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A B S T R A C T   

With the rapid growth of cloud computing, efficient operational optimization and resource scheduling of com
plex cloud business processes rely on real-time and accurate performance prediction. Previous research on cloud 
computing performance prediction focused on qualitative (heuristic rules), model-driven, or coarse-grained time- 
series prediction, which ignore the study of historical performance, resource allocation status and service 
sequence relationships of workflow services. There are even fewer studies on prediction for workflow graph data 
due to the lack of available public datasets. In this study, from Alibaba Cloud’s Cluster-trace-v2018, we extract 
nearly one billion offline task instance records into a new dataset, which contains approximately one million 
workflows and their corresponding directed acyclic graph (DAG) matrices. We propose a novel workflow per
formance prediction model (DAG-Transformer) to address the aforementioned challenges. In DAG-Transformer, 
we design a customized position encoding matrix and an attention mask for workflows, which can make full use 
of workflow sequential and graph relations to improve the embedding representation and perception ability of 
the deep neural network. The experiments validate the necessity of integrating graph-structure information in 
workflow prediction. Compared with mainstream deep learning (DL) methods and several classic machine 
learning (ML) algorithms, the accuracy of DAG-Transformer is the highest. DAG-Transformer can achieve 85- 
92% CPU prediction accuracy and 94-98% memory prediction accuracy, while maintaining high efficiency and 
low overheads. This study establishes a new paradigm and baseline for workflow performance prediction and 
provides a new way for facilitating workflow scheduling.   

1. Introduction 

With the rapid development of the Internet of Things, big data, and e- 
commerce, the needs for versatile and elastic cloud computing in
frastructures have surged. Top cloud service vendors, such as Amazon 
AWS, Microsoft Azure, and Alibaba Cloud have launched a series of 
cloud computing technologies and business models. More edge 
computing devices are also deployed in process-intensive scenarios, 
such as manufacturing and industrial control. Recent years, container 
technology such as docker and Kubernetes has become the dominated 

virtualized resource management mechanism for its lightweight, easy- 
to-deploy, high-efficiency, and resource-sharing features [1]. The 
container technology is capable of high-density deployment and 
real-time elastic scaling of cloud services. Elastic scheduling adjusts 
resources supply according to the future tasks’ workload, which can 
reduce the resource waste during idle periods and complement the re
sources demand during busy periods. However, it creates great 
complexity in management and optimization decisions. Therefore, a 
considerable amount of research is focused on task scheduling models 
and related optimization algorithms [2,3,4,5]. 
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In elastic resource scheduling, the estimation of the resource demand 
of unexecuted tasks is a critical effort. However, traditional resource 
scheduling utilizes lab measurements, manual experience, and simple 
statistics [6] to adjust the resource allocation accordingly. They do not 
consider historical logs and future trends of resource usage. In complex 
scenarios, the resource mismatches often occur between demand and 
supply, which result in low overall resource utilization. Accurate pre
dictions are placed high hopes to provide precise scheduling, which is 
gradually considered as a new way to improve cloud utilization and 
reducing energy consumption [7, 8, 9, 10, 11]. 

In fact, performance prediction in clouds is a classical problem, such 
as resource occupation or computational workload. But previous 
research is mainly model-driven [12, 13, 14, 15], and based on a single 
virtual machine (VM)/instance, single task, or single host. However, 
there are relatively few research on performance predictions for tasks 
organized as workflows, especially in the new generation of container
ized clouds. Such performance predictions can help cloud providers 
optimize business processes in an end-to-end manner for various 
deployment modes in hybrid clouds. Thus, there is an urgent need for 
prediction models that provide accurate performance estimation of 
future tasks in workflows. 

To this end, we first extract, clean and transform containerized 
workflow logs from Cluster-trace-v2018 of the Alibaba Cloud. We 
aggregate nearly one billion offline task instance records into a new 
dataset, which contains approximately one million workflows, and 
extract their corresponding structural information into DAG matrices. 

To make use of these fine-grained graph spatiotemporal sequences, 
which represents historical performance, resource allocation, and ser
vice relationships of workflows, this study proposes an improved 
Transformer method (i.e., DAG-Transformer). According to the work
flow’s definition, a novel position encoding suitable for DAG is proposed 
to decorate workflow sequence, in which the parallel relationship of 
tasks can be well represented. Simultaneously, a corresponding atten
tion mask is introduced in the attention calculation phase of DAG- 
Transformer, which can regularize attention calculations according to 
the dependencies between workflow tasks. Hence, DAG-Transformer 
embeds sequence and graph relationships of workflows together to 
enhance the feature representation of the deep neural network. 

DAG-Transformer can predict the performance of upcoming tasks 
based on the historical performance of the workflows, providing key 
parameters to the workflow scheduling algorithms. We find that the 
effective use of DAG structure information consistently improves the 
performance of our proposed prediction model, achieving an overall 
prediction accuracy of 85-92% for CPU and of 94-98% for memory. Our 
proposed model and exploration, for the first time, emphasize the 
importance of prediction-driven scheduling in cloud workflows from a 
quantitative perspective, giving a clear, intuitive and detailed baseline. 

Fig. ;1 shows the framework of this research. 

2. Literature Review 

2.1. The necessity of predictions for cloud scheduling 

Cloud computing platforms need to allocate computing resources 
reasonably when providing services, so that tasks submitted by users can 
be executed in a shorter time and at a lower cost [16]. However, with the 
rapid increase of users and applications, the cloud environment has 
become more complex than ever, and the problem of low resource uti
lization in the cloud environment has become very prominent [6]. Ac
cording to the comparison in [17], the average workload fluctuation of a 
cloud environment is approximately 20 times larger than that in a 
traditional grid. 

Traditionally, by allocating resources based on a fixed threshold, 
cloud providers are hard to achieve consistent Quality of Service (QoS) 
while saving energy and cost. In academia, a wide range of scheduling 
algorithms are proposed to manage the cloud. They treat effective and 
efficient scheduling algorithms as a solution to the abovementioned 
problem [16, 18, 19, 20, 21, 22]. However, underneath the scheduling, 
accurate performance prediction is a prerequisite for correct 
decision-making. Yang et al. [7], Shaw et al. [8], Zhong et al. [9], Aslam 
et al. [10], and Zhu et al. [11], all illustrated the significance of pre
dictions for scheduling, optimization, load balancing, energy savings, 
etc. Duggan et al. [23] considered that prediction algorithms can pro
vide a greater chance to prevent a host from becoming overutilized 
when sudden high demands occur. Kim et al. [24] believed that pre
dictive resource management is highly dependent on workload pre
dictors, which can estimate short/long term fluctuations in cloud 
application workloads, but current methods cannot deal with all cloud 
workload patterns. There are also some related works [23, 25, 26, 27, 
28, 29, 30, 31, 32, 33] that use prediction results to provide a basis for 
better scheduling algorithms. We organized the Table 1 to show the 
previous works related to performance predictions in a cloud environ
ment. From the literature, we find that performance prediction, which is 
a vital foundation of optimization and scheduling in cloud environ
ments, can help vendors reduce the complexity of cloud management. In 
complex hybrid cloud environments, where fluctuating resource de
mands lead to low overall resource utilization, predictions can provide 
precise parameters for scheduling, thereby improving cloud utilization 
and reducing energy consumption. Predictions play an increasingly 
important role and have become a hot topic of recent research. 

2.2. Cloud workflows 

For complex cloud services, offline batched tasks can often be 
orchestrated as workflows based on DAG structure, which involves 
parallelism and dependencies between the workflow’s affiliated tasks 
[45]. Furtherly, a task is considered as completed only if its underlying 
instances are all executed successfully. This is shown in Fig. ;2. 

Existing approaches have proposed the importance of prediction for 
scheduling and integrated the prediction step into scheduling algo
rithms. However, limited by the scarcity of available datasets, prediction 

Fig. 1. Research framework.  
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models specific for workflows have not been studied systematically and 
applied in scheduling. 

Previous cloud predictions mainly focus on a single VM/host/clus
ter/task, and most of them are modeled as time-series, using (t-n….t-1) 
to predict t [8, 35, 39]. They cannot effectively make use of the de
pendency relationships of tasks, and each task is isolated from each 
other. Wu et al. [45] stated that workflow has become a paradigm to 
explain tasks on the cloud, but there are still few performance pre
dictions facing cloud workflows. Kousalya et al. [46] proposed two 
prediction tracks for workloads of cloud workflows, one is simulation 
and test environment-based measurement, and the other is log-based 
data-driven machine learning. They elaborate on the necessity and 
feasibility of workflow-oriented scheduling in the cloud, especially the 
data-driven way. However, there is no mention of how to use contextual 
and structural features, and no comparison for ML-based prediction 
methods. 

The logs and definition of workflow can reflect historical perfor
mance, resource allocation, and service relationship. As Wu et al. [45] 
proposed, the performance predictions towards cloud workflows are 
scarce. One of the main reasons is the lack of a dataset. In our prior work 
[47], we investigated related public cluster datasets released by cloud 

computing vendors, as shown in Table 2, among which, 
Cluster-trace-v2018 released by the Alibaba Cloud appears to be an 
appropriate research object. 

2.3. Challenges in the Alibaba Cloud 

Among the public cluster traces, only ClusterData2019 released by 
Google [48] and Cluster-trace-v2018 released by Alibaba Cloud [49] 
contain DAG information. Considering the data accessibility, we select 
Cluster-trace-v2018 for research. There are several previous works that 
have explored this dataset, including analysis of resource efficiency and 
utilization [51, 52], characterization of task dependencies [72], and 
exploration of co-located services [6]. Liu et al. [50] and Guo et al. [51] 
both noted that the planned resources requirements are highly incon
sistent with that actually used. The problems of over-allocation and 
under-allocation of resources are both significant. 

Liu et al. [50] concluded that batch instances with low resource re
quests tend to overcommit both CPU and memory at runtime. In the 
contrast, there are also batch instances that underutilize the resources 
they request. In [50], it can be seen that the actual resource usage at 
runtime may exceed the request by more than 10 times, and this pattern 

Table 1 
Previous works related to cloud predictions.   

Year Prediction index Method used Whether to schedule 
based on prediction 
results 

Datasets or Simulator Dataset(s) used 

Jiang et al. [34] 2013 VM capacity Ensemble learning No Dataset IBM Smart Cloud Enterprise 
Yang et al. [7] 2015 CPU workload ESN based autoencoder No Dataset Google Cluster 2011 
Shaw et al. [8] 2017 Bandwidth availability ARIMA Yes Simulator - 
Janardhanan et al. 

[35] 
2017 CPU workload ARIMA and LSTM No Dataset Google Cluster 2011 

Zhong et al. [9] 2018 CPU workload Weighted wavelet SVM No Dataset Google Cluster 2011 
Duggan et al. [23] 2018 Bandwidth usage and CPU 

workload 
RNN Yes Dataset+simulator Google Cluster 2011 and 

Amazon EC2 
Gupta et al. [36] 2018 CPU usage BiLSTM No Dataset Google Cluster 2011 
Zhang et al. [37] 2018 CPU Utilization Autoencoder No Dataset PlanetLab 
Aslam et al. [10] 2019 CPU and Memory usage, Disk 

I/O time 
heuristics No Dataset Google Cluster 2011 

Zhu et al. [11] 2019 CPU workload LSTM based encoder- 
decoder 

No Dataset Alibaba cluster-trace-v2018 
and Dinda(single machine) 

Erradi et al. [38] 2019 CPU, memory, bandwidth 
utilization 

MLP, Linear Regression No Simulator - 

Fei et al. [39] 2020 Number of tasks in a cluster ARIMA Yes Dataset+Simulator Google Cluster 2011 
Gao et al. [40] 2020 CPU and Memory usage LSTM, ARIMA No Dataset Google Cluster 2011 
Suksriupatham 

et al. [26] 
2020 CPU Utilization SVM/Linear Regression/ 

Regression Tree/ 
polynomial regression 

Yes Dataset+Simulator PlanetLab 

Hsieh et al. [27] 2020 CPU Usage Gray–Markov Yes Dataset+Simulator PlanetLab 
Xiao et al. [28] 2020 VM requirements heuristics Yes Dataset + Simulator Wikinews 
Marahatta et al.  

[29] 
2020 task failure probability MLP Yes Dataset + Simulator Eular Data Set and Internet Data 

Set 
Rjoub et al. [41] 2020 - DRL(LSTM) - Dataset+Simulator Google Cluster 2011 
Li et al. [30] 2020 HTTP requests DBN Yes Dataset + physical 

environment 
Baidu Network Trafc Statistics 
institute 

Kim et al. [24] 2020 Incoming jobs, user requests, 
workload 

Ensemble learning No Dataset+Simulator Google Cluster 2011, Facebook 
Hadoop; Wikipedia web traces; 
Grid Workloads Archive 

Kholidy [42] 2020 CPU utilization, Disk IOs/sec, 
memory utilization, and 
Network bandwidth used 

PSO,ARIMA,SVM No Simulator - 

Tan et al. [16] 2021 - DQN+PSO - Dataset QWS and WSDream 
Prassanna et al.  

[25] 
2021 workload state heuristics Yes Dataset + Simulator Amazon EC2 

Davami et al. [31] 2021 Maximum tasks to execute in 
parallel 

LSTM Yes Dataset+Simulator DS Lab 

Bi et al. [43] 2021 Workload, CPU usage and 
Memory usage 

Combination of Bi-LSTM 
and Grid-LSTM 

No Dataset Google Cluster 2011 

Karim et al. [44] 2021 CPU workload Combination of LSTM and 
CNN 

No Dataset GRID Workloads Archive 

Kaur et al. [32] 2021 availability of the resources Ensemble learning Yes Simulator - 
Yeung et al. [33] 2021 GPU Utilization & VRAM 

Occupation 
heuristics Yes Dataset + Simulator Traces in Tiresias  
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varies from different resources (e.g. CPU and memory). Guo et al. [51] 
also reported that most of the highest average utilizations may exceed 
100% of the resources requested in the Alibaba Cloud. 

Another work from the Alibaba Cloud [6] noted that online services 
are latency-critical but may not consume much CPU and/or memory 
resources. On the other hand, offline batch workflows demand as many 
resources as possible to maximize their performance. This type of 
co-location mode leads to the resource imbalance in Alibaba Cloud. 
Under such circumstances, the performance response model constructed 
from dedicated test bed in lab is subject to deviation when the workload 
interference of online tasks, user interaction, etc. exist [53]. 

In conclusion, it has been noted in related data analysis and quali
tative studies that the resource demand planned by workflow designers 
in ideal experimental environments often deviates from the workloads 
in real production environments, especially under the online-offline co- 
located hybrid containerized deployment mode. Although load inter
ference estimation can address the above issues, it is highly complex and 
almost infeasible [6]. As above, it becomes an intuitive idea to establish 
a data-driven and machine learning based method for performance 
prediction in the new generation of high-density, green, hybrid het
erogeneous clouds. 

Additionally, according to Lu et al. [54], in Cluster-trace-v2018, the 
number of workflows with different numbers of tasks varies greatly. 
After preliminary statistics (please see the appendix), we see that among 
workflows with the same number of tasks, their structures also vary. For 
example, in workflows with 3 tasks, there are as many as 30 different 
workflow structures, and there are as many as 1261 different workflow 
structures in workflows with 7 tasks. Due to the high complexity of cloud 
workflows, traditional mathematical models, heuristics-based algo
rithms, and traditional machine learning methods have limitations in 

modeling different workflow structures. They cannot identify and infer 
implicit relationships among individual tasks without graph 
structure-aware computation. As a result, they would lose some useful 
information which may improve the prediction accuracy. 

2.4. Prospects and potential of DL 

The end-to-end representation learning methods represented by DL 
have achieved inspiring success in various fields, such as computer 
vision [55], speech recognition [56], and natural language processing 
[57]. Recent progress in DL refreshes people’s recognition of artificial 
intelligence. OpenAI trains a language model, GPT-3 [58], with 175 
billion parameters, allowing intelligent chatbots to become possible. 
AlphaFold [59] proposed by DeepMind can accurately predict protein 
structures at the atomic level, even when similar structures are not 
known. Moreover, algorithms based on DL can even nowcast precipi
tation skillfully [60]. In particular, the Transformer architecture [61] 
and self-attention mechanism demonstrate superior potential for 
different fields [62, 63, 64]. Previous works in Table 1 have shown the 
feasibility of applying deep learning to cloud predictions, but the 
application of Transformer is scarce. To this end, we are inspired to 
explore deep learning methods and Transformer-based architectures to 
address workflow performance predictions. 

Many current Transformer-based DL algorithms are designed for 
specific areas, such as natural language processing (Bert [62]) and 
computer vision (ViT [63]). However, workflows are essentially graphs, 
whose data structure are different from natural language and images 
(sequences and patches). These Transformer-based methods cannot 
elegantly and exactly model the DAG information. As a consequence, 
they cannot be migrated to cloud workflows directly. To address this 
issue, we design a DAG-oriented Transformer variant to adapt to the 
cloud workflow. 

2.5. Our motivation 

Our motivation comes from observation of the Cluster-trace-v2018 
and insights of the prior works related to this trace [6, 50, 51, 52, 53, 
54]. We find that in real production systems, the planned resources are 
highly mismatched with the actual resource demand, causing under
utilization and overutilization phenomena. Efficient scheduling to 
improve resource utilization in the cloud relies on the accuracy of the 
estimation of future indicators. The importance of better perception 
from a global perspective is also mentioned in cloud community [51]. 
Hence, we aim to provide accurate, real-time estimations of such in
dicators from a workflow-level perspective. 

The challenges of workflow-oriented predictions are as follows:  

1 How to cope with the diverse workflow structures.  
2 How to convert cloud traces (graphs) into ML-trainable samples.  
3 How to design a suitable DL algorithm (e.g., Transformer) for cloud 

workflow predictions. 

Overall, we focus on how to utilize a representative large-scale cloud 
trace (i.e., Cluster-trace-v2018) to form a workflow graph dataset, 
establish a workflow-oriented prediction model, and provide a strong 

Fig. 2. An example of workflow-task-instance DAG  

Table 2 
Public cloud cluster traces  

Cloud Vendor Dataset Released Year Period Content 

Google ClusterData2011 2011 1 month A single 12.5 k-machine Borg cell  
ClusterData2019 2019 1 month Eight Borg cells 

Azure AzurePublicDatasetV1 2017  ~2 M VMs and 1.2 B utilization readings  
AzurePublicDatasetV2 2019  ~2.6 M VMs and 1.9 B utilization readings  
AzureFunctionsDataset2019 2019 2 weeks A subset of applications running on Azure Functions 

Alibaba Co-located cluster Cluster-trace-v2017 2017 12 hours About 1300 machines  
Cluster-trace-v2018 2018 8 days About 4000 machines, the DAG information of production batch workloads  
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baseline. In addition, the proposed approach is applicable to similar 
workflow management other than cloud computing communities, such 
as smart manufacturing, logistics and supply chain, transportation, and 
IoT industries. 

3. Methodology 

3.1. Descriptive exploration of Alibaba Cluster 

At the end of 2018, Alibaba released Cluster-trace-v2018. This 
dataset contains the operational logs of co-located online and offline 
container services on 4,023 servers in 8 days. We analyze the CPU uti
lization in this dataset, as shown in Fig. ;3. Although approximately 90% 
of servers have a maximum utilization of CPU above 80%, more than 
80% of the server’s average CPU utilization is between 30% and 50%. 
The difference between the maximum utilization and the average utili
zation is more than 40%. 

Comparing the average and maximum utilization of CPU, we see that 
although the maximum utilization of server resources reaches a rela
tively high level in certain periods, the average utilization of resources is 
still at a middle level, which shows that the clusters still have lower 
overall utilization of resources. The phenomenon of low resource utili
zation is possibly due to the unreasonable scheduling lack of accurate 
prediction for actual resource usage of services. 

3.2. Preprocessing of the dataset 

Two logs of offline batch workflows are recorded in Cluster-trace- 
v2018. One log is the "batch_task" table, and the other log is the 
"batch_instance" table. 

Log 1 is the "batch_task" table, which describes the tasks’ perfor
mance in the batch workflows, as shown in Table 3. 

Log 2 is the "batch_instance" table, which describes the performance 
of instances which constitute tasks in the batch workflows, as shown in 
Table 4. 

The above datasets don’t provide the graph structure of each work
flow and task-level performance, so we design the preprocessing pipe
line. The steps to extract the workflow are shown in Fig. ;4. ❶: First, we 
derive the DAG information based on the name field of the task, and 
group the tasks according to the offline workflow to which they belong. 
❷: Then, we filter out all instances of the specific workflow from the 
"batch_instance" table and aggregate the instance performance to form 
the task-level performance. 

We finally exact 4,201,013 batch workflows. We find that a work
flow can have as few as 1 task and as many as 1,002 tasks. Workflows 
with fewer than 10 tasks (3,980,466) account for 94.75% of the total 
workflows, and workflows with fewer than 20 tasks (4,171,498) account 
for 99.30% of the total workflows. We see that overly complex 

workflows exist, but they are not common. We also find that the struc
ture of batch workflows with the same number of tasks varies, as shown 
in Fig. ;5. 

The preprocessing results of the workflows with 3 to 50 tasks are 
listed in Table 5. Figures about the analysis of these workflows are 
shown in appendices. 

❶: The DAG information is transformed into a sparse matrix, and the 
connection weights between tasks are described through in-degree and 
out-degree, as shown in Figure 6 and Figure 7. “o_” represents an out- 
degree, and “i_” represents an in-degree. For task 6, its “o_7” value is 
1, which means that task 7 starts after the end of task 6. The values of 
“i_4” and “i_5” are 0.5, which means that the precondition for the start of 
task 6 is the end of task 4 and task 5. 

❷: We calculate the average, variance, maximum, minimum, me
dian, skewness and kurtosis of the instances’ resource occupation (CPU, 
memory) of each task in the workflow, as well as the average, variance, 
maximum, minimum of the tasks’ execution time (lifecycle), to 
construct the task-level performance. 

The features of a task’s performance and DAG information in 
workflow are shown in the tables in appendices. 

For the convenience and without loss of generality, we conduct the 

Fig. 3. Average (Blue, left) and Maximum (Red, right) of CPU utilization of servers in Cluster-trace-v2018  

Table 3 
"batch_task (workflow task)" table.  

Feature Name Interpretation 

tid Id of task 
inst_num Number of instances included in the task 
task_type Type of task 
jid The name of the workflow to which the task belongs 
status Status of task 
stime Start time of task 
etime End time of task 
plan_cpu CPU requested for each instance of the task 
plan_mem Memory requested for each instance of the task  

Table 4 
"batch_instance (workflow instance)" table.  

Feature Name Interpretation 

ins_nam Name of instance 
tid The name of the task to which the instance belongs 
jid The name of the workflow to which the instance belongs 
stime Start time of instance 
etime End time of instance 
mid The name of the machine to which the instance belongs 
cpu_avg The average CPU usage of the instance 
cpu_max The max CPU usage of the instance 
mem_avg The average memory usage of the instance 
mem_max The max memory usage of the instance  
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prediction study on batch workflows with 7 tasks due to their sufficient 
samples and diversity of structures. 

3.3. Generation of labels 

From the perspective of container resource allocation, due to the 
complexity of billing and scheduling algorithms, the configuration of 
cloud servers is often based on a limited combination of predefined 
container configurations, such as CPU cores(2,4,8,…) and memory 

Fig. 4. Pipeline to extract the workflow  

Fig. 5. Examples of workflows’ different structures  

Table 5 
Preprocessing results of workflows with 3 to 50 tasks  

Statistics basis total 

Number of instances 1,069,255,469 
Number of tasks 8,108,011 
Number of workflow samples 1,208,692 
Number of workflow structures 14,972  
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capacity(4,8,16,…). Therefore, interval prediction can basically satisfy 
scheduling needs, and we define the prediction problem as a classifi
cation model. Fig. ;8 shows the generation steps of classification labels 
according to the tasks’ performance. 

We use K-means clustering to divide the tasks’ performance into 
three levels: low, medium, and high, denoted as 0, 1, and 2 in the labels 
[65, 67]. Through quantitative and qualitative evaluation, we choose 
features “mean_ca” and “max_ca” for clustering, which is a more 
discriminative method for reflecting the performance level of the task. 
Fig. ;9 shows the t-SNE visualization of task 7’s CPU performance [66]. 

3.4. DAG-Transformer 

We customize the Transformer Encoder to make it suitable for graph 
structured data learning, and we also design the corresponding position 
encoding and attention mask for the workflows. Fig. ;10 shows a com
plete overview of the model architecture. 

3.4.1. Extraction of Tasks’ Performance and DAG information 
We first perform a min-max scaling on all task features, which is 

shown in the equation below. 

ti =
ti − min(ti)

max(ti) − min(ti)
,

where max(ti) and min(ti) are the maximum and minimum values of all 
the tasks’ i-th feature in the dataset respectively. Then, the normalized 
workflow data X can be represented as X = [T1,T2,T3, ...,Tn], where Ti 
denotes the i-th task’s features in the workflow. X is then fed into the 
network as input which is followed by training and evaluation. 

The DAG information shown in Fig. ;7 can be split into weighted out- 

Fig. 6. An example of workflow with 7 tasks  

Fig. 7. DAG information matrix of the workflow shown in Fig. 6  

Fig. 8. Steps to label the performance  

Fig. 9. t-SNE visualization  
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degree matrix A1 and weighted in-degree matrix A2. These two matrices 
are subsequently used to generate position encoding and attention 
masks. 

3.4.2. Design of position encoding 
For the Transformer and self-attention mechanism, position encod

ing is quite important. If there is no position encoding added in 
sequence, each node will be treated as positional equivalent, unrelated, 
and isolated component, which is similar to classic tabular machine 
learning methods. 

Aiming at the precise representation of the specific graph structure of 
the workflow, we design a position encoding approach based on the 
dependency relationship of the nodes in the graph. The algorithm of 
generating position encoding is improved on the basis of the Bellman- 
Ford algorithm and is shown in Algorithm 1. 

As the example shown in Fig. ;11 below, the generated vector p is 
[0,1,2,3,0,4,5]. Subsequently, p is used to generate position encoding 
matrix P, which is also fed into the network as input. 

3.4.3. Model architecture 

3.4.3.1. Embedding block. In our model, the position encoding matrix P 
and workflow data matrix X are fed into separate customized ResNet 
blocks. The ResNet [68] selectively extracts features from different 
layers (with shortcut connections) and combines them with the original 
features, which has been extensively verified empirically, especially in 
very deep networks to alleviate the problem of gradient disappearance. 
As shown in Fig. ;12, in our customized ResNet block, we remove the 
ReLU activation function to retain more linear information, and post
pone the non-linear interaction in the following attention module. The 
calculation in customized ResNet layer can be represented as: 

ResNet(X) = X + Conv1D(Conv1D(X)).

Therefore, the calculations in initial embedding phase are: 

X = ResNet(l)1 (X)

P = ResNet(l)2 (P)
,

where l denotes the number of layers of ResNet. 
Then, X and P are added and fed into another Conv1D layer, which 

can be represented as: 

X ∈ RNtask×dk

= Conv1D(X + P),

where Ntask denotes the number of tasks in this workflow, and dk denotes 
the embedding dimension. 

This intermediate result X is subsequently fed into Transformer 
Encoder. 

3.4.3.2. DAG-Transformer Encoder. We generate an attention mask ac
cording to the workflow’s DAG structure. The algorithm used to 
generate the attention mask is shown in Algorithm 2. 

In the self-attention calculation phase of Transformer Encoder, Q, K, 
and V all equal to the input (i.e., intermediate result X ∈ RNtask×dk in 
3.4.3.1). The self-attention calculation in the vanilla Transformer can be 
expressed as: 

attn = self − attention(X) = softmax
(
(WQQ)(WKK)

T

̅̅̅̅̅
dk

√

)

(WV V),

where WQ,WK,WV are weights of linear projection, and dk denotes the 
embedding dimension. In our DAG-Transformer Encoder, the attention 
mask is applied after the dot product of Q and K, which can be expressed 
as: 

attn = self − attention(X) = softmax
(
(WQQ)(WKK)

T

̅̅̅̅̅
dk

√ +M
)

(WV V).

Fig. 10. An overview of the DAG-Transformer  

Fig. 11. An intuitive example of position encoding  
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After the dot product of (WQQ) and (WKK), the dimension is con
verted from RNtask×dk to RNtask×Ntask , and this product is the attention of each 
task node to any task nodes in the workflow. If task Ti is connected to 
task Tj, or if there is a dependency relationship between Ti and Tj, then 
0 is added to the i-th row, j-th column and j-th row, i-th column of 
(WQQ)(WKK)T. Otherwise, -inf is added to the i-th row, j-th column and 
j-th row, i-th column. Due to the calculation method of the softmax 
activation function, the attention mask assigns the unconnected nodes 
an extremely lower weight, and almost covers their attention. The 
Fig. ;13 shows an intuitive example of how the attention mask works. 

After obtaining the self-attention result, the Add & Norm operation is 
performed, and the result is fed to the feed forward network (FFN). 
Then, the Add & Norm operation is performed again, and the output of a 
layer of DAG-Transformer Encoder is obtained. Calculations of the FFN 
in DAG-Transformer Encoder can be expressed as the equation below. 

FFN(X) = W2ReLU(W1X + b1)+b2,

where W1,W2, b1, b2 are the weights and biases of the two fully con
nected layers in FFN. Then, the calculations in one DAG-Transformer 
Encoder layer can be expressed as: 

attn = self − attention(X)
LN1 = LayerNorm(X + attn)

LN2 = LayerNorm(FFN(LN1) + LN1)

Overall, in this phase (DAG-Transformer Encoder), the calculations 
can be given as: 

Out ∈ RNtask×dk

= DAG − TransformerEncoder(ℓ)(X),

where ℓ denotes the number of layers of the DAG-Transformer Encoder. 

3.4.3.3. Classifier. After obtaining the output of the last layer of the 
DAG-Transformer Encoder, we perform a Global Average Pooling 
operation on its node dimension, which can be expressed as: 

GAP(Out) ∈ Rdk

=
1

Ntask

∑Ntask

i=1
Outdk (i).

Then, the result of Global Average Pooling operation is sent to a fully 
connected layer as a classifier, and the output logits are: 

logits ∈ R3

= WGAP(Out) + b,

where W and b are the weight and bias of the fully connected layer, 
respectively. Finally, logits are converted to classification probability 
through the softmax activation function, which can be expressed as: 

y = softmax(logits),

where yi denotes the probability that the model predicts the perfor
mance of this workflow’s unknown task (i.e., prediction target) into the 
i-th level. 

4. Experiments 

We conduct systematic experiments on the workflows with 7 tasks 
due to their sufficient samples and diversity of structures. 

4.1. Training strategy and experimental environment 

The training strategies used in experiments are listed in Table 6. 
The Adam optimizer has a series of advantages. It can automatically 

adjust the learning rate of the parameters, and significantly improve 
training speed and stability. We choose the cross entropy loss function to 
match the softmax output, which is standard for classification problems. 

The widely used stepwise or cosine annealing learning rate control 
method has a large initial learning rate, which often leads to training 
instability or collapse during the initial training process. But a small 
initial learning rate causes the model to enter an early local optimal 
state, thereby degrading the final performance. To this end, we design a 
TriangleStepWise learning rate control method based on the OCL 
learning rate control method [69], which gradually increases the 
learning rate from near zero linearly in the early training stage to the 
maximum learning rate (a.k.a., warmup), and decreases the learning 
rate linearly in rest training stage. 

The TriangleStepWise learning rate control method is shown in 
Fig. 14 and can be expressed as: 
{

x × Δlr x < e
e × Δlr − (x − e) × Δlr x ≥ e ,

where Δlr = max lr/
(

total epochs
2

)

, e = total epochs/2. 

The hardware and software configuration of computational envi
ronment used in all the experiments is listed in Table 7: Fig. 12. A comparison between vanilla ResNet (left) and ours (right).  

Fig. 13. How the attention mask works. In workflow operations, the infor
mation of a task node’s use of resources has the greatest relationship with its 
neighboring nodes. An attention mask allows a single node to only calculate the 
attention of itself and its neighboring nodes when the model performs attention 
calculations, and masks other nodes with less impact. 
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We choose the top-1 accuracy as the evaluation metric in the ex
periments. Top-1 accuracy can be calculated using the following equa
tion. 

Accuracy =
num

(
label pred = label true

)

num(label)
× 100%,

where label pred indicates the classification result inferenced by the 
model, label true indicates the ground truth of the dataset, 
num(label pred = label true) indicates the correct number of classifica
tions, and num(label) indicates the total number of workflows in the 
dataset. 

4.2. Descriptions of the experiments 

We design three sets of experiments. 
In Experiment 1, according to the requirements of the cloud work

flow scheduling algorithm, we explore the combination of the following 
conditions: workflows with different structures, tasks in different 
context of workflows, the amount of available historical tasks’ perfor
mance, and whether DAG structure is used. 

In Experiment 2, we test our model’s convergence speed. 
In Experiment 3, we test the overall performance of our proposed 

model. 
We perform three different splits of the dataset in three proportions: 

split(9-0.5-0.5), split(8-1-1), and split(6-2-2). Split(6-2-2) is used in 
Experiment 1, while all splits are used in Experiment 2 and Experiment 
3. 

We also implement several mainstream DL methods (LSTM, CNN, 
vanilla Transformer) and graph convolutional network (GCN), and 
compare them with the DAG-Transformer in Experiment 2 and 3. Please 
note that due to the GCN’s special semi-supervised learning style, we do 
not add it to the comparison in Experiment 2. 

Before the data is fed into prediction models, we mask all unknown 
tasks’ information to 0. 

4.3. Results 

4.3.1. Experiment 1 
In Experiment 1, we predict the 3rd, 5th, and 7th task’s CPU and 

memory performance using DAG-Transformer, and explore the influ
ence of the amount of known historical information (all previous tasks’ 
information or the latest task’s information) and whether the DAG 
structure information is known on the prediction results. The results are 
shown in Table 8. 

4.3.2. Experiment 2 
In Experiment 2, we compare different DL models’ convergence 

speeds. The training parameters are shown in Table 9. In each model, we 
adjust their hyper-parameters to maximize their performance. The re
sults of Experiment 2 are listed in Table 10. To show the convergence 
speed of each model more intuitively, the accuracy rate curve and loss 
curve are shown in Fig. 15. 

4.3.3. Experiment 3 
In Experiment 3, we give the best accuracy of each model and the 

results are as shown in Table 11.  

4.3.4. Computational Overheads. The hidden layer dimension of LSTM is 
1024, and the number of layers is 6. The hidden layer dimension of the 
DAG-Transformer is 1024, and the number of layers is 6. The hidden 
dims of GCN’s 3 graph-convolutional layer are 64, 128, 256 respec
tively. According to the semi-supervised learning, we put the whole 
graph into the (GPU)memory to train the GCN, so there is no difference 
in inference time between different batch_size. It is worth noting that, 
batched GCN performs worse, so we omitted it. The results are shown in 
Table 12. 

Fig. 14. Learning rate control method  

Table 6 
"training strategies" table.  

Training strategy specific method 

optimizer Adam 
Loss CrossEntropy 
lr_scheduler TriangleStepWise  

Table 7 
Computational Environment  

programming language/environment version/type 

GPU RTX 3080 
CPU Intel core i7-10700K 
RAM 64GiB 
CUDA 11.0 
Python 3.8 
Pytorch 1.7.0  
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4.4. Discussion of experiments 

In Experiment 1, we observe that, overall, the prediction accuracies 
decrease with following combinations: DAG structure + all previous 
tasks’ information > DAG structure + the latest task’s information > No 
DAG structure + all previous tasks’ information > No DAG structure +
the latest task’s information. The effective use of DAG structure infor
mation consistently improves the performance of the prediction model, 
verifying the importance of the DAG structure. Moreover, DAG structure 
information is more necessary when available historical performance 
information is limited. When DAG structure information is available, our 
model can still achieve more than 80% CPU prediction accuracy even if 
using only the latest task’s performance information. 

From the perspective of scheduling in the cloud workflow, the DAG 
structures of batch workflows are generally known before execution. 
Therefore, the DAG information can be combined into the prediction 

model naturally, which will greatly improve the prediction 
performance. 

In Experiment 2 and Computational Overheads (in 4.3.4), we see that 
DAG-Transformer is better than the traditional deep learning models in 
terms of the convergence speed and accuracy while maintaining a 
relatively low overhead. Specifically, we find that the training curve of 
vanilla Transformer fluctuates drastically. This shows that although 
Transformer and self-attention have been applied in many fields suc
cessfully, vanilla Transformer cannot migrate seamlessly to all domains. 
“Attention is indeed all you need”, but Transformer need more cus
tomization to fit specific problems and data structures. 

In Experiment 3, the superiority of our method is systematically 
verified by comparing it with traditional machine learning methods (e. 
g., Linear Regression, XGBoost), deep learning (e.g., CNN, LSTM), and 
graph neural networks (GCN). 

We find that the existing methods are insufficient in complex feature 
interaction learning. The overall performance is ranked from high to low 
as DAG-Transformer > GCN > LSTM > CNN. The convolution operation 
in CNN is a specific information extraction method designed for image 
data, and is not suitable for data with graph structure like workflow; 
LSTM is a recurrent neural network for sequence learning, which is hard 
to characterize the parallelism and dependency between tasks in the 
workflow. We also add GCN for comparison. We find that using bi- 
directional edges in GCN can improve the model’s perception ability 
of workflow data compared to using unidirectional edges, and thus 
achieve better prediction accuracy. The relatively good performance of 
GCN shows that if the graph structure information is well utilized, better 
accuracy can be achieved despite the simplicity of its network 
architecture. 

DAG-Transformer, which can adaptively focus the nonlinear high- 
order features, takes advantage of the sequential and graph relation
ships of workflows to enhance the feature embedding. We infer that the 
DAG-Transformer could effectively learn the following implicit re
lationships in the workflow. 1) There should be some similarities in the 
performance of each task in the workflow with the same quantity of 
tasks and the same graph structure. 2) There should be some similarities 
in the task’s performance at the same position (represented by the po
sition encoding) in the workflow. 3) In the workflow, the predecessor 
tasks’ performance usually has correlations with the successor tasks’ 
performance. 

5. Conclusions and Future Works 

5.1. Conclusions 

Under offline-online hybrid co-location deployment mode, new ar
chitectures such as containers and microservices, show a universal trend 
and great superiority in cloud computing applications like big data and 
artificial intelligence, but bring huge complexity in management and 
optimization. To address the significant resource supply-demand 
mismatch problem in cloud scheduling, this study transforms cloud 
computing logs into graph spatiotemporal sequences, proposes a work
flow performance prediction model, and gives a novel end-to-end deep 

Table 8 
"results of experiment1" table.  

Predicted 
target 

Predicted 
task 

All previous 
tasks’ 
information 

The latest 
task’s 
information 

With 
Graph 
Structure 
or Not 

Accuracy 

CPU 3rd √ £ Yes 86.91% 
No 81.24% 

£ √ Yes 84.80% 
No 77.34% 

5th √ £ Yes 85.68% 
No 78.70% 

£ √ Yes 82.37% 
No 69.53% 

7th √ £ Yes 91.22% 
No 88.92% 

£ √ Yes 88.71% 
No 84.99% 

Memory 3rd √ £ Yes 94.51% 
No 92.77% 

£ √ Yes 93.62% 
No 91.48% 

5th √ £ Yes 96.68% 
No 93.17% 

£ √ Yes 95.93% 
No 92.32% 

7th √ £ Yes 98.56% 
No 97.12% 

£ √ Yes 97.44% 
No 94.86%  

Table 9 
"parameters settings" table.  

parameters settings value 

batch size  500 
max lr  1e-4 
total epochs  100 
Evaluation metric Accuracy rate  

Table 10 
"results of experiment2" table.  

Model Accuracy in split(9- 
0.5-0.5) 

Significant test compared 
with DAG-Transformer 

Accuracy in split 
(8-1-1) 

Significant test compared 
with DAG-Transformer 

Accuracy in split 
(6-2-2) 

Significant test compared 
with DAG-Transformer 

t- 
statistic 

P(T<=t) 
single tail 

t- 
statistic 

P(T<=t) 
single tail 

t- 
statistic 

P(T<=t) 
single tail 

DAG- 
Transformer 

90.40%±0.25% - - 89.20%±0.08% - - 89.67%±0.07% 61.8 2.05e-07 

CNN 82.57%±0.05% 60.0 2.3e-07 81.44%±0.03% 168.2 7.04e-11 81.63%±0.03% 44.5 4.31e-09 
LSTM 87.19%±0.10% 23.3 1.35e-06 86.21%±0.07% 53.0 8.85e-12 85.84%±0.15% 37.3 1.54e-06 
Vanilla 

Transformer 
81.46%±0.40% 37.2 1.32e-09 80.50%±0.45% 37.8 1.46e-06 80.36%±0.49% 61.8 72.05e-07  
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Fig. 15. Accuracy rate curve and loss curve in experiment 2  

Table 11 
"results of experiment3" table (The parameters and architecture of all models were adjusted to the best.)  

Model Accuracy in split(9- 
0.5-0.5) 

Significant test compared 
with DAG-Transformer 

Accuracy in split 
(8-1-1) 

Significant test compared 
with DAG-Transformer 

Accuracy in split 
(6-2-2) 

Significant test compared 
with DAG-Transformer 

t- 
statistic 

P(T<=t) 
single tail 

t- 
statistic 

P(T<=t) 
single tail 

t- 
statistic 

P(T<=t) 
single tail 

DAG-Transformer 92.15%±0.13% - - 91.11%±0.05% - - 91.25%±0.04% - - 
CNN 86.98%±0.10% 62.6 3.48e-11 86.56%±0.03% 138.4 1.36e-13 86.62%±0.06% 119.3 1.36e-14 
LSTM 88.92%±0.17% 29.8 6.23e-09 88.35%±0.20% 26.0 7.82e-07 88.44%±0.14% 38.4 1.12e-07 
GCN(Unidirectional) 86.86%±0.48% 21.2 2.16e-06 86.06%±0.61% 16.4 4.05e-05 86.56%±0.55% 16.8 3.66e-05 
GCN(Bi-directional) 89.40%±0.21% 22.0 5.12e-08 88.42%±0.18% 27.7 5.70e-07 88.78%±0.11% 39.5 9.79e-08 
Vanilla Transformer 81.46%±0.40% 50.0 3.02e-08 80.50%±0.45% 46.7 6.30e-07 80.36%±0.49% 43.8 8.11e-07 
SVM Classifier 83.58%±0.01% 129.7 1.06e-08 82.89%±0.00% 295.5 3.93e-10 83.46%±0.00% 316.9 2.97e-10 
Xgboost 90.61%±0.00% 23.4 9.81e-06 90.02%±0.00% 39.3 1.26e-06 90.70%±0.00% 26.0 6.54e-06 
Logistic Regression(l1/ 

lasso) 
83.52%±0.00% 131.1 1.01e-08 82.74%±0.00% 300.9 3.66e-10 83.30%±0.00% 323.4 2.74e-10 

Logistic Regression(l2/ 
ridge) 

82.45%±0.00% 147.4 6.36e-09 81.74%±0.01% 331.7 2.48e-10 82.65%±0.00% 349.8 2.00e-10  
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learning neural network. Our research provides a new way to facilitate 
workflow scheduling by data-driven predictions. 

Our main contributions include the following:  

1 We systematically investigate the research status of cloud 
computing, present challenges for workflows scheduling in new 
generation cloud environment, and the new opportunity for data- 
driven prediction approach. Combining the existing qualitative 
analysis from literature and our exploratory analysis on Cluster- 
trace-v2018, we aggregate tasks as well as their DAG information 
into graph-based workflow dataset, and give the definition of labels 
based on clustering. Finally, a graph-based sequence prediction 
model is established, which provides a paradigm to model workflow- 
oriented predictions problem under the scenario of containerized 
resource management. Our proposed approach is also suitable for 
general- purpose prediction problems of industrial process. We also 
publish the dataset used in this paper. 
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Algorithm 1 
Generation of Position Encoding  

1: procedure Generation of Position Encoding 
2: Inputs: 
3: - Weighted out-degree adjacency matrix of a workflow A1  

4: - Number of tasks in a workflow Ntask  

5: - Dim of a node’s attribute vector Nfeat  

6: generate a vector p ∈ RNtask of all 0s.  
7: signal←True  
8: while signal = = True  
9: temp←p  
10: for m in 0,…,Ntask − 1 do  
11: for n in 0,…, Ntask − 1 do  
12: if A1[m][n]! = 0 do  
13: p[n]←max(p[n],p[m] + 1)
14: end if 
15: end for 
16: end for 
17: if temp == p do  
18: signal←False  
19: end if 
20: end while 
21: generate a matrix P ∈ RNtask×Nfeat  

22: Px,2h = sin(p[x] /100002h/Nfeat )Px,2h+1 = cos(p[x] /100002h/Nfeat )

23: Output: -Position Encoding Matrix P  
24:end procedure  

Algorithm 2 
Generation of Attention Mask  

1: procedure Generation of Attention Mask 
2: Inputs: 
3: - Normalized out-degree adjacency matrix of a workflow A1  

4: - In-degree adjacency matrix of a workflow A2  

5: - Number of tasks in a workflow Ntask  

6: M = A1 + A2 + I(I is the identity matrix)  
7: for i in 0,…,Ntask − 1 do  
8: for j in 0,…,Ntask − 1 do  
9: if M[i][j]! = 0 do  
10: M[i][j]← − inf  
11: else do 
12: M[i][j]←0  
13: end if 
14: end for 
15: end for 
16: Output:17: - Attention Mask M  
17: end procedure  
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2 We propose DAG-Transformer which seamlessly integrate workflow 
DAG structure information to learn from the graph spatiotemporal 
sequence data. DAG-Transformer is able to auto-focus on nonlinear 
high-order features interaction through attention mechanism, and 
takes advantage of the sequential and graph relationships of work
flows to enhance the feature embedding. We give the detailed 
description of the core components (attention mask, position 
encoding) and the overall neural network architecture. The superi
ority of our method is verified by systematic experiments and com
parisons with classic machine learning methods (e.g., Linear 
Regression, XGBoost), deep learning (e.g., CNN, LSTM), and graph 
neural networks (GCN). We find that the existing ML methods are 
insufficient in complex graph learning, and emphasize the necessity 
of our method.  

3 According to the requirements of the cloud workflow scheduling 
algorithm, we conduct systematic experiments on the combination of 
the following conditions: workflows with different structures, tasks 
in different contexts of workflows, the amount of available historical 
tasks’ performance, and whether the DAG structure is used. We find 
that the effective use of DAG structure information consistently im
proves the performance of the prediction model, which verifies the 
importance of the DAG structure. Even in the initial execution phase 
of the workflow, where available historical performance information 
is limited, our model still achieves more than 80% CPU prediction 
accuracy and 90% memory prediction accuracy. Our model and 
exploration, for the first time, highlights the potential of prediction 
for scheduling in cloud workflows from a quantitative perspective, 
giving a clear and intuitive baseline. 

5.2. Future Works 

With the arrival of the Internet of Everything in the 5G era [70], large 
and complex networks of data relationships are woven into the pro
duction and operation processes of smart manufacturing, logistics and 
supply chain, transportation, and Internet of Things industries. For 
instance, in the context of Industry 4.0, process automation and pre
dictive maintenance play an essential role [71]. Hence, predictions 

under such circumstances contribute to both operations and mainte
nances. The application prospect of our method is fit to not only cloud 
computing scenarios, but also similar industrial scenarios with graph 
structure information. For example, future indicators predictions based 
on historical information or unknown indicators imputation in the 
absence of sensors. 

In future work, our research will investigate self-supervised or semi- 
supervised pre-training to apply transfer learning across heterogeneous 
workflows with different number of nodes, structures, and indicators to 
improve the overall accuracy and robustness of prediction. We will also 
try to explore methods for multi-node simultaneous prediction. 

Data and Code Availability 

The data and model used in this study is available at https://github. 
com/cloudworkflow/workflow-performance-prediction-jii. For more 
details, please contact the corresponding author. 
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Figure of the number of workflow structures and the number of tasks: 
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Figure of the number of tasks in workflow and the number of tasks: 

Figure of the number of workflow samples and the number of tasks: 

Figure of the number of instances and the number of tasks: 

"workflow-task-features" table.    

Feature Name Interpretation Feature Name Interpretation 

Other count Number of instances included in the task   
Resource occupation mean_ca Average of CPU average usage mean_cm Average of CPU maximum usage  

var_ca Variance of CPU average usage var_cm Variance of CPU maximum usage  
max_ca Maximum of CPU average usage max_cm Maximum of CPU maximum usage  
min_ca Minimum of CPU average usage min_cm Minimum of CPU maximum usage  
med_ca Median of CPU average usage med_cm Median of CPU maximum usage  
skew_ca Skewness of CPU average usage skew_cm Skewness of CPU maximum usage  
kurt_ca Kurtosis of CPU average usage kurt_cm Kurtosis of CPU maximum usage  
mean_ma Average of memory average usage mean_mm Average of memory maximum usage  
var_ma Variance of memory average usage var_mm Variance of memory maximum usage  
max_ma Maximum of memory average usage max_mm Maximum of memory maximum usage  
min_ma Minimum of memory average usage min_mm Minimum of memory maximum usage  
med_ma Median of memory average usage med_mm Median of memory maximum usage  
skew_ma Skewness of memory average usage skew_mm Skewness of memory maximum usage  
kurt_ma Kurtosis of memory average usage kurt_mm Kurtosis of memory maximum usage 

Lifecycle mean_t Average running time max_t Maximum running time  
var_t Variance of running time min_t Minimum running time  
maxtime Actual running time    

J. Yu et al.                                                                                                                                                                                                                                       
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"Task’s DAG features in workflow" table.   

Feature Name Interpretation Feature Name Interpretation 

o_1 Out degree to task 1 i_1 In degree to task 1 
o_2 Out degree to task 2 i_2 In degree to task 2 
o_3 Out degree to task 3 i_3 In degree to task 3 
o_4 Out degree to task 4 i_4 In degree to task 4 
o_5 Out degree to task 5 i_5 In degree to task 5 
o_6 Out degree to task 6 i_6 In degree to task 6 
o_7 Out degree to task 7 i_7 In degree to task 7  
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