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Shared Sensor Network (SSN) refers to a scenario where the same sensing and communication resources are

shared and queried by multiple Internet applications. Due to the burgeoning growth in Internet applications,

multiple application queries can exhibit overlapping in their functional requirements, such as the region of

interest, sensing attributes, and sensing time duration. This overlapping results in redundant sensing tasks

generation leading to the increased overall network traffic and energy consumption. Existing approaches

operate on data sharing among various tasks to minimize the upstream traffic. However, no existing work

attempts to prevent the redundant task generation to reduce the downstream traffic. Moreover, the allocation

of suitable sensor nodes to meet the Quality of Service (QoS) requirements of the queries is still an open issue.

This paper proposes an end-to-end query processing framework (named, QueryPM) that first, calculates the

functional requirements similarity among queries to prevent the redundant task generation. Then, it takes

the QoS and functional requirements into account while allocating the tasks on the sensor nodes. Extensive

simulations on the proposed approach show that downstream traffic, upstream traffic, and energy consumption

reduced to 60%, 20%-40% and 40%, respectively, as compared to state-of-the-art mechanisms.
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1 INTRODUCTION
Traditionally, wireless sensor networks (WSNs) have been deployed for supporting single applica-

tions, which can lead to inefficient use of sensor nodes and low cost-benefit results [14]. Therefore,

recent research efforts in the WSN domain are focusing on sharing its sensing and communication

infrastructure for a multitude of applications towards the realization of the Internet of Things (IoT)

paradigm and referred to as shared sensor networks (SSNs) [29][8][5]. It significantly reduces the
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deployment cost and improves network resource utilization for large-scale sensing applications

that are geographically co-located and therefore can be supported by the same infrastructure

[9][21][11].

SSN provides sensed data corresponding to the queries of different IoT applications based on the

queries’ functional and quality of service (QoS) requirements. Functional requirements of a query

include region of interest (RoI), sensing attributes (temperature, humidity, etc.), and sensing time-

slot whereas QoS requirements include minimum delay, information accuracy, etc. Generally, query

processing [2] in sensor network consists of four steps: (1) sensing tasks generation from queries

and their allocation to the appropriate sensor nodes, (2) sampling of sensor data, (3) performing

in-network processing on the sampled data, and (4) returning the results to the gateway. As a part

of step (1), a number of independent sensing tasks for each query is generated and allocated to

the relevant sensor nodes to measure the required sensing attributes. For example, two different
applications, namely “fire detection" and “air quality monitoring", are deployed over an SSN that
provides sensed data concerning to the queries of these applications. To infer the occurrence of fire,
queries from fire detection application generates three sensing tasks to measure the temperature,
humidity, and smoke data from their RoI over a specific time-slot. On the other hand, air quality
monitoring application sends the query to observe the presence of different types of gases (Carbon
Dioxide (CO2), Carbon Monoxide (CO), Nitrogen Dioxide (NO2), etc.) and the presence of smoke to
measure the air quality index (AQI). For the successful execution of queries, their sensing tasks

have to be allocated to the appropriate sensor nodes providing data in a timely manner [30]. In this

example scenario, suppose queries arrive at the gateway to gather the information from the same

RoI for the same time-slot. Consequently, sensing tasks generated by these queries will have one

redundant sensing task (to gather smoke data) with overlapping RoI and time-slot. In a large-scale

SSN where data-intensive applications are deployed, a huge number of redundant sensing tasks are

generated. Apart from transmission of data to the gateway (upstream traffic) being one of the major

factors of energy consumption [4], the execution of such queries also leads to high network traffic

and energy consumption due to dissemination of redundant sensing tasks and redundant data

sampling. Although various data sharing mechanisms [28][9][20] have been proposed to reduce

the data transmissions but the issue of redundant task dissemination is not addressed yet. Since

queries can have overlapping functional requirements, thus sending all of their sensing tasks into

the network is not an efficient approach. To overcome this, we propose a query pre-processing

mechanism to eliminate the redundant sensing tasks generation and dissemination to conserve the

network resources.

As illustrated in Fig. 1, queries Q1 and Q2 from two different applications have overlapping

spatial, temporal, and sensing attribute requirements. Suppose Q1 generates three sensing tasks

T11,T13, and T14 to sense three distinct attributes a1,a3, and a4, respectively from RoI R1 (dotted
circles represent the RoI of respective queries) over a time-slot [t1s , t

1

e ]. T22 and T23 are the sensing
tasks corresponding to query Q2 to sense attributes a2 and a3, respectively from RoI R2 over a

time-slot [t2s , t
2

e ]. In this scenario, tasks T13 and T23 are said to be redundant since they correspond

to the overlapping requirements of the queries. Therefore, similar or partially similar queries, first,

leads to redundant sensing task generation that increases downstream traffic. Second, redundant

sensing tasks generate redundant sensed data that results in increased upstream traffic and energy

consumption. Apart from this, satisfying the functional and QoS requirements of the sensing tasks

is essential for the successful execution of the corresponding queries.

In attempt to enhance the resource utilization in SSN, we identify the following research problems.
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Fig. 1. Illustrating overlapped functional requirements in queries Q1 and Q2. A common query Qcmn is
created that serves the requirement of both the queries.

(1) Queries arriving at the gateway from different applications have overlapping functional

requirements and therefore, result in redundant sensing tasks. This problem is named as

min-RST problem (refer Section 4.2).

(2) Allocation of sensing tasks to the sensor nodes that can satisfy their functional and QoS

requirements. This problem is named as Task allocation problem (see Section 4.2).

A naive method of the query processing is generating the sensing tasks individually and dissemi-

nating them into the network to sample the data independently, as shown in Fig. 1 (Case I). On

the other hand, a common query Qcmn can be created from Q1 and Q2 as they have overlapping

functional requirements. Henceforth, Qcmn generates a lesser number of sensing tasks than the

total sensing tasks generated byQ1 andQ2 collectively.Qcmn generates 4 sensing tasksT11,T22,Tc3,
and T14 on the behalf of both Q1 and Q2, in which Tc3 corresponds to the overlapping requirements

of Q1 and Q2. Thus, Qcmn avoids the generation of redundant sensing tasks i.e., T13 and T23 as
illustrated in Fig. 1 (Case II).

Tc3 is allocated to a sensor node in the overlapping RoI (shaded region in Fig. 1) of Q1 and Q2 to

sense the common attribute a3. The data is sent periodically at the desired frequencies of T13 and
T23 using respective clock timers clk1 and clk2 maintained at the common node and updated based

on their sampling intervals (see Eq. 1).

clk1 = clk1 + I1 ▶ transmit sampled data at each clk1

clk2 = clk1 + I2 ▶ transmit sampled data at each clk2
(1)

An instance is shown in Fig. 1 where sampling intervals of tasks T13 and T23 are I1 =
[t 1s ,t

1

e ]

f1
and

I2 =
[t 2s ,t

2

e ]

f2
, and time-slots are [t1s , t

1

e ] and [t
2

s , t
2

e ], respectively. Sensor node samples the data during

specified sampling intervals of T13 and T23, and send the aggregated data to the gateway at each

updated value of the respective clocks for the duration specified by the corresponding queries/tasks.

Considering the aforementioned scenario, we propose an end-to-end query processing frame-

work, named as QueryPM, which minimizes the downstream traffic by reducing the number of

sensing tasks generating from queries and allocate the generated tasks to appropriate sensor

nodes. QueryPM comprises of two main modules: query pre-processing (Queryp ) and task allo-

cation (Taska ) where Queryp calculates similarity among distinct pairs of queries based on their

functional requirements and Taska allocates generated tasks to the sensor nodes fulfilling the

, Vol. 1, No. 1, Article 1. Publication date: March 2020.



1:4 Rahul Kumar Verma, K. K. Pattanaik, Sourabh Bharti, Divya Saxena, and Jiannong Cao

functional and QoS requirements of tasks. Queries having the similar functional requirements are

pre-processed and common queries are created. On the other hand, remaining queries exhibiting no

similarity to others get executed individually and termed as individual queries. Common queries

generate non-redundant sensing tasks corresponding to the overlapping requirements of the parent

queries, which minimizes the total number of sensing tasks and downstream traffic.Taska estimates

the end-to-end delay between sensor nodes and the gateway before allocating sensing tasks to

ensure their temporal deadlines. In summary, we have the following contributions in this paper.

(1) We design a query processing framework (QueryPM) that comprises of two main components:

query pre-processing (Queryp ) to pre-process the queries for minimizing redundant sensing

tasks and task allocation (Taska ) for allocating the generated sensing tasks to most suitable

sensor nodes fulfilling their functional requirements and QoS requirements, i.e., temporal

deadline.

(2) We propose a novel query similarity scheme for Queryp to identify similar queries for pre-

processing. Similar queries result in common queries generating non-redundant sensing

tasks. For Taska , we further propose an end-to-end delay estimation model to identify most

appropriate sensor nodes to allocate the generated sensing tasks.

(3) Extensive simulations show that QueryPM performs better than the other state-of-the-art

mechanisms in terms of network traffic, energy consumption, and number of queries meeting

their QoS requirements.

Rest of the paper is organized as follows. The comparison and analysis of related research efforts

are discussed in Section 2. Section 3 defines the model of SSN, application queries, and sensing

tasks. Section 4 discusses the proposed query processing framework and formulates the problem.

The description of each module of QueryPM is discussed in Section 5. Performance evaluation of

QueryPM is shown in Section 6 and finally Section 7 concludes this work.

2 RELATEDWORK
Zhou et al. [29] proposed a cooperative caching-based mechanism to address the challenge of

hosting multiple application in a shared infrastructure of WSN and perform query execution in

an energy-efficient manner. It facilitate the reuse of sensory data for answering concurrent and

forthcoming queries by storing the sensed data in caches at sink node and intermediate nodes.

Binary strings are adopted to represent the query requests that helps to avoid redundant processing

of similar (sub)query requests. Data sharing among multiple applications is another approach to

reduce the communication cost and energy consumption of the WSN. Fang et al. [7] and Gao et

al. [9] proposed a data sharing approach to minimize the overall length of sampling intervals by

exploiting the time overlapping nature of the sensing tasks. In this way, data sampled in overlapping

time duration can be shared among multiple application queries, thus reduces redundant data

transmissions. However, authors assume that all the sampling intervals have same length and every

sensing task overlaps with each other, which is too ideal.

Zhao et al. [28] proposed a task allocation mechanism with the objective of identifying a contin-

uous sub-interval (sampling interval) within the overlapping time window of the allocated tasks to

enable data sharing among them. Both Zhao et al. [28] and Fang et al. [7] addressed it as an interval
data sharing problem which aims at the scheduling of sampling intervals to ensure maximum

data sharing across various allocated sensing tasks on a sensor node. It identifies a continuous

sub-interval (sampling interval) within the overlapping time region of each allocated task so that

the data transmission is as less as possible in the network as well as satisfy the requirements of all

the application queries. However, it requires dissemination of all the sensing tasks into the network

followed by computing their overlapping sampling intervals at the node. Moreover, they did not

, Vol. 1, No. 1, Article 1. Publication date: March 2020.



AQuery Processing Framework for Efficient Network Resource Utilization in Shared Sensor
Networks 1:5

Table 1. Analysis of related research on various parameters

Mechanism Application

Data

sampling

Task requirement aware

selection of sensor nodes

Dissemination of

sensing tasks

Data Sharing

CATS [28] - Continuous No All Yes

CAQO [29] - Continuous No - Yes

TRAPS [3] - Discrete Yes One leader task from each group Yes

2-Factor approximation [9] Multi-application Continuous No - Yes

Task-Cruncher [20] Multi-application Continuous No All Yes

Query optimization [22] - Discrete No - Yes

QueryPM (Proposed) Multi-application Continuous Yes Non-redundant tasks Yes

consider the the QoS requirements of the sensing tasks while allocating them. Directing the queries

or sensing tasks always to the WSN can overload the network and poses several challenges to meet

their QoS requirements. Mitici et al. [17] proposed an optimal query assignment scheme based on

Discrete Time Markov Decision process to overcome this situation.

In contrast, we observe that different application queries can overlap not only in the time region

but also in RoI and sensing attribute requirements. Our mechanism leverages this aspect to create

common queries for providing appropriate services to the different queries having overlapping

requirements. The overall objective of the proposed mechanism is to minimize the number of

sensing tasks to be injected into the network corresponding to the queries from different applications

deployed over the SSN. However, existing interval data sharing problem addresses the issue of

communication redundancy only in upstream traffic. Since SSN is responsible to respond the queries

arriving concurrently from different applications, individual execution of each query leads to high

amount of energy consumption in sensing tasks dissemination and corresponding data transmission.

On the other hand, we are targeting on the query pre-processing to analyze the requirements of

the application queries to avoid generating redundant sensing tasks so that downstream traffic

can be reduced. Our proposed mechanism eventually generates common sensing tasks serving the

requirements of other similar queries by sharing the data, thus reducing network traffic and energy

consumption significantly. To reduce the energy consumption associated with communication,

various in-network processing [24][27][23] and data sharing [28][25] mechanisms have been

proposed. However, the issues related to the task dissemination is not addressed yet and this

paper focuses on reducing the number of sensing tasks to go inside the network by exploiting the

functional requirement similarity among application queries. Table 1 shows the comparison of

recent research efforts made in this direction.

Bestehorn et al. [2] have affirmative views on the issues of query dissemination and its routing

towards appropriate sensors. To address this issue, they used probabilistic dissemination of the

queries as an alternative of the flooding. In this approach, each sensor node rebroadcasts the query

with a probability so that the number of nodes involved in query dissemination can be reduced. If

we map their solution to our problem, probabilistic dissemination of the sensing tasks can minimize

the involvement of the number of nodes in rebroadcasting but it can not eliminate the dissemination

of the redundant sensing tasks, which is the main focus of this paper.

Bharti and Pattanaik [3] proposed a task pre-processing mechanism, called TRAPS, that clusters

the similar sensing tasks based on their service type (attribute requirement) and spatial requirement.

In addition to these parameters, tolerable delay of the sensing tasks is considered as their temporal

requirements to choose one leader task from each cluster. The leader task has strict delay require-

ment and its execution ensures the fulfillment of other tasks in its cluster. The leader task(s) from

each group are scheduled inside WSN and the fetched data is shared among their respective group

members. The task clustering mechanism and leader task selection criteria proposed in [3] can not

be applied in our problem scenario as they focus on task pre-processing and their assumptions of
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sensing tasks are different. Moreover, TRAPS is not designed for continuous sampling tasks and

thus, not applicable for our problem scenario. On the other hand, our focus is on pre-processing of

the queries arriving from different applications to minimize the number of sensing tasks and their

allocation.

Tavakoli et al. [20] presented an approach to reduce the communication and computation

redundancy while providing the sensed data to the gateway. Communication redundancy minimizer

is implemented on each sensor node to identify the common set of time instances at which samples

are required frommultiple sensing tasks allocated to that node. Since, all sensing tasks have to be sent

on the designated nodes, it increases the downstream traffic in the sensor field. The communication

redundancy is addressed only for the upstream traffic, while our work considers both upstream and

downstream traffic minimization by pre-processing the queries. The computational redundancy is

taken care by the central server or gateway after receiving the data from relevant sensors.

An SSN comprises of a gateway and several sensor nodes where gateway is a resourceful

device with abundant processing power, storage, and energy. Whereas, sensor nodes are resource-

constrained devices with limited processing capacity, storage, and energy. The main aim of the

researchers is to consider the resources of sensor nodes as well as ensuring the successful execution

of the queries. Existing mechanisms allocate all the sensing tasks of application queries individually

to the relevant sensor nodes and schedule the sampling interval to maximize data sharing among

allocated tasks [28][25]. However, many sensing tasks can have similar functional requirements,

thus sending all the sensing task(s) into the network is not an efficient approach. Further, allocation

of individual sensing tasks considering their functional and QoS requirements is another challenge.

In [26], a data collection mechanism is proposed that aims to find the least-cost path from a source

to sink such that the selected path meet the delay constraint as well as prolonging the network

lifetime. In this work, we focus on minimizing the communication cost by eliminating the redundant

sensing task dissemination and allocating the sensing tasks to the appropriate sensor nodes to fulfil

their functional and QoS requirements.

3 BASIC CONCEPTS AND MODELS
This section presents relevant concepts, definitions and models used in the proposed mechanism.

Table 2 outlines the symbols frequently used throughout this paper.

3.1 Shared sensor networks (SSN)
A shared sensor network (SSN) comprises of resource-constrained sensor nodes sensing different

physical parameters and a resourceful gateway. The gateway bridges the gap between sensor

network and the Internet through which users can send the queries to the SSN. An SSN can be

defined as a tuple {G,N ,A}, where G is the gateway, N is a set of resource-constrained sensor

nodes deployed in the sensor field, and A is a set of physical attributes that can be sensed from the

sensor field.

In this paper, sensor nodes in SSN are assumed to be deployed in 2D plane divided into r × c
rectangular grid cells, where r and c are the number of rows and columns, respectively. Fig. 2

depicts a sensor field divided into 12 grid cells, where symbols ▲, o,⋆, and q represent sensor
nodes sensing |A| = 4 different physical attributes a1,a2,a3, and a4, respectively. It is assumed

that applications are aware of grid cell configuration and physical attributes that can be sensed

from the sensor field. The gateway has the logical view of network topology that gets updated

every time a sensor node dies. Sensor nodes are considered to be static in this paper. Sensor device

definition (SDD) at the gateway contains information about the sensor nodes, such as sensor_id,
location, remaining_energy, sensing_attribute, grid_cell, etc., which is used to identify the relevant

sensor nodes for allocating the sensing tasks. However, identification of the relevant sensor nodes

, Vol. 1, No. 1, Article 1. Publication date: March 2020.



AQuery Processing Framework for Efficient Network Resource Utilization in Shared Sensor
Networks 1:7

Table 2. Summary of important symbols

Notations Description
Qi Query i
Ti j A sensing task from Qi to sense an attribute aj
Qcmn Common query

Tcmn Set of sensing tasks corresponding to Qcmn
Qind Individual query

Tind Set of sensing tasks corresponding to Qind
N Set of deployed sensor nodes

N k
j A sensor node belonging to grid cell дck and senses attribute aj

A Set of attributes that can be sensed from sensor field

atri (⊆ A) Set of attributes required by Qi
aj (∈ atri ) A physical attribute j to be sensed

reдi Region of Interest (RoI) of Qi
t is , t

i
e Start and end timestamp of sensing duration of Qi

fi Frequency of sensing the data for Qi
I Sampling interval

m Number of queries arriving in a decision-window

ρ Number of applications targeted on SSN

1 2 3

5 6 7 8

9 10 11 12

Q1 

a1

a3
a4

a2

Overlapped 
Region

4

RoI: grid cells 1,2,3,5,6,7
Sensing attributes: a1, a3, a4

Q2
RoI: grid cells 6,7,8,10,11,12
Sensing attributes: a2, a3

Fig. 2. Representation of RoI and sensing attribute requirements of queries Q1 and Q2 in a SSN.

for sensing tasks based on their functional requirements is not sufficient. The temporal deadline

(QoS requirement) of each sensing task should be taken into consideration while selecting the

sensor nodes for task allocation.

3.2 Application query
An application queryQi is represented as a tuple ⟨Ai , reдi ,atri , t

i
s , t

i
e , fi ⟩, whereAi is the application

ID, reдi represents the RoI of Qi , atri represents the sensing attribute to be retrieved from SSN

for serving the query. t is and t ie are the starting and ending time-stamps, respectively, and fi is
the sampling frequency. In addition to these functional requirements, each query contains a QoS

requirement, i.e., temporal deadline before which the required data has to be provided in response

to the queries.
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We use binary strings [29] to represent RoI and sensing attribute requirements of an application

query. If a sensor field is divided into r × c grid cells and can sense |A| types of sensing attributes

then the length of binary strings corresponding to the RoI and sensing attribute requirements will

have rc bits and |A| bits, respectively.

(1) Each grid cell (p,q), i.e., pth row and qth column, is represented by an identifier дck , where
k = ((p − 1) × c + q); c is the total number of columns in the sensor field. The length of the

binary string of RoI in an application query is equal to the number of grid cells in the sensor

field. The status of grid cells regarding their involvement in RoI of a query is indicated by

binary values 0 or 1 at the bit locations same as дck in the binary string.

bit value corresponding to дck =

{
1, i f дck ⊨ reд

0, otherwise

Here, дck ⊨ reд represents that a grid cell дck lies in the RoI. For an instance, binary string

representation of RoI of an arbitrary query Qi can be represented as Eq. 2 if it includes grid

cells 1, 2, 3, 5, 6, and 7.

reдi : 111011100000 ▶ |reдi | = 6 (2)

(2) Application queries specify their sensing attribute requirements by |A| bit binary string.

Let A = {a1,a2,a3, ....,a10} is a set of 10 different physical sensing attributes that can be

sensed from an SSN. An application query can require all or subset of these attributes. The

requirement of an attribute in an application query is indicated by value 1 at the bit location of

concerned sensing attribute, otherwise it is 0. An example is illustrated by Eq. 3, representing

three attributes a1,a3, and a6 required by query Qi .

atri : 1010010000 ▶ |atri | = 3 (3)

Based on the aforementioned nomenclature, application query Q1 (see example case in Fig. 2)

can be represented as ⟨A1, 111011100000, 1011, 1, 9, 4⟩ that demonstrates 3 different attributes a1,
a3, and a4 out of total 4 are to be sensed from RoI of 6 different grid cells out of 12.

–Commonquery (Qcmn) is represented as a tuple ⟨reдo ,atrc , ts
c
s , ts

c
e ,Qp⟩, whereQp = {Qi | 1 ≤

i ≤ m} is a set of parent queries having similarity in their functional requirements. reдo and atrc
represent the overlapping RoI and common sensing attribute requirements respectively among

queries in Qp . t
c
s and tce are respectively the start and end time of Qcmn as shown in Table 3.

Common queries contain the information of time-slots and frequencies of their parent queries so

that corresponding sensing tasks can serve them at proper clock time (refer Eq. 1).

3.3 Sensing tasks
Each application queryQi is decomposed into a set of sensing tasks Ti = {T k

i j | ∀j aj ⊨ atri ,∀k дck ⊨
reдi } such that |Ti | = |reдi | × |atri | where |reдi | and |atri | are the number of grid cells in RoI

and required sensing attributes, respectively. A sensing task T k
i j ∈ Ti is characterized as tuple

T k
i j = ⟨дck ,aj , t

i
s , t

i
e , f ⟩, which implies that it corresponds to the query Qi and requesting for

an attribute aj ⊨ atri from a grid cell дck ⊨ reдi . Rest of the parameters are inherited from its

corresponding query. With reference to the Fig. 2, Q1 is decomposed into (|reд | × |atr |) 18 distinct
sensing tasks as follows:

Q1 = ⟨A1, 111011100000, 1011, 3, 12, 2⟩

T 1

11
= ⟨A1,дc1,a1, 3, 12, 2⟩, T 1

13
= ⟨A1,дc1,a3, 3, 12, 2⟩, T 1

14
= ⟨A1,дc1,a4, 3, 12, 2⟩

T 2

11
= ⟨A1,дc2,a1, 3, 12, 2⟩, T 2

13
= ⟨A1,дc2,a3, 3, 12, 2⟩, T 2

14
= ⟨A1,дc2,a4, 3, 12, 2⟩
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T 3

11
= ⟨A1,дc3,a1, 3, 12, 2⟩, T 3

13
= ⟨A1,дc3,a3, 3, 12, 2⟩, T 3

14
= ⟨A1,дc3,a4, 3, 12, 2⟩

T 5

11
= ⟨A1,дc5,a1, 3, 12, 2⟩, T 5

13
= ⟨A1,дc5,a3, 3, 12, 2⟩, T 5

14
= ⟨A1,дc5,a4, 3, 12, 2⟩

T 6

11
= ⟨A1,дc6,a1, 3, 12, 2⟩, T 6

13
= ⟨A1,дc6,a3, 3, 12, 2⟩, T 6

14
= ⟨A1,дc6,a4, 3, 12, 2⟩

T 7

11
= ⟨A1,дc7,a1, 3, 12, 2⟩, T 7

13
= ⟨A1,дc7,a3, 3, 12, 2⟩, T 7

14
= ⟨A1,дc7,a4, 3, 12, 2⟩

Similarly, Q2 is decomposed into total 12 sensing tasks. Q1 and Q2 have overlapping RoI (grid

cells дc6 and дc7), and a common attribute (a3). If it is considered that their time-slots are also

overlapping, there will be (|reдo | × |atrc | = 2 × 1) 2 identical sensing tasks from Q1 and Q2.

– A set of sensing tasks corresponding to a common query is represented as Tcmn = {Ti j |1 ≤

i ≤ |reдo | and 1 ≤ j ≤ |atrc |} ∪ {Tp }. Sensing tasks in Tcmn provide data corresponding to the

overlapping as well as non-overlapping requirements of their parent queries. First term of Tcmn
represents a set of sensing tasks to sense the attributes specified in atrc from overlapping RoI and

formally termed as common sensing tasks. The second term ({Tp }) represents a set of sensing tasks

for the non-overlapping requirements of the corresponding set of parent queries, and termed as

parent sensing tasks.

3.4 Network model
We considered SSN as an undirected connected graph G = (N , E), where N represents a set

of sensor nodes and E represents a set of all possible communication links among the sensor

nodes. All sensors are equipped with the same radio interface as well as communication and

sensing ranges. Moreover, sensors can detect all events of interest occurred within their sensing

range. Let u,v ∈ N are two arbitrary nodes in the network and an edge uv ∈ E exists between

them if dis(u,v) ≤ R, where R is the communication range of u, and dis(u,v) is the euclidean

distance between u and v . The sensing tasks and sensed data are transmitted through multi-hop

communication between gateway and sensor nodes. We assume that all the sensors in the network

have a valid communication path to receive the sensing tasks and transmit their data to the

gateway. There are two types of traffic considered in this paper: downstream traffic, that occurs in
disseminating the sensing tasks from gateway to the relevant sensor nodes, and upstream traffic,
that corresponds to the sensed data transmitted by sensor nodes to the gateway.

The instances of data transmission from sensor nodes to the gateway are considered as tree-based

communication where sensor nodes are leaf nodes rooted towards the gateway and transmit their

data through shortest path. The incurred delay in transmitting the sampled data from a sensor

node v ∈ N to the gateway is estimated (see Section 5.2) before allocating the sensing tasks to the

sensor nodes so that temporal requirements of the sensing tasks can be ensured.

4 PROPOSED FRAMEWORK AND PROBLEM STATEMENT
4.1 Proposed Framework
Fig. 3 shows framework of QueryPM that comprises of two key modules, query pre-processing

module (Queryp ) and task allocation module (Taska ). Application queries arriving from different ap-

plications are processed at a query pre-processing module (Queryp ) that produces common queries

(Qcmn ) and/or individual queries (Qind ) based on the similarities in their functional requirements.

Subsequently, sensing tasks are generated from these queries. This completes the pre-processing

phase. The sensing tasks are now scheduled on the designated sensor nodes in the network through

the task allocation module (Taska ). Queryp interacts with Taska module and provide the details of

generated sensing tasks. The functionality of Queryp and Taska is implemented on the gateway

node. Thus, the gateway node is fully responsible for pre-processing the incoming queries as well

as sensing task generation and allocation to the suitable sensor nodes. On the other hand, a sensor
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node’s functionality is restricted to sensing and forwarding the sensed data towards the gateway.

We also implement an end-to-end delay estimation model at the gateway for Taska to select the
relevant sensor nodes ensuring to meet the temporal deadlines as well as functional requirements

of the sensing tasks. Queryp also interacts with service provisioning process at the gateway and

provide the details of common queries and individual queries so that the sensed data received from

tasked sensor nodes can be collaborated as per the requirements of the queries to provide them

appropriate responses.

QueryPM

A
pp
lic
at
io
ns
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Fig. 3. Interaction among various modules ofQueryPM

4.2 Problem Statement
Since SSN consists of energy-constrained sensor nodes, the cost of disseminating sensing task into

the network can be estimated in terms of total energy consumption involved in forwarding sensing

tasks to the relevant sensor nodes. Considering the network as a connected graph where the source

nodes are the leaf nodes of the tree rooted at the gateway, the cost of tasks dissemination (Cdiss )

can be characterized by Eq. 4

Cdiss =
∑
τ

[
d∑
n=1

(Cn
T +C

n
R ) +C

n
R

]
(4)

Where, τ is the total number of sensing tasks generated from a query, and d is the number of

intermediate nodes between gateway and the source node where a sensing task is to be allocated.

CT and CR are the energy cost for transmitting and receiving a task, respectively [12]. According

to the Eq. 4, Cdiss can be minimized by reducing the number of sensing tasks (τ ) entering into the

network subject to maximising the network lifetime. Since sensing tasks are responsible for the

execution of the queries they are originated from, simply reducing the number of sensing tasks may
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lead to unsuccessful query executions. However, if the common queries are created beforehand at

the gateway, the number of sensing tasks entering into the network can be reduced, which further

helps in minimizing Cdiss . Thus, we define this problem as follows.

Problem 1 (min-RST problem): The dissemination cost minimization problem is to minimize
the Redundant Sensing Tasks exposed to the SSN, under the constraint of successful execution of each
query.

In addition to the Problem 1, allocation of sensing tasks resulting from the common queries

and individual queries to the “relevant" sensor nodes by considering their functional and QoS

requirements is another challenge for the successful execution of the queries. The relevancy (reln )
of a sensor node for a task corresponding to its functional requirements can be characterized by Eq.

5.

reln = f (Sn ,T
k
i j ), ∀n ∈ N (5)

Where, Sn = {дck ,aj ,Er es } represents the node’s specification. A sensor node is said to be

relevant for a sensing task T k
i j ∈ Ti , if sensor node belongs to the grid cell дck and sense the data

corresponding to an attribute aj ⊨ atri .
However, satisfying the functional requirements of the application queries is not sufficient in

today’s SSN scenario where real-time applications are often deployed in the realization of IoT.

Thus, next challenge for the successful execution of queries is meeting their QoS requirements, i.e.,

temporal deadline (R
temp
T k
i j

) before which the required sensed data should reach to the gateway. To

this end, this paper deals with another problem of task allocation defined as follows.

Problem 2 (Task allocation problem): The problem of allocating sensing tasks considering their
functional and QoS requirements is defined as a mapping function Γ : T k

i j → N k
j where T k

i j ∈ Ti , and
N k
j ∈ N is a relevant sensor node for T k

i j such that delaye2e ≤ R
temp
T k
i j

.

Where delaye2e is the end-to-end delay incurred in reaching the data from sensor node N k
j to the

gateway. delaye2e corresponding to each sensor node is estimated beforehand at the gateway for

delay-aware decision making of allocating sensing tasks. It ensures the timeliness of the reception

of the sensed data.

Lemma 1: Given a set of queries � = {Q1,Q2, ....,Qm}, the identification of a subset of queries
(Q ⊆ �) from which common queries can be created, such that total number of sensing tasks to be
generated are minimum, is an NP-complete problem.

Proof: Assume that there is a set of queries Q ⊆ � such that the overlapping in functional

requirements among all its queries is maximal, i.e., |reдo | and |atrc | are maximal and t1 ⊕ t2 ⊕ t3 ⊕
....... ⊕ tm , 0.

First, if Q is an optimal subset, none of its queries can be removed from Q otherwise it would

cause an increment of |Tcmn | in total number of sensing tasks (refer Lemma 2). Then, we check
each query and determine whether it can be removed and Q results in same number of sensing

tasks. If any query in Q can not be removed, the subset Q can be proved to be optimal. The process

of verifying can be completed in polynomial time. Thus, identification of a subset ofQ for minimum

number of sensing task generation is an NP problem.

Second, the “longest common sub-sequence" problem, which has been proved to be an NP-

complete problem, is transformed to our problem. A longest common sub-sequence is a string x
such that x is a sub-sequence of si for i = 1, 2, ....,n. Since the longest common sub-sequences of

strings provide information about their similarity, this problem can be mapped to our problem with
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the constraint that starting and ending index of the sub-sequence should be same in all the strings

and only one contagious sub-sequence is possible.

The spatial and sensing attribute requirements of each query Qi ∈ � is represented as binary

strings of length rc and |A|, respectively. Thus, identification of a subset of queries, such that

they have largest common sub-sequences in spatial and sensing attribute requirements with

aforementioned constraint as well as satisfy the condition of time-slot overlapping (see Definition
3), is a hard or NP-complete problem. This finishes the proof.

5 QUERY PROCESSING FRAMEWORK (QUERYPM)
We propose two modules in QueryPM to solve the problems mentioned in Section 4.2. The detail

description of each module is as follows.

5.1 Query Pre-processing Module (Queryp )
Queryp eliminates the generation of redundant sensing tasks by pre-processing the similar or

partially similar queries. The functioning of Queryp can be divided broadly into three steps: (1)

calculate functional requirement similarity (FRSQ ) for each distinct pair of queries, (2) create

common query corresponding to the pair having maximum FRSQ , (3) generate sensing tasks from

Qcmn and Qind . FRSQ between two arbitrary queries Qi and Q j is calculated by Eq. 6.

FRSQ (Qi ,Q j ) =

(
Ri · R j

| |Ri | | | |R j | |

) (
Ai · Aj

| |Ai | | | |Aj | |

)
(ti ⊕ tj ) (6)

Where, | |Ri | | and | |Ai | | are the Euclidean norms of p-bit binary string representing RoI (reдi ) and
q-bit binary string representing sensing attribute requirement (atri ) of the query Qi , respectively.

| |Ri | | and | |Ai | | are calculated as

√∑
p (b

2

p )i and

√∑
q(b

2

q)i , respectively, where bp and bq are the

bit values (0 or 1) at different bit locations in the corresponding binary strings. Ri · R j and Ai · Aj
are calculated as

∑
p ((bp )i × (bp )j ) and

∑
q((bq)i × (bq)j ), respectively. ti ⊕ tj represents time-slot

overlapping between queries (see Table 3).

Algorithm 1 demonstrates the underlying steps of Queryp , which are applied on the queries

arriving at the gateway within a specified decision-window [dws ,dwe ]. Algorithm 1 results in one or

more common and individual queries after pre-processing the queries. A common query constitutes

overlapping functional requirements of the corresponding parent queries, which are identified as

follows.

(a) Overlapping RoI: Given the binary strings of RoI of different queries arrived in a decision-

window, the overlapped RoI is identified through logical AND operation. Eq. (7) shows the

12-bit binary strings for the RoIs of queries Qi and Q j arriving in a sensor field of 4 × 3

grid. Binary string reдo represents the overlapping RoI constituting grid cells such that

∀k дck ⊨ reдi && дck ⊨ reдj .

reдi : 111011100000

reдj : 000001110111

reдo : 000001100000

(7)

Definition 1: The RoI reдi and reдj of two queries Qi and Q j respectively are said to be
overlapping if,

reдi ∧ reдj , ϕ

, Vol. 1, No. 1, Article 1. Publication date: March 2020.



AQuery Processing Framework for Efficient Network Resource Utilization in Shared Sensor
Networks 1:13

Algorithm 1 Query Pre-processing

1: Initialization: � = {Q1,Q2, ..,Qm} ▶ Set ofm queries arrived in a decision-window

2: procedure Queryp (�)
3: Calculate FRSQ for each pair of queries in �

4: if FRSQ (Qi ,Q j ), i , j is maximum then
5: Identify tcs and tce ▶ refer Table 3

6: Identify reдo ▶ refer Eq. 7

7: Identify atrc ▶ refer Eq. 8

8: if Qi is a common query then
9: Qp = Q

i
p ∪Q j

10: Create Qcmn = ⟨reдo ,atrc , t
c
s , t

c
e ,Qp⟩

11: else if Q j is a common query then
12: Qp = Q

j
p ∪Qi

13: Create Qcmn = ⟨reдo ,atrc , t
c
s , t

c
e ,Qp⟩

14: else
15: Qp = Qi ∪Q j
16: Create Qcmn = ⟨reдo ,atrc , t

c
s , t

c
e ,Qp⟩

17: end if
18: else
19: Return �

20: end if
21: Remove Qi and Q j from �, and insert Qcmn
22: Go to step 2.

23: Task_Generation(�)
24: end procedure
25: procedure Task_Generation(�)
26: for each query Qi ∈ � do
27: if Qi is a common query then
28: Tcmn = {T k

i j |∀j aj ⊨ atrc and ∀k дck ⊨ reдo} ∪ {Tp }

29: Taska(Tcmn ) ▶ Algorithm 2
30: else
31: T i

ind = {T k
i j |∀j aj ⊨ atri and ∀k дck ⊨ reдi }

32: Taska(Tind ) ▶ Algorithm 2
33: end if
34: end for
35: end procedure

(b) Common sensing attributes: Given the binary strings representing sensing attributes

required by the queries, the common attribute requirements can be identified through a

logical AND operation. Eq. (8) shows 10-bit binary strings atri and atr j corresponding to

the queries Qi and Q j , respectively. The binary string atrc represents the common attributes

which are requested by both the queries.

atri : 1011000000

atr j : 0110000000

atrc : 0010000000

(8)
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Definition 2: Two queries Q1 and Q2 have common sensing attribute requirement(s) if,

atri ∧ atr j , ϕ

(c) Overlapping time-slots: The sampling intervals ti = [t is , t
i
e ] and tj = [t js , t

j
e ] of queries Qi

and Q j , respectively can exhibit partial overlapping, full overlapping, or no overlapping at

all. The effective time-slot [tcs , t
c
e ] of a common query is identified as shown in Table 3.

Table 3. Cases of time-slot overlapping

Sn. Condition Degree of overlapping ti ⊕ tj tcs tce

1.

(t is < t
j
s and t ie < t

j
e and t

j
s < t ie )

or

(t
j
s < t is and t

j
e < t ie and t is < t

j
e )

Partial overlapping 1 min{t is , t
j
s } max{t ie , t

j
e }

2. (t ie ≤ t
j
s ) or (t

j
e ≤ t is ) Non-overlapping 0 - -

3.

i f (t is ≥ t
j
s and t ie ≤ t

j
e ) ▶ query j overlaps i
or

(t
j
s ≥ t is and t

j
e ≤ t ie ) ▶ query i overlaps j

Full overlapping 1 min{t is , t
j
s } min{t ie , t

j
e }

Definition 3: The time-slots ti and tj of two queries Qi and Q j respectively are said to be
partially or fully overlapped if,

ti ⊕ tj , 0

where, ⊕ represents the overlapping operator that results 0 or 1 in case of non-overlapping

and partial/fully overlapping of the time-slots, respectively.

Finally,Queryp generates a set of common sensing tasks and parent sensing tasks corresponding to
eachQcmn ∈ Q to provide the data corresponding to overlapping and non-overlapping requirements

of its parent queries (Q), respectively (see Section 3.3). Likewise, a set of individual sensing tasks
(Tind ) for each individual queries residing in Q is generated. In order to fulfil the QoS requirement,

i.e., temporal deadline, of the generated sensing tasks, Taska allocates them to the appropriate

sensor nodes (refer Section 5.2).

Lemma 2: Pre-processing of similar or partially similar queries reduces generation of total number
of sensing tasks.

Proof: Let there arem number of queries that are pre-processed and as a result k (< m) number

of common queries (Q1

cmn ,Q
2

cmn ,Q
3

cmn , .......,Q
k
cmn ) are created. Suppose, number of distinct parent

queries corresponding to each common query are p1, p2, p3,.....,pk , respectively such that

∑
k pk ≤

m. Since a common query possesses the overlapping functional requirements as well as non-

overlapping requirements of the corresponding parent queries, therefore, total number of sensing

tasks generated by a common query Qk
cmn is:
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|T k
cmn | =

[
|reдc | × |atrc |

]
︸              ︷︷              ︸

for overlapping

requirements

+
[
(|reд1 | × |atr1 |) − (|reдc | × |atrc |)

]
︸                                         ︷︷                                         ︸

for non-overlapping

requirements of 1
st

parent query

+
[
(|reд2 | × |atr2 |) − (|reдc | × |atrc |)

]
︸                                         ︷︷                                         ︸

for non-overlapping

requirements of 2
nd

parent query

+ ...................

+
[
(|reдpk | × |atrpk |) − (|reдc | × |atrc |)

]
︸                                             ︷︷                                             ︸

for non-overlapping

requirements of pthk parent query

(9)

|T k
cmn | =

[
|reдc | × |atrc |

]
︸              ︷︷              ︸

for overlapping

requirements

+

pk∑
j=1

[
(|reдj | × |atr j |) − (|reдc | × |atrc |)

]
︸                                              ︷︷                                              ︸

for non-overlapping requirements

of all the corresponding parent queries

(10)

Eq. 10 can be rewritten as:

|T k
cmn | = |Tc | +

pk∑
j=1

(Tj − |Tc |) =

pk∑
j=1

Tj − (pk − 1)|Tc | (11)

As the number of parent queries associated with a common query increases, it significantly re-

duces the total number of sensing tasks. In contrast, if all the queries (pk ) were executed individually
without pre-processing, the total number of sensing tasks required would be:

|T | =

pk∑
j=1

[
|reдj | × |atr j |

]
=

pk∑
j=1

Tj (12)

On comparing Eq. 11 and 12, it can be concluded that the number of sensing tasks generated

from common queries is lesser than the number of sensing tasks that would have been generated if

the associated parent queries were executed individually.

5.1.1 Time complexity analysis. The algorithm 1 takes m queries as input. The step 3 of this

algorithm performs a pairwise calculation of the functional requirement similarity followed by the

sorting of different FRSQ values. The pairwise comparison and sorting takes O(m2) and O(mloдm)

time respectively. However,Queryp (�) is an iterative process that is repeated every time a common

query (Qcmn) is created and inserted into �. The process terminates when no common query is

created. Thus, the overall time complexity of Algorithm 1 can be estimated as O(k(m2 +mloдm)),

where k << m is the number of iterations before the process terminates.

5.2 Task Allocation Module (Taska)
After solving the min-RST problem, we move forward to solve the problem of task allocation.

The tasks generated by Queryp are handled by Taska to allocate them on sensor nodes satisfying

their functional and QoS requirements. With the help of SDD, Taska identifies relevant sensor
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nodes complying with the tasks’ functional requirements (refer Eq 5). To ensure the fulfilment

of QoS requirements (temporal deadline) of sensing tasks, Taska estimates end-to-end delay in

transmitting sampled data from relevant sensor nodes to the gateway. End-to-end delay is estimated

for all the relevant sensor nodes concerning a sensing task to identify an appropriate node among

them providing data within temporal deadline of the task.

In sensor networks, end-to-end delay depends on: (i) the average waiting time a packet spends

in the queue (ρq ) on a sensor node, (ii) transmission time (Tχ), and (iii) number of intermediate

nodes from source node to the gateway. A queuing model of type (M/M/1) : (GD/L/∞) [19] is

considered to estimate the average waiting time (see Eq. 13) in the queue where sensor node acts as

a server with the queue size of L. The packet arrival rate λ follows Poisson distribution and service

time µ is exponentially distributed.

ρq =
1 − (λ/µ)L − (1 − λ/µ)(L(λ/µ)L + 1 − (λ/µ)L+1)

µ(1 − λ/µ)(1 − (λ/µ)L+1)
(13)

For a packet, Tχ depends on different factors, such as number of re-transmissions (ηr), wake
time of the receiver (Tψ), sleep time of a sensor node (Ts), and back-off period (Tβ) at the MAC

layer. Hence, Tχ can be represented using Eq. 14.

Tχ = ηr(Tψ + Ts) + E[Tβ] + R(0,Ts) (14)

where, Tψ and Ts are MAC layer parameters. R(0,Ts) is a random number distributed between 0

and Ts for the case when the receiver is sleeping and the sender has to wait until the receiver wakes

up [1]. The average number of re-transmissions (ηr) can be modeled as Geometric distribution

and calculated as
1−p
p , where p is the probability of successful transmission. According to the

exponential back-off mechanism in CSMA/CA, number of slots (ηs) that has been waited by a

sensor node after detecting the collision is 2
c −1, where c (≈ ηr) is the number of collisions occurred

so far for that sensor node. The expected back-off time for a sensor node can be calculated as

E[Tβ] =
1

ηs + 1

ηs∑
j=1

j ⇒
ηs(ηs + 1)

2(ηs + 1)
⇒

ηs

2

⇒
2

1−p
p − 1

2

(15)

Hence, Eq. 14 can be re-written as

Tχ =
1 − p

p
(Tψ + Ts) +

2

1−p
p − 1

2

+ R(0,Ts) (16)

By using Eq. 13 and 16, average 1-hop delay in transmitting a packet from a sensor node can be

characterized by Eq. 17 whereas Eq. 18 represents end-to-end delay incurred in transmitting a data

packet from source node to the gateway.

delayavд = ρq + Tχ

= ρq +
1 − p

p
(Tψ + Ts) +

2

1−p
p − 1

2

+ R(0,Ts)
(17)

delaye2e =
d∑
z=1

delayzavд (18)

where, d is the number of intermediate nodes between source node, where sensing task is to be

allocated, and the gateway. A relevant sensor node, as per Eq. 5, is considered for allocating the

sensing task if delayne2e ≤ R
temp
T k
i j

.
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Algorithm 2 Task Allocation

1: procedure Taska (T )
2: for each task x ∈ T do
3: Identify relevant sensor nodes (N ′ ⊆ N ) satisfying functional requirements of x . (refer

Eq. 5)

4: for each n ∈ N ′ do
5: Estimate end-to-end delay between node n and gateway.

6: if delayne2e ≤ R
temp
x then

7: Allocate sensing task x to node n.
8: end if
9: end for
10: end for
11: end procedure

The sensor nodes to which sensing tasks are allocated transmit sensed data to the gateway

within the specified time-slot at a regular interval. The service provisioning process at the gateway

collaborates sensed data received from different tasked sensor nodes and provide appropriate

responses to the queries. The proposed task allocation mechanism (Algorithm 2) is based on

minimizing the data delivery time so that a task does not miss its temporal deadline. The data

delivery time complexity analysis is as follows.

5.2.1 Data delivery time complexity. It is defined as the total time taken by the data transmission

mechanism in delivering all the packets to the gateway from tasked sensor nodes. If there are total

P packets to be transmitted by N sensor nodes in the network, any data transmission algorithm

needs minimum P time slots [16].

Theorem: Given a network of N sensor nodes, the data delivery time complexity of QueryPM is
Θ(P).
Proof: For N sensor nodes (s1, s2, s3, ..., sN ) in the network, if Pk is the number of packets to be

transmitted by node sk corresponding to a task, then the overall data delivery time can be estimated

as

N∑
k=1

Pk

(m+1∑
j=1

delayavд +Tsense
)
≤

N∑
k=1

Pk

( Depth∑
j=1

delayavд +Tsense
)

(19)

where,m is the number of intermediate sensor nodes, Tsense is the sensing time and Depth is

calculated for the communication tree (Section 3.4). Since delayavд ,Tsense and Depth are constants,

the above equation can be re-written as

= Θ(
∑N

k=1 Pk )

= Θ(P)

This finishes the proof.

5.3 Service Provisioning
The Service provisioning process is an important part of the QueryPM framework. Service can be

defined as a piece of information which is acquired by collaborating the data from certain set of

physical attributes relevant to the application queries [10]. As a result of Queryp , a set of common

queries and individual queries are created which are further decomposed into the corresponding set

of sensing tasks. In QueryPM, sensing tasks corresponding to the common queries and individual
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queries are allocated to the appropriate sensor nodes. The data sensed by the tasked sensor nodes

is provided to the service provisioning process at the gateway where it is shared and collaborated

to serve the application queries.

As mentioned earlier, Tcmn = {Ti j |1 ≤ i ≤ |reдo | and 1 ≤ j ≤ |atrc |} ∪ {Tp } contains the sensing
tasks which are required to fulfill the overlapping as well as non-overlapping requirements of their

parent queries (see Section 3.3). The data sensed by the common sensing tasks (first term of Tcmn )

of a common query is desired by all of its parent queries, hence need to be shared among them.

This shared data is further collaborated with the data sensed by the task set {Tp } (second term of

Tcmn) corresponding to the non-overlapping requirements of the parent queries to provide them

appropriate services. In addition, individual queries are served by collaborating the sensed data

provided by their corresponding set of sensing tasks (Tind ) only.

6 IMPLEMENTATION AND EVALUATION
The QueryPM framework and its components, i.e., Queryp and Taska , are implemented on NS-2

and simulations are conducted to study its influence on the constraint network resources. The

consequences are analyzed in terms of amount of downstream traffic (total number of sensing

tasks), upstream traffic, energy consumption, and network lifetime. Since proper allocation of

sensing tasks is most important for the successful execution of the queries, therefore, QueryPM
with the underlying end-to-end delay estimation model is evaluated in terms of percentage of

queries meeting their temporal deadlines.

The proposed framework is compared with the CAQO [29] and CATS [28]. CAQO reduces

the query requests from concurrent applications and respond them through cooperative caching

mechanism. CAQO forecasts the query requests to prefetch and cache the required sensory data

at sink node to respond the forthcoming queries. CATS [28] does not pre-process the queries and
disseminate all the sensing tasks corresponding to each query into the network and provide sampled

data from tasked sensor nodes. However, CATS takes into account the time-slot overlapping among

sensing tasks allocated on a sensor node to reduce the amount of data sampling.Table 4 lists the

parameter settings for the simulations. 200 sensor nodes are uniformly deployed in the monitoring

area which is divided into 12 grid cells, and four different environmental attributes (|A| = 4) can

be sought from each grid cell.

Table 4. Parameter settings in simulations

Parameter Name Value
Monitored area 1750 × 700meter 2

Grids in sensor field 3 × 4

Number of sensor nodes 200

Number of attributes (A) 4

Communication radius 50meters
Number of applications (ρ) 5, 10, 15

Number of queries in the poolM 500 - 1500

Number of queries in a decision-window (m) 10 - 50

Transmission power (txPower ) 35.28e-3 W

Receiving power (rxPower ) 31.32e-3 W

sleepPower 144e-9 W

idlePower 712e-6 W

Initial energy 10 Joules
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In a realistic scenario, a large number of queries from various applications arrives in a decision-

window (dw) and each query can have different functional requirements. Therefore, to simulate

such scenarios, a population ofM (=
∑ρ

i=1 ni ) queries from ρ distinct applications is created that

contains equal number of queries n1 = n2 = n3 = .... = nρ for each application. Different samples

of queries (m) are drawn from this population in each dw according to the Eq. 20.

ρ∑
i=1

wini =m ≤ M (20)

where,

ρ∑
i=1

wi = 1

Each sample consists of queries from ρ different applications in different proportion. A random

weight factor, wi ∈ [0, 1] such that 0 ≤ (niwi ∈ Z
+) ≤ m, is assigned to each application to vary

the proportion of the queries from that application in a sample. It ensures that the set of queries

arriving in a decision-window will be different from the previous decision-window(s).

6.1 Impact on downstream traffic
In SSN, the downstream traffic is caused due to sensing tasks dissemination. Therefore, the reduction

in number of sensing tasks will reduce the downstream traffic. To study the impact of QueryPM
on the volume of sensing tasks (downstream traffic) in a decision-window, we took a population

(M) of 1000 queries for ρ = 10 applications. The query population includes ni = 100 queries from

each of the 10 applications and have varying functional requirements. We analyze the percentage

reduction in sensing tasks based on the simulation results, considering the number of queries (m)

10, 30, and 50 taken fromM according to Eq. 20.
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Fig. 4. Percentage reduction in sensing tasks in different decision-windows, when ρ = 10

Fig. 4 shows percentage reduction in number of sensing tasks in different decision-windows

(dw1, ...,dw14) when Queryp pre-processed the queries. A consistent pattern in the task reduction

is not observed for any of the scenarios (whenm = 10, 30, and 50) over different decision-windows.

This is due to the variations in queries’ requirements in different decision-windows that results

in varying number of sensing tasks for the same number of concurrent queries. However, the

percentage reduction in sensing tasks is high for the cases whenm = 30 andm = 50 as compared

tom = 10. This reduction is due to large number of queries with the overlapping requirements in

the samples. This percentage reduction in sensing tasks is relative to the number of sensing tasks
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disseminating into the network in CATS [28]. CATS focuses on eliminating the communication

redundancy in the upstream traffic by performing on-node data sharing among sensing tasks and

significantly reduces the upstream traffic. However, the downstream traffic due to the sensing tasks

is still a concern with the view point of network resources. In contrast, Queryp deployed at the

gateway reduces the downstream traffic upto 60%.

Further, we compared the efficiency ofQueryPM with CAQO [29] in which sensory data required

by future queries are prefetched and cached at the sink node. However, the relevant sensor nodes

have to be tasked first during the prefetching process which contribute in both downstream and

upstream traffic in the network. In this regard, we considered three scenarios, namely, CAQO-(i):

all the queries are successfully responded by providing the prefetched cache data at the gateway,

CAQO-(ii): half number of queries in a decision-window are answered by cached data and remaining

queries are answered by fetching the data in real-time due to cache misses at the gateway, and

CAQO-(iii): queries arriving in the subsequent decision-windows are different and the prefetched

data do not satisfy the query requests. Thus, data are fetched in real-time by disseminating the sens-

ing tasks again corresponding to the arrived queries. Fig. 5 shows a comparison among QueryPM ,

CATS and the above mentioned scenarios of CAQO in terms of downstream traffic, i.e., number of

sensing tasks disseminated into the network.
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Fig. 5. Comparative analysis of downstream traffic in different decision-windows, when ρ = 10

Fig 5 depicts that the downstream traffic in cases of CAQO-(i) and CAQO-(ii) are less as compared

to CATS. The reduction is due to the underlying query processing mechanism that eliminates
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the reprocessing of shared subquery requests and avoid redundant sensing tasks concerning the

queries to enter into the network. QueryPM outperforms in comparison to all the scenarios of

CAQO, however CAQO-(i) results in the same amount of downstream traffic. It is due to the under-

lying query reduction mechanism and the assumption that all the forthcoming query requests are

answered through prefetched data. Thus, the resulting sensing tasks in CAQO-(i) are concerning to

the data prefetching for the upcoming query requests. On the other hand, in a realistic scenario,

i.e., CAQO-(iii), queries arriving in subsequent decision-windows are random, thus prefetched data

do not satisfy the actual query requests. Henceforth, the sensing tasks are transmitted again to

fetch the required data in real-time due to cache misses, in addition to the tasks that have been

disseminated earlier to prefetch the data. Thus, the resulted downstream traffic in CAQO-(iii) is

approximately twice of CAQO-(i). The downstream traffic in case of QueryPM for the very first

decision-window is nearly equal to all the scenarios of CAQO since there were no prefetching

happened initially and the queries are responded by disseminating the sensing tasks in real-time.

The impact on downstream traffic in these scenarios also reflects on upstream traffic as well as on

network energy consumption.
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Fig. 6. Percentage reduction in sensing tasks when ρ andm vary

In realistic scenarios, number of applications in SSN can vary and rate of arrival of queries

can be high in a decision window. To accommodate such scenarios in simulation and to test the

scalability aspect of the proposed framework, three different scenarios are considered with varying

number of applications (ρ = 5, 10, 15). In each of these scenarios,m is varied from 10 to 100. Fig. 6

depicts the percentage reduction in downstream traffic when queries are pre-processed by Queryp .
Simulations are conducted for several times to study the variations in the downstream traffic. The

mean and standard deviation of the percentage reductions in the sensing tasks are calculated from

the outcomes of these simulations (see Fig. 7). However, we have shown the results corresponding

to the 20 iterations since divergence in mean values and standard deviations was marginal after

that. Increment in the mean along with negative inclination in the standard deviation with respect

tom suggests that the reduction in sensing tasks is not varying as much as it varies for the smaller

value ofm in a decision-window. It shows that QueryPM is able to process large number of queries

arriving in a decision-windows and avoids the network to get overwhelmed with high volume of

sensing tasks. It makes QueryPM robust and suitable for real scenarios in large-scale deployments. It

is also to be noted that proportion of individual and common queries resulting after pre-processing
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Fig. 7. Statistical analysis of percentage reduction in sensing task for different values of ρ andm

of the application queries depends upon the similarity in their functional requirements. If large

number of queries in a decision-window has similar functional requirements, their pre-processing

will result in less number of individual queries. We observe the average percentage of individual

queries in a decision window which is found as ≈39%, ≈43%, and ≈ 42% for ρ = 5, 10, and 15

respectively.

6.2 Impact on upstream traffic
The effect of QueryPM on upstream traffic (number of data packets transmitted by tasked sensor

nodes) is observed in the same experimental settings as used in Section 6.1. Fig. 8 illustrates the

number of data packets sent from the tasked sensor nodes towards the gateway in the proposed

framework, CATS, and all the three considered scenarios of CAQO (as mentioned in Section 6.1)

for different number of queries arriving in a decision-window. Since CATS schedule the sampling

interval into the overlapping time-window of the sensing tasks allocated on a sensor node and

samples the data for that duration only. Therefore, it would result in lesser upstream traffic than

the QueryPM. However, QueryPM considers the continuous sampling during the specified time-

slot of the sensing tasks (see Section 1). Therefore, CATS as well as CAQO are evaluated with

the assumption of continuous sampling over the specified time-slots of the sensing tasks. CAQO

performs query reduction at the gateway to avoid redundant execution of similar sub-queries. This

is the reason CAQO-(i) results in nearly same amount of upstream traffic as QueryPM and CATS. It

is evident from Fig. 5 that CAQO-(iii) results in high downstream traffic due to transmission of

sensing tasks twice, which significantly increases the upstream traffic as well. Similarly, CAQO-(ii)

results in comparatively high upstream traffic in comparison to CATS and QueryPM since half of

the queries are responded through cached data and remaining queries have to fetch the data in

real-time due to cache misses at the gateway. Henceforth, the data transmission happens twice, first,

at the time of data prefetching, and second, at the time of cache misses at the gateway. Furthermore,

the variation in upstream traffic for same value ofm across different value of ρ (Fig. 8 (a), (b), and

(c)) is due to the diverse functional requirements of the queries in the decision-windows.

6.3 Overall network energy consumption
Proposed query preprocesisng mechanism is tested for the energy consumption incurred due to

downstream as well as upstream traffic. Fig. 9 shows the comparison of total network-wide energy

consumption for QueryPM , CATS, and CAQO (scenarios discussed in Section 6.1) for varying
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Fig. 8. Comparison of total number of data packets transmitted by the tasked sensor nodes in QueryPM,
CATS, and CAQO

number of queries arriving in a decision-window from different number of applications. The overall

network energy consumption involves energy consumption in task dissemination as well as energy

consumption in data transmission from/to tasked sensor nodes and the gateway.

Since QueryPM exploits the overlapping requirements among the application queries and re-

duces the number of sensing tasks in the network, it directly benefits in conserving the energy

consumption. Furthermore, reduction in data packet transmissions from sensor field to the gateway

in QueryPM (as shown in Fig. 8) has direct influence in reduction of overall energy consumption.

On the other hand, CATS results in relatively high energy consumption since it disseminates all

the sensing tasks into the network without preprocessing. However, CATS conserves the energy

consumption in upstream traffic by exploiting the interval data sampling and data sharing like

QueryPM, hence, both the mechanisms are more energy-efficient in comparison to CAQO-(ii) and

CAQO-(iii). On the other hand, CAQO-(i) results in nearly same energy consumption as QueryPM
and CATS as a consequence of low downstream and upstream traffic as evident in Fig. 5 and 8,

respectively. The reason behind high energy consumption in CAQO-(ii) and CAQO-(iii) is the
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Fig. 9. Network-wide energy consumption incurred in dissemination of downstream (sensing tasks) as well
as upstream traffic inQueryPM, CATS, and CAQO

overhead of downstream and upstream traffic caused due to cache misses at the gateway. In CAQO-

(iii), the transmission of sensing tasks and sensed data happens twice for all the queries, whereas

in CAQO-(ii), it happens only for half of the queries. Therefore, CAQO-(iii) has higher energy

consumption than its counterparts. The peripheral effects of high energy consumption reciprocate

to the network lifetime as well. To avoid the uncertainty of the results, simulations are conducted

20 times, and the average of their results is depicted in Fig. 9.

6.4 Impact on network lifetime
Generally, network lifetime is defined as the time duration until the first node drained of its energy

and can be characterized by Eq. 21.

li f etime = min

n∈N
LTn (21)
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where LTn is the lifetime of a node n.
However, this definition of network lifetime is not adequate since first dead node (FDN) does not

necessarily leads towards the network partitioning or severe connectivity disruption [6]. In WSN,

network operations are of prime concern and the network is said to be alive till it is providing the

services without interruption. Therefore, we argue to identify the lifetime of critical nodes (CN) in
the network to define network lifetime since their death majorly affects the network operations. In

the network of uniformly distributed sensor nodes, a set of critical nodes and network lifetime are

characterized by Eq. 22 and 23, respectively.

CN = {n ∈ N |dn is maximum} (22)

where dn is the degree of node n.

network li f etime = min

n∈CN
LTn (23)

The network is considered as a connected graphG = (V, E). Letv ∈ V be a node in the network

and its neighbors can be respresnted as,

Nb(v) = {u ∈ V|vu ∈ G}

where, an edge vu exists between node v and u if dis(v,u) < R, where R is the communication

range of v . Therefore, the degree of node v is dv = |Nb(v)|. In a connected graph, failure of a node

implies the deletion of all the edges incident on that node from its neighbors. Two arbitrary nodes

are said to be connected if there exists a path consisting of consecutive edges between them. Let

the sequence P1,k+1 : e1e2....ek is a path of length k from node u1 to uk+1. It can also be represented

as P1,k+1 : u1 → u2 → ....→ uk → uk+1. In general, the shortest path between two arbitrary nodes

ui and uj can be represented as Pi, j : ui
∗
−→ uj , such that ui , uj , for all i , j.

Considering gateway (G) as a destination in sensor network, total number of source-destination

pairs will be N , where N is the number of sensor nodes. P = {Pi,G |i = 1, 2, 3....N } represents a set

of shortest path for all the pairs such that |P | = N . Let the degree of CN is dcn , i.e., |Nb(cn)| = dcn .
Let P ′ ⊂ P is a set of paths such that ∃u(∈ Nb(cn)) ∈ P ′

and P ′′ ⊂ P represents a set of paths

such that ∃u(∈ Nb(f dn)) ∈ P ′′
, and P ′ ∪ P ′′ , P. If FDN is not the critical node, i.e., df dn < dcn ,

that means P ′′ < P ′
. Therefore, the failure of CN is more prune for connectivity disruption of the

network.

We measured the elapsed time to the death of CN and FDN to compare the network lifetime for

QueryPM , CATS, and CAQO (see Fig. 10). The network lifetime in all of three mechanisms are a

direct consequence of network-wide energy consumption as shown in Fig. 9. Packet delivery ratio

(PDR) at the gateway is considered as a measure of connectivity and the corresponding observations

are depicted in Fig. 11. The failure of first node is not necessarily due to its frequent involvement in

routing. Instead, comparatively high demand by the queries nearby its region and corresponding

data transmissions can also cause its failure. Previous results show the significant reduction in

downstream traffic, upstream traffic, and overall network energy consumption in QueryPM that

relaxes the burden on CN but demand of FDN can not be controlled, which causes its early death.

The elapsed time of FDN is 55 minutes in QueryPM whereas CN lasts for 8 minutes longer (see

Fig. 10). The peripheral effects on PDR at these timestamps are clearly visible in Fig. 11. The PDR

drops with a huge margin at the instance of CN ’s death as compared to that of FDN. It is due to the

fact that failure of CN results in disconnection of large number of neighboring nodes (as CN has

maximum degree). Furthermore, its failure results in disconnection of several source nodes to the

gateway, hence, results in reduced PDR. The variations in PDR throughout the simulation is an
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Fig. 11. Comparison of packet delivery ratio in case of
the death of first node and critical node

effect of varying requirements of different queries and varying network characteristics at different

time instances that results in varying amount of data transmissions.

6.5 Impact on application-level QoS parameter
Temporal deadline of the queries is a critical QoS aspect in sensor networks. Providing the sensed

data from all the relevant sensing tasks corresponding to the queries to the gateway within their

temporal deadlines is very crucial for their successful execution. Therefore, we observed the

percentage of queries meeting their temporal deadlines in the light of proposed Taska module of

the QueryPM, which estimates the end-to-end delay before allocating the sensing tasks to meet their

QoS requirements (temporal deadlines). We chose two task allocation schemes, SACHSEN proposed

in [15] and random approach as reference to study the performance of Taska module of proposed

QueryPM framework. SACHSEN is a QoS aware task allocation scheme considering energy and data

accuracy as the QoS requirements while random allocation scheme is a non-QoS-aware approach

which does not consider the QoS requirements of the tasks and assigns a sensor node randomly

from a list of candidate sensor nodes. However, SACHSEN selects the candidate sensor nodes for a

task based on their relevancy to the task which is similar to our proposed scheme. SACHSEN does

not study the effects of task allocation mechanism on temporal deadlines of the sensing tasks.
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Fig. 12. Comparison ofQueryPM, SACHSEN, and Random approach of allocating sensing tasks in terms of
percentage of queries meeting their temporal requirements
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Since we are considering temporal deadline as a QoS parameter for application queries in this

paper, it becomes the crucial parameter to study. Fig. 12 depicts the percentage of successfully

executed queries whenQueryp is integrated withTaska and compared with SACHSEN and random

allocation of sensing tasks, which does not consider the temporal or delay constraint of the sensing

tasks before their allocation. However, the tasks are allocated on such sensor nodes that can fulfill

their functional requirements. As depicted in the observations, QueryPM and SACHSEN performs

better than the random allocation of sensing tasks in each scenario. The reason behind SACHSEN

outperforming random allocation scheme is due to the consideration of energy as the QoS parameter

in the application queries. It leads SACHSEN to select the candidate sensor nodes having minimum

hop distance to the gateway. Therefore, it fulfils the temporal deadline of relatively large number

of queries as compared to the random allocation scheme. However, SACHSEN does not work

better than the QueryPM because considering minimum energy path does not always ensure

less end-to-end delay. Since Taska estimates end-to-end delay from candidate sensor nodes before

allocating the sensing tasks, QueryPM shows significant improvement in meeting temporal deadline

of the queries as compared to both the mechanisms. However, the variations in the percentage of

successfully executed queries are due to the random nature of their functional requirements.

7 CONCLUSION AND FUTUREWORK
This paper proposes a query processing framework (QueryPM) to efficiently process the queries

and allocate the generated sensing tasks to the relevant sensor nodes. QueryPM comprises of

query pre-processing module (Queryp ) and task allocation module (Taska ) to solve the problem
of redundant sensing tasks generation and their proper allocation, respectively. Queryp creates

common queries on the basis of functional requirement similarity of the queries, which results

in non-redundant sensing tasks and significantly reduces the downstream traffic. Taska allocates

the generated sensing tasks to the appropriate sensor nodes by estimating the end-to-end delay

to ensure the fulfilment of temporal deadlines of sensing tasks. To validate our problems and

corresponding solution approaches, extensive simulations are conducted which show that proposed

framework reduces the network traffic and energy consumption significantly, and improves the

network operations even if the number of concurrent query requests are relatively large.

Sensed data corresponding to the sensing attributes interested by queries are provided through

the gateway. Further processing and analytics on the sensed data can be performed for providing

the sophisticated services, such as high-level contexts [18][24], situation awareness [13], activity

recognition, etc., to other WSN based IoT applications. For instance, context-aware applications

seek high-level contexts (HLCs) instead of raw sensor data from the sensor network. In order to

infer the HLCs, data from different sensors are required to be collaborated and processed either at

the gateway or at a node inside the network. Considering resource-constrained SSN, the location

of HLCs inference (out-network or in-network) has wide impact on the network resources and

accuracy of the inferred context. We leave this aspect on top of the QueryPM framework as an

open research challenge for the readers.
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