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Abstract. We are concerned with the following full Attraction-Repulsion

Keller-Segel (ARKS) system
ut = ∆u−∇ · (χu∇v) +∇ · (ξu∇w), x ∈ Ω, t > 0,

vt = D1∆v + αu− βv, x ∈ Ω, t > 0,

wt = D2∆w + γu− δw, x ∈ Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) x ∈ Ω,

(∗)

in a bounded domain Ω ⊂ R2 with smooth boundary subject to homogeneous

Neumann boundary conditions. By constructing an appropriate Lyapunov
functions, we establish the boundedness and asymptotical behavior of solu-

tions to the system (∗) with large initial data (u0, v0, w0) ∈ [W 1,∞(Ω)]3. Pre-

cisely, we show that if the parameters satisfy ξγ
χα
≥ max

{
D1
D2
, D2
D1
, β
δ
, δ
β

}
for

all positive parameters D1, D2, χ, ξ, α, β, γ and δ, the system (∗) has a unique
global classical solution (u, v, w), which converges to the constant steady state

(ū0,
α
β
ū0,

γ
δ
ū0) as t → +∞, where ū0 = 1

|Ω|
∫
Ω u0dx. Furthermore, the decay

rate is exponential if ξγ
χα

> max
{
β
δ
, δ
β

}
. This paper provides the first results

on the full ARKS system with unequal chemical diffusion rates (i.e. D1 6= D2)

in multi-dimensions.

1. Introduction. To describe the aggregation of Microglia in the central nervous
system in Alzhemer’s disease due to the interaction of chemoattractant (i.e. β-
amyloid) and chemorepellent (i.e. TNF-α), Luca et al. [21] proposed the following
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attraction-repulsion chemotaxis system

ut = ∆u−∇ · (χu∇v) +∇ · (ξu∇w), x ∈ Ω, t > 0,

τ1vt = D1∆v + αu− βv, x ∈ Ω, t > 0,

τ2wt = D2∆w + γu− δw, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), τ1v(x, 0) = τ1v0(x), τ2w(x, 0) = τ2w0(x), x ∈ Ω,

(1)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω and ν denotes
the outward normal vector of ∂Ω. The density of Microglia cells is denoted by
u(x, t), while v(x, t) and w(x, t) denote the concentration of chemoattractant and
chemorepllent, respectively. The model (1) can also be regarded as a particularized
model proposed in [23] to model the quorum sensing effect in chemotaxis.

When ξ = 0, the variable w can be decoupled from the system (1), where the
variables u and v satisfy the classical attractive Keller-Segel (KS) system{

ut = ∆u− χ∇ · (u∇v), x ∈ Ω, t > 0,

vt = D1∆v + αu− βv, x ∈ Ω, t > 0.
(2)

The KS model (2) has been extensively studied in the past four decades in various
perspectives and massive results are available (cf. survey articles [6, 1] and references
therein). One of the mostly studied topics for the KS model (2) is the boundedness
and blowup of solutions in two or higher dimensions [22, 30, 7] based on the following
Lyapunov function:

E1(u, v) =

∫
Ω

u lnu− χ
∫

Ω

uv +
βχ

2α

∫
Ω

v2 +
χD1

2α

∫
Ω

|∇v|2.

If χ = 0, the variable v can be decoupled and (u,w) satisfies the following repulsive
Keller-Segel model {

ut = ∆u+ ξ∇ · (u∇w), x ∈ Ω, t > 0,

wt = D2∆w + γu− δw, x ∈ Ω, t > 0.
(3)

Compared to the attractive KS model (2), the results on the repulsive KS model
(3) are much less. The global existence of classical solutions in two dimensions
and weak solutions in three or four dimensions were established in [4] based on the
following Lyapunov function

E2(u,w) =

∫
Ω

u lnu+
τ2ξ

2γ

∫
Ω

|∇w|2

which is difference from the one for the attractive KS model. A further investigation
on the repulsive KS model was made in [26].

Roughly speaking, the attraction-repulsion Keller-Segel model (1) can be re-
garded as a superposition of the attractive and repulsive KS models. Hence one
may expect the ARKS model should behave more or less the same as the attractive
or repulsive models. However it is not straightforward to justify this suspicion due
to the interaction between attraction and repulsion. In particular, as we recalled
above, the understanding of the attractive and repulsive KS models heavily rely on
the finding of Lyapunov functions. Therefore to have a comprehensive understand-
ing for the ARKS model, finding appropriate Lyapunov function is indispensable.
This is by no means an easy work for a strongly coupled cross-diffusion system of
PDEs like ARKS model. A sequence of works thus have been stimulated to reveal
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the mystery underlying the model gradually. The first such progress was made by
Tao and Wang [27] who found that the solution behavior of the ARKS model was
essentially determined by the sign of

θ1 = ξγ − χα,

which is an index measuring the competition between attraction and repulsion.
More precisely, they showed that if D1 = D2 = 1 and τ1 = τ2 = 0, the ARKS
system (1) has a unique classical solution with uniform-in-time bound if θ1 ≥ 0 (i.e.
repulsion dominates or cancels attraction) in higher dimensions (n ≥ 2). The main
idea of [27] was a transformation s = ξw − χv which may significantly simplify the
system and has become a major source for many of subsequent researches on the
ARKS model. For the opposite case θ1 < 0 (i.e. attraction dominates repulsion),
it was shown that the solution of system (5) may blow up in finite time if initial
mass is large [5, 14] and exist globally for small initial mass [5] in two dimensions.
If τ1 = 1 and τ2 = 0, Jin and Wang [11] constructed a Lyapunov function

E3(u, v, w) =

∫
Ω

u lnu− χ
∫

Ω

uv +
βχ

2α

∫
Ω

v2

+
χD1

2α

∫
Ω

|∇v|2 +
ξδ

2γ

∫
Ω

w2 +
ξD2

2γ

∫
Ω

|∇w|2,

to establish the global existence of uniformly-in-time bounded classical solutions in
two dimensions for large initial data if θ1 ≥ 0. Conversely if θ1 < 0, they showed
there exists a critical mass m∗ such that the solution blows up if

∫
Ω
u0 > m∗ and

globally exists if
∫

Ω
u0 < m∗.

If the three equations of the ARKS model (1) are all parabolic (i.e. τ1 = τ2 = 1),
it is much harder to study and much less results are available. We recall the known
results below. In one dimension, the global existence of classical solutions, non-
trivial stationary state, asymptotic behavior and pattern formation of the system
(1) have been studied in [10, 19, 20]. In two dimensions, when D1 = D2, it was
shown in [27] that global classical solutions exist for large data if β = δ and for
small data if β 6= δ when θ1 ≥ 0 (i.e. repulsion dominates or cancels attraction).
Subsequently the global existence of large-data solutions was extended to the case
β 6= δ in [8, 18]. Moreover, for β 6= δ, when cell mass is small, it was shown that the
global classical solution will exponentially converge to the unique constant steady
state (ū0,

α
β ū0,

γ
δ ū0) with ū0 = 1

|Ω|
∫

Ω
u0 in [15, 16], which was further elaborated

by assuming

ū0 <
4βδ

χα(β − δ)2
and ξγ >

4βδ(χαū0 + 1)

[4βδ − (β − δ)2χαū0]ū0
(4)

in [17] wherein the convergence rate was, however, not given. Whether or not the
same results holds for large initial data in multi-dimensions still remains unknown.
Part of above-mentioned results have been extended to the multi-dimensional whole
space in [9, 25]. We should underline that all existing results in two or higher
dimensions recalled above for the case τ1 = τ2 = 1 are essentially based on the
assumption D1 = D2 so that the idea of making a change of variable s = ξw − χv
introduced in [27] can be employed. To the best of our knowledge, no result for the
case τ1 = τ2 = 1 and D1 6= D2 has been available to (1) in multi-dimensions to
date. It is the purpose of this paper to exploit this challenging case and contribute
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some results, where the corresponding ARKS model (1) reads as

ut = ∆u−∇ · (χu∇v) +∇ · (ξu∇w), x ∈ Ω, t > 0,

vt = D1∆v + αu− βv, x ∈ Ω, t > 0,

wt = D2∆w + γu− δw, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω.

(5)

The main challenge is that when D1 6= D2 the conventional approach of using
the transformation in [27] is no longer effective and new ideas are desirable. Here
we shall construct a Lyapunov functional for (5) which allows us to establish the
global boundedness and asymptotic behavior of solutions to (5) in some parameter
regimes. Specifically, the following results are obtained in the paper.

Theorem 1.1. Let Ω be a bounded domain in R2 with smooth boundary. Suppose
that 0 ≤ (u0, v0, w0) ∈ [W 1,∞(Ω)]3 and the parameters satisfy

ξγ

χα
≥ max

{D1

D2
,
D2

D1
,
β

δ
,
δ

β

}
. (6)

Then the problem (5) has a unique classical solution (u, v, w) ∈ [C0([0,∞) × Ω̄) ∩
C2,1((0,∞)× Ω̄)]3, which satisfies

‖(u, v, w)(·, t)‖L∞ ≤ C (7)

for some constant C > 0 independent of t and

‖(u, v, w)− (ū0,
α

β
ū0,

γ

δ
ū0)‖L∞ → 0 as t→ +∞,

where ū0 = 1
|Ω|
∫

Ω
u0dx. Furthermore, if ξγ

χα > max
{
β
δ ,

δ
β

}
, the decay is exponen-

tial.

Remark 1. If D1 = D2 = 1 and β = δ, Tao and Wang [27, Proposition 2.6]
proved that if θ1 > 0 the global classical solution (u, v, w) of system (5) exists
and exponentially converges to the constant steady state (ū0,

α
β ū0,

γ
δ ū0) as t→∞.

Hence in this paper, we will, unless otherwise mentioned, focus on the case D1 6= D2

or β 6= δ under which the condition (6) implies θ1 > 0.

Remark 2. The results of Theorem 1.1 hold for all D1, D2, α, β, ξ, γ > 0 without
any smallness conditions on initial data under the parameter regime given by (6).
In the case D1 = D2 = 1 and β 6= δ, the same result was recently obtained in [17]
under the essential assumption (4) where the initial cell mass can not be arbitrarily
large and parameter regime depends upon the initial data. Hence our results not
only improve those of [17], but also cover the case D1 6= D2 for which no results
have been known so far.

Outline of proof: We first establish the boundedness criterion of solution for sys-
tem (5) such that the boundedness of ‖u‖L∞ can be reduced to prove the bound-
edness of ‖u‖Lp with p > max{1, n2 }. Motivated by the results in [8, 18], we know
that the boundedness of ‖u‖L2 holds in two dimensions if there exists a constant
c1 > 0 such that

‖u lnu‖L1 + ‖∇v‖L2 + ‖∇w‖L2 ≤ c1. (8)
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Hence to show the global existence of classical solutions in two dimensions, we only
need to prove (8). When D1 = D2 and θ1 > 0, using the transformation s = ξw−χv
as in [27], one can derive the following entropy inequality (cf. [18, 8])

d

dt

(∫
Ω

u lnu+
1

2θ1

∫
Ω

|∇s|2
)

+

∫
Ω

|∇u|2

u
+
D1

2θ1

∫
Ω

|∆s|2 +
δ

θ1

∫
Ω

|∇s|2 ≤ c2, (9)

which can be used to derive (8) and hence the boundedness of solutions.
However, when D1 6= D2, the transformation idea fails to work. Luckily, we are

able to find a different Lyapunov function E(u, v, w) (see the definition in (31)) for
the system (5) under the condition (6), which satisfies

d

dt
E(u, v, w) + F (u, v, w) = 0, (10)

where F (u, v, w) is defined by (32). We remark that the form of E(u, v, w) is quite
different from the one (9) for D1 = D2. To prove E(u, v, w) is a Laypunov function,
we organize the estimates into a quadratic form which is the new idea developed in
the paper. Then using (10), we show that under the condition (6), there exists a

constant c3 > 0 such that ‖u lnu‖L1 + ‖∇v‖L2 + ‖∇w‖L2 ≤ c3 and
∫ t

0

∫
Ω
|∇u|2
u ≤ c3

(see Lemma 4.1 for details). The former estimate leads to the boundedness of
solutions in two dimensions and the later estimate gives the convergence properties
of u. The convergence of v and w can be derived by the parabolic comparison
principle. To study the decay rate, we first show that there exists a constant µ > 0
such that

E(u, v, w) ≤ µF (u, v, w),

which together with (10) gives E(u, v, w) ≤ E(u0, v0, w0)e−
1
µ t. Using the definition

of E(u, v, w) and noting the fact ‖u− ū‖L1 ≤ 2ū
∫

Ω
u ln u

ū in Lemma 2.1, the expo-
nential decay of ‖u− ū‖L1 under the condition (6) is obtained. Then using the ideas
in [27] or [15], we derive the decay rate of ‖u − ū‖L∞ and hence the exponential
decay rate of ‖v − α

β ū0‖L∞ and ‖w − γ
δ ū0‖L∞ .

In the end of this section, we remark that Theorem 1.1 only present some first-
hand results on the full ARKS model for D1 6= D2 under the parameter regime
given in (6) and leave out many interesting questions due to technical difficulty.
For example, whether the condition (6) is necessary for global existence of solutions
and how solutions behave (in particular whether solutions blow up) if the condition
(6) fails remain unsolved in our paper. We hope our studies in this paper will
provide useful clues to further explore the ARKS model in future.

2. Some basic inequalities. In what follows, without confusion, we shall abbre-
viate

∫
Ω
fdx as

∫
Ω
f for simplicity. Moreover, we shall use ci(i = 1, 2, 3, · · · ) to

denote a generic constant which may vary in the context. For reader’s convenience,
we present some known inequalities for later use.

Lemma 2.1. Suppose that f(x, t) is a positive function on (x, t) ∈ Ω × (0,∞).
Defined f̄ = 1

|Ω|
∫

Ω
f , then it has that

0 ≤ 1

2f̄
‖f − f̄‖2L1 ≤

∫
Ω

f ln
f

f̄
≤ 1

f̄
‖f − f̄‖2L2 . (11)

Proof. Using the Csiszár-Kullback-Pinsker inequality (see [3] ), one has∫
Ω

f ln
f

f̄
≥ 1

2f̄
‖f − f̄‖2L1 . (12)
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On the other hand, choosing ψ = f

f
and using the fact that ψ lnψ−ψ+1 ≤ (ψ−1)2

for ψ ≥ 0, it holds that∫
Ω

f ln
f

f̄
≤ f̄

∫
Ω

[
f

f̄
− 1 +

(
f

f̄
− 1

)2
]

=
1

f̄
‖f − f̄‖2L2 . (13)

Then the combination of (12) and (13) gives (11).

Lemma 2.2. Let Ω be a bounded domain in R2 with smooth boundary. Then, for
any ϕ ∈W 3,2(Ω) satisfying ∂ϕ

∂ν |∂Ω = 0, there exists a positive constant C depending
only on Ω such that

‖∆ϕ‖L3 ≤ C(‖∇∆ϕ‖
2
3

L2‖∇ϕ‖
1
3

L2 + ‖∇ϕ‖L2). (14)

Proof. Using Gagliardo-Nirenberg inequality, we have

‖∆ϕ‖L3 = ‖∇ · ∇ϕ‖L3 ≤ ‖D∇ϕ‖L3 ≤ c1‖D2∇ϕ‖
2
3

L2‖∇ϕ‖
1
3

L2 + c2‖∇ϕ‖L2 , (15)

where |Dk∇ϕ| = (
∑
|i|=k |Di∇ϕ|2)

1
2 and i is a multi-index of order. On the other

hand, one can check that

‖D2∇ϕ‖L2 ≤ c3‖∇ϕ‖H2 . (16)

Moreover, under the homogeneous Neumann boundary condition (i.e., ∂ϕ∂ν |∂Ω = 0),
it follows from [2, Lemma 1] that ‖∇ϕ‖H2 ≤ c4‖∆ϕ‖H1 , which applied to (16) gives

‖D2∇ϕ‖L2 ≤ c3c4‖∆ϕ‖H1 . (17)

Note that |∆ϕ|2 = ∇ · (∇ϕ∆ϕ) −∇ϕ · ∇∆ϕ. Then using the boundary condition
∂ϕ
∂ν |∂Ω = 0 and Hölder inequality, we have

‖∆ϕ‖2L2 = −
∫

Ω

∇ϕ · ∇∆ϕ ≤ ‖∇ϕ‖L2‖∇∆ϕ‖L2 . (18)

Then substituting (17) into (15), and using (18), one derives

‖∆ϕ‖L3 ≤c5
(
‖∆ϕ‖

2
3

H1‖∇ϕ‖
1
3

L2 + ‖∇ϕ‖L2

)
=c5 (‖∇∆ϕ‖L2 + ‖∆ϕ‖L2)

2
3 ‖∇ϕ‖

1
3

L2 + c5‖∇ϕ‖L2

≤c6
(
‖∇∆ϕ‖L2 + ‖∇∆ϕ‖

1
2

L2‖∇ϕ‖
1
2

L2

) 2
3

‖∇ϕ‖
1
3

L2 + c6‖∇ϕ‖L2

≤c6 (2‖∇∆ϕ‖L2 + ‖∇ϕ‖L2)
2
3 ‖∇ϕ‖

1
3

L2 + c6‖∇ϕ‖L2

≤c7‖∇∆ϕ‖
2
3

L2‖∇ϕ‖
1
3

L2 + c7‖∇ϕ‖L2

which yields (14), and hence completes the proof.

3. Boundedness criterion and Lyapunov function.

3.1. Local existence. The local existence theorem of system (5) can be proved
by the fixed point theorem and maximum principle along the same line as in [27].
Hence we only present the results without proof for brevity.
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Lemma 3.1. Let Ω be a bounded domain in Rn(n ≥ 2) with smooth boundary.
Suppose that 0 ≤ (u0, v0, w0) ∈ [W 1,∞(Ω)]3. Then there exist a Tmax ∈ (0,∞] such
that the system (5) has a unique solution (u, v, w) of nonnegative functions from
[C0(Ω̄× [0, Tmax)) ∩ C2,1(Ω̄× (0, Tmax))]3. Moreover u > 0 in Ω× (0, Tmax) and

if Tmax <∞, then ‖u(·, t)‖L∞ →∞ as t↗ Tmax. (19)

Furthermore, the cell mass is conservative:

‖u(·, t)‖L1 = ‖u0‖L1 . (20)

3.2. Boundedness criterion. To extend the local solutions to global ones, we
derive a boundedness criterion for the solution of system (5). The idea of our proof
is essentially inspired by [1, lemma 3.2] and we present necessary details below for
clarity.

Lemma 3.2. Suppose the conditions in Lemma 3.1 hold. Let (u, v, w) be the solu-
tion of system (5) defined on its maximal existence time interval [0, Tmax). If there
exist p > n

2 and a constant M0 such that

sup
t∈(0,Tmax)

‖u(·, t)‖Lp ≤M0,

then one can find a constant C > 0 independent of t such that

‖u(·, t)‖L∞ + ‖v(·, t)‖W 1,∞ + ‖w(·, t)‖W 1,∞ ≤ C for all t ∈ (0, Tmax). (21)

Furthermore, there exists σ ∈ (0, 1) such that for all t > 1

‖u‖
Cσ,

σ
2 (Ω̄×[t,t+1])

≤ C. (22)

Proof. Since ‖u(·, t)‖Lp ≤ M0, then applying the parabolic regularity estimates in
[12, Lemma 1] to the second and third equations of system (5) we have

‖∇v(·, t)‖Lr + ‖∇w(·, t)‖Lr ≤ c1, for all t ∈ (0, Tmax) (23)

where

r ∈

{
[1, np

n−p ), if p ≤ n,
[1,∞], if p > n.

(24)

Without loss of generality, we assume that n
2 < p ≤ n which yields np

n−p > n. Then

we can find a constant r > 0 with n < r < np
n−p such that (23) holds. Now, for each

T ∈ (0, Tmax), we define

M(T ) := sup
t∈(0,T )

‖u(·, t)‖L∞ , (25)

which is finite due to the local existence results in Lemma 3.1. Next, we will estimate
M(T ). Fix t ∈ (0, T ) and let t0 = (t−1)+. Then applying the variation-of-constants
formula to the first equation of system (5), we get

u(·, t) =e(t−t0)∆u(·, t0)− χ
∫ t

t0

e(t−τ)∆∇ · (u(·, τ)∇v(·, τ))dτ

+ ξ

∫ t

t0

e(t−τ)∆∇ · (u(·, τ)∇w(·, τ))dτ
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which implies

‖u(·, t)‖L∞ ≤‖e(t−t0)∆u(·, t0)‖L∞ + χ

∫ t

t0

‖e(t−τ)∆∇ · (u(·, τ)∇v(·, τ))‖L∞dτ

+ ξ

∫ t

t0

‖e(t−τ)∆∇ · (u(·, τ)∇w(·, τ))‖L∞dτ

=I1 + I2 + I3.

(26)

We first estimate the term I1. If t ≤ 1, then t0 = 0 and we can use the maximum
principle for the heat equation to obtain

I1 = ‖et∆u0‖L∞ ≤ ‖u0‖L∞ ≤ c2, (27)

whereas in the case t > 1 and t0 = t − 1, we use the standard Lp-Lq estimates for
(eτ∆)τ≥0 to derive

I1 ≤ c3‖u(·, t0)‖Lp ≤ c3M0 = c4. (28)

Moreover, since r > n, we can fix a number q > n satisfying q ∈ ( r
r+1 , r). Then by

the Hölder inequality, interpolation inequality and (25), we can find ζ = r(q−1)+q
rq ∈

(0, 1) such that

‖u(·, τ)∇v(·, τ)‖Lq ≤ ‖u(·, τ)‖
L

rq
r−q
‖∇v(·, τ)‖Lr

≤ ‖u(·, τ)‖1−
r−q
rq

L∞ ‖u(·, τ)‖
r−q
rq

L1 ‖∇v(·, τ)‖Lr

≤ c5Mζ(T ).

Similarly, we have

‖u(·, τ)∇w(·, τ)‖Lq ≤ c6Mζ(T ).

Since t − t0 ≤ 1, we have
∫ t
t0

(t − s)−
1
2−

n
2q ds =

∫ t−t0
0

σ−
1
2−

n
2q dσ ≤

∫ 1

0
σ−

1
2−

n
2q dσ =

2q
q−n thanks to q > n. Then by the smoothing properties of (eτ∆)τ≥0 (see [29,

Lemma 1.3]), we derive

I2 + I3 ≤ c7
∫ t

t0

(t− τ)−
1
2−

n
2q (‖u(·, τ)∇v(·, τ)‖Lq + ‖u(·, τ)∇w(·, τ)‖Lq )dτ

≤ c8Mζ(T )

∫ t

t0

(t− τ)−
1
2−

n
2q dτ

≤ 2qc8
q − n

Mζ(T ) := c9M
ζ(T ).

(29)

Substituting (27), (28) and (29) into (26), we can find a constant c10 > 0 such that

‖u(·, t)‖L∞ ≤ c9Mζ(T ) + c10, for all t ∈ (0, T ),

which implies

M(T ) ≤ c9Mζ(T ) + c10, for all T ∈ (0, Tmax). (30)

Since 0 < ζ < 1, from (30) one has

M(T ) ≤ max
{(c10

c9

) 1
ζ

, (2c9)
1

1−ζ

}
, for all T ∈ (0, Tmax),

which implies ‖u(·, t)‖L∞ ≤ c11 for all t ∈ (0, Tmax). Furthermore the combination
of (23) and (24) gives (21).
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At last, from (21) we know that χu∇v and ξu∇w are bounded in L∞(Ω×(0,∞)).
Then applying the standard parabolic regularity theory (e.g. see [24, Theorem 1.3]
and [28, Lemma 3.2]) and parabolic Schauder theory [13], we immediately obtain
the estimate (22). Then the proof of Lemma 3.2 is completed.

3.3. Lyapunov function. As mentioned in Remark 1, we consider the case D1 6=
D2 or β 6= δ which implies that θ1 > 0 from (6). When D1 = D2, the boundedness
of solutions shown in Theorem 1.1 has been proved in [27] with β = δ and in
[18, 8] with β 6= δ by constructing entropy inequality based on an idea of using the
transformation s = ξw − χv. However this transformation is no longer helpful for
the case D1 6= D2. Hence, we need to find a new way. Here we achieve our results
by constructing a Lyapunov function for the system (5). First, we define

E(u, v, w) :=
θ1

2ξχ

∫
Ω

u ln
u

ū
+

θ2

4ξα

∫
Ω

|∇v|2 +
θ2

4γχ

∫
Ω

|∇w|2 −
∫

Ω

∇w · ∇v (31)

and

F (u, v, w) :=
θ1

2ξχ

∫
Ω

|∇u|2

u
+
θ2D1

2ξα

∫
Ω

|∆v|2 +
θ2D2

2γχ

∫
Ω

|∆w|2 +
θ2β

2ξα

∫
Ω

|∇v|2

+
θ2δ

2γχ

∫
Ω

|∇w|2 − (D1 +D2)

∫
Ω

∆w∆v − (β + δ)

∫
Ω

∇w · ∇v,

(32)

where θ1 := ξγ−χα and θ2 := ξγ+χα. Then, we will show that E(u, v, w) is indeed
a Lyapunov function under (6). More precisely, we have the following results.

Lemma 3.3. Let (u, v, w) be the solution of system (5). Then we have

d

dt
E(u, v, w) + F (u, v, w) = 0 (33)

where E(u, v, w) and F (u, v, w) are defined by (31) and (32), respectively. Moreover,
if (6) holds, then

E(u, v, w) ≥ 0 and F (u, v, w) ≥ 0 for all t > 0. (34)

Proof. Multiplying the first equation of system (5) by ln u
ū , we have

d

dt

∫
Ω

u ln
u

ū
+

∫
Ω

|∇u|2

u
= χ

∫
Ω

∇u · ∇v − ξ
∫

Ω

∇u · ∇w. (35)

Similarly, we multiply the second and third equations of system (5) by −∆v and
−∆w, respectively, to obtain

1

2

d

dt

∫
Ω

|∇v|2 +D1

∫
Ω

|∆v|2 + β

∫
Ω

|∇v|2 = α

∫
Ω

∇u · ∇v (36)

and
1

2

d

dt

∫
Ω

|∇w|2 +D2

∫
Ω

|∆w|2 + δ

∫
Ω

|∇w|2 = γ

∫
Ω

∇u · ∇w. (37)

Multiplying (35) by θ1
2ξχ , (36) by θ2

2ξα and (37) by θ2
2γχ , and adding them, we end up

with

d

dt

(
θ1

2ξχ

∫
Ω

u ln
u

ū
+

θ2

4ξα

∫
Ω

|∇v|2 +
θ2

4γχ

∫
Ω

|∇w|2
)

+
θ1

2ξχ

∫
Ω

|∇u|2

u
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+
θ2D1

2ξα

∫
Ω

|∆v|2 +
θ2D2

2γχ

∫
Ω

|∆w|2 +
θ2β

2ξα

∫
Ω

|∇v|2 +
θ2δ

2γχ

∫
Ω

|∇w|2

= γ

∫
Ω

∇u · ∇v + α

∫
Ω

∇u · ∇w.
(38)

On the other hand, the second and third equations of system (5) give us that

γ

∫
Ω

∇u · ∇v =

∫
Ω

∇(wt + δw −D2∆w) · ∇v

=

∫
Ω

∇wt · ∇v + δ

∫
Ω

∇w · ∇v −D2

∫
Ω

∇(∆w) · ∇v

=
d

dt

∫
Ω

∇w · ∇v +

∫
Ω

∆wvt + δ

∫
Ω

∇w · ∇v +D2

∫
Ω

∆w∆v

=
d

dt

∫
Ω

∇w · ∇v +

∫
Ω

∆w(D1∆v + αu− βv)

+ δ

∫
Ω

∇w · ∇v +D2

∫
Ω

∆w∆v

=
d

dt

∫
Ω

∇w · ∇v + (D1 +D2)

∫
Ω

∆w∆v

+ (β + δ)

∫
Ω

∇w · ∇v − α
∫

Ω

∇u · ∇w

which yields

γ

∫
Ω

∇u · ∇v + α

∫
Ω

∇u · ∇w =
d

dt

∫
Ω

∇w · ∇v + (D1 +D2)

∫
Ω

∆w∆v

+ (β + δ)

∫
Ω

∇w · ∇v.
(39)

The combination of (38) and (39) gives (33).
Next, we will show the nonnegative of E(u, v, w) and F (u, v, w) under (6). First,

we rewrite E(u, v, w) in (31) as

E(u, v, w) =
θ1

2ξχ

∫
Ω

u ln
u

ū
+

∫
Ω

ΘT
1 A1Θ1

where ΘT
1 denotes the transpose of Θ1 and

Θ1 =

[
∇v
∇w

]
and A1 =

[
θ2

4ξα − 1
2

− 1
2

θ2
4γχ

]
.

Since θ1 > 0, one has θ2
2 > θ2

2 − θ2
1 = 4ξγχα. This implies the matrix A1 is positive

definite and hence there exists a constant c1 > 0 such that

E(u, v, w) ≥ θ1

2ξχ

∫
Ω

u ln
u

ū
+ c1

∫
Ω

(|∇v|2 + |∇w|2) ≥ 0, (40)

where we have used the fact
∫

Ω
u ln u

ū ≥ 0 from Lemma 2.1. Similarly, we rewrite
F (u, v, w) as

F (u, v, w) =
θ1

2ξχ

∫
Ω

|∇u|2

u
+

∫
Ω

ΘT
2 A2Θ2 +

∫
Ω

ΘT
1 A3Θ1, (41)

where

Θ2 =

[
∆v

∆w

]
, A2 =

[
θ2D1

2ξα −D1+D2

2

−D1+D2

2
θ2D2

2γχ

]
and A3 =

[
θ2β
2ξα −β+δ

2

−β+δ
2

θ2δ
2γχ

]
. (42)
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Clearly, the matrix A2 is nonnegative definite if

θ2
2D1D2 −

(D1 +D2)2(θ2
2 − θ2

1)

4
≥ 0.

Similarly, the matrix A3 is nonnegative definite under the condition

θ2
2βδ −

(β + δ)2(θ2
2 − θ2

1)

4
≥ 0.

Hence, the nonnegativity of the matrices A2 and A3 are satisfied simultaneously if{
4θ2

2D1D2 − (D1 +D2)2(θ2
2 − θ2

1) ≥ 0,

4θ2
2βδ − (β + δ)2(θ2

2 − θ2
1) ≥ 0,

which is equivalent to {
θ2

2(D1 −D2)2 ≤ (D1 +D2)2θ2
1,

θ2
2(β − δ)2 ≤ (β + δ)2θ2

1.
(43)

One can check that (43) holds if ξγ
χα ≥ max{D1

D2
, D2

D1
, βδ ,

δ
β } or ξγ

χα ≤ min{D1

D2
, D2

D1
, βδ ,

δ
β }. However, the latter is impossible due to θ1 > 0. Hence, if (6) holds, one has

E(u, v, w) ≥ 0 and F (u, v, w) ≥ 0. The proof of (34) is completed.

4. Proof of Theorem 1.1. In this section, we are devoted to proving Theorem
1.1 based on the Lyapunov function constructed in Lemma 3.3.

4.1. Boundedness of solutions. In this subsection, we show the boundedness
of solutions for system (5) under the condition (6). First, we give a core lemma
concerning the boundedness and asymptotical behavior of solution for system (5)
in two dimensions.

Lemma 4.1. Suppose that (u0, v0, w0) ∈ [W 1,∞(Ω)]3 and (6) hold. Then the solu-
tion (u, v, w) of system (5) satisfies

‖u lnu‖L1 + ‖∇v‖L2 + ‖∇w‖L2 ≤ C (44)

and ∫ t

0

∫
Ω

|∇u|2

u
≤ C, (45)

where C > 0 is a constant independent of t.

Proof. The nonnegativity of E(u, v, w) and F (u, v, w) has been proved in Lemma
3.3 under the condition (6). Then integrating (33) and using (40) and (41), along
with the nonnegativity of A2 and A3, we have two positive constants c1, c2 such
that

θ1

2ξχ

∫
Ω

u ln
u

ū
+ c1

∫
Ω

(|∇v|2 + |∇w|2) ≤ c2, (46)

which, together with the fact
∫

Ω
u ln u

ū ≥ 0 from Lemma 2.1, gives

‖∇v‖2L2 + ‖∇w‖2L2 ≤
c2
c1

= c3. (47)

On the other hand, from (46), we directly obtain

θ1

2ξχ

∫
Ω

u lnu ≤ c2 +
θ1

2ξχ
|Ω|ū ln ū ≤ c4,
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which, along with the fact −u lnu ≤ 1
e for all u ≥ 0, gives∫

Ω

|u lnu| ≤
∫

Ω

∣∣∣u lnu+
1

e
− 1

e

∣∣∣ ≤ ∫
Ω

(
u lnu+

1

e

)
+

∫
Ω

1

e
≤ 2ξχc4

θ1
+

2|Ω|
e
. (48)

Then the combination of (47) and (48) gives (44). Hence the proof of this lemma
is completed.

Lemma 4.2. Let the assumptions in Lemma 4.1 hold. Then the solution (u, v, w)
of system (5) satisfies

‖u(·, t)‖L2 ≤ C (49)

where the constant C > 0 is independent of t.

Proof. Multiplying the first equation of system (5) by u and integrating it by parts,
we have

1

2

d

dt

∫
Ω

u2 +

∫
Ω

|∇u|2 = χ

∫
Ω

u∇u · ∇v − ξ
∫

Ω

u∇u · ∇w

= −χ
2

∫
Ω

u2∆v +
ξ

2

∫
Ω

u2∆v

≤ c1‖u‖2L3(‖∆v‖L3 + ‖∆w‖L3).

(50)

Noting the fact ‖u lnu‖L1 ≤ c2 and ‖u‖L1 ≤ c3, one can find a small ε > 0 such
that

‖u‖2L3 =
(
‖u‖3L3

) 2
3 ≤

(
ε‖∇u‖2L2 + 1

) 2
3 ≤ ε‖∇u‖

4
3

L2 + c4, (51)

where we have used the following fact (see [22]): when n = 2, for any ε > 0, there
exists a constant Cε such that

‖u‖L3 ≤ ε ‖∇u‖
2
3

L2 ‖u lnu‖
1
3

L1 + Cε(‖u lnu‖L1 + ‖u‖
1
3

L1).

On the other hand, noting the facts ∂v
∂ν

∣∣∣
∂Ω

= ∂w
∂ν

∣∣∣
∂Ω

= 0 on ∂Ω and using the

boundedness of ‖∇v‖L2 and ‖∇w‖L2 (see (44)), from Lemma 2.2, one has

‖∆v‖L3 + ‖∆w‖L3

≤ c5(‖∇∆v‖
2
3

L2‖∇v‖
1
3

L2 + ‖∇v‖L2) + c5(‖∇∆w‖
2
3

L2‖∇w‖
1
3

L2 + ‖∇w‖L2)

≤ c6(‖∇∆v‖
2
3

L2 + ‖∇∆w‖
2
3

L2 + 1).

(52)

Then combining (51) and (52), and using Young’s inequality and noting the fact
ε > 0 is small, we find a small η > 0 such that

c1‖u‖2L3(‖∆v‖L3 + ‖∆w‖L3)

≤ c7
(
ε‖∇u‖

4
3

L2 + c4

)(
‖∇∆v‖

2
3

L2 + ‖∇∆w‖
2
3

L2 + 1
)

= c7ε‖∇u‖
4
3

L2

(
‖∇∆v‖

2
3

L2 + ‖∇∆w‖
2
3

L2

)
+ c7ε‖∇u‖

4
3

L2

+ c1c7

(
‖∇∆v‖

2
3

L2 + ‖∇∆w‖
2
3

L2

)
+ c1c7

≤ 1

2
‖∇u‖2L2 + η(‖∇∆v‖2L2 + ‖∇∆w‖2L2) + c8.

(53)

Substituting (53) into (50) gives

d

dt

∫
Ω

u2 +

∫
Ω

|∇u|2 ≤ 2η(‖∇∆v‖2L2 + ‖∇∆w‖2L2) + c9. (54)



GLOBAL STABILIZATION FOR THE FULL ARKS MODEL 3521

Differentiating the second equation of system (5) once, and multiplying the result
by −∇∆v, and then we integrate the product in Ω to obtain

1

2

d

dt

∫
Ω

|∆v|2 +D1

∫
Ω

|∇∆v|2 + β

∫
Ω

|∆v|2

= −α
∫

Ω

∇∆v · ∇u

≤ D1

2
‖∇∆v‖2L2 +

α2

2D1
‖∇u‖2L2 ,

which yields

d

dt

∫
Ω

|∆v|2 +D1

∫
Ω

|∇∆v|2 + 2β

∫
Ω

|∆v|2 ≤ α2

D1
‖∇u‖2L2 . (55)

Similarly, we have the following estimates for w:

d

dt

∫
Ω

|∆w|2 +D2

∫
Ω

|∇∆w|2 + 2δ

∫
Ω

|∆w|2 ≤ γ2

D2
‖∇u‖2L2 . (56)

Letting ρ = α2D2+γ2D1

D1D2
, and multiplying (54) by 2ρ, then adding it with (55) and

(56), we end up with

d

dt

(
2ρ‖u‖2L2 + ‖∆v‖2L2 + ‖∆w‖2L2

)
+ ρ‖∇u‖2L2

+D1‖∇∆v‖2L2 +D2‖∇∆w‖2L2 + 2β‖∆v‖2L2 + 2δ‖∆w‖2L2

≤ 4ρη · (‖∇∆v‖2L2 + ‖∇∆w‖2L2) + c10.

(57)

Letting η small such that 4ρη ≤ min{D1, D2}, one has

d

dt

(
2ρ‖u‖2L2 + ‖∆v‖2L2 + ‖∆w‖2L2

)
+ ρ‖∇u‖2L2

+ 2β‖∆v‖2L2 + 2δ‖∆w‖2L2 ≤ c10.
(58)

On the other hand, using the Gagliardo-Nirenberg inequality and (20), we can show
that

‖u‖2L2 ≤ c11

(
‖∇u‖L2‖u‖L1 + ‖u‖2L1

)
≤ 1

2
‖∇u‖2L2 + c12. (59)

Substituting (59) into (58) and letting y(t) := 2ρ‖u‖2L2 +‖∆v‖2L2 +‖∆w‖2L2 , we can
find two positive constants c13 and c14 such that

y′(t) + c13y(t) ≤ c14,

which, along with Gronwall’s inequality gives (49).

Next, we will show the existence of global classical solutions.

Lemma 4.3. Suppose that the conditions in Lemma 4.1 hold. Then the problem (5)
has a unique global classical solution (u, v, w) ∈ [C0([0,∞)× Ω̄)∩C2,1((0,∞)× Ω̄)]3

satisfying (7).

Proof. From Lemma 4.2, we know that there exists a constant c1 > 0 such that
‖u(·, t)‖L2 ≤ c1. Noting n = 2 and using Lemma 3.2, one has

‖u(·, t)‖L∞ ≤ c2,
which together with the local existence results in Lemma 3.1 completes the proof
of this lemma.
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4.2. Convergence. In this subsection, we will show the convergence of solutions.

Lemma 4.4. Let (u, v, w) be the solution of system (5) satisfying (7) and (45).
Then one has

‖u(·, t)− ū0‖L∞ → 0 as t→∞. (60)

Proof. The combination of (7) and (45) implies that there exist a constant c1 > 0
such that ∫ ∞

0

‖∇u‖2L2 ≤ c1. (61)

Noting the conservation of cell mass and using the Poincaré inequality, we will
derive

‖u(·, t)− ū0‖2L2 = ‖u(·, t)− ū‖2L2 ≤ c2‖∇u‖2L2 . (62)

Combining (61) and (62), one can find a constant c3 > 0 such that∫ ∞
0

‖u(·, t)− ū0‖2L2 ≤ c3. (63)

Motivated by the ideas in [28, Lemma 3.10], we next show (63) implies (60). Indeed,
if one can show that

‖u(·, t)− ū0‖C0 → 0, as t→∞, (64)

then (60) follows directly. We shall show (64) by the argument of contradiction.
Suppose that (64) is wrong, then for some constant c4 > 0, there exist some se-
quences (xj)j∈N ⊂ Ω and (tj)j∈N ⊂ (0,∞) satisfying tj → ∞ as j → ∞ such
that

|u(xj , tj)− ū0| ≥ c4, for all j ∈ N.
From Lemma 3.2, we know u− ū0 is uniformly continuous in Ω×(1,∞). Then there
exist r > 0 and T1 > 0 such than for any j ∈ N,

|u(x, t)− ū0| ≥
c4
2

for all x ∈ Br(xj) ∩ Ω and t ∈ (tj , tj + T1). (65)

Because of the smoothness of ∂Ω, we can get a constant c5 > 0 such that

|Br(xj) ∩ Ω| ≥ c5, for all xj ∈ Ω. (66)

Using (65) and (66), for all j ∈ N, we have∫ tj+T1

tj

∫
Ω

|u(x, t)− ū0|2dxdt ≥
∫ tj+T1

tj

∫
Br(xj)∩Ω

|u(x, t)− ū0|2dxdt

≥
∫ tj+T1

tj

|Br(xj) ∩ Ω| ·
(c4

2

)2

dt

≥ c24c5T1

4
.

(67)

However, by the fact tj →∞ as j →∞, we have from (63) that∫ tj+T1

tj

∫
Ω

(u(x, t)− ū0)2dxdt ≤
∫ ∞
tj

∫
Ω

(u(x, t)− ū0)2dxdt→ 0, as j →∞,

which contradicts (67). Hence (64) holds by the argument of contradiction. Thus
the proof of Lemma 4.4 is completed.

Next, we will show the convergence of v and w by the comparison principle.
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Lemma 4.5. Let the conditions in Lemma 4.4 hold. Then it holds that

‖v(·, t)− α

β
ū0‖L∞ → 0, as t→∞,

and

‖w(·, t)− γ

δ
ū0‖L∞ → 0, as t→∞.

Proof. Let φ(x, t) = v(x, t)− α
β ū0. Then from the second equation of (5), one has

φt −D1∆φ+ βφ = α(u− ū0), x ∈ Ω, t > 0,
∂φ
∂ν = 0, x ∈ ∂Ω, t > 0,

φ(x, 0) = φ0(x) = v0(x)− α
β ū0, x ∈ Ω.

(68)

Let φ∗(t) be the solution of ODE problem{
φ∗t (t) + βφ∗(t) = α‖u− ū0‖L∞ , t > 0,

φ∗(0) = ‖φ0‖L∞ .
(69)

The application of the comparison principle show that φ∗(t) is a super-solution of
problem (68) and satisfies

φ(x, t) ≤ φ∗(t) for all x ∈ Ω, t > 0.

Similarly, we can prove that φ(x, t) ≥ −φ∗(t) for all x ∈ Ω, t > 0. Hence, one has

|φ(x, t)| ≤ φ∗(t) for all x ∈ Ω, t > 0. (70)

On the other hand, using the fact ‖u(·, t)− ū0‖L∞ → 0 as t→∞ and from (69) we
have

φ∗(t)→ 0 as t→∞,
which combined with (70) gives

‖v(·, t)− α

β
ū0‖L∞ = ‖φ(·, t)‖L∞ ≤ φ∗(t)→ 0 as t→∞. (71)

Similar arguments applied to the third equation of system (5) yield

‖w(·, t)− γ

δ
ū0‖L∞ → 0, as t→∞, (72)

which completes the proof of Lemma 4.5.

4.3. Decay rate. It is shown in section 4.2 that (u, v, w) → (ū0,
α
β ū0,

γ
δ ū0) as

t → ∞ under the condition (6). Below, we will further show the convergence rate

is exponential if ξγ
χα > max

{
β
δ ,

δ
β

}
.

Lemma 4.6. Suppose that the conditions in Lemma 4.1 hold. If ξγ
χα > max

{
β
δ ,

δ
β

}
,

then there exist two constants C > 0 and λ > 0 such that

‖u(·, t)− ū0‖L1 ≤ Ce−λt for all t > 0. (73)

Proof. The nonnegativity of E(u, v, w) and F (u, v, w) has been proved in Lemma

3.3 under the condition (6). Next, we show that if ξγ
χα > max

{
β
δ ,

δ
β

}
, there exists

a constant µ > 0 which will be chosen later such that

E(u, v, w) ≤ µF (u, v, w). (74)
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In fact, using the definition of E(u, v, w) and F (u, v, w) in (31) and (32), respec-
tively, we derive that

D(u, v, w) = µF (u, v, w)− E(u, v, w)

=
θ1

2ξχ

(
µ

∫
Ω

|∇u|2

u
−
∫

Ω

u ln
u

ū

)
+D1(u, v, w) +D2(u, v, w)

(75)

where

D1(u, v, w) = µ

(
θ2D1

2ξα

∫
Ω

|∆v|2 +
θ2D2

2γχ

∫
Ω

|∆w|2 − (D1 +D2)

∫
Ω

∆w ·∆v
)

and

D2(u, v, w) =
θ2

2ξα
(βµ− 1

2
)

∫
Ω

|∇v|2 +
θ2

2γχ
(δµ− 1

2
)

∫
Ω

|∇w|2

+ [1− µ(β + δ)]

∫
Ω

∇w · ∇v.

To show the nonnegativity of D(u, v, w), we first show the nonnegativity of first
term on the right hand of (75). From Lemma 2.1, we have∫

Ω

u ln
u

ū
≤ 1

ū
‖u− ū‖2L2 . (76)

On the other hand, using (62) and the fact ‖u‖L∞ ≤ c1, one derives

1

ū
‖u− ū‖2L2 ≤ c2‖∇u‖2L2 ≤ c2‖u‖L∞

∫
Ω

|∇u|2

u
≤ c1c2

∫
Ω

|∇u|2

u
,

which combined with (76) gives∫
Ω

u ln
u

ū
≤ c1c2

∫
Ω

|∇u|2

u
= µ1

∫
Ω

|∇u|2

u
,

where µ1 = c1c2. Hence, we can choose µ ≥ µ1 such that the first term on the right
hand of (75) is nonnegative.

Next, we will show the nonnegativity of D1(u, v, w). In fact, we can rewrite
D1(u, v, w) as

D1(u, v, w) = µ

∫
Ω

ΘT
2 A2Θ2,

where A2 and Θ2 are defined in (42). The condition (6) gives ξγ
χα ≥ max

{
D1

D2
, D2

D1

}
.

Then hence the matrix A2 is nonnegative definite and hence D1(u, v, w) ≥ 0 for any
µ > 0.

Similarly, to show the nonnegativity of D2(u, v, w), we rewrite it as

D2(u, v, w) =

∫
Ω

ΘT
1 A4Θ1,

where

Θ1 =

[
∇v
∇w

]
and A4 =

[
θ2

2ξα (βµ− 1
2 ) 1−µ(β+δ)

2
1−µ(β+δ)

2
θ2

2γχ (δµ− 1
2 )

]
.

Using the matrix analysis, we know that A4 is nonnegative definite if µ > µ2 :=
max{ 1

2β ,
1

2β } and

[4θ2
2βδ − (θ2

2 − θ2
1)(β + δ)2]µ2 − 2(β + δ)θ2

1µ+ θ2
1 ≥ 0. (77)
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Since ξγ
χα > max

{
β
δ ,

δ
β

}
, one has

4θ2
2βδ − (θ2

2 − θ2
1)(β + δ)2 = 4(ξγβ − χαδ)(ξγδ − χαβ) > 0.

Hence (77) holds if ξγ
χα > max

{
β
δ ,

δ
β

}
and

µ > µ3 := max
{ θ1

2(ξγδ − χαβ)
,

θ1

2(ξγβ − χαδ)

}
.

Then if µ > max{µ2, µ3}, the function D2(u, v, w) is nonnegative. Hence, choosing
µ > max{µ1, µ2, µ3}, the function D(u, v, w) is nonnegative and (74) holds.

Substituting (74) into (33), we have

d

dt
E(u, v, w) +

1

µ
E(u, v, w) ≤ 0,

which implies

E(u, v, w) ≤ c3e−
1
µ t. (78)

On the other hand, from (40), we have

θ1

2ξχ

∫
Ω

u ln
u

ū
≤ E(u, v, w),

which along with (78) and Lemma 2.1 gives

‖u(·, t)− ū0‖2L1 = ‖u(·, t)− ū‖2L1 ≤
4ξχūc3
θ1

e−
1
µ t.

This yields (73) and concludes the proof.

Next, we will derive the decay rate of solutions in L∞-norm based on the decay
rate of ‖u(·, t)− ū0‖L1 .

Lemma 4.7. Let (u, v, w) be the global classical solution of system (5). Suppose
that there exist two positive constant C, λ such that

‖u(·, t)− ū0‖L1 ≤ Ce−λt, (79)

then the solution (u, v, w) will exponentially decay to (ū0,
α
β ū0,

γ
δ ū0) with L∞-norm

as t→∞.

Proof. With (79) in hand, we can use the Moser-Alikakos iteration procedure as in
[27] or the semigroup estimate method in [15] to obtain

‖u− ū0‖L∞ ≤ c1e−c1t.

Then applying the comparison principle as in [27], one can show that there exists a
constant c2 > 0 such that

‖v − α

β
ū0‖L∞ + ‖w − γ

δ
ū0‖L∞ ≤ c2e−c2t.

Then the proof of this lemma is completed.
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4.4. Proof of Theorem 1.1. Under the condition (6), we show the boundedness
of solution for system (5) with D1 6= D2 in Lemma 4.3, which implies there exists
a constant c1 > 0 such that ‖u(·, t)‖L∞ ≤ c1. Moreover, from Lemma 4.1, one has
a constant c2 > 0 such that ∫ t

0

∫
Ω

|∇u|2

u
≤ c2,

which together with the fact ‖u(·, t)‖L∞ ≤ c1 implies ‖u− ū0‖L∞ → 0 as t→∞ as
shown in Lemma 4.4. Then using the comparison principle for parabolic equations,
from the second and third equations of system (5), we show that the solution (v, w)

converges to (αβ ū0,
γ
β ū0) as t→∞ in Lemma 4.5. Moreover, if ξγ > χαmax

{
β
δ ,

δ
β

}
,

then using Lemma 4.6, we can obtain

‖u(·, t)− ū0‖L1 ≤ c3e−λt,
which, along with Lemma 4.7, gives the exponential decay rate as shown in Theorem
1.1. Then Theorem 1.1 is proved.
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