explore the law of model accuracy
over time, the retrieval accuracy of PM2.5 concentration was evaluated at a monthly and
seasonal scale. The scores of each month and season are shown in Table 5. At a monthly
scale, the R2 of March and August were the highest, and the R2 of June was the lowest. At
a seasonal scale, the R2 values of spring (March, April, and May) and winter (December,
January, and February) were higher than those of summer (June, July, and August) and
autumn (September, October, and November). Considering the significant difference of the
regressing effect in different months and seasons, time series will be taken into account in
future studies.

Table 5. Scores of the different months and seasons. The data used in this experiment were obtained
from 1 April 2015 to 31 August 2019.

Time MAE (µg/m3) RMSE (µg/m3) R2

January 10.08 13.85 0.85
February 8.80 12.87 0.83

March 7.68 10.97 0.84
April 5.30 7.43 0.77
May 5.92 8.84 0.81
June 7.42 13.02 0.55
July 4.49 6.65 0.75

August 4.43 6.03 0.84
September 4.66 6.80 0.77

October 7.34 10.78 0.81
November 6.80 9.00 0.71
December 9.86 13.96 0.82

Spring 6.84 10.04 0.82
Summer 5.20 8.39 0.71
Autumn 6.16 9.09 0.78
Winter 10.09 14.54 0.80

The most commonly used method to obtain the continuous PM2.5 distribution in a
certain region is to interpolate the PM2.5 values measured by the air quality monitoring
stations. The kriging result presented in Figure 9 was calculated via kriging interpolation
of the monitored value at 11:00 on 15 April 2019, in Hangzhou, and the RF result is the
distribution of PM2.5 concentration at the same time. A shortcoming of the interpolation
method is that the PM2.5 concentration in the whole area is only obtained by mathematical
calculations from the real measured values of the monitoring stations. Thus, the interpola-
tion result can only represent the PM2.5 concentration distribution trend over the whole
region, and the geographical unit it can represent is far less detailed than that of the retrieval
model. However, at the same time, because the interpolation results are calculated from real
observed values, the results can be constrained by those observed values. Thus, the closer
the area is to the monitoring station, the more accurate the interpolation results will be. In
contrast, the retrieval model lacks the constraints of the real values of monitoring stations,
which will cause some results to deviate greatly from the real values. As illustrated in
Figure 9, although the overall distribution trend of the two results is similar, there are large
differences in the marked area, which indicates that the calculation errors of the retrieval
model in this region are large. The same problem is also reflected in the retrieval result
of RT shown in Figure 4, where a few retrieval results have large errors compared to the
observed concentrations of PM2.5. We will also study the correction effects of the observed
values measured by monitoring stations on the retrieval results in future research, so as to
obtain more accurate PM2.5 concentration distributions.
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4.3. Limitations

The method proposed in this paper has certain limitations. At present, the spatial
resolution of the retrieval results in this model is affected by the spatial resolution of the
Landsat satellite images. Although the spatial resolution of the Landsat 8 images is up
to 30 m, this value is only a reference for the spatial resolution of the retrieval results.
The current accuracy validation is based on 20140 PM2.5 observation samples from 15 air
quality monitoring stations in Hangzhou from 1 April 2015, to 31 August 2019. The actual
measurement data from the equipment needed to verify the accuracy of the retrieval results
at a resolution of 30 m are lacking. In response to this problem, we believe that more
predictors with high spatial resolutions could be added to the model in future research,
such as land use cover data [52] and night light satellite data [53]. Increasing the prediction
variables would help to improve the robustness of the model, greatly improving the
credibility of the retrieval results.

5. Conclusions

In this study, a fine-grained PM2.5 retrieval model was proposed. This model includes
high-resolution satellite image data, ground monitoring station data, and socio-economic
data. We built this model based on the MLR, kNN, SVR, RT, RF, and BPNN algorithms sep-
arately and evaluated the retrieval results after a 10-fold cross-validation of each algorithm.
With this model, we can retrieve the fine-grained distribution of PM2.5 every hour and dig
out its change rule.

Among the six different machine learning algorithms, the RF model achieved the
best retrieval effect, with the highest R2 and the highest prediction accuracy for the air
quality categories. However, similar to the other five models, the RF model also showed
a pattern of high prediction accuracy in low-value areas and low accuracy in high-value
areas. In addition, the fitting effect of PM2.5 varied from month to month and from season
to season. At a monthly level, the R2 values of March and August were the highest, at 0.84,
while the R2 of June was lowest, at 0.55. At a seasonal level, the R2 values from high to
low were spring, winter, autumn, and summer, reflecting the different causes of PM2.5
in different seasons. Considering that different machine learning algorithms have their
own advantages, future research will take segmented regression modeling into account, in
order to integrate an optimal model suitable for all regions. Future work will also focus
on improving the stability of our model by expanding the research area and using more
data sets.
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AOD Aerosol Optical Depth
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SVR Support Vector Regression
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CNEMC China National Environmental Monitoring Center
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R2 Determination Coefficient
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Appendix A

Table A1. The number of each air pollution category in the observation dataset of ground stations
and the accurate number in the prediction results of the different algorithms.

Category Observed MLR kNN SVR RT RF BPNN

Excellent 9791 6312 8007 7873 8308 8910 8500
Favorable 8179 6509 6585 6336 6426 6372 6510

Light pollution 1688 514 1007 794 1055 1147 1205
Moderate pollution 367 0 143 69 144 198 202

Heavy pollution 115 0 16 2 48 0 72
Ultra-serious pollution 0 0 0 0 0 0 0

Total 20,140 13,335 15,758 15,074 15,981 16,627 16,489
Accuracy — 66% 78% 75% 79% 83% 82%
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Table A2. Time complexity of the algorithms and the running time under different sample sizes.

Algorithm Time Complexity Running Time (ms)
100 500 1000 5000 10,000

MLR O(n) 40 65 82 111 207
kNN O(n) 47 79 146 1787 5602
SVR O(n2) 41 205 537 13,340 59,422
RT O(nlog(n)) 46 56 79 628 1765
RF O(nlog(n)) 100 1251 15,494 24,549 112,265

BPNN O(n2) 317 1245 2245 19,564 92,817
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