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Abstract. Based on recent advances in spectral hypergraph theory [L. Qi and Z. Luo, Tensor
Anaysis: Spectral Theory and Special Tensors, SIAM, Philadelphia, 2017], we explore the Fiedler
vector of an even-uniform hypergraph, which is the Z-eigenvector associated with the second smallest
Z-eigenvalue of a normalized Laplacian tensor arising from the hypergraph. Then, we develop a novel
tensor-based spectral method for partitioning vertices of the hypergraph. For this purpose, we extend
the normalized Laplacian matrix of a simple graph to the normalized Laplacian tensor of an even-
uniform hypergraph. The corresponding Fiedler vector is related to the Cheeger constant of the
hypergraph. Then, we establish a feasible optimization algorithm to compute the Fiedler vector
according to the normalized Laplacian tensor. The convergence of the proposed algorithm and the
probability of obtaining the Fiedler vector of the hypergraph are analyzed theoretically. Finally,
preliminary numerical experiments illustrate that the new approach based on a hypergraph-based
Fiedler vector is effective and promising for some combinatorial optimization problems arising from
subspace partitioning and face clustering.
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1. Introduction. Graph and hypergraph partitioning find groups and clusters
in a set of objects according to their inherent similarity and affinity. If pairwise
similarity among objects is available, graph-based models could be constructed and
spectral graph theory provides a unified and heuristic approach for graph partitioning
[15, 16]. However, pairwise relations are unprofitable in some situations. For exam-
ple, to separate points on two intersecting circles as shown in Figure 1, the distance
between two points is useless [25]. To model multiwise similarity, hypergraphs were
established and studied in many disciplines. Duchenne et al. [19] and Rota Bulò
and Pelillo [51] applied hypergraphs for face clustering and object matching. Zien,
Schlag, and Chan [60] and Karypis et al. [35] used hypergraph partitioning to de-
sign very large scale integration systems. In large scale parallel scientific computing
[8, 9, 26, 36, 55], hypergraph partitioning methods provided various heuristics for
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Fig. 1. Intersecting circles.

assigning computational loads to multiprocessors.
In 1975, Fiedler [21] first proposed using the eigenvector corresponding to the

second smallest eigenvalue of a graph Laplacian matrix to construct an effective par-
tition for vertices of the graph. Indeed, the Laplacian matrix of a graph is symmetric
and positive semidefinite. The smallest eigenvalue of the Laplacian matrix is zeros as-
sociated with an all-one eigenvector. Hence, this smallest eigenpair is trivial. Fiedler
[20] called the second smallest eigenvalue of a graph Laplacian matrix the algebraic
connectivity of the graph because the algebraic connectivity is positive if and only if
the graph is connected. To break down the connectivity and to obtain a graph par-
titioning, a natural idea is to explore the eigenvector corresponding to the algebraic
connectivity of the graph.

With the aid of efficient numerical algorithms for a spectrum of matrices [24,
41, 56], the Fiedler vector of a graph is well-studied and widely used in science and
engineering [15, 42, 44, 53]. To generalize this spectral method to the case of a
hypergraph, there are mostly two kinds of approaches. The first one is to approximate
the hypergraph by a graph [3, 36, 14]. A common approach is to expand an edge of the
hypergraph by a clique defined on the same vertex set. Then, graph-based approaches
are applied for constructing a hypergraph partitioning [30, 60, 50]. However, in general
cases, any graph substitutions for a hypergraph are unsatisfactory theoretically [31].

The tensor representation for a hypergraph is the other sort of method. Since
tensor and hypergraph are generalizations of matrix and graph, respectively, tensor
approaches for hypergraphs attract more and more attention from researchers. In
2012, Hu and Qi [28] first defined a Laplacian tensor for an even-uniform hypergraph.
They proved that the smallest Z-eigenvalue of the Laplacian tensor is zero. Further-
more, the hypergraph is connected if and only if the second smallest Z-eigenvalue of
the Laplacian tensor is positive. Hence, the second smallest Z-eigenvalue was called
the algebraic connectivity of the hypergraph. Li, Qi, and Yu [39] and Xie and Chang
[59] gave two variations of this kind of Laplacian tensor for an even-uniform hyper-
graph. For odd- and even-uniform hypergraphs, Qi [47] proposed another definition of
a Laplacian tensor. He verified that the smallest H-eigenvalue of Qi’s Laplacian tensor
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A2510 YANNAN CHEN, LIQUN QI, AND XIAOYAN ZHANG

is zero. Bu, Fan, and Zhou [7] argued that zero is also a Z-eigenvalue of Qi’s Laplacian
tensor. A normalized version of Qi’s Laplacian tensor for a uniform hypergraph was
considered in [29].

On the other hand, inspired by the duality between the adjacency matrix and
the Laplacian matrix of a graph [58], many researchers studied the adjacency ten-
sor defined for a uniform hypergraph [17]. Duchenne et al. [19] proposed using the
Z-eigenvector corresponding to the largest Z-eigenvalue of the adjacency tensor of a
hypergraph to perform object matching. The tensor trace maximization approach was
also related to eigenvalues of the adjacency tensor of a uniform hypergraph [4, 23].
Rota Bulò and Pelillo [51] extracted clusters of a hypergraph using similarities repre-
sented in the adjacency tensor. In fact, this model is related to the Lagrangian number
of the hypergraph [37, 34]. Govindu [25] and Shashua, Zass, and Hazan [52] preferred
to decompose the nonnegative adjacency tensor of a hypergraph. Then, a probabilistic
clustering was developed for problems of motion segmentation and face clustering.

In this paper, we present a new definition of the normalized Laplacian tensor of
an even-uniform hypergraph, which is a generalization of the normalized Laplacian
matrix of a simple graph. We verify that the smallest Z-eigenvalue of the normalized
Laplacian tensor is zero. The hypergraph is connected if and only if the second small-
est Z-eigenvalue of the normalized Laplacian tensor (i.e., the algebraic connectivity of
the hypergraph) is positive. Then, the Fiedler vector of an even-uniform hypergraph
is defined as the Z-eigenvector of the normalized Laplacian tensor corresponding to
the algebraic connectivity. We prove that the Fiedler vector is related to the Cheeger
constant of the hypergraph.

Since the smallest Z-eigenvalue of the normalized Laplacian tensor of an even-
uniform hypergraph is trivial, we investigate a compact Laplacian tensor, whose
smallest Z-eigenvalue is equal to the algebraic connectivity. To obtain the small-
est Z-eigenvalue of the compact Laplacian tensor, we propose a trust region algorithm
for minimizing a zero-order homogeneous function under a spherical constraint. At
each iteration, a quadratic approximation of the objective function is minimized in a
proper trust region. Whereafter, we apply the Cayley transform for preserving iterates
on the sphere. We prove that the sequence of iterates generated by the trust region al-
gorithm converges to a Z-eigenvector of the compact Laplacian tensor. When we start
the trust region algorithm from multiple random initial points sampled from a sphere
uniformly, we could obtain the algebraic connectivity of the hypergraph with a high
probability. Then, it is straightforward to get the Fiedler vector of the even-uniform
hypergraph from the Z-eigenvector corresponding to the smallest Z-eigenvalue of the
compact Laplacian tensor.

Finally, we apply the Fiedler vector heuristics for partitioning even-uniform hy-
pergraphs arising from subspace partitioning and face clustering. Compared with
some existing methods, the new approach based on the distribution of components of
the Fiedler vector of a hypergraph is effective and promising. In image segmentation,
with the aid of superpixels, the Fiedler vector of an even-uniform hypergraph could
extract interesting objects from images without being supervised.

The outline of this paper is drawn as follows. The new normalized Laplacian ten-
sor and the Fiedler vector of an even-uniform hypergraph are studied in section 2. The
relationship between the Fiedler vector and the Cheeger constant of the hypergraph
is also discussed here. In section 3, we propose a trust region algorithm and a global
strategy for computing the Fiedler vector of an even-uniform hypergraph. Section
4 illustrates applications of the Fiedler vector heuristics for hypergraph partitioning
and clustering. Finally, some concluding remarks are presented in section 5.
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THE FIEDLER VECTOR FOR HYPERGRAPH PARTITIONING A2511

2. Hypergraph partitioning using a Fiedler vector.

2.1. Preliminary and motivation. Spectral tensor theory provides useful in-
struments for spectral hypergraph theory. First, we introduce some basic conceptions
on tensors. Let R[k,n] be the space of kth order n dimensional symmetric tensors. As
T ∈ R[k,n], we have

T = [ti1i2···ik ], where is = 1, 2, . . . , n and s = 1, 2, . . . , k.

By the symmetry of T , the value of ti1i2···ik is invariable under any permutation of
its indices. There is a one-to-one correspondence between a symmetric tensor T and
a homogeneous polynomial

(1) T xk ≡
n∑

i1=1

· · ·
n∑

ik=1

ti1···ikxi1 · · ·xik .

The above equality could be viewed as a product of the tensor T and a vector x ∈ Rn.
Moreover, we define a vector T xk−1 ∈ Rn and a symmetric matrix T xk−2 ∈ Rn×n in
a componentwise manner as

[T xk−1]i ≡
n∑

i2=1

· · ·
n∑

ik=1

tii2···ikxi2 · · ·xik for i = 1, 2, . . . , n,

[T xk−2]ij ≡
n∑

i3=1

· · ·
n∑

ik=1

tiji3···ikxi3 · · ·xik for i, j = 1, 2, . . . , n,

respectively. In fact, T xk = x>(T xk−1) = x>(T xk−2)x. Next, we consider a product
of the tensor T ∈ R[k,n] and a matrix Q = [qij ] ∈ Rn×`. The resulting tensor
T Qk ∈ R[k,`] has elements

[T Qk]j1···jk ≡
n∑

i1=1

· · ·
n∑

ik=1

ti1···ikqi1j1 · · · qikjk

for js = 1, 2, . . . , ` and s = 1, 2, . . . , k.
Eigenvalues and eigenvectors of a tensor were defined by Qi [45], Qi and Luo [48],

and Lim [40] in 2005 independently. If there exist a scalar λ ∈ R and a nonzero vector
x ∈ Rn such that

T xk−1 = λx and x>x = 1,

we call λ a Z-eigenvalue of T and x its associated Z-eigenvector. Qi [45] proved that
Z-eigenvalues of a tensor are invariant under orthogonal transformations.

Second, let G = (V,E,w) be a k-uniform hypergraph, where V = {1, 2, . . . , n}
is the vertex set, E = {ep ⊆ V : |ep| = k for p = 1, 2, . . . ,m} is the edge set, and
w = [wp] ∈ Rm is a positive vector whose component wp denotes the weight of an
edge ep ∈ E. Here, | · | means the cardinality of a set. For each vertex i ∈ V ,
its degree is di =

∑
ep∈E:i∈ep

wp. We assume that d = [di] ∈ Rn is positive, i.e.,
the hypergraph has no isolated vertices. If k is even, G is called an even-uniform
hypergraph. Specially, G is a simple graph if k = 2. For example, Figures 2 and 3
illustrate a simple graph and a 4-uniform hypergraph, respectively.

Two vertices i and j are called connected if there is a finite sequence of vertices
{i, `1, `2, . . . , `t, j} such that every two adjacent vertices belong to one edge of G. If
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A2512 YANNAN CHEN, LIQUN QI, AND XIAOYAN ZHANG

any two vertices in G are connected to each other, G is called a connected hypergraph.
A connected component of a hypergraph G is a connected subhypergraph which is
not contained in any connected subhypergraph of G having more vertices or edges.

We now consider the problem of bipartitioning the vertex set V of G [21]. For a
nonempty and proper subset X of V , we denote X ≡ V \X. Assigning two different
labels (say ±1) to the partition (X,X), we get an indicator x = [xi] ∈ Rn such that
xi = 1 if i ∈ X and xi = −1 if i ∈ X.

At the beginning, we review the case of a simple graph, i.e., k = 2. If there is an
edge {i, j} = ep ∈ E such that i ∈ X and j ∈ X, we should pay a weighted square
cost for cutting this edge wp(xi − xj)2. Otherwise, there is no cost since {i, j} ⊆ X
or {i, j} ⊆ X. A natural objective of a good partition is to minimize the total cost
for cutting all edges connecting X and X:

(2) x>Lx =
∑

{i,j}=ep∈E

wp(xi − xj)2.

Setting xi = 1 if i ∈ X and xi = −1 if i ∈ X, the number of cut edges for this
partition is 1

4x
>Lx. Here, the graph Laplacian L ∈ Rn×n is a symmetric positive

semidefinite matrix. The smallest eigenvalue of L is zero associated with an all-one
eigenvector. Fiedler [20, 21] called the second smallest eigenvalue of L the algebraic
connectivity of G and proposed using the corresponding eigenvector (Fiedler vector)
to construct a graph partitioning.

Example 1. The graph Laplacian matrix L could be established directly. For
instance, we consider a simple graph shown in Figure 2. For this graph G = (V,E,w),
we see that V = {1, 2, 3, 4}, E = {e1 = {1, 2}, e2 = {1, 3}, e3 = {2, 3}, e4 = {3, 4}},
and w = (5, 5, 5, 1)>.

Fig. 2. A simple graph.

Generally speaking, there are two ways to establish the Laplacian matrix of G.
On the one hand, we define the adjacency matrix of G as

A =


0 5 5 0
5 0 5 0
5 5 0 1
0 0 1 0

 .
Calculating the sums of each row of A, we get the degree vector d = (10, 10, 11, 1)>

and the degree matrix D = diag(d). Then, using a “minus” operation, we compute

D
ow

nl
oa

de
d 

11
/1

5/
22

 to
 1

58
.1

32
.1

61
.2

40
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE FIEDLER VECTOR FOR HYPERGRAPH PARTITIONING A2513

the Laplacian matrix of G by

(3) L = D −A =


10 −5 −5 0
−5 10 −5 0
−5 −5 11 −1
0 0 −1 1

 .
On the other hand, we define the edge-vertex incidence matrix of G

M =


1 −1 0 0
1 0 −1 0
0 1 −1 0
0 0 1 −1

 .
Using a “multiply” operation, we obtain the Laplacian matrix by

(4) L = M> diag(w)M =


10 −5 −5 0
−5 10 −5 0
−5 −5 11 −1
0 0 −1 1

 .
By multiplying x to both sides of M> diag(w)M , we see that (4) is consistent with
(2). Clearly, the “minus” form (3) and the “multiply” form (4) are equivalent for
graphs.

In 2012, Hu and Qi [28] generalized the Laplacian matrix of a graph to a Laplacian
tensor of an even-uniform hypergraph, using the star distance [33]. For each edge
ep ∈ E, we imagine an auxiliary vertex with label xp ≡ 1

k

∑
i∈ep

xi. An edge ep of a
hypergraph is replaced by an inauthentic star centered at this auxiliary vertex. The
cost for cutting this edge ep of a hypergraph is the sum of costs for cutting all edges
of the star σwp

∑
i∈ep

(xi − xp)k, where σ ≡ kk

(k−1)k+k−1 is a constant. We remark
here that the auxiliary vertex of a hyperedge is unreal and its value xp is variable for
various partitions of vertices in the hyperedge. If a hyperedge is cut, labels of some
vertices in the hyperedge are +1 and labels of other ones are −1. Then, the label of
the auxiliary vertex is −1 < xp < 1, and hence the cost for cutting the hyperedge
is positive. Otherwise, all labels of vertices in the hyperedge are the same, and so it
is the label of the auxiliary vertex. Then, there is no cost. Therefore, the cost of a
partition (X,X) can be written approximately as

(5)
∑
ep∈E

σwp
∑
i∈ep

xi − 1
k

∑
j∈ep

xj

k

.

The homogeneous polynomial (5) corresponds to a unique symmetric tensor L ∈
R[k,n], which is called the Laplacian tensor of an even-uniform hypergraph. The cost
(5) is only an approximation of the number of cut edges in a partition (X,X). We
note that Hu and Qi [28] studied unweighted hypergraphs, i.e., w ≡ (1, . . . , 1)>.
Similar results hold for weighted hypergraphs. If k = 2, (5) reduces to (2) and hence
L reduces to the graph Laplacian L.

Example 2. To see a detailed Laplacian tensor L, we take a 4-uniform hypergraph
illustrated in Figure 3, for example. Obviously, we have V = {1, 2, . . . , 10}, E =
{{1, 2, 5, 6}, {1, 3, 5, 7}, {2, 3, 6, 8}, {3, 4, 9, 10}}, and w = (5, 5, 5, 1)>.
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Fig. 3. A 4-uniform hypergraph.

According to (1) and (5), the Laplacian tensor L ∈ R[4,10] has
(4+10−1

4

)
= 715

independent elements by symmetry. By examining the homogeneous polynomial (5),
we find that there are 128 similar items. Hence, the Laplacian tensor L has 128
nonzero independent elements, which are shown in Table 1. Obviously, off-diagonal
elements of the Laplacian tensor L may be positive, negative, and zero. By the
symmetric decomposition formula similar to the one addressed in (9), we say that the
Laplacian tensor (5) of even-uniform hypergraphs is a generalization of the “multiply”
form (4) but not a “minus” form (3).

The normalized Laplacian matrix L̃ ∈ Rn×n of a graph was studied in [15]. Using
L̃, Shi and Malik [53] proposed a normalized graph partitioning whose objective is

(6) x>L̃x =
∑

{i,j}=ep∈E

wp

(
xi√
di
− xj√

dj

)2

.

Whereafter, normalized partitioning methods were widely studied and applied in sci-
ence and engineering [27, 57]. The main advantage of normalized partitioning methods
is the robustness for outliers; i.e., the resulting partition of vertices is more balanced.

Comparing the Laplacian matrix (2) with the normalized Laplacian matrix (6)
of a simple graph, we see that the normalization makes all diagonal elements of the
graph Laplacian be one, i.e., coefficients of (x2

i )’s items are all one. Applying the
idea of normalization for the homogeneous polynomial (5), we obtain a new cost of a
partition (X,X) which is approximately

(7)
∑
ep∈E

σwp
∑
i∈ep

 xi
k
√
di
− 1
k

∑
j∈ep

xj
k
√
dj

k

.

By some calculations, we see that the coefficient of xki is one for all i ∈ V . In this
way, all vertices of the hypergraph are treated equally. Note that the homogeneous
polynomial (7) determines a unique symmetric tensor L̃ ∈ R[k,n]. In this sense, we
will propose the new normalized Laplacian tensor L̃ which satisfies L̃xk being (7).
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Table 1
Nonzero independent elements of a Laplacian tensor L = 1

21 [`i1,i2,i3,i4 ].

`1,1,1,1 = 210 `1,1,1,2 = −35 `1,1,1,3 = −35 `1,1,1,5 = −70
`1,1,1,6 = −35 `1,1,1,7 = −35 `1,1,2,2 = 25 `1,1,2,5 = 5
`1,1,2,6 = 5 `1,1,3,3 = 25 `1,1,3,5 = 5 `1,1,3,7 = 5
`1,1,5,5 = 50 `1,1,5,6 = 5 `1,1,5,7 = 5 `1,1,6,6 = 25
`1,1,7,7 = 25 `1,2,2,2 = −35 `1,2,2,5 = 5 `1,2,2,6 = 5
`1,2,5,5 = 5 `1,2,5,6 = −15 `1,2,6,6 = 5 `1,3,3,3 = −35
`1,3,3,5 = 5 `1,3,3,7 = 5 `1,3,5,5 = 5 `1,3,5,7 = −15
`1,3,7,7 = 5 `1,5,5,5 = −70 `1,5,5,6 = 5 `1,5,5,7 = 5
`1,5,6,6 = 5 `1,5,7,7 = 5 `1,6,6,6 = −35 `1,7,7,7 = −35
`2,2,2,2 = 210 `2,2,2,3 = −35 `2,2,2,5 = −35 `2,2,2,6 = −70
`2,2,2,8 = −35 `2,2,3,3 = 25 `2,2,3,6 = 5 `2,2,3,8 = 5
`2,2,5,5 = 25 `2,2,5,6 = 5 `2,2,6,6 = 50 `2,2,6,8 = 5
`2,2,8,8 = 25 `2,3,3,3 = −35 `2,3,3,6 = 5 `2,3,3,8 = 5
`2,3,6,6 = 5 `2,3,6,8 = −15 `2,3,8,8 = 5 `2,5,5,5 = −35
`2,5,5,6 = 5 `2,5,6,6 = 5 `2,6,6,6 = −70 `2,6,6,8 = 5
`2,6,8,8 = 5 `2,8,8,8 = −35 `3,3,3,3 = 231 `3,3,3,4 = −7
`3,3,3,5 = −35 `3,3,3,6 = −35 `3,3,3,7 = −35 `3,3,3,8 = −35
`3,3,3,9 = −7 `3,3,3,10 = −7 `3,3,4,4 = 5 `3,3,4,9 = 1
`3,3,4,10 = 1 `3,3,5,5 = 25 `3,3,5,7 = 5 `3,3,6,6 = 25
`3,3,6,8 = 5 `3,3,7,7 = 25 `3,3,8,8 = 25 `3,3,9,9 = 5
`3,3,9,10 = 1 `3,3,10,10 = 5 `3,4,4,4 = −7 `3,4,4,9 = 1
`3,4,4,10 = 1 `3,4,9,9 = 1 `3,4,9,10 = −3 `3,4,10,10 = 1
`3,5,5,5 = −35 `3,5,5,7 = 5 `3,5,7,7 = 5 `3,6,6,6 = −35
`3,6,6,8 = 5 `3,6,8,8 = 5 `3,7,7,7 = −35 `3,8,8,8 = −35
`3,9,9,9 = −7 `3,9,9,10 = 1 `3,9,10,10 = 1 `3,10,10,10 = −7
`4,4,4,4 = 21 `4,4,4,9 = −7 `4,4,4,10 = −7 `4,4,9,9 = 5
`4,4,9,10 = 1 `4,4,10,10 = 5 `4,9,9,9 = −7 `4,9,9,10 = 1
`4,9,10,10 = 1 `4,10,10,10 = −7 `5,5,5,5 = 210 `5,5,5,6 = −35
`5,5,5,7 = −35 `5,5,6,6 = 25 `5,5,7,7 = 25 `5,6,6,6 = −35
`5,7,7,7 = −35 `6,6,6,6 = 210 `6,6,6,8 = −35 `6,6,8,8 = 25
`6,8,8,8 = −35 `7,7,7,7 = 105 `8,8,8,8 = 105 `9,9,9,9 = 21
`9,9,9,10 = −7 `9,9,10,10 = 5 `9,10,10,10 = −7 `10,10,10,10 = 21

Remark. Hu and Qi [29] defined a normalized Laplacian tensor L̃HQ15 for a uni-
form hypergraph G. The corresponding cost of a partition (X,X) is

(8)
∑
ep∈E

wp

∑
i∈ep

xki
di
− k

∏
j∈ep

xj
k
√
dj

 .

We argue that (8) is an insufficient cost function for evaluating a partition ofG. For ex-
ample, we consider a 4-uniform hypergraph with eight vertices V = {1, 2, . . . , 8}, four
edges E = {{1, 2, 3, 4}, {3, 4, 5, 6}, {5, 6, 7, 8}, {7, 8, 1, 2}}, and weights for all edges
being one. Let x = (1,−1, 1,−1, 1,−1, 1,−1)> be an indicator that means cutting
all edges of G. By some calculations, we find that (8) vanishes, which is the same
value as the case that no edges of G are cut. This fact motives us to propose the new
normalized Laplacian tensor. Note that the value of (7) is 512

21 > 0 for this example.
Hence, the new normalized Laplacian tensor is favorable for partitioning even-uniform
hypergraphs.

2.2. The normalized Laplacian tensor. According to the homogeneous poly-
nomial (7), we write down the normalized Laplacian tensor formally.
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A2516 YANNAN CHEN, LIQUN QI, AND XIAOYAN ZHANG

Lemma 2.1. The normalized Laplacian tensor L̃ of an even-uniform hypergraph
G = (V,E,w) has a symmetric decomposition

(9) L̃ = σ
∑
ep∈E

wp
∑
i∈ep

up,i ◦ up,i ◦ · · · ◦ up,i︸ ︷︷ ︸
k times

,

where σ = kk

(k−1)k+k−1 , up,i = 1
k√di

ei − 1
k

∑
j∈ep

1
k
√
dj

ej only if i ∈ ep, ei being the ith

column of an identity matrix, and ◦ denotes the outer product. Hence, L̃ is positive
semidefinite since k is even.

Proof. By some calculations, we haveσ ∑
ep∈E

wp
∑
i∈ep

up,i ◦ up,i ◦ · · · ◦ up,i

xk

=
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik=1

σ
∑
ep∈E

wp
∑
i∈ep

[up,i]i1 [up,i]i2 · · · [up,i]ikxi1xi2 · · ·xik

= σ
∑
ep∈E

wp
∑
i∈ep

(
n∑

i1=1

[up,i]i1xi1

)(
n∑

i2=1

[up,i]i2xi2

)
· · ·

(
n∑

ik=1

[up,i]ikxik

)
= σ

∑
ep∈E

wp
∑
i∈ep

(u>p,ix)k,(10)

which is exactly the homogeneous polynomial in (7). Because there is a one-to-one
correspondence between a homogeneous polynomial and a symmetric tensor, we know
that the normalized Laplacian tensor has the symmetric decomposition (9).

Qi [45, 46] pointed out that Z-eigenvalues of a symmetric tensor are invariant
under orthogonally transformations. Next, we study the smallest Z-eigenvalue of the
normalized Laplacian tensor of an even-uniform hypergraph.

Theorem 2.2. Suppose that an even-uniform hypergraph G has s connected com-
ponents and L̃ is its normalized Laplacian tensor. Then, the set

K =
{
x ∈ Rn : L̃xk−1 = 0

}
forms a linear subspace with dimension s exactly.

Proof. Let connected components of G = (V,E,w) be G` for ` = 1, 2, . . . , s. The
corresponding vertex subsets V 1, V 2, . . . , V s are nonempty and satisfy

⋃s
`=1 V

` = V
and V ` ∩ V t = ∅ if ` 6= t.

For each connected component G`, we define a vector a` ∈ Rn whose elements
are

(a`)i =

{
k
√
di if i ∈ V `,
0 otherwise.

Obviously, vectors a1, . . . ,as are linear independent. Hence, they could span a linear
subspace span(a1, . . . ,as) with dimension s. By some calculations, we have

(11) u>p,ia
` = 0 for i ∈ ep ∈ E and ` = 1, . . . , s.
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THE FIEDLER VECTOR FOR HYPERGRAPH PARTITIONING A2517

Hence, for any vector x ∈ span(a1, . . . ,as), we have u>p,ix = 0 for ep ∈ E and i ∈ ep.
Therefore, from (9), the product L̃xk−1 = 0 and x ∈ K.

On the other hand, suppose x ∈ K. Then, L̃xk = x>(L̃xk−1) = 0. Recalling
(7), we have

∑
i∈ep

(
xi
k√di
− 1

k

∑
j∈ep

xj

k
√
dj

)k = 0 for all ep ∈ E. That is to say,
xi
k√di

= 1
k

∑
j∈ep

xj

k
√
dj

for all i ∈ ep. We now consider a connected component G`. It is

easy to see that the values of
{

xi
k√di

}
i∈V ` are the same. Hence, x ∈ span(a1, . . . ,as).

Therefore, K = span(a1, . . . ,as) is a linear subspace with dimension s exactly.

Corollary 2.3. The smallest Z-eigenvalue of the normalized Laplacian tensor
L̃ of an even-uniform hypergraph G is zero, and the associated eigenvectors form an
eigenspace K = span(a1, . . . ,as).

2.3. The Fiedler vector. For a connected even-uniform hypergraph, the small-
est Z-eigenvalue zero of the normalized Laplacian tensor L̃ is trivial. Now, we focus
on nontrivial Z-eigenvalues of L̃.

Definition 2.4. Suppose that G is an even-uniform hypergraph and L̃ is its nor-
malized Laplacian tensor. Let all the Z-eigenvalues of L̃ be ordered as

0 = λ0 ≤ λ1 ≤ · · · .

Then, we call λ1 the algebraic connectivity of G, denoted as λ1(G). Moreover, the
Z-eigenvector of L̃ corresponding to λ1(G) is called the Fiedler vector of G.

Immediately, we get the following property on the second smallest Z-eigenvalue
of the normalized Laplacian tensor L̃ of G.

Corollary 2.5. An even-uniform hypergraph G is connected if and only if its
algebraic connectivity λ1(G) is positive.

Next, we show a variational characterization for the Fiedler vector of the hyper-
graph.

Theorem 2.6. Suppose that G is an even-uniform hypergraph and L̃ is its nor-
malized Laplacian tensor. Then, the algebraic connectivity of G could be characterized
as

(12) λ1(G) =

{
min L̃xk

s.t. x>x = 1,x>δ = 0,

where δ = [ k
√
di] ∈ K. Moreover, the optimal solution of (12) is the Fiedler vector

of G.

Proof. First, we assume that G has multiple (s ≥ 2) connected components.
By Corollary 2.3, we know λ1 = λ0 = 0. Furthermore, there exists a unit vector
x ∈ K = span(a1, . . . ,as) such that x>δ = 0 and L̃xk−1 = 0. Hence, x is a feasible
solution of (12) with objective L̃xk = x>(L̃xk−1) = 0. Since k is even, L̃xk ≥ 0 for
all x ∈ Rn. Hence, the global minimum of (12) is also zero.

Second, we consider the case that G is connected. Suppose that x1 is a Z-
eigenvector of L̃ associated with the algebraic connectivity λ1 > 0. Then, we have
λ1 = λ1x>1 x1 = x>1 (L̃xk−1

1 ) = L̃xk1 . Hence, λ1 is the minimum value of the following
optimization problem:

(13) λ1 = min{L̃xk : L̃xk−1 = λx,x>x = 1, λ > 0}.

D
ow

nl
oa

de
d 

11
/1

5/
22

 to
 1

58
.1

32
.1

61
.2

40
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2518 YANNAN CHEN, LIQUN QI, AND XIAOYAN ZHANG

Next, we turn to (12). Since x>x = 1, x 6= 0. By x>δ = 0, we know that
gradients 2x and δ of equality constraints in (12) are linear independent. According
to the KKT condition [43, 54], the optimal solution x of (12) satisfies

L̃xk−1 = λx + µδ,

where scalars λ and µ are Lagrangian multipliers. From (11), we have δ>(L̃xk−1) = 0.
Moreover, by δ>x = 0, we get µδ>δ = 0. Hence, µ = 0 and L̃xk−1 = λx. Therefore,
the optimization problem (12) is equal to

(14) min{L̃xk : L̃xk−1 = λx,x>x = 1,x>δ = 0}.

Finally, we prove the equivalence between (13) and (14). If λ > 0, we take inner
products of both sides of L̃xk−1 = λx with δ and get x>δ = 0 since δ>(L̃xk−1) = 0
by (11). Conversely, we assume x>δ = 0. Since x is a Z-eigenvector of L̃ associated
with Z-eigenvalue λ = L̃xk, we know λ ≥ 0. Because G is connected, K = {cδ},
where c is an arbitrary scalar by Corollary 2.3. According to x>x = 1 and x>δ = 0,
we get that x does not belong to K and hence λ 6= 0. Therefore, we have λ > 0. The
proof is complete.

Whereafter, we reveal a theorem which is a generalization of one part of the
Cheeger inequality [15]. Before we start, we prove a lemma.

Lemma 2.7. For an even k, we have

q(k − q)k + (k − q)qk ≤ (k − 1)k + k − 1

for all q = 1, 2, . . . , k − 1.

Proof. Let
p(x) ≡ x(1− x)k + (1− x)xk.

We are going to prove a stronger inequality

(15) p(x) ≤ p( 1
k ) for all x ∈

[ 1
k , 1−

1
k

]
.

Multiplying kk+1 to both sides of (15) and taking x = q
k , we get this lemma.

The inequality (15) is trivial if k = 2. We now consider the case of k = 4. Owing
to p(x) = p(1 − x), we only need to verify (15) for x ∈ [ 1

4 ,
1
2 ]. By some calculations,

we have
p′(x) = (1− 2x)(6x2 − 6x+ 1).

Since p′(x) < 0 for x ∈ [ 1
4 ,

1
2 ), p(x) decreases monotonously. Hence, the inequality

(15) holds for k = 4.
Next, we assume k ≥ 6 and prove that (15) is valid for x ∈ [ 1

k ,
2
k ]. By some

calculations, we obtain

p′(x) = xk−1(k − kx− x)− (1− x)k−1(kx+ x− 1)
< xk−1(1− x)(k + 1)− (1− x)k−1x

= x(1− x)[(k + 1)xk−2 − (1− x)k−2],

where the above inequality holds because kx−1 ≥ 0 as x ∈ [ 1
k ,

2
k ]. Since (k+1)xk−2−

(1− x)k−2 increases monotonically in x, we know

p′(x) < x(1− x)[(k + 1)( 2
k )k−2 − (1− 2

k )k−2]

=
x(1− x)
kk−2 [(k + 1)2k−2 − (k − 2)k−2].
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THE FIEDLER VECTOR FOR HYPERGRAPH PARTITIONING A2519

It is straightforward to see that (k+1)2k−2−(k−2)k−2 < 0 for k ≥ 6. Hence, p′(x) < 0
and the inequality (15) holds for k ≥ 6 and x ∈ [ 1

k ,
2
k ] as well as x ∈ [1− 2

k , 1−
1
k ] for

symmetry.
Finally, we focus on x ∈ [ 2

k , 1−
2
k ]. By some calculations, we have

p′′(x) = k(1− x)k−2[(k + 1)x− 2] + kxk−2[−(k + 1)x+ k − 1].

Since x ∈ [ 2
k , 1−

2
k ], we have (k+ 1)x− 2 ≥ 2

k and −(k+ 1)x+ k− 1 ≥ 2
k . Hence, we

obtain p′′(x) ≥ 2[(1− x)k−2 + xk−2] > 0. Therefore, p(x) is a convex function in the
interval [ 2

k , 1−
2
k ]. Because p( 2

k ) = p(1− 2
k ), we get

p( 2
k ) ≥ p(x) for x ∈ [ 2

k , 1−
2
k ].

Therefore, the inequality (15) is valid.

Let (X,X) be a partition of an even-uniform hypergraph G. We denote the
volume of X as volX =

∑
i∈X di, the boundary of X as ∂X = {ep ∈ E : ep ∩X 6= ∅,

ep ∩X 6= ∅}, and the cut between X and X as cut(X) =
∑
ep∈∂X wp. The Cheeger

ratio of X is

h(X) =
cut(X)

min(volX, volX)
.

Hence, h(X) = h(X). The smallest one hG = minX⊆V h(X) is called the Cheeger
constant of G. The partition (X,X) attaining the Cheeger constant hG = h(X) is an
ideal partitioning for an even-uniform hypergraph G.

Theorem 2.8. Let λ1(G) be the algebraic connectivity of an even-uniform hyper-
graph G. Then, we have

(16) λ1(G) ≤ 2k/2hG.

Proof. The inequality (16) is trivial if X = ∅ or X = V . Next, we suppose that
X is a nonempty and proper subset of V in the following analysis.

For a given subset X, we define scalars

α =

(∑
i∈X

(
k
√
di

)2
)1/2

, β =

∑
i∈X

(
k
√
di

)2

1/2

, and γ =
√
α2 + β2.

Using these scalars, we define a vector x = [xi] ∈ Rn such that

xi =


β

αγ
k
√
di if i ∈ X,

−α
βγ

k
√
di if i ∈ X.

It is easy to see that x>x = 1 and x>δ = 0. From (12), we know

λ1(G) ≤ L̃xk =
∑
ep∈E

σwp
∑
i∈ep

 xi
k
√
di
− 1
k

∑
j∈ep

xj
k
√
dj

k

=
∑

ep∈∂X

σwp
∑
i∈ep

 xi
k
√
di
− 1
k

∑
j∈ep

xj
k
√
dj

k

.
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A2520 YANNAN CHEN, LIQUN QI, AND XIAOYAN ZHANG

Let |ep ∩X| = qp ∈ {1, . . . , k− 1}. Then, |ep ∩X| = k− qp. By some calculations, we
obtain

λ1(G) ≤
∑

ep∈∂X

σwp

(
α2 + β2

αβγ

)k qp(k − qp)k + (k − qp)qkp
kk

≤ σ (k − 1)k + k − 1
kk

(
α2 + β2

α2β2

)k/2 ∑
ep∈∂X

wp

=
(

1
α2 +

1
β2

)k/2
cut(X),

where the last inequality holds for Lemma 2.7.
For p-norms, we know ‖x‖p ≥ ‖x‖q if q > p > 1. We look at a vector z = [zi] ∈ Rn

such that zi = k
√
di if i ∈ X and zi = 0 if i ∈ X. Then, by k ≥ 2, we get

α = ‖z‖ ≥ ‖z‖k =

(∑
i∈X

di

)1/k

= (volX)1/k.

Similarly, β ≥ (volX)1/k. Without loss of generality, we suppose volX ≤ volX.
Hence,

λ1(G) ≤
(

1
(volX)2/k +

1
(volX)2/k

)k/2
cut(X) ≤ 2k/2

volX
cut(X) = 2k/2h(X).

Due to the arbitrariness of X ⊆ V , we get this theorem.

Theorem 2.8 means that the Fiedler vector of an even-uniform hypergraph gen-
erated by the optimization model (12) is well-defined.

3. Computing the Fiedler vector. Because a hypergraph may contain plenty
of vertices, numerical methods for small tensors such as [18, 12] are inefficient for
finding the second smallest Z-eigenvalue of the normalized Laplacian tensor and the
associated Z-eigenvector. To obtain the Fiedler vector of an even-uniform hypergraph,
we establish a customized approach for solving the optimization model (12). First, we
give an equivalent optimization problem with a simple spherical constraint. Second,
a trust region method for the spherical optimization is presented.

Because the smallest Z-eigenvalue of the normalized Laplacian tensor is zero,
that is, trivial, we propose investigating a compact Laplacian tensor, whose smallest
Z-eigenvalue is the algebraic connectivity of the even-uniform hypergraph. Let δ⊥ ≡
{x ∈ Rn : x>δ = 0} be a subspace of Rn. Recalling (11), we get up,i ∈ δ⊥ for
i ∈ ep ∈ E. This fact motivates us to construct a basis of δ⊥, using the Householder
transform [24]. Let v = δ − ‖δ‖e1 be a Householder vector and β = 2

v>v . The
corresponding Householder matrix P = I − βvv> satisfies Pδ = (‖δ‖, 0, . . . , 0)>.
The second to last columns of P form an orthonormal basis of δ⊥, which we denote
as Q ∈ Rn×(n−1). Then, Q>δ = 0n−1 and Q>Q = In−1.

The compact Laplacian tensor LC ∈ R[k,n−1] of an even-uniform hypergraph G
is defined as

(17) LC ≡ L̃Qk = σ
∑
ep∈E

wp
∑
i∈ep

(Q>up,i) ◦ (Q>up,i) ◦ · · · ◦ (Q>up,i)︸ ︷︷ ︸
k times

,
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THE FIEDLER VECTOR FOR HYPERGRAPH PARTITIONING A2521

where the last equality holds because

[L̃Qk]j1···jk =
n∑

i1=1

· · ·
n∑

ik=1

[L̃]i1···ikqi1j1 · · · qikjk

[for (9)] =
n∑

i1=1

· · ·
n∑

ik=1

σ
∑
ep∈E

wp
∑
i∈ep

[up,i]i1 · · · [up,i]ikqi1j1 · · · qikjk

= σ
∑
ep∈E

wp
∑
i∈ep

(
n∑

i1=1

qi1j1 [up,i]i1

)
· · ·

(
n∑

ik=1

qikjk [up,i]ik

)
= σ

∑
ep∈E

wp
∑
i∈ep

[Q>up,i]j1 · · · [Q>up,i]jk

for js = 1, 2, . . . , n− 1 and s = 1, 2, . . . , k.
Using the compact Laplacian tensor, we address another characterization of the

algebraic connectivity of G in the following theorem.

Theorem 3.1. Let LC be the compact Laplacian tensor of an even-uniform hy-
pergraph G. Then, the algebraic connectivity λ1(G) is the smallest Z-eigenvalue of
LC , i.e.,

(18) λ1(G) =

{
min LCyk

s.t. y>y = 1.

Let y∗ ∈ Rn−1 be the optimal solution of the spherical optimization (18). Then, the
Fiedler vector of G is Qy∗.

Proof. First, we prove the equivalence between two sets

(19) {x ∈ Rn : x>δ = 0,x>x = 1} and {x ∈ Rn : x = Qy,y>y = 1}.

We suppose x>δ = 0 and x>x = 1. By x>δ = 0, there exists a unique vector
y ∈ Rn−1 such that x = Qy. Moreover, y>y = y>Q>Qy = x>x = 1. On the
other hand, if x = Qy and y>y = 1, we have x>δ = y>Q>δ = y>0n−1 = 0 and
x>x = y>Q>Qy = y>y = 1. Hence, the two sets in (19) are equal.

Finally, by Theorem 2.6, we get

λ1(G) = min{L̃xk : x>δ = 0,x>x = 1}
= min{L̃xk : x = Qy,y>y = 1}
= min{L̃(Qy)k : y>y = 1}
= min{LCyk : y>y = 1}.

The proof is complete.

3.1. A trust region algorithm. Since the optimization problem (18) using the
compact Laplacian tensor of an even-uniform hypergraph is easier than (12) based on
a normalized Laplacian tensor, we consider the following spherical optimization:

(20)

min f(y) =
LCyk

‖y‖k

s.t. y ∈ Sn−2,
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A2522 YANNAN CHEN, LIQUN QI, AND XIAOYAN ZHANG

where the spherical constraint is Sn−2 ≡ {y ∈ Rn−1 : y>y = 1}. The objective
function f(y) is zero-order homogeneous, while the denominator ‖y‖k is indeed one
when y ∈ Sn−2. The advantage of using the denominator is reflected in the freedom
of a multiplier corresponding to the spherical constraint.

Lemma 3.2 (Theorem 4.1 in [10]). Suppose that k is even and y∗ ∈ Sn−2. Then,
y∗ is a first-order stationary point of f(·), i.e., g(y∗) = 0, if and only if y∗ is a
Z-eigenvector of the compact Laplacian tensor LC . The associated Z-eigenvalue of
LC is f(y∗).

The gradient and the Hessian of the objective function f(y) at y ∈ Sn−2 [13] are

(21) g(y) =
k

‖y‖k+2

(
‖y‖2 · LCyk−1 − LCyk · y

)
and

H(y) =
k(k − 1)
‖y‖k

LCyk−2 − k2

‖y‖k+2

(
y(LCyk−1)> + (LCyk−1)y>

)
− kLCyk

‖y‖k+2 I +
k(k + 2)LCyk

‖y‖k+4 yy>,(22)

respectively. Obviously, H(y) is a singular matrix since y>H(y)y = 0.
The trust region method is an iterative algorithm [54, 43]. Suppose that the

current iterate is yc and we are going to find the next iterate yc+1. A quadratic model
mc(·) is established to approximate the objective function f around a neighborhood
of yc. This local model leads to a trust region subproblem

(23)

min mc(s) ≡ f(yc) + g(yc)>s +
1
2
s>H(yc)s

s.t. ‖s‖ ≤ ∆c,

where the neighborhood {yc+ s : ‖s‖ ≤ ∆c} is called a trust region at yc with a trust
region radius ∆c. To obtain yc+1 quickly, the trust region subproblem (23) is usually
solved inexactly.

If we restrict s along the negative gradient direction in the trust region, the
optimal solution sCc is called the Cauchy point of (23). We pick an approximate
solution sc of (23) that is as good as the Cauchy point [1], i.e., the estimation of
model reduction is at least

(24) mc(0)−mc(sc) ≥ C1
[
mc(0)−mc(sCc )

]
and the step size is at most

(25) ‖sc‖ ≤ min
(
C2‖sCc ‖,∆c

)
,

where 0 < C1 ≤ 1 ≤ C2.

Lemma 3.3. Assume that sc is an approximate solution of the trust region sub-
problem (23) which satisfies (24) and (25). Then, we have

(26) mc(0)−mc(sc) ≥
C1

2
‖g(yc)‖min

(
∆c,
‖g(yc)‖
‖H(yc)‖

)
and

(27) mc(0)−mc(sc) ≥
C1

2C2
‖g(yc)‖‖sc‖.
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THE FIEDLER VECTOR FOR HYPERGRAPH PARTITIONING A2523

Proof. By some calculations, we know the Cauchy point [54, 43]

sCc = −min
(

∆c,
‖g(yc)‖3

g(yc)>H(yc)g(yc)

)
g(yc)
‖g(yc)‖

,

which triggers a reduction

mc(0)−mc(sCc ) ≥ 1
2
‖g(yc)‖‖sCc ‖.

Obviously, we have ‖sCc ‖ ≥ min(∆c, ‖g(yc)‖/‖H(yc)‖), and hence (26) holds by (24).
Moreover, from (24) and (25), we get

mc(0)−mc(sc)
‖sc‖

≥ C1

C2

mc(0)−mc(scc)
‖sCc ‖

≥ C1

2C2
‖g(yc)‖.

The proof is complete.

To generate a trial point y+
c on the unit sphere Sn−2, we employ the Cayley

transform [24, 13]. Let

(28) Wc =
1
2
(
ycs>c − scy>c

)
be a skew-symmetric matrix. Then I+Wc is invertible. By the Cayley transform, we
know that

(29) Oc = (I +Wc)−1(I −Wc)

is an orthogonal matrix. Hence, the trial point

(30) y+
c = Ocyc

stays still on the sphere Sn−2 if yc ∈ Sn−2. We remark here that the trial point y+
c

could be computed efficiently by about 4n multiplications, and matrices Wc and Oc
are not required to form explicitly.

Lemma 3.4 (see [32, 10]). Suppose yc ∈ Sn−2 and sc 6= 0. Using the Cayley
transform (28)–(30), we obtain

(31) y+
c =

[(2− s>c yc)2 − ‖sc‖2]yc + 4sc
4 + ‖sc‖2 − (s>c yc)2

and

(32) ‖y+
c − yc‖ = 2

(
‖sc‖2 − (s>c yc)2

4 + ‖sc‖2 − (s>c yc)2

)1/2

.

Whereafter, we compute the ratio of the actual reduction and the predicted re-
duction

(33) ρc =
f(yc)− f(y+

c )
mc(0)−mc(sc)

.

If this ratio is sufficiently positive, we accept the trial point as the next iterate. We
would enlarge the trust region radius when the ratio is large enough. If the ratio
is poor, we reduce the trust region radius for the next iteration. The detailed trust
region algorithm is addressed in Algorithm 1.
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Algorithm 1. A trust region algorithm.
1: Choose an initial iterate y1 ∈ Sn−2, parameters ∆1 ≤ ∆, 0 < ζ ≤ η1 < η2 < 1,

0 < γ1 < γ2 < 1 < γ3, and c = 1.
2: while g(yc) 6= 0 do
3: Solve a trust region subproblem (23) and obtain sc satisfying (24) and (25).
4: Compute y+

c and ρc by (31) and (33), respectively.
5: Update iterate:

yc+1 =

{
y+
c if ρc ≥ ζ,
yc otherwise.

6: Adjust trust region radius:

∆c+1 =


min(γ1∆c, γ2‖sc‖) if ρc < η1,

∆c if ρc ∈ [η1, η2),

min(γ3∆c,∆) if ρc ≥ η2.

7: c← c+ 1.
8: end while

3.2. Computational complexity. We turn to analyze the computational cost
in each iteration of Algorithm 1. First of all, it is unnecessary to store the n-by-(n−1)
matrix Q explicitly [24]. In practice, we only save the Householder vector v ∈ Rn and
a scalar β ∈ R. For a given vector y ∈ Rn−1, we could calculate x = Qy by

(34) x←
[

0
y

]
and then x← x− (βv>x)v.

For a given vector x ∈ Rn, we compute y = Q>x using

(35) x← x− (βv>x)v and then y← x(2 : n).

The computational cost of x = Qy or y = Q>x is about 2n multiplications, which is
cheap.

Let ũp,i ≡ k
√
σwpup,i ∈ Rn for i ∈ ep and ep ∈ E. Obviously, each vector ũp,i has

only k nonzero elements. From (17), we rewrite the compact Laplacian tensor as

LC =
∑
ep∈E

∑
i∈ep

(Q>ũp,i) ◦ · · · ◦ (Q>ũp,i).

At the initial step of Algorithm 1, we save a sparse matrix U ∈ Rn×mk in which each
column is ũp,i. Hence, the total number of nonzero elements of U is mk2.

Given a vector y ∈ Rn−1, by a similar process used in (10), we have

LCyk =
∑
ep∈E

∑
i∈ep

(ũ>p,iQy)k = sum
(
(U>(Qy)).ˆk

)
,

where (·).ˆk means the kth componentwise power of a vector and sum(·) stands for
the sum of all elements of a vector. By (34), it is about 2n multiplications to compute
Qy. For computing U>(·), we need mk2 multiplications since U is sparse. Then,
the operation (·).ˆk costs mk2 multiplications at most. Hence, there are 2(n+mk2)
multiplications for computing LCyk in total.
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THE FIEDLER VECTOR FOR HYPERGRAPH PARTITIONING A2525

Using similar skills, we get

LCyk−1 =
∑
ep∈E

∑
i∈ep

(ũ>p,iQy)k−1(Q>ũp,i)

= Q>

∑
ep∈E

∑
i∈ep

(ũ>p,iQy)k−1ũp,i


= Q>

(
U [(U>Qy).ˆ(k-1)]

)
.

Similar to the discussion for computing (U>(Qy)).ˆk, we need 2(n+mk2) multipli-
cations to calculate the vector (U>Qy).ˆ(k-1). Then, by the sparsity of U , costs
for computing U · and Q>(·) are mk2 and 2n multiplications, respectively. Hence, the
total cost for LCyk−1 is about 4n+ 3mk2 multiplications.

To solve the trust region subproblem (23), we could employ iterative methods such
as the conjugate gradient method [43, 54]. If so, the time-consuming computation in
each iteration is (LCyk−2)s for some vectors s ∈ Rn−1. By some calculations, we
obtain

(LCyk−2)s = Q>

∑
ep∈E

∑
i∈ep

(ũ>p,iQy)k−2(ũ>p,iQs)ũp,i

 .

Computational costs for (ũ>p,iQy)’s or (ũ>p,iQs)’s are 2n+mk2 multiplications. Their
products require mk2 multiplications. Owing to the sparsity of ũp,i’s, we get the
sum in the bracket with mk2 more multiplications. Multiplying Q> needs 2n multi-
plications additionally. Therefore, the total cost for (LCyk−2)s is about 6n + 4mk2

multiplications.
Other operations in Algorithm 1 are about O(n) multiplications. Moreover, we

note that n ≤ mk for a uniform hypergraph. Hence, the total cost for one iteration
of Algorithm 1 is about O(mk2) in a word.

3.3. Convergence analysis. If Algorithm 1 terminates finitely, i.e., there exists
an iteration c such that g(yc) = 0, then f(yc) is a Z-eigenvalue of the compact
Laplacian tensor LC and the associated Z-eigenvector is yc, according to Lemma 3.2.
Now, we consider the case that Algorithm 1 generates an infinite sequence of iterates.
A weakly convergence theorem of Algorithm 1 is verifiable.

Theorem 3.5. Suppose that Algorithm 1 generates an infinite sequence of iterates
{yc}. Then, we get

lim inf
c→+∞

‖g(yc)‖ = 0.

Proof. See Appendix A.

Theorem 3.5 implies that there exists a subsequence of iterates {ycj
} such that

g(ycj
) → 0 as j → ∞. Since the feasible region Sn−2 is compact, {ycj

} has at least
one accumulation point y∗. Owing to the continuity of g(·), we have g(y∗) = 0. That
is to say, there exists a subsequence of iterates {ycj} which converges to a first-order
stationary point y∗.

Theorem 3.6. Let {yc} be an infinite sequence of iterates generated by Algo-
rithm 1. Then, we have

+∞∑
c=1

‖yc+1 − yc‖ < +∞.
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Proof. See Appendix B.

Theorem 3.6 means that the sequence of iterates generated by Algorithm 1 is a
convergent Cauchy sequence. Hence, the total sequence of iterates {yc} converges to
a stationary point y∗. Since f(·) is continuously differentiable, we have

lim
c→∞

f(yc) = f(y∗) and lim
c→∞

‖g(yc)‖ = 0.

Hence, f(y∗) is a Z-eigenvalue of the compact Laplacian tensor LC and y∗ is the
associated Z-eigenvector.

3.4. A probabilistic approach for the Fiedler vector. To obtain the Fiedler
vector of an even-uniform hypergraph, we need to get the smallest Z-eigenvalue of the
compact Laplacian tensor. For this purpose, we first start the trust region algorithm
from plenty of random initial points sampled from the unit sphere uniformly. Then,
we regard the minimum of resulting Z-eigenvalues as the smallest Z-eigenvalue of the
compact Laplacian tensor, i.e., the algebraic connectivity of the hypergraph. Finally,
the Fiedler vector of the hypergraph is easy to be calculated from the Z-eigenvector
of the compact Laplacian tensor corresponding to the algebraic connectivity. The
following theorem estimates the probability of obtaining the Fiedler vector of the
hypergraph via this global strategy.

Theorem 3.7. Suppose that G is a given even-uniform hypergraph and LC is its
compact Laplacian tensor. We first start Algorithm 1 from N initial points that are
sampled from Sn−2 uniformly. Second, we pick up the resulting smallest Z-eigenvalue
λ∗ of LC as well as the associated Z-eigenvector y∗. Finally, we compute the estimated
Fiedler vector of G by x∗ = Qy∗. Then, this vector x∗ is the true Fiedler vector of G
with a probability of

(36) 1− (1− %)N ,

where % ∈ (0, 1] is a constant. Therefore, if the number of samples N is large enough,
we obtain the Fiedler vector of G with a high probability.

Proof. Let y∗ ∈ Sn−2 be the Z-eigenvector of LC corresponding to the smallest
Z-eigenvalue. From Theorem B.1 and Lemma B.2, there is a neighborhood B(y∗, r)
such that a sequence of iterates {yc} generated by Algorithm 1 converges to y∗ if
the random initial point y1 ∈ B(y∗, r) ∩ Sn−2. Since B(y∗, r) ∩ Sn−2 is nonempty
and Sn−2 is compact, there exists a constant % ∈ (0, 1] such that y1 happens to be
sampled from B(y∗, r) ∩ Sn−2 with probability %. If so, we obtain the Z-eigenvector
y∗ of LC and the true Fiedler vector x∗ = Qy∗ of G. In fact, we get the true Fiedler
vector of G if {yc} ∩B(y∗, r) 6= ∅.

By the binomial distribution with parameters N and %, we obtain the probabilistic
estimation (36) straightforwardly.

4. Numerical experiments. At the beginning, we report parameters for the
trust region method proposed in Algorithm 1: ζ = 0.01, η1 = 0.1, η2 = 0.9, γ1 = 0.25,
γ2 = 0.5, γ3 = 2,∆1 = 1, and ∆ = 10. To sample a random initial point y1 from
Sn−2 uniformly, we first generate a random vector whose components have a standard
Gaussian distribution; then we normalize this vector and obtain y1. Algorithm 1
terminates if the gradient is tiny (‖g(yc)‖ < 10−6) or if the number of iterations is
large enough (c > 1000).

A conjugate gradient (CG) method [43, 54] is employed to solve the trust region
subproblem (23). The first CG iteration generates exactly the Cauchy point sCc . To
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Fig. 4. Synthetic points for circle partitioning with size n = 50 (left) and n = 800 (right).

ensure (25), we may modify the trust region radius ∆c to 10‖sCc ‖ if the latter is
smaller than ∆c. Whereafter, CG iterations are going on until the CG path reaches
the trust region boundary or the residual error is rather small: ‖H(yc)sc + g(yc)‖ <
0.01‖g(yc)‖.

In the following experiments, we focus on a fundamental problem in hypergraph
partitioning, which is to divide vertices of a hypergraph into two groups. If several
groups of vertices are divided, we could partition the resulting subhypergraphs and
compute the corresponding Fiedler vectors hierarchically. In addition, we do not
concern ourselves with the detection of outlier vertices in the process of hypergraph
partitioning.

4.1. Circle partitioning. Circle partitioning is a spectral case of subspace clus-
tering. In Figure 1, we try to estimate centers and radiuses of two crossing circles on
which some points are known. The synthetic points are produced as follows. We set
centers of true circles at (0, 0) and (1, 0). The common radius of two circles is one.
Let [·] be the rounding function. For a given n = |V |, we choose [n × 45%] points
from each circle and then corrupt coordinates of these points with Gaussian white
noise whose standard deviation is 0.05. The reminder [n × 10%] points are outliers.
Figure 4 illustrates typical locations of sampled points. These points serve as vertices
of a k-uniform hypergraph, where k ≥ 4 is even. We note that a complete hypergraph
contains

(
n
k

)
edges. This number maybe huge, e.g.,

(800
6

)
≈ 3.57 × 1014. Here, the

complete hypergraph is approximated by a k-uniform random hypergraph which is
generated by a three-step approach. First, we construct a complete graph which is
connected. Second, for each edge {i, j} of the complete graph, we add k − 2 random
vertices which are sampled uniformly from vertex set V \{i, j}. Finally, we repeat the
second step k− 1 times and obtain m = (k− 1)

(
n
2

)
edges. Hence, the resulting hyper-

graph is connected. In this way, a 6-uniform random hypergraph with 800 vertices is
only equipped with 1,598,000 edges, which is significantly smaller than the number
of edges of a complete hypergraph. So the resulting hypergraph is sparse and easy to
manipulate. For each edge ep of the hypergraph, we fit locations of points in ep onto
a circle and denote the fitting error as rp. Let ς be the sample standard deviation of
fitting errors {rp}p=1,...,m. Then, the weight for an edge ep is wp = exp(−rp/ς).

For these hypergraphs, we test three kinds of partitioning methods.
– CE. Clique expansion of a hypergraph means that each edge of a hypergraph

is expanded to a clique. Then, we partition the resulting graph using the
normalized cut [3].
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Fig. 5. Estimated errors of two circles. Results for 4-uniform (left) and 6-uniform (right)
hypergraphs.

– TTM. The tensor trace maximization method based on the adjacency tensor
of a hypergraph was studied in statistics [4, 23].

– FV. The new approach explores the Fiedler vector of an even-uniform hy-
pergraph, which is a Z-eigenvector of the normalized Laplacian tensor corre-
sponding to the second smallest Z-eigenvalue.

When the partition of vertices is obtained, we estimate two circles using points from
these two clusters, respectively. For the appearance of outliers, we employ `1-norm
fitting. The estimated error of a circle is defined as the distance between true and
estimated centers plus the difference between true and estimated radiuses.

We test 4-uniform and 6-uniform hypergraphs and the number of vertices ranges
from 50 to 800. For three partitioning methods, we run 100 tests in each case. The
mean and standard deviation of estimated errors of two circles are reported in Figure
5. We see that all methods work well for a sparse hypergraph with some randomly
selected edges. As the number of vertices increases, the estimated error of all methods
decreases because more information on circles is available. Compared with the matrix-
based method CE for 4-uniform hypergraphs, the Fiedler vector based on a normalized
Laplacian tensor improves the estimated error by 29.8% on average.

4.2. Face clustering. The set of images of an object with a Lambertian re-
flectance function forms an illumination cone whose dimension is approximately three
[5]. Regarding each image as a vertex, this phenomenon motivates us to estab-
lish 4-uniform hypergraphs. For every four images, the dissimilarity is defined as
s2

4/(s
2
1 + · · · + s2

4), where si is the ith singular value of a matrix whose columns are
the vectorization of these images.

In this experiment, we consider the extended Yale face database B [22, 38]. 600
face images of 30 persons under 20 lighting conditions are chosen. To improve the
efficiency of computation, we resize each image as 48×42 pixels. In one test, we select
40 face images of two persons with or without 10 outlier images. See Figure 6 for a
typical selection. Hence, there are n = 40 or n = 50 vertices in a 4-uniform hyper-
graph. Then, the three-step approach introduced in circle partitioning is employed
to construct random hypergraphs. Particularly, we equip a random hypergraph with
more edges by repeating the second step [

(
n
4

)
· 10%/

(
n
2

)
] times. In fact, we repeat the

second step 12 and 19 times when n = 40 and n = 50, respectively. For four images in
an edge ep, we compute the dissimilarity dp. Let ς be the sample standard deviation
of {dp}. Then, the weight of an edge ep is wp = exp(−dp/ς). In this way, we produce
a 4-uniform hypergraph.
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THE FIEDLER VECTOR FOR HYPERGRAPH PARTITIONING A2529

Fig. 6. Sampled images from the extended Yale face dataset B [22, 38]. Face images of two
persons (lines 1–4) and 10 outliers (line 5).

Table 2
Results for face clustering (mean ± standard deviation).

# outliers GT TD TTM FV
0 0.380± 0.081 0.203± 0.100 0.098± 0.190 0.002± 0.007
10 0.402± 0.071 0.214± 0.138 0.028± 0.109 0.009± 0.018

Our target is to divide 40 images of two persons into two groups such that images
of one person under different lighting conditions are collected in one group. We do
not care about outlier images that could be in any group. To divide vertices of these
hypergraphs, we compare four kinds of methods for hypergraph partitioning. First, a
game-theoretic (GT) method [51] modeled the hypergraph clustering problem in terms
of a noncooperative multiplayer clustering game. Second, a tensor decomposition
(TD) approach was applied for the adjacency tensor of a uniform hypergraph [25, 11].
The other two approaches are TTM and our FV. For each method, we run 100 tests
and report results on mean and standard deviation of partition errors of two persons
in Table 2. Compared with GT and TD, we find that FV and TTM work well for
a hypergraph with a small quantity of edges. To partition a 4-uniform hypergraph
generated from face clustering, the Fiedler vector heuristics based on a normalized
Laplacian tensor performs better.

4.3. Image segmentation. The Fiedler vector of a hypergraph could be applied
for image segmentation. For example, we consider the earth image1 shown in Figure
7(a) and try to extract the earth image from a dark background. Using the technique
of superpixels [49], we divide the original image into dozens of superpixels in advance.
Here, we employ the SLIC technique [2] and obtain n = 48 superpixels which are
reported in Figure 7(b). Then, we construct a k-uniform hypergraph, whose vertices
are these superpixels. The three-step approach introduced in circle partitioning is
applied for generating a random hypergraph, where the second step is repeated (k−1)2

1Download from https://en.wikipedia.org/wiki/Earth.
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(a) Original image (b) Superpixels

(c) Earth (d) Dark

Fig. 7. The earth image is segmented by Fiedler vectors of even-uniform hypergraphs.

times. Hence, the resulting k-uniform hypergraph has m = (k−1)2
(
n
2

)
edges. If k = 2,

we obtain a complete graph. In each edge ep, the weight wp is proportional to the
similarity of color distributions of superpixels colorp and is inversely proportional to
distance among superpixels distp. Given an image, we first transform the image from
the RGB color space to the HSV color space since the latter is more perceptually
relevant. Second, we compute the HSV color distribution hsvi for superpixel i =
1, . . . , n. Here, HSV stands for hue, saturation, and value. The domain of hue is
divided into 12 intervals. Domains of saturation and value are divided into four
intervals, respectively. That is to say, the HSV color space is divided into 192 areas.
Since a superpixel may contain plenty of pixels, we count the number of pixels in
these areas and then normalize to obtain the HSV color distribution hsvi ∈ R192

+ .
The similarity of color distributions of superpixels in an edge ep = {i1, i2, . . . , ik} is
defined as

colorp =
hsv>i1(hsvi2 ∗ · · · ∗ hsvik)
‖hsvi1‖k · · · ‖hsvik‖k

,

where ∗ is the componentwise Hadamard product. Third, we find centers of super-
pixels centi for i = 1, . . . , n. Let centp = 1

k

∑
j∈ep

centj be an imaginary center of ep.
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Fig. 8. Element values of Fiedler vectors of k-uniform hypergraphs.

The star distance among superpixels in an edge ep is

distp =
∑
i∈ep

(centi − centp)k.

For even k = 2, 4, 6, and 8, Fiedler vectors of k-uniform hypergraphs generate the
same partition of the earth image. See Figures 7(c) and (d).

If k = 2, the hypergraph reduces to a complete graph whose Fiedler vector is illus-
trated in Figure 8(a). Components of the Fiedler vector of a graph enjoy two clusters
0.5 and −1.4. Fiedler vectors of 4-, 6-, and 8-uniform hypergraphs are reported in
Figures 8(b), (c), and (d), respectively. It is easy to see that with the increase of even
k, the distribution of components of the Fiedler vector of the k-uniform hypergraph
becomes loose and unconsolidated. This phenomenon is consistent with Theorem 2.8.

5. Conclusion. The Fiedler vector of an even-uniform hypergraph has been
proposed and applied for subspace partitioning and face clustering. For an even-
uniform hypergraph, the Fiedler vector is the Z-eigenvector corresponding to the
second smallest Z-eigenvalue of a normalized Laplacian tensor. When the order of
vertices of the hypergraph is permuted, components of the Fiedler vector change
consistently. The relationship between the Fiedler vector and the Cheeger constant
of the hypergraph was also addressed.

A trust region algorithm with a global strategy was proposed to compute the
Fiedler vector of a k-uniform hypergraph, where k is even. The computational com-
plexity of the proposed algorithm is about O(|E|k2) multiplications in each iteration.
So it is cheap. Theoretically, the probability of obtaining the Fiedler vector of the
hypergraph was analyzed, and it is close to one when random initial points on the
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unit sphere are dense enough. Generally speaking, our Fiedler vector heuristics for
partitioning an even-uniform hypergraph is a generalization of the normalized cut for
a graph and contains more advantages in applications. The theoretical rationality
of the partitions of a hypergraph induced by the tensor Fiedler vector are natural
connected clusters. Altogether, the Fiedler vector of an even-uniform hypergraph
enriches spectral hypergraph theory.

For partitioning a uniform hypergraph, the design of the cost function, such as
the ones presented in (5) and (7), is delicate and crucial. How to design a better
cost function for hypergraph partitioning and establish the (equivalence) relationship
between the cost function value and the number of cut edges are our further research
works.

Appendix A. Proof of Theorem 3.5. Since the objective function of the
spherical optimization (20) is twice continuously differentiable and the feasible region
is compact, we get the following lemma.

Lemma A.1 (Lemma 3 in [13]). Suppose that f(y), g(y), and H(y) are defined
by (20), (21), and (22), respectively. Then, there exists a constant M ≥ 1 such that

|f(y)| ≤M, ‖g(y)‖ ≤M, and ‖H(y)‖ ≤M

for y ∈ Sn−2.

The next lemma means that if the gradient is bounded away from zero, the trust
region radius cannot tend to zero and we will find a new iterate soon.

Lemma A.2. Suppose g(yc) 6= 0. If

∆c ≤
(1− η2)C1‖g(yc)‖
M(2 + ∆/2)

,

we have
∆c+1 ≥ ∆c.

Proof. Since (1 − η2)C1 < 1 < (2 + ∆/2) and by Lemma A.1, we have ∆c ≤
‖g(yc)‖
M ≤ ‖g(yc)‖

‖H(yc)‖ . Hence, by (26), we know

(37) mc(0)−mc(sc) ≥
C1

2
‖g(yc)‖∆c.

Because the objective function f(x) is zero-order homogeneous, we get

(38) y>g(y) = 0.

Since ‖yc‖ = 1, we have |s>c yc| ≤ ‖sc‖. Moreover, ‖sc‖ ≤ ∆c ≤ ∆. From (31), (38),
and Lemma A.1, we get

∣∣g(yc)>(y+
c − yc − sc)

∣∣ =
∣∣∣∣ 4g(yc)>sc
4 + ‖sc‖2 − (s>c yc)2 − g(yc)>sc

∣∣∣∣
=

|g(yc)>sc|
4 + ‖sc‖2 − (s>c yc)2 (‖sc‖2 − (s>c yc)2)

≤ M∆
4

∆2
c .(39)
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By the mean value theorem, we have

(40) f(y+
c ) = f(yc) + g(yc)>(y+

c − yc) +
1
2

(y+
c − yc)>H(ỹ)(y+

c − yc),

where ỹ = θy+
c + (1− θ)yc and θ ∈ (0, 1). From (32), we know

(41) ‖y+
c − yc‖ ≤ ‖sc‖.

Moreover, by (33), (23), (37), (39), (40), and (41), we obtain

|1− ρc| =

∣∣∣∣∣f(y+
c )− f(yc)− g(yc)>sc − 1

2s
>
c H(yc)ss

mc(0)−mc(sc)

∣∣∣∣∣
=

∣∣∣∣∣g(yc)>(y+
c − yc − sc) + 1

2 (y+
c − yc)>H(ỹ)(y+

c − yc)− 1
2s
>
c H(yc)ss

mc(0)−mc(sc)

∣∣∣∣∣
≤ |g(yc)>(y+

c − yc − sc)|+M‖sc‖2

mc(0)−mc(sc)

≤ ∆2
cM∆/4 + ∆2

cM

C1‖g(yc)‖∆c/2
≤ 1− η2.

Therefore, we have ρc ≥ η2 and hence ∆c+1 ≥ ∆c.

Now, we are ready to prove the weakly convergence theorem for Algorithm 1.

Proof of Theorem 3.5. We proceed by contradiction. Assume that there exists a
small constant ε such that

(42) ‖g(y)‖ ≥ ε > 0 for c = 1, 2, . . . .

Let I ≡ {c ∈ N+ : ρc ≥ ζ} be an index set of successful iterations. Then, I
contains infinite iterations. Otherwise, let c be the largest index in I, which means
that ρc+j < ζ ≤ η1 for j = 1, 2, . . . . Hence, we have ∆c+j+1 ≤ γ2∆c+j ≤ γj2∆c+1 for
all j = 1, 2, . . . . Therefore, ∆c+j → 0 as j → ∞. Because of (42) and Lemma A.2,
∆c+j+1 does not decrease if ∆c+j ≤ (1−η2)C1ε

M(2+∆/2)
. This leads to a contradiction.

Since the objective function f(y) has a lower bound f , according to (33), (26),
(42), and Lemma A.1, we obtain

f(y1)− f ≥
∑
c∈I

f(yc)− f(yc+1)

≥ ζ
∑
c∈I

mc(0)−mc(sc)

≥ ζC1

2

∑
c∈I
‖g(yc)‖min

(
∆c,
‖g(yc)‖
‖H(yc)‖

)
≥ ζC1

2

∑
c∈I

εmin
(

∆c,
ε

M

)
.

Hence, we have ∆c → 0 as c→∞ and c ∈ I. However, by (42) and Lemma A.2, we get
that ∆c cannot tend to zero, which lead to a contradiction. Therefore, Theorem 3.5
is valid.
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Appendix B. Proof of Theorem 3.6. Due to the multilinearity of tensors,
the objective function f(y) is semialgebraic [6] since its graph

Graphf(y) ≡ {(y, t) : LCyk = t(y>y)k/2}

is semialgebraic. Hence, f(·) enjoys the following Kurdyka– Lojasiewicz (KL) property.

Theorem B.1 (KL property [6, 1]). Suppose that y∗ is a stationary point of
the objective function f(y). Then, there exist a neighborhood X (y∗), an exponent
θ ∈ [0, 1), and a positive constant CKL such that for all y ∈ X (y∗), the following
inequality holds:

(43) |f(y)− f(y∗)|θ ≤ CKL‖g(y)‖.

Here, we define 00 ≡ 0.

Lemma B.2. Let B(y∗, r) ≡ {y ∈ Rn−1 : ‖y− y∗‖ < r} ⊆X (y∗) be a neighbor-
hood of y∗. Suppose that y1 ∈ Sn−2 is an initial point satisfying

r > ρ(y1) ≡ 2C2CKL
ζC1(1− θ)

|f(y1)− f(y∗)|1−θ + ‖y1 − y∗‖.

Then, the following two assertions hold:

(44) yc ∈ B(y∗, r) for c = 1, 2, . . .

and

(45)
∞∑
c=1

‖yc+1 − yc‖ ≤
2C2CKL
ζC1(1− θ)

|f(y1)− f(y∗)|1−θ.

Proof. We proceed by induction. Obviously, we have y1 ∈ B(y∗, r).
Now, we assume that yi ∈ B(y∗, r) for i = 1, . . . , c. Hence, the KL property

holds in these points. Let

φ(t) ≡ CKL
1− θ

|t− f(y∗)|1−θ.

Then, φ(t) is a concave function for t > f(y∗). Therefore, for successful iterations
i ∈ {1, . . . , c} ∩ I, we have

φ(f(yi))− φ(f(yi+1)) ≥ φ′(f(yi))(f(yi)− f(yi+1))
= CKL|f(yi)− f(y∗)|−θ(f(yi)− f(yi+1))

[KL property] ≥ f(yi)− f(yi+1)
‖g(yi)‖

≥ ζ(mi(0)−mi(si))
‖g(yi)‖

[for (27)] ≥ ζC1

2C2
‖si‖

[for (41)] ≥ ζC1

2C2
‖yi+1 − yi‖.

On the other hand, for i ∈ {1, . . . , c}\I, we know yi+1 = yi. Therefore, we obtain

‖yi+1 − yi‖ ≤
2C2

ζC1
[φ(f(yi))− φ(f(yi+1))] for i = 1, . . . , c.
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Then,

‖yc+1 − y∗‖ ≤
c∑
i=1

‖yi+1 − yi‖+ ‖y1 − y∗‖

≤ 2C2

ζC1

c∑
i=1

φ(f(yi))− φ(f(yi+1)) + ‖y1 − y∗‖

≤ 2C2

ζC1
φ(f(y1)) + ‖y1 − y∗‖

= ρ(y1) < r.

The above inequality means yc+1 ∈ B(y∗, r), and hence (44) holds. Moreover,

∞∑
c=1

‖yc+1 − yc‖ ≤
2C2

ζC1

∞∑
c=1

φ(f(yc))− φ(f(yc+1)) ≤ 2C2

ζC1
φ(f(y1)).

The inequality (45) also holds.

Proof of Theorem 3.6. From Theorem 3.5 and the compactness of Sn−2, there
exists a subsequence of iterates {ycj

} that converges to a stationary point y∗ ∈ Sn−2.
For this y∗, there exists a neighborhood X (y∗) such that the KL inequality (43)

holds. Since ycj → y∗ as j →∞, there exists an index J such that ρ(ycJ
) < r, where

B(y∗, r) ⊆X (y∗). Then, by Lemma B.2, we have

+∞∑
c=1

‖yc+1 − yc‖ ≤
cJ−1∑
c=1

‖yc+1 − yc‖+
2C2CKL
ζC1(1− θ)

|f(ycJ
)− f(y∗)|1−θ < +∞.

Hence, {yc} is a Cauchy sequence and converges to the stationary point y∗.
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