
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract—Screen Content Coding (SCC) is an extension of High
Efficiency Video Coding by adopting new coding modes to
improve the coding efficiency of SCC at the expense of increased
complexity. This paper proposes an online-learning approach for
fast mode decision and coding unit (CU) size decision in SCC. To
make fast mode decision, the corner point is firstly extracted as a
unique feature in screen content, which is an essential pre-
processing step to guide Bayesian decision modelling. Second,
distinct color number in a CU is derived as another unique feature
in screen content to build the precise model using online-learning
for skipping unnecessary modes. Third, the correlation of the
modes among spatial neighboring CUs is analyzed to further
eliminate unnecessary mode candidates. Finally, the Bayesian
decision rule using online-learning is applied again to make fast
CU size decision. To ensure the accuracy of the Bayesian decision
models, new scene change detection is designed to update the
models. Results show that the proposed algorithm achieves
36.69% encoding time reduction with 1.08% Bjøntegaard delta
bitrate (BDBR) increment under All Intra configuration. By
integrating into the existing fast SCC approach, the proposed
algorithm reduces 48.83% encoding time with 1.78% increase in
BDBR.

Index Terms—Screen Content Coding (SCC), High Efficiency
Video Coding (HEVC), fast mode decision, fast CU size decision,
Bayesian decision rule, scene change detection.

I. INTRODUCTION

ITH recent fast development of the Internet and wireless
communication, screen content coding (SCC) has been

developed for many video applications, such as desktop sharing,
cloud computing, and web conferencing. Unlike camera-
captured videos with only natural image blocks (NIBs), screen
content videos also contain screen content blocks (SCBs),
which have no noisy, many strong corners, a limited number of
different colors, and many identical blocks within a frame. High
Efficiency Video Coding (HEVC) is designed for NIBs in
camera-captured content, but it cannot compress SCBs in screen
content videos efficiently. Therefore, SCC [1] has been included
in the HEVC standard [2] as one of its extensions, and two new

Manuscript received December 21, 2017. This work was supported by the
Center for Signal Processing, Department of Electronic and Information
Engineering, The Hong Kong Polytechnic University, the research studentship
provided by the University, and a grant from the Research Grants Council of
the Hong Kong Special Administrative Region, China (Grant No. PolyU
152530/16E).

coding modes: intra block copy (IBC) [3] and palette (PLT) [4]
have been added to improve the coding performance of SCC but
induce intensive computational complexity.

HEVC adopts the flexible coding tree unit (CTU) partitioning
structure to improve the coding efficiency, but it leads to 220%
computational complexity increase compared with the previous
H.264/AVC standard [5] in the All Intra (AI) case [6]. In the
HEVC-based SCC, an encoder additionally checks the new IBC
and PLT modes in addition to the conventional intra (Cintra)
mode for a coding unit (CU), and the new modes cause a further
surge in the computation complexity. For the SCC reference
software – Screen Content Coding Test Model version 7.0
(SCM-7.0), about 61% of the computational complexity in the
mode searching process is brought by IBC and PLT modes.
Therefore, reducing the complexity of SCC is essential for
computation and energy constrained applications.

Recently, many approaches have been proposed to speed up
the encoding process of HEVC. Those efforts are mainly divided
into fast CU partition [7-14], and fast Cintra directional mode
decision [15], [16]. Specifically, good performances are
provided in [9-11], where the Bayesian decision rule is utilized
to make early CU split and pruning decisions for NIBs.
However, the new IBC and PLT modes make CU size decision
of SCC different from HEVC, where an inhomogeneous CU is
possible to be encoded as a large block without partitioning.
Therefore, the algorithms in [9-11] are ineffective when applied
to SCC. Besides, the new IBC and PLT modes make the fast
mode decision of SCC much more challenging. These new
modes make all fast HEVC algorithms in [7-16] fail in fast mode
decision of Cintra, IBC and PLT, as they only consider the
characteristics of NIBs without the newly introduced IBC and
PLT modes.

To reduce the computational complexity of SCC, existing
SCC fast algorithms can be divided into IBC searching
algorithms [17-20], fast CU partition algorithms [21-23], and
fast algorithms where mode decision and CU partition decision
are all considered [24-26]. To reduce the computational
complexity of IBC mode in SCC, the works in [17-19] utilize
features such as the rate-distortion (RD) cost of Cintra mode,

The authors are with the Center for Signal Processing, Department of
Electronic and Information Engineering, The Hong Kong Polytechnic
University, Kowloon, Hong Kong (e-mail: wei.kuang@connect.polyu.hk;
enylchan@polyu.edu.hk; sik-ho.tsang@polyu.edu.hk; enwcsiu@polyu.edu.hk).

Online-Learning-Based Bayesian Decision Rule
for Fast Intra Mode and CU Partitioning

Algorithm in HEVC Screen Content Coding
Wei Kuang, Student Member, IEEE, Yui-Lam Chan, Member, IEEE, Sik-Ho Tsang, Member, IEEE,

and Wan-Chi Siu, Life Fellow, IEEE

W

This is the Pre-Published Version.

The following publication W. Kuang, Y. -L. Chan, S. -H. Tsang and W. -C. Siu, "Online-Learning-Based Bayesian Decision
Rule for Fast Intra Mode and CU Partitioning Algorithm in HEVC Screen Content Coding," in IEEE Transactions on Image
Processing, vol. 29, pp. 170-185, 2020 is available at https://doi.org/10.1109/TIP.2019.2924810.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

hash value, CU activity and gradient to skip unnecessary IBC
checking. In [20], a new mode was designed to fill a noiseless
smooth CU by its boundary samples.

To speed up the CU partition process of SCC, conventional
neural network-based classifiers are trained to make fast CU
size decision by utilizing features that describe CU statistics and
sub-CU homogeneity in [21]. However, it induces high RD
performance loss. In [22], the depth information of the
collocated CU is used to predict the depth level of the current
CU. However, this method can only handle the stationary CUs
well. In [23], by using rules based on CU entropy and coding
bits, early termination is made for CU partitions adaptively.

To make both fast mode decision and fast CU size decision
of SCC, CU content classifications were conducted in [24-27].
However, they mainly focus on the fast mode decision for
traditional NIBs by CU type classification. In [24], decision
tree-based classifiers are used to classify incoming blocks into
screen content blocks SCBs and NIBs. Two classifiers are
specially designed for NIBs, and they predict Cintra directional
mode and terminate CU partition of NIBs, respectively. For
SCBs, only the Cintra mode is skipped so that both IBC and
PLT modes need to be checked. Although thresholds are set to
skip remaining modes and CU partitions, it is only useful for
CUs with small encoding bits. Similarly, the work in [25] also
classifies CU into NIBs and SCBs by analyzing content
characteristics. IBC and PLT mode candidates are skipped for
NIBs but all modes are checked for SCBs. Besides, bit per pixel
in the current CU and the neighboring/collocated CU depth
information are used to make fast CU size decision. In [26], Intra
mode is checked for all CUs with 2N×2N prediction units (PUs)
to collect features. Then decision tree-based classifiers are
invoked to make CU type decision and CU partitioning decision.
If a CU is classified as a SCB, both IBC and PLT modes are
checked. Otherwise, only Cintra mode is checked for N×N PUs
in the depth level of 3 for NIBs. In [27], conventional neural
network-based classifiers are trained to classify CUs in NIBs
and SCBs. Again, IBC, PLT modes and a subset of Cintra mode
are checked for SCBs, while only Cintra mode is checked for
NIBs. Then, information from spatial and temporal adjacent
CUs is utilized to early terminate CU patriation.

Compared with pre-trained models and pre-tuned heuristics
in [17-27], online-learning has the advantage of generating
decision models adaptively according to the content being
encoded. Once the framework of the fast algorithm has been
decided, it can be directly applied to sequences with different
content characteristics, QPs and color formats without any
modification because the decision model is always updated
according to the content being encoded. On the contrary, pre-
trained models or pre-tuned heuristics are derived with limited
training data and then they are applied to all sequences.
Therefore, they usually have the generalization problem if the
testing sequences have different characteristics from the
training data, such as different content characteristics, QPs or
color formats. In this paper, we therefore propose an online-
learning-based fast mode decision and CU size decision
approaches using the Bayesian decision rule. Bayesian decision
rule is friendly to online-learning since it only needs to estimate
the priori probability and likelihood function when there is a
new scene, and then the derived model is applied to the
following frames to make fast decision. Therefore, it costs

much less time for model training than other classifiers such as
decision trees or neural networks. In brief, the main
contributions of this paper are summarized as follows.
 Bayesian decision rule is one of the well-known

classification tools used in video coding. As a
classification problem, some representative features such
as Rate-Distortion (RD) cost, variance of prediction errors,
etc. in camera-capture contents are always used for
training [9-11]. However, these features cannot
characterize screen contents. Corner point (CP) is a unique
feature to characterize screen contents since SCBs usually
contain sharp corners, while NIBs do not. In this paper, CP
is explored to divide CUs into two groups with and without
CP. We find that these two groups cannot share the same
Bayesian decision model. One of the contributions in this
paper is how to properly adopt CPs in the Bayesian
decision rule for SCC. We reveal that CP is an excellent
complement of the Bayesian decision rule for mode
decision in SCC

 Distinct color number in a CU is derived as another unique
feature in screen content sequences, and it is used to build
two Bayesian decision models for CU with and without
CPs using online-learning for skipping unnecessary modes.

 The correlation of the modes among spatial neighboring
CUs is analyzed to further eliminate mode candidates of
the current CU.

 For CU size decision, CUs with the same optimal modes
are grouped together to build Bayesian decision models
using online-learning for early terminating unnecessary
partitions.

 A new low-complexity scene change detection method is
specifically designed for screen contents to update
statistical parameters adaptively for our proposed online-
learning SCC algorithm in different scenes.

The differences between our contributions and the related
schemes can be summarized as follows.
 The new IBC and PLT modes make CU size decision of

SCC very different from HEVC, so that the fast CU size
decision using the Bayesian decision rule in [9-11] cannot
be efficiently applied to SCC. Besides, these Bayesian
decision rule in [9-11] are only limited to CU size decision,
but not used for fast mode decision in SCC since there is
only Cintra mode in HEVC. The introductions of IBC and
PLT make the necessity of a completely new fast mode
decision method in SCC with the help of new features. To
the best of our knowledge, we are the first to use the
Bayesian decision rule for the fast mode decision by
analyzing the characteristics of CUs with various modes
including both newly introduced IBC and PLT modes.

 Unlike the algorithms in [17-20], which only simplify IBC
mode of SCC, and the algorithms in [21-23], which only
simplify CU size decision of SCC, we consider the whole
encoding process of SCC to provide more encoding time
reduction.

 Although the algorithms in [24-27] can speed up both
mode decision and CU size decision of SCC, the fast mode
decision in [24-27] is from the idea of CU type decision.
They treat the decisions for IBC and PLT modes the same
so that at least two modes (IBC+PLT or Cintra+IBC+PLT)
are checked for a SCB. Comparatively, the proposed fast

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

mode decision techniques make decision for each mode
separately, so that many SCBs can only check one mode;

 Unlike [17-27] applying pre-trained models and pre-tuned
heuristics to all sequences, the proposed algorithm
generates decision models adaptively according to the
content being encoded by using online-learning.

 Different from [22] [25] and [27], our CU size algorithm
does not need information from the collocated CU. When
it is feasible to make CU depth prediction using the mode
and CU depth information from the collocated CU, the
proposed CU size decision can also work with it to further
speed up the SCC encoder.

The rest of the paper is organized as follows. Section II
briefly reviews and analyzes the original mode decision scheme
in SCC. Section III presents the proposed fast mode and CU
size decision techniques. Section IV gives the experimental
results and discussions. Finally, Section V concludes this paper.

II. REVIEW AND ANALYSIS ON MODE DECISIONS IN SCC
Due to different characteristics in screen content videos, IBC

mode and PLT mode were proposed for SCC as additional
coding tools. IBC mode is a block matching-based approach
which can be considered as motion compensation within the
current reconstructed frame. The syntax for IBC mode is unified
with inter-mode but it adopts different searching strategy from
inter-mode. IBC mode is firstly checked using block vector (BV)
predictors of skip and merge modes, which is an intra version of
the skip and merge modes in inter-prediction. Prediction residual
is signaled to the decoder for merge mode, while it is omitted for
skip mode to reduce bitrate. If skip mode is chosen as the best
mode so far, the mode search process of a CU is early terminated
and the following IBC search and PLT mode are skipped.
Otherwise, IBC search is performed for CUs with sizes of 16×16
and 8×8, which is an intra version of the advanced motion vector
prediction (AMVP) mode in inter-prediction. For 16×16 CUs,
only 2N×2N PUs are checked while PU partitions of N×2N and
2N×N are also allowed for 8×8 CUs. Besides, a new hash-based
search is enabled for 8×8 CUs with 2N×2N PUs, and only
blocks with the same hash value as the current CU are checked.
Finally, the optimal BV is signaled using the syntax of AMVP
mode. PLT mode is another effective approach applied for CU
sizes from 32×32 down to 8×8. The idea of PLT mode comes
from the observation that SCBs often contain a limited number
of sample values. Several representative sample values in a CU
are selected as base colors to form a palette table, and an index
map is generated to send color indices for each position. A
detailed technical overview of IBC and PLT can be found in [1]
and [3].

SCC inherits the same coding structure from HEVC. Each
CTU can be recursively partitioned into four sub-CUs until the
smallest coding unit (SCU) size of 8×8 is reached. In SCC intra
coding, three modes, Cintra mode, IBC mode and PLT mode,
will both be checked for all depth levels, and then the optimal
CU partition with the optimal mode will be selected by
comparing their RD costs. However, this decision process leads
to high computational complexity of the encoder. Fig. 1 shows
the mode selection results for “WebBrowsing” with the
quantization parameter (QP) of 22 and the depth level of 2. As
IBC and PLT modes are specially designed for SCBs, they have

higher selection probabilities for SCBs, while NIBs tend to
select Cintra mode because of fewer repeated patterns and high
number of sample values. It is noted that single color CUs can
be encoded efficiently by all modes, thus they may select any
mode as their optimal mode. Besides, due to the introduction of
new IBC and PLT modes, SCBs with complex texture may also
select large size CUs. Therefore, new fast mode decision and CU
size decision methods based on these different characteristics
between NIBs and SCBs are highly desired.

III. PROPOSED FAST MODE AND CU SIZE DECISION

ALGORITHM
In SCC, the computational complexity mainly stems from the

RD cost computation of all modes in every depth level. Thus, it
is very efficient to reduce the computational complexity if the
mode and CU size decisions can be predicted precisely, and
then all the remaining unnecessary RD cost computation can be
skipped. As shown in Fig. 1, SCBs usually have strong corners
and limited color numbers, which are more likely to select IBC
and PLT modes. Meanwhile, NIBs are smoother and have
higher color numbers, which are more likely to select Cintra
mode. Besides, there exists spatial correlation among the
current CU and its neighboring CUs, and the current CU is more
likely to select the same optimal mode as that of its neighboring
CUs. Furthermore, for a certain depth level, RD costs of unsplit
CUs concentrate in the range with small values, while the RD
costs of split CUs show relatively wide and flat distribution. By
utilizing these observations, three techniques are designed in this
paper for expediting mode decision and CU size decision in SCC,
which are called fast mode decision by online-learning (FMD),
mode decision refinement (MDR), and fast CU size decision by
online-learning (FCUSD). Besides, to obtain the correct
learning statistics for making decisions, a new scene change
detection method, ratio of new distinct color number (RDN), is
specifically designed for scene content which facilitates the
proposed algorithm to update the learning statistics adaptively.
The flowchart of the proposed fast algorithm is shown in Fig. 2,
which will be explained in detail in following sub-sections.

A. Fast Mode Decision
The proposed fast mode decision algorithm determines

whether early mode skip can be performed based on two
techniques, FMD and MDR. FMD is made by using the online-

Fig. 1. Mode distribution for “WebBrowsing” with QP of 22 and the depth level
of 2. Cintra, IBC and PLT modes are denoted by blue, yellow and red blocks,
respectively. Those regions without any colors denoted are terminated at depth
levels of 0 or 1.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

learning based Bayesian decision rule, which early skips the
modes with low probabilities for being optimal modes. Then,
MDR utilizes the optimal mode information of spatial
neighboring CUs to further reduce unnecessary mode
candidates for the current CU. Since FMD and MDR consider
the decision of each mode separately, the encoder can check one
mode from IBC and PLT rather than always checking them
together as in [24-27].
1) CP Detection

CP is a particular feature of SCBs which usually contain
sharp corners while NIBs are smooth. Before utilizing the
Bayesian decision rule to make fast mode decision, a CP
detection is adopted as a pre-processing step shown in the
module 3 of Fig. 2. The basic principle of CP detection is to
find the interest points with two dominant and different edge
directions in a local neighborhood of the point. Compared with
NIBs, SCBs contain more strong corners. Thus, the Shi–Tomasi
CP detection algorithm in [28] is applied to classify a frame into
SCBs and NIBs roughly. In [28], an image with only luma
component is used, which is denotes by ܫ. The covariance
matrix of an image patch at (ݑ, and itself after shifted by (ݒ
,ݔ) is written as (ݕ

T(ݔ, (ݕ = ∑ ∑ ,ݑ)ݓ (ݒ ቈ
௫ܫ

ଶ ௬ܫ௫ܫ

௬ܫ௫ܫ ௬ܫ
ଶ ቉௩௨ (1)

where ݑ)ݓ, (ݒ is a weight window. ܫ௫ and ܫ௬ are the partial
derivatives of ܫ . The eigenvectors of ܶ are two principal
directions and the eigenvalues of ܶ reflect the degrees of the
change in their directions. Thus, ܶ should have two large
eigenvalues ଵߠ and ߠଶ , and the strength of a CP, ST, can be
defined as

ܵܶ = ଵߠ)݊݅݉ , ଶ). (2)ߠ

The minimal accepted strength ܵ ௠ܶ௜௡ of CPs in an image is
determined as

ܵ ௠ܶ௜௡ = ஼௉ܪܶ × ܵ ௠ܶ௔௫ (3)

where ܵ ௠ܶ௔௫ is the largest strength of all CPs in the image,
and ஼௉ܪܶ is a minimal accepted strength threshold. If the
strength of a CP is larger than ܵ ௠ܶ௜௡, this point can be detected
as a CP. Otherwise, it is ignored.

We implemented the CP detection method based on

Fig. 2. Proposed fast mode and CU size decision flowchart. (a) Workflow of encoding a sequence, and (b) workflow of encoding a CTU.
1. Online-learning phase. 2. Proposed fast decision phase. 3. CP detection. 4. FMD. 5. MDR. 6. FCUSD.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

OpenCV2.4.9 function goodFeaturesToTrack(). For screen
content videos, this method cannot detect CPs well with only
luma samples used. Therefore, CPs in a frame are detected by
considering all three components in our implementation. CPs
are detected with each component using (1)-(3) separately, and
then a pixel is treated as a CP if at least one of its components
is detected as a CP. It is noted that this CP detection is very
simple, and our experiment shows that it takes only 0.46% of
the encoding time in the original SCM-7.0. CP detection with
luma only and with all components are shown in Fig. 3(a) and
(b), respectively, and better detection results can be obtained by
using all components in Fig. 3(b). Fig. 4 shows the detected CPs
of “MissionControlClip2” with different threshold values
of ܶܪ஼௉ . As can be seen easily, SCBs contain many CPs while
NIBs contain much less CPs. However, there are also some low
contrast SCBs which are difficult to detect, as shown in the
enlarged region of Fig. 4. Therefore, in our proposed algorithm,
the strength of accepted CPs is set as a relatively small value
with ܶܪ஼௉ = 0.01 to detect those low contrast CPs. Thus, CUs
in a frame is divided into two groups now: CUs without corner
CPs (݃݌ݑ݋ݎே஼௉), and CUs with CPs (݃݌ݑ݋ݎ஼௉). Table I shows
the mode distributions in ݃݌ݑ݋ݎே஼௉ and ݃݌ݑ݋ݎ஼௉ for the first
100 frames of “MissionControlClip3” encoded with QP of 22.
It is observed that most CUs in ݃݌ݑ݋ݎே஼௉ select Cintra as their
optimal modes, while a significant number of CUs in ݃݌ݑ݋ݎ஼௉
selects PLT or IBC as their optimal modes.
2) Fast Mode Decision by Online-learning (FMD)

After the pre-processing step of CP detection, early mode
decisions are made for CUs in ݃݌ݑ݋ݎ஼௉ and ݃݌ݑ݋ݎே஼௉ ,
respectively. To build the Bayesian decision model for each

mode, the distinct color number of a CU is utilized as a unique
feature in screen content sequences. To provide an accurate
estimation for the distinct color number distribution, an online-
learning based approach is adopted in our proposed algorithm.
When encoding a video sequence, all statistical parameters of
the Bayesian classifiers are obtained in the online-learning
phase, where the first ܮ frames of a new scene are encoded by
the original SCM encoder to get these statistical parameters.

To make early mode decisions, three classes are defined as
Cintra, IBC and PLT mode classes: ߱஼௜௡௧௥௔ , ߱ூ஻஼ and ߱௉௅் in
each group. The distinct color number in a CU is extracted as the
feature for classification. To fully utilize the pixel value
information, a 24-bit sample value is utilized by concatenating
the three components of a pixel. NIBs may have sensor noise
while SCBs naturally concentrate on only a few sample values.
Therefore, in each group, NIBs usually contain more distinct
colors than SCBs. To analyze the statistical distribution, let k be
the distinct color number in a CU varying from 1 to the total
pixel number in this CU. ௚ܲ௥௢௨௣೘ ,ௗ(݇|߱௜) is the conditional
density of k in ߱௜ or the likelihood function, where
݅ϵ{ܽݎݐ݊݅ܥ, ,ܥܤܫ {ܶܮܲ , depth level ݀ϵ{0,1,2,3} and
݉ϵ{ܰܲܥ, {ܲܥ . ௚ܲ௥௢௨௣೘,ௗ(݇|߱௜) can be obtained from the
encoding statistics in the online-learning phase. To study the
distributions of likelihood functions, ௚ܲ௥௢௨௣೘,ௗ(݇|߱௜) of three
typical sequences including “MissionControlClip3”,
“Programming” and “EBURainFruits”, are shown in Figs. 5-7
with QPs of 22 and 37 at the depth level of 3, respectively. It is
noted that “MissionControlClip3” and “Programming” contain
both NIBs and SCBs while “EBURainFruits” only contains
NIBs. As shown in Figs. 5-6(a) and (b), the likelihood
distributions for different ߱௜ are similar, while diverse
likelihood distributions in Figs. 5-6(c) and (d) are shown for
different ߱௜ . In ݃݌ݑ݋ݎே஼௉ , CUs in all classes show a
concentrated distribution centered in the range with small values
of ݇ . However, in ݃݌ݑ݋ݎ஼௉ , most CUs in ߱௉௅் and ߱ூ஻஼
contain a small value of ݇, while CUs in ߱஼௜௡௧௥௔ tend to have a

Table I
MODE DISTRIBUTIONS IN ݃݌ݑ݋ݎே஼௉ AND ݃݌ݑ݋ݎ஼௉ FOR THE FIRST 100

FRAMES OF “MISSIONCONTROLCLIP3” ENCODED WITH QP OF 22.
ே஼௉݌ݑ݋ݎ݃

CU size PLT IBC Cintra
64×64 3.37% 96.63%
32×32 3.03% 7.46% 89.51%
16×16 1.17% 24.79% 74.04%
8×8 0.90% 24.94% 74.16%

஼௉݌ݑ݋ݎ݃
CU size PLT IBC Cintra
64×64 25.15% 74.85%
32×32 65.71% 17.06% 17.23%
16×16 32.99% 49.01% 18.00%
8×8 12.45% 64.53% 23.02%

(a) (b) (c)

Fig. 4. Detected CPs of “MissionControlClip2” with different values of ܶܪ஼௉ .
(a) ܶܪ஼௉ = 0.1, (b) ܶܪ஼௉ = 0.05, and (c) ܶܪ஼௉ = 0.01 (CPs are represented
by color points).

 (a) CPs detected by luma component. (b) CPs detected by all components.

Fig. 3. Comparison of CP detection methods with (a) luma component (b) and all components (CPs are shown by color points).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

large value of ݇. In Fig. 7, the CUs selecting Cintra mode also
have larger values of ݇ in both groups. Besides, since almost all
CUs are NIBs, the curves for IBC and PLT modes are given
based on very limited CUs. Cintra mode will dominate the mode
decision process for “EBURainFruits”, which will be shown in
Fig. 10.

In considering whether to perform early skip for a mode, it is
determined based on the posteriori probability ௚ܲ௥௢௨௣೘,ௗ(߱௜|݇),
which is the conditional probability that ߱௜ is the best mode
given k in ݃݌ݑ݋ݎ௠ and d. According to the Bayes’ rule,
 ௚ܲ௥௢௨௣೘ ,ௗ(߱௜|݇) can be calculated as

 ௚ܲ௥௢௨௣೘ ,ௗ(߱௜|݇) =
௉೒ೝ೚ೠ೛೘,೏(௞|ఠ೔)௉೒ೝ೚ೠ೛೘,೏(ఠ೔)

௉೒ೝ೚ೠ೛೘,೏(௞)
 (4)

where ௚ܲ௥௢௨௣೘,ௗ (߱௜) represents the priori probability of ߱௜ and

௚ܲ௥௢௨௣೘,ௗ (݇) represents the total probability density of ݇ in
௠݌ݑ݋ݎ݃ and ݀. ௚ܲ௥௢௨௣೘ ,ௗ(݇) is obtained by

௚ܲ௥௢௨௣೘,ௗ(݇) = ∑ ௚ܲ௥௢௨௣೘ ,ௗ(݇|߱௜) ௚ܲ௥௢௨௣೘ ,ௗ(߱௜)ఠ೔ . (5)

௚ܲ௥௢௨௣೘,ௗ (݇|߱௜) and ௚ܲ௥௢௨௣೘ ,ௗ(߱௜) can be obtained from the
encoding statistics in the learning frames.

Figs. 8-10 show ௚ܲ௥௢௨௣೘ ,ௗ(߱௜|݇) in ݃݌ݑ݋ݎே஼௉ and
஼௉݌ݑ݋ݎ݃ for “MissionControlClip3”, “Programming” and
“EBURainFruits” with QPs of 22 and 37 in the depth level of 3,

respectively. In ݃݌ݑ݋ݎ஼௉ of Figs. 8-9(c) and (d) in
“MissionControlClip3” and “Programming”, because PLT and
IBC modes are specially designed for SCBs,

௚ܲ௥௢௨௣಴ು ,ଷ(߱௉௅்|݇) and ௚ܲ௥௢௨௣಴ು ,ଷ(߱ூ஻஼|݇) are larger for small
values of ݇ , while the posteriori probability of Cintra mode

௚ܲ௥௢௨௣಴ು ,ଷ(߱஼௜௡௧௥௔ |݇) increases as ݇ gets larger. In ݃݌ݑ݋ݎே஼௉
of Figs. 8-9(a) and (b) in “MissionControlClip3” and
“Programming”, there are many CUs with relatively smooth
content, so that ௚ܲ௥௢௨௣ಿ಴ು ,ଷ(߱௉௅்|݇) are small for all ݇ values.
While smooth CUs with a small value of ݇ can be encoded
efficiently by both IBC and Cintra modes, ௚ܲ௥௢௨௣೘,ௗ(߱ூ஻஼ |݇)
decreases as ݇ gets larger, and it makes ߱஼௜௡௧௥௔ become the
most probable class for CUs with large values of ݇. From the
above analysis, it can be found that posteriori probabilities of
߱௜ in ݃݌ݑ݋ݎே஼௉ and ݃݌ݑ݋ݎ஼௉ do not share the same
distribution, but they have a very similar distribution across the
two screen content sequences, “MissionControlClip3” and
“Programming”, at different QPs . It implies that CP is a good
feature to characterize scene contents, and the use of CP to
divide CUs into ݃݌ݑ݋ݎே஼௉ and ݃݌ݑ݋ݎ஼௉ is crucial to apply the
Bayesian decision rule for mode decision in SCC properly. It
is noted that, in “EBURainFruits” shown in Fig. 10, the most
probable class is always Cintra in both ݃݌ݑ݋ݎே஼௉ and ݃݌ݑ݋ݎ஼௉
since the priori probability of IBC and PLT modes are very small.
Although different types of sequences have different
characteristics, the proposed online-learning-based algorithm

(a) (b) (c) (d)

Fig. 5. Likelihood functions ௚ܲ௥௢௨௣೘ ,ௗ(݇| ௜߱) for “MissionControlClip3” at the depth level of 3 in (a) ݃݌ݑ݋ݎே஼௉ with QP of 22, (b) ݃݌ݑ݋ݎே஼௉ with QP of 37, (c)
஼௉݌ݑ݋ݎ݃ with QP of 22, and (d) ݃݌ݑ݋ݎ஼௉ with QP of 37.

 (a) (b) (c) (d)

Fig. 6. Likelihood functions ௚ܲ௥௢௨௣೘,ௗ(݇|߱௜) for “Programming” at the depth level of 3 in (a) ݃݌ݑ݋ݎே஼௉ with QP of 22, (b) ݃݌ݑ݋ݎே஼௉ with QP of 37, (c) ݃݌ݑ݋ݎ஼௉
with QP of 22, and (d) ݃݌ݑ݋ݎ஼௉ with QP of 37.

 (a) (b) (c) (d)

Fig. 7. Likelihood functions ௚ܲ௥௢௨௣೘,ௗ(݇|߱௜) for “EBURainFruits” at the depth level of 3 in (a) ݃݌ݑ݋ݎே஼௉ with QP of 22, (b) ݃݌ݑ݋ݎே஼௉ with QP of 37, (c) ݃݌ݑ݋ݎ஼௉
with QP of 22, and (d) ݃݌ݑ݋ݎ஼௉ with QP of 37.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

can derive content adaptive rules for fast mode decision, which
is the advantage of our algorithm compared with the pre-trained
model or pre-tuned heuristics in [17-27].

When implementing the proposed FMD, ௚ܲ௥௢௨௣೘ ,ௗ(߱௜|݇) is
calculated based on (4) and (5) in the learning phase. Then, to
make fast mode decision, the distinct color number k for each
CU is extracted, and the mode class ߱௜ of the CU is skipped if

݉݌ݑ݋ݎ݃ܲ ,݀(߱݅|݇) < (6) .ߙ

As illustrated in the module 4 of Fig. 2, if the probability for a
CU selecting a mode class ߱݅ is lower than the threshold value

of ߙ, early skip for this mode will be performed. Since CUs with
݇ = 1 can be encoded by all three modes efficiently, we exclude
them in our algorithm for the sake of simplicity. Besides, the
statistical parameters are estimated for different sizes of CUs
including 64×64, 32×32, 16×16 and 8×8, respectively. The
details will be given in Section III.D.
3) Mode Decision Refinement (MDR)

To further reduce the computational complexity of the mode
decision process, we analyze the encoding time distribution
among different modes and depth levels under AI configuration.
The test sequences are the typical YUV 4:4:4 screen content
sequences which were used by the experts in the JCT-VC group
[29]. They are divided into 4 categories: text and graphics with
motion (TGM), mixed content (M), animation (A), and camera-
captured content (CC), as shown in Table II. The test platform
used for simulations is a HP EliteDesk 800 G1 computer with a
64-bit Microsoft Windows 10 OS running on an Intel Core i7-
4790 CPU of 3.6 GHz and 32.0 GB RAM. Table III shows the
average encoding time distribution for all test sequences, where
the first 100 frames of each sequences are encoded with QPs of

TABLE II
TEST SEQUENCES IN EACH CATEGORY

Categories Sequences

TGM

FlyingGraphics, 1920×1080, 300 frames
Desktop, 1920×1080, 600 frames
Console, 1920×1080, 600 frames

ChineseEditing, 1920×1080, 600 frames
WebBrowsing, 1280×720, 300 frames

Map, 1280×720, 600 frames
Programming, 1280×720, 600 frames

SlideShow, 1280×720, 500 frames

M
BasketballScreen, 2560×1440, 300 frames

MissionControlClip2, 2560×1440, 300 frames
MissionControlClip3, 1920×1080, 600 frames

A Robot, 1280×720, 300 frames

CC EBURainFruits, 1920×1080, 250 frames
Kimono1, 1920×1080, 120 frames

Table III
AVERAGE TIME DISTRIBUTION AMONG DIFFERENT MODES AND DEPTH

LEVELS WITH QPS OF 22, 27, 32, 37
CU size IBC (%) PLT (%) Cintra (%) Total (%)
64×64 3.34 4.84 8.19
32×32 5.23 5.36 4.63 15.23
16×16 14.52 4.67 7.58 26.76
8×8 23.82 4.27 21.74 49.82

 (a) (b) (c) (d)
Fig. 9. Posteriori probabilities ௚ܲ௥௢௨௣೘,ௗ(߱௜ |݇) in ݃݌ݑ݋ݎே஼௉ with QP of 22 (a) and 37 (b), in ݃݌ݑ݋ݎ஼௉ with QP of 22 (c) and 37 (d) for “Programming” at the depth
level of 3.

 (a) (b) (c) (d)
Fig. 8. Posteriori probabilities ௚ܲ௥௢௨௣೘,ௗ(߱௜|݇) in ݃݌ݑ݋ݎே஼௉ with QP of 22 (a) and 37 (b), in ݃݌ݑ݋ݎ஼௉ with QP of 22 (c) and 37 (d) for “MissionControlClip3” at
the depth level of 3.

 (a) (b) (c) (d)
Fig. 10. Posteriori probabilities ௚ܲ௥௢௨௣೘ ,ௗ(௜߱ |݇) in ݃݌ݑ݋ݎே஼௉ with QP of 22 (a) and 37 (b), in ݃݌ݑ݋ݎ஼௉ with QP of 22 (c) and 37 (d) for “EBURainFruits” at the
depth level of 3.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

22, 27, 32, and 37. As shown in Table III, the computational
complexity mainly comes from IBC and Cintra modes at the
depth levels of 2 and 3. Therefore, a IBC and Cintra mode
decision refinement algorithm for 8×8 and 16×16 CUs is worth
developing.

As shown in Fig. 1, the current CU may share similar
characteristics as its neighboring CUs, and it tends to select the
same optimal mode of its neighboring CUs at the same depth
level. If a CU selects a different mode from its top and left CUs,
it is defined as the independent CU in our paper. To reveal the
strong mode correlation among current CU and its top and left
CUs, we study the statistic probabilities of the independent CU
for IBC and Cintra modes at the depth levels of 2 and 3, which
are calculated as the percentages of the independent CUs in all
CUs from the depth levels of 2 and 3. The average independent
CU probabilities calculated using the first 100 frames of all test
sequences are shown in Table IV for four QPs. According to
this table, the independent CU probabilities for IBC and Cintra
modes are very low. Thus, during the mode decision refinement
process, the left and top CUs at the same depth level of the
current CU are used to refine the mode decision process and
skip IBC and Cintra modes adaptively for 8×8 and 16×16 size
CUs.

Let ݉݁݀݋௫ represent a mode, and ݉݁݀݋௫ϵ{ܽݎݐ݊݅ܥ, In .{ܥܤܫ

the module 5 of Fig. 2, ݉݁݀݋௫ will be skipped in the proposed
algorithm if all the following conditions are satisfied:

Condition 1: Neither the top CU nor the left CU selects
 .௫ as its optimal mode at the current depth level݁݀݋݉
Condition 2: The mode decisions of the top and left CUs are
not changed by using MDR, and that is to avoid the effect
of error propagation.
Condition 3: ௚ܲ௥௢௨௣೘,ௗ(߱௜|݇) < γ, ݅ϵ{ܽݎݐ݊݅ܥ, γ is a .{ܥܤܫ
threshold used to avoid the skipping of modes with high
probabilities to be the optimal mode for a CU.

B. Fast CU Size Decision by Online-learning (FCUSD)
As shown in Table III, the computational complexity

increases as the depth level increases. Therefore, a CU partition
early termination algorithm is desirable to skip the CU checking
of the high depth level adaptively.

The CU partition process is treated as a binary classification
problem in our proposed algorithm. For each CU, two classes
are defined as ߱ݐ݈݅݌ݏ and ߱௨௡௦௣௟௜௧ . CUs in ߱ݐ݈݅݌ݏ will continue
splitting while CUs in ߱ݐ݈݅݌ݏ݊ݑ will be terminated at the current
depth level. The RD cost of the optimal mode under the current
depth level, ܬ, is selected as the feature for classification, and is
defined as

ܬ = ௌௌாܦ + ߣ × ܴ (7)

where ௌௌாܦ denotes the sum of squared errors between the
current CU and the predicted CU, ܴ is the bit cost, and λ is the
Lagrange multiplier in terms of QP, which is given by

ߣ = ܥ × (ொ௉ିଵଶ
ଷ.଴

)ଶ (8)

where C is a factor determined by the picture type and coding
structure. In our paper, we directly extract the value of ܬ from
the original SCC encoder without inducing any further
computation.

Unlike camera-capture videos which are encoded by Cintra
mode only, there are different types of CUs in screen content
videos, and they are encoded by different optimal modes.
Considering that the distributions of RD costs can be different
when CUs are encoded by three different optimal modes –

 (a) (b) (c) (d) (e) (f)
Fig. 11. Likelihood functions ௚ܲ௥௢௨௣೙ ,ௗ(ܬ| ௝߱) for “MissionControlClip3” at depth level of 2 in (a) ݃݌ݑ݋ݎ஼௜௡௧௥௔ with QP of 22, (b) ݃݌ݑ݋ݎ஼௜௡௧௥௔ with QP of 37, (c)
ூ஻஼݌ݑ݋ݎ݃ with QP of 22, (d) ݃݌ݑ݋ݎூ஻஼ with QP of 37, (e) ݃݌ݑ݋ݎ௉௅் with QP of 22, and (f) and ݃݌ݑ݋ݎ௉௅் with QP of 37.

 (a) (b) (c) (d) (e) (f)
Fig. 12. Likelihood functions ܲ ௚௥௢௨௣೙ ,ௗ(ܬ| ௝߱) for “Programming” at depth level of 2 in (a) ݃݌ݑ݋ݎ஼௜௡௧௥௔ with QP of 22, (b) ݃݌ݑ݋ݎ஼௜௡௧௥௔ with QP of 37, (c) ݃݌ݑ݋ݎூ஻஼
with QP of 22, (d) ݃݌ݑ݋ݎூ஻஼ with QP of 37, (e) ݃݌ݑ݋ݎ௉௅் with QP of 22, and (f) and ݃݌ݑ݋ݎ௉௅் with QP of 37.

 (a) (b)
Fig. 13. Likelihood functions ܲ ௚௥௢௨௣೙ ,ௗ(ܬ| ௝߱) in ݃݌ݑ݋ݎ஼௜௡௧௥௔ with QP of (a) 22
and 37 (b) for “EBURainFruits” at depth level of 2.

Table IV
STATISTIC PROBABILITIES OF INDEPENDENT CUS FOR IBC AND CINTRA

MODES WITH SIZE OF 8×8 AND 16×16.
QP IBC8×8 (%) Cintra8×8 (%) IBC16×16 (%) Cintra16×16 (%)
22 4.51 3.38 4.76 2.53
27 4.62 3.25 4.72 2.81
32 4.46 3.12 4.84 3.02
37 4.18 3.13 4.82 3.03

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

Cintra, IBC, and PLT, CUs with the same optimal mode are
then grouped together. Therefore, CUs are divided into three
groups according to their optimal modes. Similar to Section
III.A, likelihood functions ܲ݃݊݌ݑ݋ݎ are estimated in the (݆߱|ܬ)݀,
online-learning phase according to the conditional density of ܬ
in ݆߱, where ݆ϵ{ݐ݈݅݌ݏ, non-SCU depth level ݀ϵ{0,1,2} ,{ݐ݈݅݌ݏ݊ݑ
and ݊ϵ{ܽݎݐ݊݅ܥ, ,ܥܤܫ To study the different distributions .{ܶܮܲ
of the RD cost for CUs belonging to ߱ݐ݈݅݌ݏ and ߱ݐ݈݅݌ݏ݊ݑ ,
݊݌ݑ݋ݎ݃ܲ (݆߱|ܬ)݀, for “MissionControlClip3”, “Programming”
and “EBURainFruits” with QPs of 22 and 37 are shown in Figs.
11-13 at the depth level of 2. Specially, only ܲ݃(݆߱|ܬ)݀,ܽݎݐ݊݅ܥ݌ݑ݋ݎ
is shown in Fig. 13 since CUs in ݃݌ݑ݋ݎூ஻஼ and ݃݌ݑ݋ݎ௉௅் are
very limited in “EBURainFruits”. It is observed that
݊݌ݑ݋ݎ݃ܲ in each group shows relatively wide and flat (ݐ݈݅݌ݏ߱|ܬ)2,

distribution, while ܲ݃݊݌ݑ݋ݎ ݐ݈݅݌ݏ݊ݑ߱|ܬ)2,) is concentrated in the
range with small values of ܬ. Besides, sequences encoded with
QP of 37 usually have higher RD cost than QP of 22. Let
݊݌ݑ݋ݎ݃ܲ ,݀൫݆߱൯ represent the priori probability of ݆߱ and

݊݌ݑ݋ݎ݃ܲ which ,ܬ represent the total probability density of (ܬ)݀,
are both obtained from the encoding statistics in the online-
learning phase, then the posteriori probability ܲ݃݊݌ݑ݋ݎ (ܬ|݆߱)݀,
for early terminating CU partitions can be calculated by Bayes’
rule as

 ௚ܲ௥௢௨௣೙ ,ௗ(௝߱|ܬ) =

௉೒ೝ೚ೠ೛೙,೏(௃|ఠೕ)௉೒ೝ೚ೠ೛೙,೏൫ఠೕ൯

௉೒ೝ೚ೠ೛೙,೏(௃)
 (9)

where ௚ܲ௥௢௨௣೙ ,ௗ(ܬ) is obtained by

௚ܲ௥௢௨௣೙ ,ௗ(ܬ) = ∑ ௚ܲ௥௢௨௣೙ ,ௗ(ܬ| ௝߱) ௚ܲ௥௢௨௣೙ ,ௗ൫ ௝߱൯ఠೕ . (10)

From (9) and (10), the posteriori probabilities ܲ݃݊݌ݑ݋ݎ (ܬ|݆߱)݀,
for “MissionControlClip3”, “Programming” and
“EBURainFruits” with QPs of 22 and 37 are shown in Figs. 14-
16 at the depth level of 2. As we can see, the posteriori
probability distributions are different in three groups. In each
group, ܲ݃݊݌ݑ݋ݎ ,ܬ is very large for small values of (ܬ|ݐ݈݅݌ݏ݊ݑ߱)2,

while ܲ݃݊݌ݑ݋ݎ gets larger for CUs with a higher value (ܬ|ݐ݈݅݌ݏ߱)2,
of ܬ. The reason is that CUs with a small value of ܬ are usually
efficiently encoded under the current depth level, and the further
partitions are unnecessary. Therefore, CUs with a small value of
ܬ are more likely to belong to ߱ݐ݈݅݌ݏ݊ݑ . However, it is also
observed that CUs with a large value of ܬ still have relatively
high probabilities to belong to ߱ݐ݈݅݌ݏ݊ݑ in ݃ܶܮܲ݌ݑ݋ݎ , as shown
in Figs. 14-15(e) and (f). To achieve good prediction accuracy,
FCUSD is only applied to CUs with Cintra and IBC modes in
our algorithm.

After getting the statistical parameters of ௚ܲ௥௢௨௣೙ ,ௗ൫ܬห ௝߱൯
and ௚ܲ௥௢௨௣೙ ,ௗ൫ ௝߱൯ in the online-learning phase, ௚ܲ௥௢௨௣೙ ,ௗ(௝߱|ܬ)
is calculated based on (9) and (10). Meanwhile, the remaining
partitions of a CU is terminated if

 (a) (b) (c) (d) (e) (f)
Fig. 14. Posteriori probabilities ௚ܲ௥௢௨௣೙ ,ௗ൫ ௝߱ หܬ൯ for “MissionControlClip3” at depth level of 2 in (a) ݃݌ݑ݋ݎ஼௜௡௧௥௔ with QP of 22, (b) ݃݌ݑ݋ݎ஼௜௡௧௥௔ with QP of 37,
(c) ݃݌ݑ݋ݎூ஻஼ with QP of 22, (d) ݃݌ݑ݋ݎூ஻஼ with QP of 37 (d), ݃݌ݑ݋ݎ௉௅் with QP of 22, and (f) ݃݌ݑ݋ݎ௉௅் with QP of 37.

 (a) (b) (c) (d) (e) (f)
Fig. 15. Posteriori probabilities ௚ܲ௥௢௨௣೙ ,ௗ൫ ௝߱ หܬ൯ for “Programming” at depth level of 2 in (a) ݃݌ݑ݋ݎ஼௜௡௧௥௔ with QP of 22, (b) ݃݌ݑ݋ݎ஼௜௡௧௥௔ with QP of 37, (c)
ூ஻஼݌ݑ݋ݎ݃ with QP of 22, (d) ݃݌ݑ݋ݎூ஻஼ with QP of 37 (d), ݃݌ݑ݋ݎ௉௅் with QP of 22, and (f) ݃݌ݑ݋ݎ௉௅் with QP of 37.

 (a) (b)
Fig. 16. Posteriori probabilities ௚ܲ௥௢௨௣೙ ,ௗ(௝߱ ஼௜௡௧௥௔ with QP of (a)݌ݑ݋ݎ݃ in (ܬ|
22 and (b) 37 for “EBURainFruits” at depth level of 2.

Fig. 17. Learning frame selection when encoding a video sequence (frames in
the same scene are denoted by the same color).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

௚ܲ௥௢௨௣೙ ,ௗ൫߱௦௣௟௜௧หܬ൯ < (11) ߚ

where ߚ is the decision threshold for early CU termination, and
it determines the trade-off between the coding efficiency and
computational complexity. As shown in the module 6 of Fig. 2,
the RD cost, ܬ , is extracted for the CU being encoded. We
assume that the current CU is encoded efficiently, and the
remaining partitions will be skipped if (11) is satisfied. The
statistical parameters ௚ܲ௥௢௨௣೙ ,ௗ(ܬ| ௝߱) and ௚ܲ௥௢௨௣೙ ,ௗ൫ ௝߱൯ are
estimated for each different size of non-SCUs that are 64×64,
32×32, and 16×16 respectively in the online-learning phase. The
details will be given in Section III.D.

C. Scene Change Detection for Learning Frame Updating
The Bayesian classifier is an optimal classifier based on the

assumption that all statistical parameters such as
௚ܲ௥௢௨௣೘,ௗ (݇|߱௜) , ௚ܲ௥௢௨௣೘ ,ௗ(߱௜) , ௚ܲ௥௢௨௣೙,ௗ(ܬ| ௝߱) and
௚ܲ௥௢௨௣೙ ,ௗ൫ ௝߱൯ in (4) and (9) are obtained correctly. Fig. 17

shows the online-learning approach used in the proposed
algorithm. For screen content videos, scene changes occur
frequently such as document opening or closing, slideshow
playing, etc. Then the statistical parameters will change
suddenly, and it leads to wrong classifications. Therefore, scene
change detection should be applied to update the statistical
parameters adaptively.

 To perform scene change detection in a camera-captured
video sequence, two typical correlation measurement methods,
difference of histogram (DOH) and histogram of difference
(HOD), are introduced in [9], [30]. For DOH, it calculates the
absolute sum of the histogram difference between two adjacent
frames, ܨ௔ and ܨ௕ , by using luma samples, and the value of
DOH is given as the ratio of the absolute sum of the histogram
difference to all histograms of ܨ௔

,௔ܨ)ܪܱܦ ௕ܨ)=
∑ |௛ೌ(௟)ି௛್(௟)|೜షభ

೗సబ
∑ ௛ೌ(௟)೜షభ

೗సబ
 (12)

where ݍ is the number of luma level, ℎ௔ and ℎ௕ are the
histograms of ܨ௔ and ܨ௕ .

For HOD, the histogram of difference between two adjacent
frames, ܨ௔ − ௕ܨ , is defined by ℎ݀݋(݈), where ݈ϵ[−ݍ + 1, ݍ − 1].
The further the histogram of luma difference is distributed from
the origin of ℎ݀݋(݈), the more different the frames are. The
value of HOD is given as the ratio of the sum of ℎ݀݋(݈) with ݈
larger than a threshold ߬ to all histograms of ℎ݀݋(݈)

,௔ܨ)ܦܱܪ ௕ܨ) =
∑ ௛௢ௗ(௟)೗∉[షഓ，ഓ]

∑ ௛௢ௗ(௟)೜షభ
೗సష೜శభ

 (13)

where ߬ is a threshold to determine the closeness to zero, and it
is set to 32 in [9], [30]. If the value of DOH or HOD is larger
than a threshold ߮ , a scene change is regarded to occur.
However, for screen content videos, different scenes may have
similar background, which makes these methods unable to
detect scene changes. Besides, zoom and content color change
situations often occur in screen content videos, but they can be
considered as the same scene and the statistical parameters of
the previous learning frames can still be used. If these methods
are used in SCC, false scene changes might be detected.

Since frames in the same scene have similar distribution of
distinct color number, a simple and efficient scene change
detection method is tailor made for screen content videos in this
paper. A frame is divided into non-overlapping 32×32 blocks,
then the distinct color number is calculated for each block. Let
 ௟ denotes the recent learning frames, and then the ratio of theܨ
new distinct color number (RDN) to the total distinct color
number in a frame ܨ௔ is defined as

,௔ܨ)ܰܦܴ = (௟ܨ
∑ ௕௟௢௖௞ಷೌ

೎೛ (௞)ೖ∉ ೄಷ೗
೎೛ ା∑ ௕௟௢௖௞ಷೌ

೙೎೛(௞)ೖ∉ ೄಷ೗
೙೎೛

∑ ௕௟௢௖௞ಷೌ(௞)యమ×యమ
ೖసమ

 (14)

where ܾ݈݇ܿ݋ிೌ

௖௣(݇) and ிೌ݇ܿ݋݈ܾ
௡௖௣ (݇) represent the number of

blocks in ܨ௔ that have ݇ distinct colors with and without CPs,
respectively, and ݇ varies from 2 to the total pixel number in a
block (32×32). Blocks with only one color are usually
background, so they are excluded here. ܵி೗

௖௣ and ܵி೗
௡௖௣ represent

the distinct color number spaces with and without CPs of ܨ௟,
respectively. Thus, ∑ ிೌ݇ܿ݋݈ܾ

௖௣ (݇)௞∉ ௌಷ೗
೎೛ and

∑ ிೌ݇ܿ݋݈ܾ
௡௖௣(݇)௞∉ ௌಷ೗

೙೎೛ denote the total number of the new

distinct color blocks with and without CPs in ܨ௔, respectively.
ிೌ݇ܿ݋݈ܾ (݇) is the number of blocks in ܨ௔ that have ݇ distinct
colors, and ∑ ிೌ݇ܿ݋݈ܾ (݇)ଷଶ×ଷଶ

௞ୀଶ denotes the total distinct color
number of the non-background blocks in ܨ௔ . If ܴܨ)ܰܦ௔, ௟) isܨ
larger than a threshold ߮, a large area in ܨ௔ has different color
characteristic, and ܨ௔ is regarded as a new scene. Then, a
predefined ܮ learning frames, which is set to 2 in the proposed
algorithm, are selected starting from ܨ௔ for learning and
updating the statistical parameters, as shown in the modules 1
and 2 of Fig. 2. ߮ was empirically determined as 0.15 for
typical screen content videos. However, for animation videos,
they are more similar to camera-captured videos, and scene
changes usually occur with a larger value of ߮. Thus, a larger
߮ is set to 0.3 empirically for animation and camera-captured
videos. It is noted that full RD optimization is performed in
learning frames to get precise estimation in (4), (5), (9) and (10).

D. Likelihood Estimation and Memory Analysis
 In the online-learning phase, the first ܮ frames at the

beginning of a new scene are used to estimate the statistical
parameters. As shown in Figs. 5-7 and Figs. 11-13,
 ௚ܲ௥௢௨௣೘ ,ௗ(݇|߱௜) and ௚ܲ௥௢௨௣೙ ,ௗ(ܬ| ௝߱) are difficult to be
represented by using specific probability functions.
Alternatively, the likelihood functions are estimated by a
nonparametric estimation method:

௚ܲ௥௢௨௣೘,ௗ (݇|߱௜) =
ே೒ೝ೚ೠ೛೘,೏

ഘ೔,ೖ

∑ ே೒ೝ೚ೠ೛೘,೏
ഘ೔ ,ೖ

ೖ
 (15)

௚ܲ௥௢௨௣೙ ,ௗ൫ܬห ௝߱൯ =
ே೒ೝ೚ೠ೛೙ ,೏

ഘೕ,಻

∑ ே೒ೝ೚ೠ೛೙ ,೏
ഘೕ,಻

಻
 (16)

where ௚ܰ௥௢௨௣೘,ௗ

ఠ೔,௞ denotes the number of CUs with k distinct
colors and belonging to the class ߱௜ in ݃݌ݑ݋ݎ௠ and the depth

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

level of ݀. ௚ܰ௥௢௨௣೙ ,ௗ
ఠೕ ,௃ denotes the number of CUs with the RD

cost of ܬ and belonging to the class ௝߱ in ݃݌ݑ݋ݎ௡ and the depth
level of ݀.

To estimate the likelihood function ܲ݃݉݌ݑ݋ݎ ,݀(݇|߱݅) ,
numbers of CUs with ݇ distinct colors in 3 different classes,
ܶܮܲ߱ ܥܤܫ߱ , , and ߱ܽݎݐ݊݅ܥ, are recorded in the learning frames. For
CUs with sizes of 8×8, 16×16 and 32×32, there are at most 64,
256 and 1024 different distinct colors, respectively, and 3
different optimal modes. For CUs with size of 64×64, there are
at most 4096 different distinct colors, and 2 optimal modes
(Notice that PLT mode is not applied to the CU size of 64×64).
Since the number of 64×64 CU training samples is relatively
small, ݇ values of 64×64 CU size training samples are restricted
to 1024 bins with 4 values in each bin to estimate the statistical
fluctuation. Besides, there are 2 groups defined as regions with
and without CPs. Defined as double-precision floating point
which requires 8 bytes (B) in C language, 95 KB{[(64 + 256 +
1024) × 3 + 1024 × 2] × 2 × 8 ÷ 1024} are required to store
those parameters. To estimate the likelihood function
݊݌ݑ݋ݎ݃ܲ ,݀൫ܬห݆߱൯ , CUs with the RD cost of ܬ belonging to 2

different classes, ߱ݐ݈݅݌ݏ݊ݑ and ߱ݐ݈݅݌ݏ, are recorded in the learning
frames. Besides, there are 3 depth levels, and 2 groups defined
as CUs encoded by Cintra mode and IBC mode. Since CUs
belonging to ߱ݐ݈݅݌ݏ݊ݑ show a concentrated distribution centered
in a narrow range with small RD cost, FCUSD is only applied
to CUs with RD cost values smaller than 20000. For the ease of
implementation, the RD cost values are restricted to 100 bins.
Thus, to store these parameters, about 9.4 KB (100 × 2 × 3 ×
2 × 8 ÷ 1024) are required. In total, the memory cost for
likelihood function estimation is about 104.4KB, and it is
acceptable to the SCC encoder.

In comparison with the existing fast SCC algorithms [23],
[24], [26], they consume much less memory (less than 1 KB)
than ours because they only derive several fixed rules which are
independent from video content. On the other hand, the
algorithms [22], [25] also need to record the information from
the collocated CUs and they need more memory than ours. In
[22], the depth levels, optimal modes and sample values of the
last frame are required. For a video with the resolution of
2560×1440 pixels, the total memory cost is 14,850KB by using
integer type which requires 4 B in C language. Specifically, the
memory cost for storing sample values is 14,400KB (2560 ×
1440 × 4 ÷ 1024), while the memory cost for storing depth
level and the optimal mode is 450KB (2560 × 1440 ÷
(8 × 8) × 2 × 4 ÷ 1024) by recording them for each 8 × 8
block. In [25], the depth levels of the previous frame are required.

Similarly, for a video with the resolution of 2560×1440 pixels,
the total memory cost is 225KB (2560 × 1440 ÷ (8 × 8) ×
4 ÷ 1024) by recording them for each 8×8 block.

E. Summary of the Proposed Algorithm
As a summary, the proposed algorithm is divided into online-

learning phase and fast decision phase, as shown in Fig. 2. In
the online-learning phase, the learning frames are encoded by
the original SCC encoder to obtain the learning statistics. Then
the learning statistics are utilized to build the Bayesian
classifiers, and the fast encoding process is performed based on
the classifiers in the fast decision phase. Besides, before
encoding a frame in the fast decision phase, scene change
detection is carried out to guarantee the strong correlation
between the frames being encoded and the learning frames. To
make fast encoding decisions, CP detection is firstly performed
as a pre-processing step, as shown in the module 3 of Fig. 2.
Then FMD, MDR, and FCUSD techniques are executed one by
one to speed up the SCC encoding process, as shown in the
modules 4, 5 and 6 of Fig. 2, respectively.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The proposed FMD, MDR, and FCUSD techniques have

been implemented in the HEVC reference software SCM-7.0
[31]. To evaluate their performances, the computational
complexity reduction and Bjøntegaard delta bitrate (BDBR) [32]
with QPs at 22, 27, 32, and 37 were compared with that of the
original SCM-7.0, and some recent algorithms in [22-26]. The
testing condition was based on AI configuration and strictly
follows the Common Test Conditions (CTC) defined in [28].
The encoding time reduction, ∆Time, is used to measure the
computational complexity reduction, which is defined as

∆ܶ݅݉݁ =

்௜௠௘೟೐ೞ೟ ି்௜௠௘ೝ೐೑೐ೝ೐೙೎೐

்௜௠௘ೝ೐೑೐ೝ೐೙೎೐
100% (17)

where ܶ݅݉݁ݐݏ݁ݐ represents the encoding time of the tested
algorithms, and ܶ݅݉݁݁ܿ݊݁ݎ݂݁݁ݎ represents that of SCM-7.0. It is
noted that negative value of ∆ܶ݅݉݁(%) denotes encoding time
decrement in percentage compared with SCM-7.0.

A. Results of Proposed Individual Techniques
From Section III, it is seen the proposed algorithm is

computationally scalable, and users can select the values of ߙ,
ߚ and γ based on their purposes. Fig. 18 shows the BDBR
against ∆Time for different values of thresholds. It is observed
that for each individual technique, larger encoding time
reduction is provided as the value of the corresponding threshold

 (a) (b) (c)
Fig. 18. Average BDBR and ∆Time (%) of all sequences coded by individual techniques: (a) FMD, (b) MDR, and (c) FCUSD with various values of thresholds.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

increases. However, it also brings a higher increase in BDBR.
Specifically, FMD provides the largest encoding time reduction
among the three techniques with negligible coding efficiency
loss. When ߙ varies from 0.01 to 0.09, FMD provides 15.27%
to 27.06% encoding time reduction with 0.10% to 0.66%
increase in BDBR. When γ varies from 0.1 to 0.9, MDR
provides 7.05% to 13.31% encoding time reduction with 0.10%
to 1.16% increase in BDBR. When ߚ varies from 0.1 to 0.9,
FCUSD provides 8.48% to 15.35% encoding time reduction
with 0.22% to 2.16% increase in BDBR.

B. Results of Overall Algorithm
In this section, the performance of the proposed overall

algorithm is given in Table V. To have a good tradeoff between
computational complexity and RD performance, it is suggested
that the values of ߚ ,ߙ and γ are selected to let each technique
has similar increase in BDBR. In our paper, two settings are
tested, 0.01=ߙ, γ=0.1, 0.1=ߚ and 0.07=ߙ, γ=0.3, 0.3=ߚ. They
are denoted as OURS1 and OURS2, respectively, for simplicity.
The increases in BDBR of the three individual techniques are
all smaller than 0.3% in OURS1, while the increases in BDBR
are all smaller than 0.5% in OURS2. As test sequences in TGM
and M contain both NIBs and SCBs while sequences in A and
CC contain only NIBs, the average results for TGM+M and
A+CC sequences are also provided in Table V. It is observed
from Table V that OURS1 provides 25.47% encoding time
reduction with 0.35% increase in BDBR while OURS2 provides
36.69% encoding time reduction with 1.08% increase in BDBR.

To further investigate the encoding time reduction
performance of the proposed algorithm, the encoding time of
OURS2 for “WebBrowsing” was compared with the original
SCM-7.0 frame by frame, and the results are shown in Fig. 19.

In the online-learning phase, the learning frames are encoded by
the original intra prediction process to obtain the learning
statistics. Therefore, it can be observed that the encoding time is
almost the same as SCM-7.0 for the learning frames. Then, the
proposed algorithm is applied to the following frames, and
encoding time is reduced dramatically.

C. Performance Comparison with State-of-the-art Algorithms
This section will compare our proposed algorithm with other

recent SCC algorithms. They include the algorithms in Zhang
[22], Zhang [23], Duanmu [24] (“RD-preserving” setting), Lei
[25], and Yang [26]. It is noted that they were implemented in
different reference software from ours in their original
publications. Zhang [23] was simulated using HM-12.1+RExt-
5.1 rather than SCM, while Zhang [22], Duanmu [24], Lei [25]
and Yang [26] were simulated using SCM-3.0, SCM-4.0 and
SCM-2.0, SCM-5.0 respectively. There are numerous
enhancements, speed-up techniques and codes clean-up in
SCM-7.0 compared with the older versions. In the older
versions, the BV signal in IBC mode was not unified with the
inter mode which only has left and above BVs as predictors
with no skip and merge modes. Consequently, incoming CUs
always need to check the time-consuming IBC search and PLT
modes without early termination. Moreover, N×N IBC search
was done after 2N×N search while it is eliminated in SCM-7.0.
In addition, the older versions enable PLT mode in the depth
level of 0 while it is disabled in SCM-7.0 because of the
occasional use. Due to those differences, we re-implemented
them into SCM-7.0 for fair comparisons.

By employing online-learning-based Bayesian decision rule
that updates the decision models adaptively according to the
content being encoded, the proposed algorithm always shows
higher encoding time reduction and smaller increase in BDBR
on average than the pre-trained models and pre-tuned heuristics
in [22-26]. Specially, OURS2 provides over 50% encoding time
reduction with only 0.70% increase in BDBR for sequences in
A+CC, and it significantly outperforms the pre-trained models
and pre-tuned heuristics in [22-26]. Since learning frames only
contain NIBs, the derived Bayesian classifiers can easily skip
both IBC and PLT modes based on the statistics of learning
frames. On the contrary, the pre-trained models and pre-tuned

Table V
∆Time and BDBR OF DIFFERENT ALGORITHMS COMPARED WITH SCM-7.0 FOR YUV 4:4:4 SEQUENCES

Sequence
Zhang [22] Zhang [23] Duanmu [24] Lei [25] Yang [26] OURS1 OURS2

BDBR
(%)

∆Time
(%)

BDBR
(%)

∆Time
(%)

BDBR
(%)

∆Time
(%)

BDBR
(%)

∆Time
(%)

BDBR
(%)

∆Time
(%)

BDBR
(%)

∆Time
(%)

BDBR
(%)

∆Time
(%)

FlyingGraphics 0.84 -5.03 0.54 -4.02 0.98 -19.93 1.72 -17.79 5.32 -31.32 0.19 -16.35 1.03 -25.18
Desktop 1.93 -46.82 0.67 -5.90 2.20 -26.33 1.97 -23.64 6.08 -36.05 0.55 -23.78 1.25 -35.94
Console 3.37 -38.09 2.64 -8.01 1.87 -27.82 2.87 -23.07 7.38 -42.92 0.20 -26.98 0.75 -39.49

ChineseEditing 0.64 -49.01 0.14 -5.02 1.11 -17.49 0.99 -19.08 4.30 -34.27 0.17 -23.23 0.73 -37.94
WebBrowsing 1.52 -50.67 0.27 -7.48 1.41 -28.04 5.48 -26.80 5.00 -53.55 -0.08 -28.55 0.67 -41.11

Map 0.85 -36.22 0.96 -11.46 1.56 -18.98 1.23 -19.80 2.84 -41.89 0.22 -20.18 1.29 -33.51
Programming 1.15 -39.12 0.44 -19.21 1.89 -22.08 2.50 -22.37 4.71 -27.56 0.13 -12.45 0.49 -17.79

SlideShow 1.39 -43.61 0.36 -47.24 2.88 -52.76 2.32 -55.32 3.69 -34.05 1.43 -27.57 2.33 -31.77
BasketballScreen 1.08 -41.32 0.45 -13.15 1.25 -22.57 1.46 -24.30 3.00 -31.28 0.21 -20.78 1.47 -34.12

MissionControlClip2 1.27 -38.70 0.40 -21.43 2.86 -34.33 1.71 -33.5 2.51 -38.85 0.51 -21.7 1.69 -32.54
MissionControlClip3 1.03 -38.97 0.37 -12.13 2.05 -24.71 1.69 -24.86 2.90 -34.37 0.42 -22.02 1.26 -32.74

Robot 0.93 -12.09 0.43 -18.77 1.18 -30.13 5.21 -46.90 0.59 -28.29 0.65 -29.35 1.61 -46.42
EBURainFruits 0.71 -16.76 0.21 -18.89 0.88 -27.42 1.76 -48.36 0.17 -25.95 0.17 -42.87 0.35 -58.74

Kimono1 0.14 -1.01 0.14 -26.35 1.23 -26.93 1.52 -75.49 0.13 -36.27 0.10 -40.73 0.15 -46.31
Average (TGM+M) 1.37 -38.87 0.66 -14.10 1.82 -26.82 2.18 -26.41 4.34 -36.92 0.36 -22.14 1.18 -32.92
Average (A+CC) 0.59 -9.95 0.26 -21.34 1.10 -28.16 2.83 -56.92 0.30 -30.17 0.37 -37.65 0.70 -50.49
Average (ALL) 1.20 -32.67 0.57 -15.65 1.67 -27.11 2.32 -32.95 3.47 -35.47 0.35 -25.47 1.08 -36.69

Fig. 19. Encoding time of each frame for “WebBrowsing” with QP of 22.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

heuristics are generated using a mixed training data of NIBs and
SCBs. Therefore, they fail to have such accurate prediction for
sequences in A+CC as OURS2, and it leads to less coding gain
than the proposed algorithm, as observed in Table V.

From Table V, OURS1 shows better performance on average
than Zhang [23], which only has 15.65% encoding time
reduction with 0.57% increase in BDBR, while OURS1 shows
25.47% encoding time reduction with 0.34% increase in BDBR.
Furthermore, OURS2 shows better performance on average than
Zhang [22]. In Table V, Zhang [22] provides 32.67% encoding
time reduction with 1.20% increase in BDBR. The complexity
savings in Zhang [22] heavily relies on the stationary CUs
between adjacent frames by re-using the CU depth information
from the collocated CU in the previous frame, and it induces
more memory cost as mentioned in Section III.C. As a result, it
works very well for sequences in TGM and M which contain
many stationary regions, where 38.87% encoding time are
reduced, but larger BDBR increase as compared with OURS2
is induced. It is also observed that it provides only 5.03%
encoding time reduction for “FlyingGraphics”. It is because
“FlyingGraphics” contains rapid windows rotation and color
changing. In this situation, the number of stationary CUs
decreases. Due to the same reason, it provides only 9.95%
encoding time reduction for sequences in A and CC. On the
contrary, our proposed algorithm works well for CUs with
object movements or non-stationary CUs since OURS2 does not
use the collocated information from the previous frame. Its
performance is then insensitive to the motion activity in the
sequence. Therefore, the average time reduction of OURS2
provides more consistent savings for sequences in TGM and M,
and has better performance for sequences in A and CC. When
the access to the information from the collocated CU is feasible,
our proposed algorithm can be integrated with the CU depth
prediction in Zhang [22] such that the temporal CU depth
correlation can be utilized for stationary CUs. As observed from
Table VI, with the integration of Zhang [22] into OURS2, i.e.
OURS2 + Zhang [22], it performs well for all types of
sequences. On average, 48.83% encoding time is reduced with
1.78% increase in BBDR. This shows that Zhang [22] can speed
up stationary CUs while OURS2 can work well for CUs with
object movements. Further encoding time reduction achieved
by the integration proves that the areas addressed by OURS2

are different from Zhang [22]. This is an excellent complement
between OURS2 and Zhang [22]. From Table VI, it can be seen
that the BDBR is increased when OURS2 is incorporated with
Zhang [22]. It is expected as no fine-tuning for the algorithms
is performed in the code merging process, which causes the fast
techniques to become greedy. This integration could be a point
for our immediate future work.

Similar to our proposed algorithm, Duanmu [24], Lei [25]
and Yang [26] also consider the whole encoding process of SCC
to speed up both of the mode decision and CU size decision by
classifying CUs into NIBs and SCBs. From Table V, Duanmu
[24], Lei [25] and Yang [26] show 27.11%, 32.95%, 35.47%
encoding time reduction with 1.67%, 2.32% and 3.57% increase
in BDBR. Their approaches are more focused on the fast
encoding of NIBs by checking Cintra mode only for NIBs while
checking IBC+PLT or Cintra+IBC+PLT for SCBs.
Comparatively, SCBs may check one mode by using the
proposed algorithm. As a result, OURS2 provides 1.22%-9.57%
larger encoding time reduction with 0.59%-2.39% less BDBR
increment on average than their approaches. It is noted that Lei
[25] also uses depth prediction based on the neighboring and
collocated CUs. When OURS2 also adopts the depth prediction
in [22], as mentioned above, the results in Table VI show further
overwhelming performance in comparison with Lei [25] in
Table V.
 To further illustrate the advantage of our proposed mode
decision, the mode distribution by OURS2, Duanmu [24], Lei
[25] and Yang [26] are shown in Table VII. It is noted that the
CU size decisions for all algorithms are disabled to clearly
illustrate the mode distribution. Table VII shows the mode
decision distribution of “ChineseEditing” which only contains
SCBs. Results in Table VII show that OURS2 provides flexible
mode decision, where a mode can be checked alone or with
another mode. For example, PLT mode can be checked alone or
with Cintra/IBC mode for a CU. For “ChineseEditing”, 53.66%
and 20.55% CUs only check PLT mode in depth levels of 1 and
2, respectively. Since the mode decision becomes more
complicated for small CUs, various combinations of modes are
usually checked in depth level of 3. Besides, in the depth level
of 0 in which only IBC and Cintra modes are enabled, 65.19%
CUs are decided to check Cintra mode only since it is difficult

Table VII
COMPARITION OF THE MODE DECISION DISTRIBUTION DECIDED BY

DIFFERENT ALGORITHMS WITHOUT CU SIZE DECSION

AlgorithmDepth
level

ChineseEditing
Cintra
only

IBC
only

PLT
only

Cintra+
IBC

Cintra +
PLT

IBC+
PLT

Cintra+
IBC+PLT

OURS2

0 65.19 1.39 33.42
1 2.88 0.52 53.66 1.74 5.46 32.00 3.74
2 0.93 0.33 20.55 10.34 3.35 58.98 5.52
3 1.01 0.79 2.81 16.96 0.51 61.86 16.06

Duanmu
[24]

0 100 0 0
1 3.28 0 0 0 0 50.36 46.36
2 6.80 0.01 0 0.11 0 45.13 47.95
3 0 0.14 0 6.24 0 32.44 61.18

Lei [25]

0 0 0 100
1 0 0 0 0 0 0 100
2 0 0 0 0 0 0 100
3 0.02 0 0 0 0 0 99.98

Yang [26]

0 100 0 0
1 69.09 0 0 0 0 0 30.90
2 22.57 0 0 0 0 0 77.43
3 17.99 0 0 0 0 48.97 33.04

Table VI
PERFORMANCE OF THE PROPOSED ALGORITHM COMBINE WITH ZHANG [22]

Sequences OUR2 OURS2+Zhang [22]
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

FlyingGraphics 1.03 -25.18 1.56 -28.36
Desktop 1.25 -35.94 2.23 -62.92
Console 0.75 -39.49 2.05 -58.97

ChineseEditing 0.73 -37.94 1.67 -63.66
WebBrowsing 0.67 -41.11 2.64 -64.00

Map 1.29 -33.51 1.89 -46.62
Programming 0.49 -17.79 1.08 -29.53

SlideShow 2.33 -31.77 1.49 -34.37
BasketballScreen 1.47 -34.12 2.70 -53.14

MissionControlClip2 1.69 -32.54 2.15 -46.38
MissionControlClip3 1.26 -32.74 2.12 -52.50

Robot 1.61 -46.42 2.46 -46.71
EBURainFruits 0.35 -58.74 0.68 -51.71

Kimono1 0.15 -46.31 0.23 -44.71
Average (TGM+M) 1.18 -32.92 1.96 -49.13

Average (A+CC) 0.70 -50.49 1.12 -47.71
Average (ALL) 1.08 -36.69 1.78 -48.83

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

to find repeated patterns for large CUs by IBC mode. On the
other hand, the fast mode decision in Duanmu [24], Lei [25] and
Yang [26] treat the decisions for IBC and PLT modes the same,
and then at least two modes (IBC+PLT or Cintra+IBC+PLT) are
checked for a SCB. In spite of eliminating unnecessary modes
based on coding bits in [24], it only works for limited number of
CUs by checking only one single mode. Due to the above
arrangement, Duanmu [24] checks either both IBC and PLT
modes or all modes for over 93% CUs in the depth levels of 1-3
in “ChineseEditing”, as shown in Table VII. In contrast, the
proposed fast mode decision technique makes decision for each
mode separately, so that many SCBs can only check one mode.
In this table, Duanmu [24] always checks Cintra mode in the
depth level of 0 as it disables IBC mode in the depth level of 0.
Lei [25] needs to check all modes for over 99% CUs in
“ChineseEditing”. Yang [26] needs to check Cintra mode for all
CUs with 2N×2N PUs to extract features although Cintra mode
can be skipped for most CUs in “ChineseEditing”. Therefore,
our proposed mode decision shows much better performance
than their mode decision methods.

D. Results of RGB 4:4:4 and YUV4:2:0
Since we adopt an online-learning-based approach whose

learning statistics are updated according to the current video
content adaptively, it can be easily applied to sequences in other
formats. Table VIII shows the performance comparison of
sequences in RGB 4:4:4 and YUV 4:2:0 formats. Similar trend
is observed in YUV 4:4:4 sequences that OURS1 provides better
performance than Zhang [23], while OURS2 outperforms Zhang
[22], Duanmu [24], Lei [25] and Yang [26]. Specifically,

OURS1 provides 24.66% and 19.75% encoding time reduction
with 0.22% and 0.31% negligible increase in BDBR for
sequences in RGB 4:4:4 and YUV 4:2:0, respectively. OURS2
provides 34.01% and 30.44% encoding time reduction with
0.80% and 1.19% increase in BDBR for sequences in RGB 4:4:4
and YUV 4:2:0, respectively.

E. Impact of Scene Change Detection on Proposed Algorithm
To show the effectiveness of the proposed RDN on scene

change detection, the performances of OURS2 with and without
scene change detection have been carried out for comparison,
Besides, we compared RDN with the 2 typical scene change
detection methods introduced in the Section III.C – HOD and
DOH, and the threshold ߮ was set to 0.25 [30] for DOH and 0.2
[9] for HOD. The results are shown in Table IX, and if scene
changes are detected in a sequence by using HOD, DOH or RDN,
the sequence is marked as SC. Otherwise, it is marked as NSC.
We can see that RDN, HOD, DOH and the case without scene
change detection provide very similar performance for NSC
sequences, where about 43% encoding time is saved with 0.93%
increase in BDBR. However, the proposed RDN can efficiently
reduce the increase in BDBR for SC sequences, where 31.57%
encoding time is saved with 1.19% increase in BDBR.
Compared with HOD and the case without scene change
detection, the proposed RDN provides 0.78% and 0.54% smaller
increase in BDBR with only 3.83% and 2.58% time saving drop
on average, respectively. Besides, the proposed RDN shows
0.23% smaller increase in BDBR with 0.48% larger encoding
time reduction than DOH. The reason is that screen content
videos contain many background blocks, and the conventional
scene change detection methods HOD and DOH might treat two
different scenes as one if they contain similar background.
Besides, due to the frequent occurrences of local motion and
content color change situations, false scene changes are
detected in “Programming” by using HOD and in “SlideShow”
by both HOD and DOH, which makes the BDBR increases even
higher than that of the case without scene change detection.
Furthermore, it is also observed that many false scene changes
are detected in “FlyingGraphics” by DOH, which contains many
color change situations, and only 3.62% time saving is provided.
For the proposed RDN, the reason for the slight drop on time
saving is that more frames are selected as learning frames, and
FMD, MDR, and FCUSD cannot be applied to the learning
frames. As a result, less computational complexity reduction can
be achieved but better BDBR can be provided due to the precise
statistical parameters are obtained.

To understand the impact of the number of learning frames L,
Fig. 20 shows the performance of OURS2 with the values of L

Table VIII
∆Time and BDBR OF DIFFERENT ALGORITHMS COMPARED WITH SCM-7.0

FOR RGB 4:4:4 AND YUV 4:2:0 SEQUENCES

Format
TGM+M A+CC Average

BDBR
(%)

∆ܶ݅݉݁
(%)

BDBR
(%)

∆ܶ݅݉݁
(%)

BDBR
(%)

∆ܶ݅݉݁
(%)

RGB
4:4:4

[22] 1.02 -38.29 0.31 -9.39 0.87 -32.10
[23] 0.51 -11.22 0.09 -12.65 0.42 -11.53
[24] 2.19 -24.23 0.51 -26.41 1.83 -24.70
[25] 2.18 -24.68 2.62 -55.72 2.27 -31.33
[26] 3.17 -32.03 0.25 -22.36 2.54 -29.96

OURS1 0.23 -20.61 0.19 -39.49 0.22 -24.66
OURS2 0.89 -29.54 0.47 -50.36 0.80 -34.01

YUV
4:2:0

[22] 1.47 -29.36 0.97 -12.58 1.39 -26.78
[23] 0.79 -12.77 0.27 -17.58 0.71 -13.51
[24] 2.39 -19.80 1.92 -25.53 2.32 -20.68
[25] 1.88 -24.31 3.22 -39.70 2.08 -26.68
[26] 4.11 -30.65 1.36 -28.11 3.69 -30.26

OURS1 0.29 -17.51 0.43 -32.08 0.31 -19.75
OURS2 1.12 -25.56 1.61 -51.78 1.19 -30.44

 (a) (b)

Fig. 20. Performance of the proposed algorithm with the values of L of 1-4.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

15

from 1 to 4 for 5 typical sequences, and similar results are
observed for other sequences. It is observed that the value of L
has minor impact on the performance of proposed algorithm.
Basically, the increase in BDBR is reduced as L gets larger.
However, the encoding time saving is also reduced because the
proposed fast algorithm is not applied to the learning frames.
To balance the RD performance and time saving, L is set to 2 in
this paper.
F. Impact of CP Detection on Proposed Algorithm

To characterize screen contents, CP is utilized as a good
feature for the proposed algorithm. To reveal its impact, the
results of OURS2 without the use of CPs are shown in Table X.
It is observed that OURS2 without CP detection provides 5.34%
less encoding time reduction than OURS2 with similar increase
in BDBR on average. Specifically, since sequences in A+CC
only contain NIBs, and Cintra mode dominates the mode
decision process, CPs have very minor impact for them.
However, CPs are important for sequences in TGM+M which
show mixed content of NIBs and SCBs. It is observed that CPs
can help to further reduce encoding time by 6.77% for sequences
in TGM+M. Therefore, the result in Table X demonstrates that
better performance can be achieved for screen content sequences
by adopting CPs in the Bayesian decision rule for SCC.

V. Conclusions
 In this paper, a fast mode and CU size decision algorithm

based on online-learning using the Bayesian decision rule has
been proposed to reduce the computational complexity of SCC.
A new scene change detection method specially designed for
screen content videos is applied to estimate the statistical
parameters correctly for different scenes. Then, the proposed
algorithm is applied after the learning phase, which includes
three steps: FMD, MDR and FCUSD. For FMD, a CP detection
method is employed to classify a frame into NIBs and SCBs
roughly. Then, distinct color number in a CU is extracted as the
unique feature for mode classification. In MDR, the spatial
optimal mode correlation is utilized to further eliminate
unnecessary mode candidates. In FCUSD, the RD cost of the
current CU is used as the feature to early terminate the CU
partition process. Compared with SCM-7.0, the proposed
algorithm achieves 36.69% encoding time reduction with a
negligible BDBR increment of 1.08% on average for typical
screen content videos under AI configurations. In this work,
cascaded empirical thresholds are used for multiple decisions.
To simplify the framework of the proposed algorithm, future
works may include deep learning-based fast SCC encoding
algorithms that integrate fast mode decision and partition
decision into a single model. To reduce the testing time of deep
learning-based approaches, a multitask-based network, which
gives both mode and CU partitioning decisions for an entire
CTU in a single test, can be considered. Since this paper directly
makes mode decision rather than the conventional CU type
classification, it can be considered as the baseline for more
advanced mode decision algorithms in the future.

REFERENCES
[1] J. Xu, R. Joshi, and R. A. Cohen, “Overview of the emerging HEVC

screen content coding extension,” IEEE Trans. Circuits Syst. Video
Technol., vol. 26, no. 1, pp. 50–62, Jan. 2016.

[2] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[3] X. Xu et al., “Intra block copy in HEVC screen content coding
extensions”, IEEE J. Emerg. Sel. Topic Circuits Syst., vol. 6, no. 4, pp.
409–419, Dec. 2016.

[4] X. Xiu, Y. He, R. Joshi, M. Karczewicz, P. Onno, C. Gisquet, and G.
Laroche, “Palette-based coding in the screen content coding extension

Table X
PERFORMANCE OF OURS2 WITHOUT CP DETECTION

Sequences
OUR2 without CP

detection OUR2

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)
FlyingGraphics 0.45 -21.34 1.03 -25.18

Desktop 0.72 -25.20 1.25 -35.94
Console 0.39 -29.22 0.75 -39.49

ChineseEditing 0.53 -24.13 0.73 -37.94
WebBrowsing 0.25 -34.49 0.67 -41.11

Map 1.45 -29.85 1.29 -33.51
Programming 0.65 -17.27 0.49 -17.79

SlideShow 2.64 -31.01 2.33 -31.77
BasketballScreen 1.32 -24.33 1.47 -34.12

MissionControlClip2 2.46 -29.79 1.69 -32.54
MissionControlClip3 1.17 -21.07 1.26 -32.74

Robot 1.74 -45.95 1.61 -46.42
EBURainFruits 0.36 -58.97 0.35 -58.74

Kimono1 0.12 -46.29 0.15 -46.31
Average (TGM+M) 1.09 -26.15 1.18 -32.92

Average (A+CC) 0.74 -50.40 0.70 -50.49
Average (ALL) 1.02 -31.35 1.08 -36.69

Table IX
PERFORMANCE COMPARISON USING DIFFERENT SCENE CHANGE DETECTION METHODS

Sequences Without scene change detection HOD DOH Proposed RDN
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

FlyingGraphics(SC) 1.03 -25.20 0.95 -23.13 0.12 -3.62 1.03 -25.18
Desktop(NSC) 1.25 -35.77 1.25 -35.72 1.25 -35.08 1.25 -35.94
Console(NSC) 0.75 -39.56 0.75 -39.32 0.75 -39.22 0.75 -39.49

ChineseEditing(SC) 0.73 -37.58 0.73 -37.56 0.68 -33.78 0.73 -37.94
WebBrowsing(SC) 1.25 -40.26 0.62 -40.73 0.67 -40.56 0.67 -41.11

Map(SC) 3.18 -35.87 3.18 -34.84 1.53 -34.05 1.29 -33.51
Programming(SC) 1.67 -27.04 1.92 -26.50 1.17 -22.14 0.49 -17.79

SlideShow(SC) 2.90 -50.60 3.63 -48.64 3.12 -48.78 2.33 -31.77
BasketballScreen(NSC) 1.47 -34.22 1.47 -34.58 1.47 -34.27 1.47 -34.12

MissionControlClip2(SC) 2.46 -34.10 1.59 -29.29 2.46 -33.10 1.69 -32.54
MissionControlClip3(SC) 1.59 -32.57 1.25 -32.47 1.59 -32.67 1.26 -32.74

Robot(NSC) 1.61 -46.22 1.61 -46.32 1.61 -46.27 1.61 -46.42
EBURainFruits(NSC) 0.35 -58.72 0.35 -58.60 0.35 -58.67 0.35 -58.74

Kimono1(NSC) 0.15 -46.38 0.15 -46.32 0.15 -46.27 0.15 -46.31
Average(NSC) 0.93 -43.48 0.93 -43.48 0.93 -43.30 0.93 -43.50
Average(SC) 1.97 -35.40 1.73 -34.15 1.42 -31.09 1.19 -31.57

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

16

of the HEVC standard,” in Proc. Data Compression Conf, Snowbird,
UT, USA, Apr. 2015, pp 253 – 262.

[5] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[6] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro,
“Comparative rate-distortion-complexity analysis of HEVC and AVC
video codecs,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no.
12, pp. 1885–1898, Dec. 2012.

[7] Y. Wang, X. Fan, L. Zhao, S. Ma, D. Zhao, W. Gao. “A Fast Intra
Coding Algorithm for HEVC,” in Proc. IEEE Int. Conf. Image Process.
(ICIP), Paris, France, Oct. 2014, pp.4117-4121.

[8] L. Shen, Z. Zhang, and Z. Liu, “Effective CU size decision for HEVC
intra coding,” IEEE Trans. Image Process., vol.23, no.10, pp.4232–
4241, Jul. 2014.

[9] H.-S. Kim, and R.-H. Park, “Fast CU partitioning algorithm for HEVC
using an online-learning-based bayesian decision rule,” IEEE Trans.
Circuits Syst. Video Technol., vol. 26, no. 1, pp. 130–138 Jan. 2016.

[10] X. Shen, L. Yu, and J. Chen, “Fast coding unit size selection for HEVC
based on Bayesian decision rule,” in Proc. Picture Coding Symp. (PCS),
Krakow, Poland, May. 2012, pp. 453–456.

[11] K. Lim, J. Lee, S.Kim and S.Lee, “Fast PU skip and split termination
algorithm for HEVC intra prediction.” IEEE Trans. Circuits Syst. Video
Technol., vol. 25, no. 8, pp. 1335 - 1346 Aug. 2015.

[12] Y. Zhang, S. Kwong, X. Wang, H. Yuan, Z. Pan and L. Xu, “Machine
learning-based coding unit depth decisions for flexible complexity
allocation in High Efficiency Video Coding,” IEEE Trans. Image
Process., vol.24, no.7, pp.2225-2238, Jul. 2015.

[13] B. Du, W.-C. Siu and X. Yang, “Fast CU partition strategy for HEVC
intra-frame coding using learning approach via random forests,” in Proc.
APSIPA ASC, Hong Kong, Dec. 2015, pp. 1085 – 1090.

[14] H-B Zhang, Y-L Chan, C-H Fu, S-H Tsang, and W-C Siu, “Quadtree
decision for depth intra coding in 3D-HEVC by good feature,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Shanghai,
China, Mar. 2016. pp. 1409–1413.

[15] M. Zhang, C. Zhao, and J. Xu, “An adaptive fast intra mode decision in
HEVC,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Orlando, FL,
USA, Sep. 2012, pp. 221–224.

[16] A. S. Motra, A. Gupta, M. Shukla, and P. Bansal: “Fast intra mode
decision for HEVC video encoder,” in Int. Conf. on Software, Telecomm.
Comput. Netw. (SoftCOM), Split, Croatia, Sep. 2012, pp. 1–5.

[17] D.-K. Kwon, and M. Budagavi, “Fast intra block copy (IntraBC) search
for HEVC screen content coding,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), Melbourne VIC, Australia, Jun. 2014, pp. 9–12.

[18] S.-H. Tsang, Y.-L. Chan, and W.-C. Siu, “Hash based fast local search
for intra block copy (IntraBC) mode in HEVC screen content coding,”
in Proc. APSIPA ASC, Hong Kong, Dec. 2015, pp. 396–400.

[19] S.-H. Tsang, W. Kuang, Y.-L. Chan, and W.-C. Siu, “Fast HEVC screen
content coding by skipping unnecessary checking of intra block copy
mode based on CU activity and gradient,” in Proc. APSIPA ASC, Jeju,
Korea, Dec. 2016, pp.1–5.

[20] S.-H. Tsang, Y.-L. Chan, and W.-C. Siu, “Fast and efficient intra coding
techniques for smooth Regions in screen content coding based on
boundary prediction samples,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Brisbane, Australia, Apr. 2015, pp.1409–
1413.

[21] F. Duanmu, Z. Ma, and Y. Wang, “Fast CU partition decision using
machine learning for screen content compression,” in Proc. IEEE Int.
Conf. Image Process., Quebec, QC, Canada, Sep. 2015, pp. 4972–4976.

[22] H. Zhang, Q. Zhou, N.-N Shi, F. Yang, X. Feng, and Z. Ma, “Fast intra
mode decision and block matching for HEVC screen content
compression,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Shanghai, China, Mar. 2016, pp.1377–1381.

[23] M. Zhang, Y. Guo, and H. Bai, “Fast intra partition algorithm for HEVC
screen content coding,” in Proc. IEEE Vis. Commun. Image Process.
(VCIP), Valletta, Malta, Dec. 2014, pp. 390–393.

[24] F. Duanmu, Z. Ma, and Y. Wang, “Fast mode and partition decision
using machine learning for intra-frame coding in HEVC screen content
coding extension,” IEEE J. Emerg. Sel. Topic Circuits Syst., vol. 6, no.
4, pp.517–531, Dec. 2016.

[25] J. Lei, D. Li, Z, Pan, Z. Sun, S. Kwong, and C. Hou, “Fast intra
prediction based on content property analysis for low complexity
HEVC-based screen content coding,” IEEE Trans. Broadcast., vol. 63,
no.1, pp.48–58, Mar. 2017.

[26] H. Yang, L. Shen, and P. An, “An efficient intra coding algorithm based
on statistical learning for screen content coding”, in Proc. IEEE Int. Conf.
Image Process., Beijing, China, Sep. 2017, pp. 2468–2472.

[27] C. Huang, Z. Peng, F. Chen, Q. Jiang, G. Jiang and Q. Hu, “Efficient CU
and PU Decision Based on Neural Network and Gray Level Co-
Occurrence Matrix for Intra Prediction of Screen Content Coding,”
IEEE Access, vol. 6, pp. 46643 - 46655, Aug. 2018.

[28] J.-B, Shi, and C. Tomasi, “Good features to track,” in Proc. IEEE Int.
Conf. Comp. Vis. Pattern Recognit. (CVPR), Seattle, WA, USA, Jun.
1994, pp. 593–600.

[29] H.-P. Yu, R. Cohen, K. Rapaka, and J. -Z Xu, “Common test conditions
for screen content coding”, 21th JCT-VC meeting, document JCTVC-
U1015-r2, Warsaw, Poland, Jun. 2015.

[30] J. W. Lee, and B. W. Dickinson, “Temporally adaptive motion
interpolation exploiting temporal masking in visual perception,” IEEE
Trans. Image Process., vol. 3, no. 5, pp. 513–526, Sep. 1994.

[31] HM-16.8+SCM-7.0, HEVC test model version 16.8 screen content
model version 7.0, [Online], available at:
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-
16.8+SCM-7.0/.

[32] G. Bjontegaard, “Calculation of average PSNR differences between rd-
curves,” document VCEG-M33, VCEG, Austin, Texas, USA, Mar. 2001.

