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Abstract—Screen Content Coding (SCC) is an extension of High 
Efficiency Video Coding by adopting new coding modes to 
improve the coding efficiency of SCC at the expense of increased 
complexity. This paper proposes an online-learning approach for 
fast mode decision and coding unit (CU) size decision in SCC. To 
make fast mode decision, the corner point is firstly extracted as a 
unique feature in screen content, which is an essential pre-
processing step to guide Bayesian decision modelling.  Second, 
distinct color number in a CU is derived as another unique feature 
in screen content to build the precise model using online-learning 
for skipping unnecessary modes. Third, the correlation of the 
modes among spatial neighboring CUs is analyzed to further 
eliminate unnecessary mode candidates. Finally, the Bayesian 
decision rule using online-learning is applied again to make fast 
CU size decision. To ensure the accuracy of the Bayesian decision 
models, new scene change detection is designed to update the 
models. Results show that the proposed algorithm achieves 
36.69% encoding time reduction with 1.08% Bjøntegaard delta 
bitrate (BDBR) increment under All Intra configuration. By 
integrating into the existing fast SCC approach, the proposed 
algorithm reduces 48.83% encoding time with 1.78% increase in 
BDBR. 

Index Terms—Screen Content Coding (SCC), High Efficiency 
Video Coding (HEVC), fast mode decision, fast CU size decision, 
Bayesian decision rule, scene change detection. 

I. INTRODUCTION

ITH recent fast development of the Internet and wireless 
communication, screen content coding (SCC) has been 

developed for many video applications, such as desktop sharing, 
cloud computing, and web conferencing. Unlike camera-
captured videos with only natural image blocks (NIBs), screen 
content videos also contain screen content blocks (SCBs), 
which have no noisy, many strong corners, a limited number of 
different colors, and many identical blocks within a frame. High 
Efficiency Video Coding (HEVC) is designed for NIBs in 
camera-captured content, but it cannot compress SCBs in screen 
content videos efficiently. Therefore, SCC [1] has been included 
in the HEVC standard [2] as one of its extensions, and two new 
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coding modes: intra block copy (IBC) [3] and palette (PLT) [4] 
have been added to improve the coding performance of SCC but 
induce intensive computational complexity. 

HEVC adopts the flexible coding tree unit (CTU) partitioning 
structure to improve the coding efficiency, but it leads to 220% 
computational complexity increase compared with the previous 
H.264/AVC standard [5] in the All Intra (AI) case [6]. In the
HEVC-based SCC, an encoder additionally checks the new IBC
and PLT modes in addition to the conventional intra (Cintra)
mode for a coding unit (CU), and the new modes cause a further
surge in the computation complexity. For the SCC reference
software – Screen Content Coding Test Model version 7.0
(SCM-7.0), about 61% of the computational complexity in the
mode searching process is brought by IBC and PLT modes.
Therefore, reducing the complexity of SCC is essential for
computation and energy constrained applications.

Recently, many approaches have been proposed to speed up 
the encoding process of HEVC. Those efforts are mainly divided 
into fast CU partition [7-14], and fast Cintra directional mode 
decision [15], [16]. Specifically, good performances are 
provided in [9-11], where the Bayesian decision rule is utilized 
to make early CU split and pruning decisions for NIBs. 
However, the new IBC and PLT modes make CU size decision 
of SCC different from HEVC, where an inhomogeneous CU is 
possible to be encoded as a large block without partitioning. 
Therefore, the algorithms in [9-11] are ineffective when applied 
to SCC. Besides, the new IBC and PLT modes make the fast 
mode decision of SCC much more challenging. These new 
modes make all fast HEVC algorithms in [7-16] fail in fast mode 
decision of Cintra, IBC and PLT, as they only consider the 
characteristics of NIBs without the newly introduced IBC and 
PLT modes. 

To reduce the computational complexity of SCC, existing 
SCC fast algorithms can be divided into IBC searching 
algorithms [17-20], fast CU partition algorithms [21-23], and 
fast algorithms where mode decision and CU partition decision 
are all considered [24-26]. To reduce the computational 
complexity of IBC mode in SCC, the works in [17-19] utilize 
features such as the rate-distortion (RD) cost of Cintra mode, 
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hash value, CU activity and gradient to skip unnecessary IBC 
checking. In [20], a new mode was designed to fill a noiseless 
smooth CU by its boundary samples. 

To speed up the CU partition process of SCC, conventional 
neural network-based classifiers are trained to make fast CU 
size decision by utilizing features that describe CU statistics and 
sub-CU homogeneity in [21]. However, it induces high RD 
performance loss. In [22], the depth information of the 
collocated CU is used to predict the depth level of the current 
CU. However, this method can only handle the stationary CUs 
well. In [23], by using rules based on CU entropy and coding 
bits, early termination is made for CU partitions adaptively. 

To make both fast mode decision and fast CU size decision 
of SCC, CU content classifications were conducted in [24-27]. 
However, they mainly focus on the fast mode decision for 
traditional NIBs by CU type classification. In [24], decision 
tree-based classifiers are used to classify incoming blocks into 
screen content blocks SCBs and NIBs. Two classifiers are 
specially designed for NIBs, and they predict Cintra directional 
mode and terminate CU partition of NIBs, respectively. For 
SCBs, only the Cintra mode is skipped so that both IBC and 
PLT modes need to be checked. Although thresholds are set to 
skip remaining modes and CU partitions, it is only useful for 
CUs with small encoding bits. Similarly, the work in [25] also 
classifies CU into NIBs and SCBs by analyzing content 
characteristics. IBC and PLT mode candidates are skipped for 
NIBs but all modes are checked for SCBs. Besides, bit per pixel 
in the current CU and the neighboring/collocated CU depth 
information are used to make fast CU size decision. In [26], Intra 
mode is checked for all CUs with 2N×2N prediction units (PUs) 
to collect features. Then decision tree-based classifiers are 
invoked to make CU type decision and CU partitioning decision. 
If a CU is classified as a SCB, both IBC and PLT modes are 
checked. Otherwise, only Cintra mode is checked for N×N PUs 
in the depth level of 3 for NIBs. In [27], conventional neural 
network-based classifiers are trained to classify CUs in NIBs 
and SCBs. Again, IBC, PLT modes and a subset of Cintra mode 
are checked for SCBs, while only Cintra mode is checked for 
NIBs. Then, information from spatial and temporal adjacent 
CUs is utilized to early terminate CU patriation. 

Compared with pre-trained models and pre-tuned heuristics 
in [17-27], online-learning has the advantage of generating 
decision models adaptively according to the content being 
encoded. Once the framework of the fast algorithm has been 
decided, it can be directly applied to sequences with different 
content characteristics, QPs and color formats without any 
modification because the decision model is always updated 
according to the content being encoded. On the contrary, pre-
trained models or pre-tuned heuristics are derived with limited 
training data and then they are applied to all sequences. 
Therefore, they usually have the generalization problem if the 
testing sequences have different characteristics from the 
training data, such as different content characteristics, QPs or 
color formats. In this paper, we therefore propose an online-
learning-based fast mode decision and CU size decision 
approaches using the Bayesian decision rule. Bayesian decision 
rule is friendly to online-learning since it only needs to estimate 
the priori probability and likelihood function when there is a 
new scene, and then the derived model is applied to the 
following frames to make fast decision. Therefore, it costs 

much less time for model training than other classifiers such as 
decision trees or neural networks. In brief, the main 
contributions of this paper are summarized as follows. 
 Bayesian decision rule is one of the well-known 

classification tools used in video coding. As a 
classification problem, some representative features such 
as Rate-Distortion (RD) cost, variance of prediction errors, 
etc. in camera-capture contents are always used for 
training [9-11]. However, these features cannot 
characterize screen contents. Corner point (CP) is a unique 
feature to characterize screen contents since SCBs usually 
contain sharp corners, while NIBs do not. In this paper, CP 
is explored to divide CUs into two groups with and without 
CP. We find that these two groups cannot share the same 
Bayesian decision model. One of the contributions in this 
paper is how to properly adopt CPs in the Bayesian 
decision rule for SCC. We reveal that CP is an excellent 
complement of the Bayesian decision rule for mode 
decision in SCC 

 Distinct color number in a CU is derived as another unique 
feature in screen content sequences, and it is used to build 
two Bayesian decision models for CU with and without 
CPs using online-learning for skipping unnecessary modes. 

 The correlation of the modes among spatial neighboring 
CUs is analyzed to further eliminate mode candidates of 
the current CU. 

 For CU size decision, CUs with the same optimal modes 
are grouped together to build Bayesian decision models 
using online-learning for early terminating unnecessary 
partitions. 

 A new low-complexity scene change detection method is 
specifically designed for screen contents to update 
statistical parameters adaptively for our proposed online-
learning SCC algorithm in different scenes. 

The differences between our contributions and the related 
schemes can be summarized as follows. 
 The new IBC and PLT modes make CU size decision of 

SCC very different from HEVC, so that the fast CU size 
decision using the Bayesian decision rule in [9-11] cannot 
be efficiently applied to SCC. Besides, these Bayesian 
decision rule in [9-11] are only limited to CU size decision, 
but not used for fast mode decision in SCC since there is 
only Cintra mode in HEVC. The introductions of IBC and 
PLT make the necessity of a completely new fast mode 
decision method in SCC with the help of new features. To 
the best of our knowledge, we are the first to use the 
Bayesian decision rule for the fast mode decision by 
analyzing the characteristics of CUs with various modes 
including both newly introduced IBC and PLT modes. 

 Unlike the algorithms in [17-20], which only simplify IBC 
mode of SCC, and the algorithms in [21-23], which only 
simplify CU size decision of SCC, we consider the whole 
encoding process of SCC to provide more encoding time 
reduction. 

 Although the algorithms in [24-27] can speed up both 
mode decision and CU size decision of SCC, the fast mode 
decision in [24-27] is from the idea of CU type decision. 
They treat the decisions for IBC and PLT modes the same 
so that at least two modes (IBC+PLT or Cintra+IBC+PLT) 
are checked for a SCB. Comparatively, the proposed fast 
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mode decision techniques make decision for each mode 
separately, so that many SCBs can only check one mode;   

 Unlike [17-27] applying pre-trained models and pre-tuned 
heuristics to all sequences, the proposed algorithm 
generates decision models adaptively according to the 
content being encoded by using online-learning. 

 Different from [22] [25] and [27], our CU size algorithm 
does not need information from the collocated CU. When 
it is feasible to make CU depth prediction using the mode 
and CU depth information from the collocated CU, the 
proposed CU size decision can also work with it to further 
speed up the SCC encoder. 

The rest of the paper is organized as follows. Section II 
briefly reviews and analyzes the original mode decision scheme 
in SCC. Section III presents the proposed fast mode and CU 
size decision techniques. Section IV gives the experimental 
results and discussions. Finally, Section V concludes this paper.  

II. REVIEW AND ANALYSIS ON MODE DECISIONS IN SCC 
Due to different characteristics in screen content videos, IBC 

mode and PLT mode were proposed for SCC as additional 
coding tools. IBC mode is a block matching-based approach 
which can be considered as motion compensation within the 
current reconstructed frame. The syntax for IBC mode is unified 
with inter-mode but it adopts different searching strategy from 
inter-mode. IBC mode is firstly checked using block vector (BV) 
predictors of skip and merge modes, which is an intra version of 
the skip and merge modes in inter-prediction. Prediction residual 
is signaled to the decoder for merge mode, while it is omitted for 
skip mode to reduce bitrate. If skip mode is chosen as the best 
mode so far, the mode search process of a CU is early terminated 
and the following IBC search and PLT mode are skipped. 
Otherwise, IBC search is performed for CUs with sizes of 16×16 
and 8×8, which is an intra version of the advanced motion vector 
prediction (AMVP) mode in inter-prediction. For 16×16 CUs, 
only 2N×2N PUs are checked while PU partitions of N×2N and 
2N×N are also allowed for 8×8 CUs. Besides, a new hash-based 
search is enabled for 8×8 CUs with 2N×2N PUs, and only 
blocks with the same hash value as the current CU are checked. 
Finally, the optimal BV is signaled using the syntax of AMVP 
mode. PLT mode is another effective approach applied for CU 
sizes from 32×32 down to 8×8. The idea of PLT mode comes 
from the observation that SCBs often contain a limited number 
of sample values. Several representative sample values in a CU 
are selected as base colors to form a palette table, and an index 
map is generated to send color indices for each position. A 
detailed technical overview of IBC and PLT can be found in [1] 
and [3]. 

SCC inherits the same coding structure from HEVC. Each 
CTU can be recursively partitioned into four sub-CUs until the 
smallest coding unit (SCU) size of 8×8 is reached. In SCC intra 
coding, three modes, Cintra mode, IBC mode and PLT mode, 
will both be checked for all depth levels, and then the optimal 
CU partition with the optimal mode will be selected by 
comparing their RD costs. However, this decision process leads 
to high computational complexity of the encoder. Fig. 1 shows 
the mode selection results for “WebBrowsing” with the 
quantization parameter (QP) of 22 and the depth level of 2. As 
IBC and PLT modes are specially designed for SCBs, they have 

higher selection probabilities for SCBs, while NIBs tend to 
select Cintra mode because of fewer repeated patterns and high 
number of sample values. It is noted that single color CUs can 
be encoded efficiently by all modes, thus they may select any 
mode as their optimal mode. Besides, due to the introduction of 
new IBC and PLT modes, SCBs with complex texture may also 
select large size CUs. Therefore, new fast mode decision and CU 
size decision methods based on these different characteristics 
between NIBs and SCBs are highly desired. 

III. PROPOSED FAST MODE AND CU SIZE DECISION 

ALGORITHM 
In SCC, the computational complexity mainly stems from the 

RD cost computation of all modes in every depth level. Thus, it 
is very efficient to reduce the computational complexity if the 
mode and CU size decisions can be predicted precisely, and 
then all the remaining unnecessary RD cost computation can be 
skipped. As shown in Fig. 1, SCBs usually have strong corners 
and limited color numbers, which are more likely to select IBC 
and PLT modes. Meanwhile, NIBs are smoother and have 
higher color numbers, which are more likely to select Cintra 
mode. Besides, there exists spatial correlation among the 
current CU and its neighboring CUs, and the current CU is more 
likely to select the same optimal mode as that of its neighboring 
CUs. Furthermore, for a certain depth level, RD costs of unsplit 
CUs concentrate in the range with small values, while the RD 
costs of split CUs show relatively wide and flat distribution. By 
utilizing these observations, three techniques are designed in this 
paper for expediting mode decision and CU size decision in SCC, 
which are called fast mode decision by online-learning (FMD), 
mode decision refinement (MDR), and fast CU size decision by 
online-learning (FCUSD). Besides, to obtain the correct 
learning statistics for making decisions, a new scene change 
detection method, ratio of new distinct color number (RDN), is 
specifically designed for scene content which facilitates the 
proposed algorithm to update the learning statistics adaptively. 
The flowchart of the proposed fast algorithm is shown in Fig. 2, 
which will be explained in detail in following sub-sections. 

A. Fast Mode Decision  
The proposed fast mode decision algorithm determines 

whether early mode skip can be performed based on two 
techniques, FMD and MDR. FMD is made by using the online-

 
Fig. 1. Mode distribution for “WebBrowsing” with QP of 22 and the depth level 
of 2. Cintra, IBC and PLT modes are denoted by blue, yellow and red blocks, 
respectively. Those regions without any colors denoted are terminated at depth 
levels of 0 or 1. 
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learning based Bayesian decision rule, which early skips the 
modes with low probabilities for being optimal modes. Then, 
MDR utilizes the optimal mode information of spatial 
neighboring CUs to further reduce unnecessary mode 
candidates for the current CU. Since FMD and MDR consider 
the decision of each mode separately, the encoder can check one 
mode from IBC and PLT rather than always checking them 
together as in [24-27]. 
1) CP  Detection 

CP is a particular feature of SCBs which usually contain 
sharp corners while NIBs are smooth. Before utilizing the 
Bayesian decision rule to make fast mode decision, a CP  
detection is adopted as a pre-processing step shown in the 
module 3 of Fig. 2. The basic principle of CP detection is to 
find the interest points with two dominant and different edge 
directions in a local neighborhood of the point. Compared with 
NIBs, SCBs contain more strong corners. Thus, the Shi–Tomasi 
CP detection algorithm in [28] is applied to classify a frame into 
SCBs and NIBs roughly. In [28], an image with only luma 
component is used, which is denotes by ܫ. The covariance 
matrix of an image patch at (ݑ,  and itself after shifted by (ݒ
,ݔ)   is written as (ݕ

 

T(ݔ, (ݕ = ∑ ∑ ,ݑ)ݓ (ݒ ቈ
௫ܫ

ଶ ௬ܫ௫ܫ

௬ܫ௫ܫ ௬ܫ
ଶ ቉௩௨                  (1) 

 
where ݑ)ݓ, (ݒ  is a weight window. ܫ௫  and ܫ௬  are the partial 
derivatives of ܫ . The eigenvectors of ܶ  are two principal 
directions and the eigenvalues of ܶ reflect the degrees of the 
change in their directions. Thus, ܶ  should have two large 
eigenvalues ଵߠ   and ߠଶ , and the strength of a CP, ST, can be 
defined as 
 

ܵܶ = ଵߠ)݊݅݉ ,   ଶ).                             (2)ߠ
 

The minimal accepted strength ܵ ௠ܶ௜௡ of CPs in an image is 
determined as  

 
ܵ ௠ܶ௜௡ = ஼௉ܪܶ × ܵ ௠ܶ௔௫                          (3)  

  
where ܵ ௠ܶ௔௫  is the largest strength of all CPs in the image, 
and ஼௉ܪܶ   is a minimal accepted strength threshold. If the 
strength of a CP is larger than ܵ ௠ܶ௜௡, this point can be detected 
as a CP. Otherwise, it is ignored. 

We implemented the CP detection method based on 

 

Fig. 2. Proposed fast mode and CU size decision flowchart. (a) Workflow of encoding a sequence, and (b) workflow of encoding a CTU. 
1. Online-learning phase. 2. Proposed fast decision phase. 3. CP detection. 4. FMD. 5. MDR. 6. FCUSD.  
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OpenCV2.4.9 function goodFeaturesToTrack(). For screen 
content videos, this method cannot detect CPs well with only 
luma samples used. Therefore, CPs in a frame are detected by 
considering all three components in our implementation. CPs 
are detected with each component using (1)-(3) separately, and 
then a pixel is treated as a CP if at least one of its components 
is detected as a CP. It is noted that this CP detection is very 
simple, and our experiment shows that it takes only 0.46% of 
the encoding time in the original SCM-7.0. CP detection with 
luma only and with all components are shown in Fig. 3(a) and 
(b), respectively, and better detection results can be obtained by 
using all components in Fig. 3(b). Fig. 4 shows the detected CPs 
of “MissionControlClip2” with different threshold values 
of ܶܪ஼௉ . As can be seen easily, SCBs contain many CPs while 
NIBs contain much less CPs. However, there are also some low 
contrast SCBs which are difficult to detect, as shown in the 
enlarged region of Fig. 4. Therefore, in our proposed algorithm, 
the strength of accepted CPs is set as a relatively small value 
with ܶܪ஼௉ = 0.01 to detect those low contrast CPs. Thus, CUs 
in a frame is divided into two groups now: CUs without corner 
CPs (݃݌ݑ݋ݎே஼௉), and CUs with CPs (݃݌ݑ݋ݎ஼௉). Table I shows 
the mode distributions in ݃݌ݑ݋ݎே஼௉  and ݃݌ݑ݋ݎ஼௉  for the first 
100 frames of “MissionControlClip3” encoded with QP of 22. 
It is observed that most CUs in ݃݌ݑ݋ݎே஼௉  select Cintra as their 
optimal modes, while a significant number of CUs in ݃݌ݑ݋ݎ஼௉  
selects PLT or IBC as their optimal modes. 
2) Fast Mode Decision by Online-learning (FMD) 

After the pre-processing step of CP detection, early mode 
decisions are made for CUs in ݃݌ݑ݋ݎ஼௉  and ݃݌ݑ݋ݎே஼௉ , 
respectively. To build the Bayesian decision model for each 

mode, the distinct color number of a CU is utilized as a unique 
feature in screen content sequences. To provide an accurate 
estimation for the distinct color number distribution, an online-
learning based approach is adopted in our proposed algorithm. 
When encoding a video sequence, all statistical parameters of 
the Bayesian classifiers are obtained in the online-learning 
phase, where the first ܮ frames of a new scene are encoded by 
the original SCM encoder to get these statistical parameters. 

To make early mode decisions, three classes are defined as 
Cintra, IBC and PLT mode classes: ߱஼௜௡௧௥௔ , ߱ூ஻஼  and ߱௉௅்  in 
each group. The distinct color number in a CU is extracted as the 
feature for classification. To fully utilize the pixel value 
information, a 24-bit sample value is utilized by concatenating 
the three components of a pixel. NIBs may have sensor noise 
while SCBs naturally concentrate on only a few sample values. 
Therefore, in each group, NIBs usually contain more distinct 
colors than SCBs. To analyze the statistical distribution, let k be 
the distinct color number in a CU varying from 1 to the total 
pixel number in this CU. ௚ܲ௥௢௨௣೘ ,ௗ(݇|߱௜)  is the conditional 
density of k in ߱௜  or the likelihood function, where 
݅ϵ{ܽݎݐ݊݅ܥ, ,ܥܤܫ {ܶܮܲ , depth level ݀ϵ{0,1,2,3}  and 
݉ϵ{ܰܲܥ, {ܲܥ . ௚ܲ௥௢௨௣೘,ௗ(݇|߱௜ )  can be obtained from the 
encoding statistics in the online-learning phase. To study the 
distributions of likelihood functions, ௚ܲ௥௢௨௣೘,ௗ(݇|߱௜ ) of three 
typical sequences including “MissionControlClip3”, 
“Programming” and “EBURainFruits”, are shown in Figs. 5-7 
with QPs of 22 and 37 at the depth level of 3, respectively. It is 
noted that “MissionControlClip3” and “Programming” contain 
both NIBs and SCBs while “EBURainFruits” only contains 
NIBs. As shown in Figs. 5-6(a) and (b), the likelihood 
distributions for different ߱௜  are similar, while diverse 
likelihood distributions in Figs. 5-6(c) and (d) are shown for 
different ߱௜ . In ݃݌ݑ݋ݎே஼௉ , CUs in all classes show a 
concentrated distribution centered in the range with small values 
of ݇ . However, in ݃݌ݑ݋ݎ஼௉ , most CUs in ߱௉௅்  and ߱ூ஻஼ 
contain a small value of ݇, while CUs in ߱஼௜௡௧௥௔  tend to have a 

Table I 
MODE DISTRIBUTIONS IN  ݃݌ݑ݋ݎே஼௉  AND  ݃݌ݑ݋ݎ஼௉  FOR THE FIRST 100 

FRAMES OF “MISSIONCONTROLCLIP3” ENCODED WITH QP OF 22. 
ே஼௉݌ݑ݋ݎ݃   

CU size PLT IBC Cintra 
64×64  3.37% 96.63% 
32×32 3.03% 7.46% 89.51% 
16×16 1.17% 24.79% 74.04% 
8×8 0.90% 24.94% 74.16% 

஼௉݌ݑ݋ݎ݃  
CU size PLT IBC Cintra 
64×64  25.15% 74.85% 
32×32 65.71% 17.06% 17.23% 
16×16 32.99% 49.01% 18.00% 
8×8 12.45% 64.53% 23.02% 

(a)                                 (b)                                       (c)  

Fig. 4. Detected CPs of “MissionControlClip2” with different values of ܶܪ஼௉ . 
(a) ܶܪ஼௉ = 0.1, (b) ܶܪ஼௉ = 0.05,  and (c) ܶܪ஼௉ = 0.01 (CPs are represented 
by color points). 

   
                          (a) CPs detected by luma component.                                                        (b) CPs detected by all components. 

Fig. 3. Comparison of CP detection methods with (a) luma component (b) and all components (CPs are shown by color points). 
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large value of ݇. In Fig. 7, the CUs selecting Cintra mode also 
have larger values of ݇ in both groups. Besides, since almost all 
CUs are NIBs, the curves for IBC and PLT modes are given 
based on very limited CUs. Cintra mode will dominate the mode 
decision process for “EBURainFruits”, which will be shown in 
Fig. 10.  

In considering whether to perform early skip for a mode, it is 
determined based on the posteriori probability ௚ܲ௥௢௨௣೘,ௗ(߱௜|݇), 
which is the conditional probability that ߱௜  is the best mode 
given k in ݃݌ݑ݋ݎ௠ and d. According to the Bayes’ rule, 
 ௚ܲ௥௢௨௣೘ ,ௗ(߱௜|݇) can be calculated as 
 

 ௚ܲ௥௢௨௣೘ ,ௗ(߱௜|݇) =
௉೒ೝ೚ೠ೛೘,೏(௞|ఠ೔)௉೒ೝ೚ೠ೛೘,೏(ఠ೔)

௉೒ೝ೚ೠ೛೘,೏(௞)
          (4) 

 
where ௚ܲ௥௢௨௣೘,ௗ (߱௜) represents the priori probability of ߱௜  and 

௚ܲ௥௢௨௣೘,ௗ (݇)  represents the total probability density of ݇  in 
௠݌ݑ݋ݎ݃  and ݀. ௚ܲ௥௢௨௣೘ ,ௗ(݇) is obtained by 
 

௚ܲ௥௢௨௣೘,ௗ(݇) = ∑ ௚ܲ௥௢௨௣೘ ,ௗ(݇|߱௜) ௚ܲ௥௢௨௣೘ ,ௗ(߱௜)ఠ೔ .    (5) 
 

௚ܲ௥௢௨௣೘,ௗ (݇|߱௜) and ௚ܲ௥௢௨௣೘ ,ௗ(߱௜) can be obtained from the 
encoding statistics in the learning frames. 

Figs. 8-10 show ௚ܲ௥௢௨௣೘ ,ௗ(߱௜|݇)  in ݃݌ݑ݋ݎே஼௉  and 
஼௉݌ݑ݋ݎ݃ for “MissionControlClip3”, “Programming” and 
“EBURainFruits” with QPs of 22 and 37 in the depth level of 3, 

respectively. In ݃݌ݑ݋ݎ஼௉  of Figs. 8-9(c) and (d) in 
“MissionControlClip3” and  “Programming”, because PLT and 
IBC modes are specially designed for SCBs, 

௚ܲ௥௢௨௣಴ು ,ଷ(߱௉௅்|݇) and ௚ܲ௥௢௨௣಴ು ,ଷ(߱ூ஻஼|݇) are larger for small 
values of ݇ , while the posteriori probability of Cintra mode 

௚ܲ௥௢௨௣಴ು ,ଷ(߱஼௜௡௧௥௔ |݇) increases as ݇ gets larger.  In ݃݌ݑ݋ݎே஼௉ 
of Figs. 8-9(a) and (b) in “MissionControlClip3” and  
“Programming”, there are many CUs with relatively smooth 
content, so that ௚ܲ௥௢௨௣ಿ಴ು ,ଷ(߱௉௅்|݇) are small for all ݇ values. 
While smooth CUs with a small value of ݇  can be encoded 
efficiently by both IBC and Cintra modes, ௚ܲ௥௢௨௣೘,ௗ(߱ூ஻஼ |݇) 
decreases as ݇  gets larger, and it makes ߱஼௜௡௧௥௔  become the 
most probable class for CUs with large values of ݇. From the 
above analysis, it can be found that posteriori probabilities of 
߱௜  in ݃݌ݑ݋ݎே஼௉  and ݃݌ݑ݋ݎ஼௉  do not share the same 
distribution, but they have a very similar distribution across the 
two screen content sequences, “MissionControlClip3” and 
“Programming”, at different QPs . It implies that CP is a good 
feature to characterize scene contents, and the use of CP to 
divide CUs into ݃݌ݑ݋ݎே஼௉ and ݃݌ݑ݋ݎ஼௉ is crucial to apply the 
Bayesian decision rule for mode decision in SCC properly.  It 
is noted that, in “EBURainFruits” shown in Fig. 10, the most 
probable class is always Cintra in both ݃݌ݑ݋ݎே஼௉ and ݃݌ݑ݋ݎ஼௉ 
since the priori probability of IBC and PLT modes are very small. 
Although different types of sequences have different 
characteristics, the proposed online-learning-based algorithm 

     
(a)                                                             (b)                                                            (c)                                                          (d) 

Fig. 5. Likelihood functions ௚ܲ௥௢௨௣೘ ,ௗ(݇| ௜߱ ) for “MissionControlClip3” at the depth level of 3 in (a) ݃݌ݑ݋ݎே஼௉  with QP of 22, (b) ݃݌ݑ݋ݎே஼௉  with QP of 37, (c) 
஼௉݌ݑ݋ݎ݃  with QP of 22, and (d) ݃݌ݑ݋ݎ஼௉  with QP of 37. 

   
                                (a)                                                              (b)                                                           (c)                                                          (d) 

Fig. 6. Likelihood functions ௚ܲ௥௢௨௣೘,ௗ(݇|߱௜) for “Programming” at the depth level of 3 in (a) ݃݌ݑ݋ݎே஼௉  with QP of 22, (b) ݃݌ݑ݋ݎே஼௉  with QP of 37, (c) ݃݌ݑ݋ݎ஼௉
with QP of 22, and (d) ݃݌ݑ݋ݎ஼௉  with QP of 37. 

   
                                (a)                                                              (b)                                                            (c)                                                           (d) 

Fig. 7. Likelihood functions ௚ܲ௥௢௨௣೘,ௗ(݇|߱௜) for “EBURainFruits” at the depth level of 3 in (a) ݃݌ݑ݋ݎே஼௉  with QP of 22, (b) ݃݌ݑ݋ݎே஼௉  with QP of 37, (c) ݃݌ݑ݋ݎ஼௉
with QP of 22, and (d) ݃݌ݑ݋ݎ஼௉  with QP of 37. 
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can derive content adaptive rules for fast mode decision, which 
is the advantage of our algorithm compared with the pre-trained 
model or pre-tuned heuristics in [17-27]. 

When implementing the proposed FMD,  ௚ܲ௥௢௨௣೘ ,ௗ(߱௜|݇) is 
calculated based on (4) and (5) in the learning phase. Then, to 
make fast mode decision, the distinct color number k for each 
CU is extracted, and the mode class ߱௜  of the CU is skipped if 

 
݉݌ݑ݋ݎ݃ܲ  ,݀(߱݅|݇) <  (6)                         .ߙ

 
As illustrated in the module 4 of Fig. 2, if the probability for a 
CU selecting a mode class ߱݅ is lower than the threshold value 

of ߙ, early skip for this mode will be performed. Since CUs with 
݇ = 1 can be encoded by all three modes efficiently, we exclude 
them in our algorithm for the sake of simplicity. Besides, the 
statistical parameters are estimated for different sizes of CUs 
including 64×64, 32×32, 16×16 and 8×8, respectively. The 
details will be given in Section III.D.  
3) Mode Decision Refinement (MDR)   

To further reduce the computational complexity of the mode 
decision process, we analyze the encoding time distribution 
among different modes and depth levels under AI configuration. 
The test sequences are the typical YUV 4:4:4 screen content 
sequences which were used by the experts in the JCT-VC group 
[29]. They are divided into 4 categories: text and graphics with 
motion (TGM), mixed content (M), animation (A), and camera-
captured content (CC), as shown in Table II. The test platform 
used for simulations is a HP EliteDesk 800 G1 computer with a 
64-bit Microsoft Windows 10 OS running on an Intel Core i7-
4790 CPU of 3.6 GHz and 32.0 GB RAM. Table III shows the 
average encoding time distribution for all test sequences, where 
the first 100 frames of each sequences are encoded with QPs of 

TABLE II 
TEST SEQUENCES IN EACH CATEGORY 

Categories Sequences 

TGM 

FlyingGraphics, 1920×1080, 300 frames 
Desktop, 1920×1080, 600 frames 
Console, 1920×1080, 600 frames 

ChineseEditing, 1920×1080, 600 frames 
WebBrowsing, 1280×720, 300 frames 

Map, 1280×720, 600 frames 
Programming, 1280×720, 600 frames 

SlideShow, 1280×720, 500 frames 

M 
BasketballScreen, 2560×1440, 300 frames 

MissionControlClip2, 2560×1440, 300 frames 
MissionControlClip3, 1920×1080, 600 frames 

A Robot, 1280×720, 300 frames 

CC EBURainFruits, 1920×1080, 250 frames 
Kimono1, 1920×1080, 120 frames 

 

Table III 
AVERAGE TIME DISTRIBUTION AMONG DIFFERENT MODES AND DEPTH 

LEVELS WITH QPS OF 22, 27, 32, 37 
CU size IBC (%) PLT (%) Cintra (%) Total (%) 
64×64 3.34  4.84 8.19 
32×32 5.23 5.36 4.63 15.23 
16×16 14.52 4.67 7.58 26.76 
8×8 23.82 4.27 21.74 49.82 

 

   
                                  (a)                                                          (b)                                                           (c)                                                               (d) 
Fig. 9. Posteriori probabilities ௚ܲ௥௢௨௣೘,ௗ(߱௜ |݇) in ݃݌ݑ݋ݎே஼௉  with QP of 22 (a) and 37 (b), in ݃݌ݑ݋ݎ஼௉  with QP of 22 (c) and 37 (d) for “Programming” at the depth 
level of 3. 

 
                                  (a)                                                             (b)                                                           (c)                                                            (d) 
Fig. 8. Posteriori probabilities ௚ܲ௥௢௨௣೘,ௗ(߱௜|݇) in ݃݌ݑ݋ݎே஼௉  with QP of 22 (a) and 37 (b), in ݃݌ݑ݋ݎ஼௉ with QP of 22 (c) and 37 (d) for “MissionControlClip3” at 
the depth level of 3. 

    
                                (a)                                                          (b)                                                             (c)                                                            (d) 
Fig. 10. Posteriori probabilities ௚ܲ௥௢௨௣೘ ,ௗ( ௜߱ |݇) in ݃݌ݑ݋ݎே஼௉  with QP of 22 (a) and 37 (b), in ݃݌ݑ݋ݎ஼௉  with QP of 22 (c) and 37 (d) for “EBURainFruits” at the 
depth level of 3. 
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22, 27, 32, and 37. As shown in Table III, the computational 
complexity mainly comes from IBC and Cintra modes at the 
depth levels of 2 and 3. Therefore, a IBC and Cintra mode 
decision refinement algorithm for 8×8 and 16×16 CUs is worth 
developing.  

As shown in Fig. 1, the current CU may share similar 
characteristics as its neighboring CUs, and it tends to select the 
same optimal mode of its neighboring CUs at the same depth 
level. If a CU selects a different mode from its top and left CUs, 
it is defined as the independent CU in our paper. To reveal the 
strong mode correlation among current CU and its top and left 
CUs, we study the statistic probabilities of the independent CU 
for IBC and Cintra modes at the depth levels of 2 and 3, which 
are calculated as the percentages of the independent CUs in all 
CUs from the depth levels of 2 and 3. The average independent 
CU probabilities calculated using the first 100 frames of all test 
sequences are shown in Table IV for four QPs. According to 
this table, the independent CU probabilities for IBC and Cintra 
modes are very low. Thus, during the mode decision refinement 
process, the left and top CUs at the same depth level of the 
current CU are used to refine the mode decision process and 
skip IBC and Cintra modes adaptively for 8×8 and 16×16 size 
CUs. 

Let ݉݁݀݋௫  represent a mode, and ݉݁݀݋௫ϵ{ܽݎݐ݊݅ܥ,  In .{ܥܤܫ

the module 5 of Fig. 2, ݉݁݀݋௫  will be skipped in the proposed 
algorithm if all the following conditions are satisfied: 

Condition 1: Neither the top CU nor the left CU selects 
 .௫ as its optimal mode at the current depth level݁݀݋݉
Condition 2: The mode decisions of the top and left CUs are 
not changed by using MDR, and that is to avoid the effect 
of error propagation. 
Condition 3: ௚ܲ௥௢௨௣೘,ௗ(߱௜|݇) < γ, ݅ϵ{ܽݎݐ݊݅ܥ,  γ is a .{ܥܤܫ
threshold used to avoid the skipping of modes with high 
probabilities to be the optimal mode for a CU. 

B. Fast CU Size Decision by Online-learning (FCUSD)  
As shown in Table III, the computational complexity 

increases as the depth level increases. Therefore, a CU partition 
early termination algorithm is desirable to skip the CU checking 
of the high depth level adaptively. 

The CU partition process is treated as a binary classification 
problem in our proposed algorithm. For each CU, two classes 
are defined as ߱ݐ݈݅݌ݏ  and ߱௨௡௦௣௟௜௧ . CUs in ߱ݐ݈݅݌ݏ will continue 
splitting while CUs in ߱ݐ݈݅݌ݏ݊ݑ will be terminated at the current 
depth level. The RD cost of the optimal mode under the current 
depth level, ܬ, is selected as the feature for classification, and is 
defined as 

 
ܬ = ௌௌாܦ + ߣ × ܴ                             (7) 

 
where ௌௌாܦ   denotes the sum of squared errors between the 
current CU and the predicted CU, ܴ is the bit cost, and λ is the 
Lagrange multiplier in terms of QP, which is given by 
 

ߣ = ܥ × (ொ௉ିଵଶ
ଷ.଴

)ଶ                            (8) 
 
where C is a factor determined by the picture type and coding 
structure. In our paper, we directly extract the value of ܬ from 
the original SCC encoder without inducing any further 
computation. 

Unlike camera-capture videos which are encoded by Cintra 
mode only, there are different types of CUs in screen content 
videos, and they are encoded by different optimal modes. 
Considering that the distributions of RD costs can be different 
when CUs are encoded by three different optimal modes – 

 
                    (a)                                    (b)                                     (c)                                         (d)                                        (e)                                        (f) 
Fig. 11. Likelihood functions ௚ܲ௥௢௨௣೙ ,ௗ(ܬ| ௝߱) for “MissionControlClip3” at depth level of 2 in (a) ݃݌ݑ݋ݎ஼௜௡௧௥௔  with QP of 22,  (b) ݃݌ݑ݋ݎ஼௜௡௧௥௔  with QP of 37, (c) 
ூ஻஼݌ݑ݋ݎ݃  with QP of 22,  (d) ݃݌ݑ݋ݎூ஻஼  with QP of 37,  (e) ݃݌ݑ݋ݎ௉௅் with QP of 22, and  (f) and ݃݌ݑ݋ݎ௉௅்  with QP of 37. 

      
                       (a)                                     (b)                                       (c)                                        (d)                                    (e)                                         (f) 
Fig. 12. Likelihood functions ܲ ௚௥௢௨௣೙ ,ௗ(ܬ| ௝߱) for “Programming” at depth level of 2 in (a) ݃݌ݑ݋ݎ஼௜௡௧௥௔  with QP of 22,  (b) ݃݌ݑ݋ݎ஼௜௡௧௥௔  with QP of 37, (c) ݃݌ݑ݋ݎூ஻஼  
with QP of 22,  (d) ݃݌ݑ݋ݎூ஻஼ with QP of 37,  (e) ݃݌ݑ݋ݎ௉௅்  with QP of 22, and  (f) and ݃݌ݑ݋ݎ௉௅் with QP of 37. 

   
                                (a)                                                            (b)                                
Fig. 13. Likelihood functions ܲ ௚௥௢௨௣೙ ,ௗ(ܬ| ௝߱) in ݃݌ݑ݋ݎ஼௜௡௧௥௔  with QP of (a) 22 
and 37 (b) for “EBURainFruits” at depth level of 2. 

Table IV 
STATISTIC PROBABILITIES OF INDEPENDENT CUS FOR IBC AND CINTRA 

MODES WITH SIZE OF 8×8 AND 16×16. 
QP IBC8×8 (%) Cintra8×8 (%) IBC16×16 (%) Cintra16×16 (%) 
22 4.51 3.38 4.76 2.53 
27 4.62 3.25 4.72 2.81 
32 4.46 3.12 4.84 3.02 
37 4.18 3.13 4.82 3.03 
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Cintra, IBC, and PLT, CUs with the same optimal mode are 
then grouped together. Therefore, CUs are divided into three 
groups according to their optimal modes. Similar to Section 
III.A, likelihood functions ܲ݃݊݌ݑ݋ݎ  are estimated in the (݆߱|ܬ)݀,
online-learning phase according to the conditional density of ܬ 
in ݆߱, where ݆ϵ{ݐ݈݅݌ݏ,  non-SCU depth level ݀ϵ{0,1,2} ,{ݐ݈݅݌ݏ݊ݑ
and ݊ϵ{ܽݎݐ݊݅ܥ, ,ܥܤܫ  To study the different distributions .{ܶܮܲ
of the RD cost for CUs belonging to ߱ݐ݈݅݌ݏ  and ߱ݐ݈݅݌ݏ݊ݑ , 
݊݌ݑ݋ݎ݃ܲ (݆߱|ܬ)݀,  for “MissionControlClip3”, “Programming” 
and “EBURainFruits” with QPs of 22 and 37 are shown in Figs. 
11-13 at the depth level of 2. Specially, only ܲ݃(݆߱|ܬ)݀,ܽݎݐ݊݅ܥ݌ݑ݋ݎ 
is shown in Fig. 13 since CUs in ݃݌ݑ݋ݎூ஻஼  and ݃݌ݑ݋ݎ௉௅்  are 
very limited in “EBURainFruits”. It is observed that 
݊݌ݑ݋ݎ݃ܲ  in each group shows relatively wide and flat (ݐ݈݅݌ݏ߱|ܬ)2,

distribution, while ܲ݃݊݌ݑ݋ݎ ݐ݈݅݌ݏ݊ݑ߱|ܬ)2, ) is concentrated in the 
range with small values of ܬ. Besides, sequences encoded with 
QP of 37 usually have higher RD cost than QP of 22. Let 
݊݌ݑ݋ݎ݃ܲ ,݀൫݆߱൯  represent the priori probability of ݆߱  and 

݊݌ݑ݋ݎ݃ܲ  which ,ܬ represent the total probability density of (ܬ)݀,
are both obtained from the encoding statistics in the online-
learning phase, then the posteriori probability ܲ݃݊݌ݑ݋ݎ  (ܬ|݆߱)݀,
for early terminating CU partitions can be calculated by Bayes’ 
rule as 

 
 ௚ܲ௥௢௨௣೙ ,ௗ( ௝߱|ܬ) =

௉೒ೝ೚ೠ೛೙,೏(௃|ఠೕ)௉೒ೝ೚ೠ೛೙,೏൫ఠೕ൯

௉೒ೝ೚ೠ೛೙,೏(௃)
           (9)  

 

where ௚ܲ௥௢௨௣೙ ,ௗ(ܬ) is obtained by 
 

௚ܲ௥௢௨௣೙ ,ௗ(ܬ) = ∑ ௚ܲ௥௢௨௣೙ ,ௗ(ܬ| ௝߱) ௚ܲ௥௢௨௣೙ ,ௗ൫ ௝߱൯ఠೕ .     (10) 
 

From (9) and (10), the posteriori probabilities ܲ݃݊݌ݑ݋ݎ  (ܬ|݆߱)݀,
for “MissionControlClip3”, “Programming” and 
“EBURainFruits” with QPs of 22 and 37 are shown in Figs. 14-
16 at the depth level of 2. As we can see, the posteriori 
probability distributions are different in three groups. In each 
group, ܲ݃݊݌ݑ݋ݎ  ,ܬ is very large for small values of (ܬ|ݐ݈݅݌ݏ݊ݑ߱)2,

while ܲ݃݊݌ݑ݋ݎ  gets larger for CUs with a higher value (ܬ|ݐ݈݅݌ݏ߱)2,
of ܬ. The reason is that CUs with a small value of ܬ are usually 
efficiently encoded under the current depth level, and the further 
partitions are unnecessary. Therefore, CUs with a small value of 
ܬ  are more likely to belong to ߱ݐ݈݅݌ݏ݊ݑ . However, it is also 
observed that CUs with a large value of ܬ still have relatively 
high probabilities to belong to ߱ݐ݈݅݌ݏ݊ݑ in ݃ܶܮܲ݌ݑ݋ݎ , as shown 
in Figs. 14-15(e) and (f). To achieve good prediction accuracy, 
FCUSD is only applied to CUs with Cintra and IBC modes in 
our algorithm. 

After getting the statistical parameters of ௚ܲ௥௢௨௣೙ ,ௗ൫ܬห ௝߱൯ 
and ௚ܲ௥௢௨௣೙ ,ௗ൫ ௝߱൯ in the online-learning phase, ௚ܲ௥௢௨௣೙ ,ௗ( ௝߱|ܬ) 
is calculated based on (9) and (10). Meanwhile, the remaining 
partitions of a CU is terminated if 

 

  
                      (a)                                      (b)                                      (c)                                      (d)                                           (e)                                     (f) 
Fig. 14. Posteriori probabilities ௚ܲ௥௢௨௣೙ ,ௗ൫ ௝߱ หܬ൯ for “MissionControlClip3” at depth level of 2 in (a) ݃݌ݑ݋ݎ஼௜௡௧௥௔ with QP of 22,  (b) ݃݌ݑ݋ݎ஼௜௡௧௥௔  with QP of 37,  
(c) ݃݌ݑ݋ݎூ஻஼ with QP of 22, (d)  ݃݌ݑ݋ݎூ஻஼  with QP of 37 (d), ݃݌ݑ݋ݎ௉௅் with QP of 22, and (f) ݃݌ݑ݋ݎ௉௅் with QP of 37. 

   
                      (a)                                     (b)                                     (c)                                       (d)                                     (e)                                          (f) 
Fig. 15. Posteriori probabilities ௚ܲ௥௢௨௣೙ ,ௗ൫ ௝߱ หܬ൯ for “Programming” at depth level of 2 in (a) ݃݌ݑ݋ݎ஼௜௡௧௥௔  with QP of 22,  (b) ݃݌ݑ݋ݎ஼௜௡௧௥௔  with QP of 37,  (c) 
ூ஻஼݌ݑ݋ݎ݃  with QP of 22, (d)  ݃݌ݑ݋ݎூ஻஼  with QP of 37 (d), ݃݌ݑ݋ݎ௉௅் with QP of 22, and (f) ݃݌ݑ݋ݎ௉௅்  with QP of 37. 

   
                                 (a)                                                          (b)                                
Fig. 16. Posteriori probabilities ௚ܲ௥௢௨௣೙ ,ௗ( ௝߱  ஼௜௡௧௥௔ with QP of (a)݌ݑ݋ݎ݃ in (ܬ|
22 and (b) 37 for “EBURainFruits” at depth level of 2. 

  
Fig. 17. Learning frame selection when encoding a video sequence (frames in 
the same scene are denoted by the same color). 
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௚ܲ௥௢௨௣೙ ,ௗ൫߱௦௣௟௜௧หܬ൯ < (11)                      ߚ 
 

where ߚ is the decision threshold for early CU termination, and 
it determines the trade-off between the coding efficiency and 
computational complexity.  As shown in the module 6 of Fig. 2, 
the RD cost, ܬ , is extracted for the CU being encoded. We 
assume that the current CU is encoded efficiently, and the 
remaining partitions will be skipped if (11) is satisfied. The 
statistical parameters ௚ܲ௥௢௨௣೙ ,ௗ(ܬ| ௝߱)  and ௚ܲ௥௢௨௣೙ ,ௗ൫ ௝߱൯ are 
estimated for each different size of non-SCUs that are 64×64, 
32×32, and 16×16 respectively in the online-learning phase. The 
details will be given in Section III.D.  

C. Scene Change Detection for Learning Frame Updating  
The Bayesian classifier is an optimal classifier based on the 

assumption that all statistical parameters such as 
௚ܲ௥௢௨௣೘,ௗ (݇|߱௜) , ௚ܲ௥௢௨௣೘ ,ௗ(߱௜) ,  ௚ܲ௥௢௨௣೙,ௗ(ܬ| ௝߱)  and 
௚ܲ௥௢௨௣೙ ,ௗ൫ ௝߱൯  in (4) and (9) are obtained correctly. Fig. 17 

shows the online-learning approach used in the proposed 
algorithm. For screen content videos, scene changes occur 
frequently such as document opening or closing, slideshow 
playing, etc. Then the statistical parameters will change 
suddenly, and it leads to wrong classifications. Therefore, scene 
change detection should be applied to update the statistical 
parameters adaptively.  

 To perform scene change detection in a camera-captured 
video sequence, two typical correlation measurement methods, 
difference of histogram (DOH) and histogram of difference 
(HOD), are introduced in [9], [30]. For DOH, it calculates the 
absolute sum of the histogram difference between two adjacent 
frames, ܨ௔  and ܨ௕ , by using luma samples, and the value of 
DOH is given as the ratio of the absolute sum of the histogram 
difference to all histograms of ܨ௔  

 

,௔ܨ)ܪܱܦ ௕ܨ )= 
∑ |௛ೌ(௟)ି௛್(௟)|೜షభ

೗సబ
∑ ௛ೌ(௟)೜షభ

೗సబ
                 (12) 

 
where ݍ  is the number of luma level, ℎ௔  and ℎ௕  are the 
histograms of ܨ௔ and ܨ௕ .  

For HOD, the histogram of difference between two adjacent 
frames, ܨ௔ − ௕ܨ , is defined by ℎ݀݋(݈), where ݈ϵ[−ݍ + 1, ݍ − 1]. 
The further the histogram of luma difference is distributed from 
the origin of ℎ݀݋(݈), the more different the frames are. The 
value of HOD is given as the ratio of the sum of ℎ݀݋(݈) with ݈ 
larger than a threshold ߬ to all histograms of ℎ݀݋(݈)  

 

,௔ܨ)ܦܱܪ ௕ܨ ) =
∑ ௛௢ௗ(௟)೗∉[షഓ，ഓ]

∑ ௛௢ௗ(௟)೜షభ
೗సష೜శభ

                      (13) 

 
where ߬ is a threshold to determine the closeness to zero, and it 
is set to 32 in [9], [30]. If the value of DOH or HOD is larger 
than a threshold ߮ , a scene change is regarded to occur. 
However, for screen content videos, different scenes may have 
similar background, which makes these methods unable to 
detect scene changes. Besides, zoom and content color change 
situations often occur in screen content videos, but they can be 
considered as the same scene and the statistical parameters of 
the previous learning frames can still be used. If these methods 
are used in SCC, false scene changes might be detected. 

Since frames in the same scene have similar distribution of 
distinct color number, a simple and efficient scene change 
detection method is tailor made for screen content videos in this 
paper. A frame is divided into non-overlapping 32×32 blocks, 
then the distinct color number is calculated for each block. Let 
 ௟ denotes the recent learning frames, and then the ratio of theܨ
new distinct color number (RDN) to the total distinct color 
number in a frame ܨ௔  is defined as 

 

,௔ܨ)ܰܦܴ  = (௟ܨ
∑ ௕௟௢௖௞ಷೌ

೎೛ (௞)ೖ∉ ೄಷ೗
೎೛ ା∑ ௕௟௢௖௞ಷೌ

೙೎೛(௞)ೖ∉ ೄಷ೗
೙೎೛

∑ ௕௟௢௖௞ಷೌ(௞)యమ×యమ
ೖసమ

     (14) 

 
where ܾ݈݇ܿ݋ிೌ

௖௣(݇) and ிೌ݇ܿ݋݈ܾ
௡௖௣ (݇)  represent the number of 

blocks in ܨ௔  that have ݇ distinct colors with and without CPs, 
respectively, and ݇ varies from 2 to the total pixel number in a 
block (32×32). Blocks with only one color are usually 
background, so they are excluded here. ܵி೗

௖௣  and ܵி೗
௡௖௣  represent 

the distinct color number spaces with and without CPs of ܨ௟, 
respectively. Thus, ∑ ிೌ݇ܿ݋݈ܾ

௖௣ (݇)௞∉ ௌಷ೗
೎೛  and  

∑ ிೌ݇ܿ݋݈ܾ
௡௖௣(݇)௞∉ ௌಷ೗

೙೎೛  denote the total number of the new 

distinct color blocks with and without CPs in ܨ௔, respectively. 
ிೌ݇ܿ݋݈ܾ (݇) is the number of blocks in ܨ௔  that have ݇ distinct 
colors, and ∑ ிೌ݇ܿ݋݈ܾ (݇)ଷଶ×ଷଶ

௞ୀଶ  denotes the total distinct color 
number of the non-background blocks in ܨ௔ . If ܴܨ)ܰܦ௔,  ௟)  isܨ
larger than a threshold ߮, a large area in ܨ௔  has different color 
characteristic, and ܨ௔  is regarded as a new scene. Then, a 
predefined ܮ learning frames, which is set to 2 in the proposed 
algorithm, are selected starting from ܨ௔  for learning and 
updating the statistical parameters, as shown in the modules 1 
and 2 of Fig. 2. ߮  was empirically determined as 0.15 for 
typical screen content videos. However, for animation videos, 
they are more similar to camera-captured videos, and scene 
changes usually occur with a larger value of ߮. Thus, a larger 
߮ is set to 0.3 empirically for animation and camera-captured 
videos. It is noted that full RD optimization is performed in 
learning frames to get precise estimation in (4), (5), (9) and (10).  

D. Likelihood Estimation and Memory Analysis 
 In the online-learning phase, the first ܮ  frames at the 

beginning of a new scene are used to estimate the statistical 
parameters. As shown in Figs. 5-7 and Figs. 11-13, 
 ௚ܲ௥௢௨௣೘ ,ௗ(݇|߱௜ )  and  ௚ܲ௥௢௨௣೙ ,ௗ(ܬ| ௝߱)  are difficult to be 
represented by using specific probability functions. 
Alternatively, the likelihood functions are estimated by a 
nonparametric estimation method: 

 

௚ܲ௥௢௨௣೘,ௗ (݇|߱௜) =
ே೒ೝ೚ೠ೛೘,೏

ഘ೔,ೖ

 

∑ ே೒ೝ೚ೠ೛೘,೏
ഘ೔ ,ೖ

ೖ
                      (15) 

 

௚ܲ௥௢௨௣೙ ,ௗ൫ܬห ௝߱൯ =
ே೒ೝ೚ೠ೛೙ ,೏

ഘೕ,಻

 

∑ ே೒ೝ೚ೠ೛೙ ,೏
ഘೕ,಻

಻
                       (16) 

 
where ௚ܰ௥௢௨௣೘,ௗ

ఠ೔,௞  denotes the number of CUs with k distinct 
colors and belonging to the class ߱௜  in ݃݌ݑ݋ݎ௠  and the depth 
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level of ݀. ௚ܰ௥௢௨௣೙ ,ௗ
ఠೕ ,௃  denotes the number of CUs with the RD 

cost of ܬ and belonging to the class ௝߱  in ݃݌ݑ݋ݎ௡  and the depth 
level of ݀. 

To estimate the likelihood function ܲ݃݉݌ݑ݋ݎ ,݀(݇|߱݅) , 
numbers of CUs with ݇ distinct colors in 3 different classes, 
ܶܮܲ߱ ܥܤܫ߱ , , and ߱ܽݎݐ݊݅ܥ, are recorded in the learning frames. For 
CUs with sizes of 8×8, 16×16 and 32×32, there are at most 64, 
256 and 1024 different distinct colors, respectively, and 3 
different optimal modes. For CUs with size of 64×64, there are 
at most 4096 different distinct colors, and 2 optimal modes 
(Notice that PLT mode is not applied to the CU size of 64×64). 
Since the number of 64×64 CU training samples is relatively 
small, ݇ values of 64×64 CU size training samples are restricted 
to 1024 bins with 4 values in each bin to estimate the statistical 
fluctuation. Besides, there are 2 groups defined as regions with 
and without CPs. Defined as double-precision floating point 
which requires 8 bytes (B) in C language, 95 KB{[(64 + 256 +
1024) × 3 + 1024 × 2] × 2 × 8 ÷ 1024} are required to store 
those parameters. To estimate the likelihood function 
݊݌ݑ݋ݎ݃ܲ ,݀൫ܬห݆߱൯ , CUs with the RD cost of ܬ  belonging to 2 

different classes, ߱ݐ݈݅݌ݏ݊ݑ and ߱ݐ݈݅݌ݏ, are recorded in the learning 
frames. Besides, there are 3 depth levels, and 2 groups defined 
as CUs encoded by Cintra mode and IBC mode. Since CUs 
belonging to ߱ݐ݈݅݌ݏ݊ݑ show a concentrated distribution centered 
in a narrow range with small RD cost, FCUSD is only applied 
to CUs with RD cost values smaller than 20000. For the ease of 
implementation, the RD cost values are restricted to 100 bins. 
Thus, to store these parameters, about 9.4 KB (100 × 2 × 3 ×
2 × 8 ÷ 1024)  are required. In total, the memory cost for 
likelihood function estimation is about 104.4KB, and it is 
acceptable to the SCC encoder.  

In comparison with the existing fast SCC algorithms [23], 
[24], [26], they consume much less memory (less than 1 KB) 
than ours because they only derive several fixed rules which are 
independent from video content. On the other hand, the 
algorithms [22], [25] also need to record the information from 
the collocated CUs and they need more memory than ours. In 
[22], the depth levels, optimal modes and sample values of the 
last frame are required. For a video with the resolution of 
2560×1440 pixels, the total memory cost is 14,850KB by using 
integer type which requires 4 B in C language. Specifically, the 
memory cost for storing sample values is 14,400KB (2560 ×
1440 × 4 ÷ 1024), while the memory cost for storing depth 
level and the optimal mode is 450KB (2560 × 1440 ÷
(8 × 8) × 2 × 4 ÷ 1024)  by recording them for each 8 × 8 
block. In [25], the depth levels of the previous frame are required. 

Similarly, for a video with the resolution of 2560×1440 pixels, 
the total memory cost is 225KB (2560 × 1440 ÷ (8 × 8) ×
4 ÷ 1024) by recording them for each 8×8 block. 

E. Summary of the Proposed Algorithm 
As a summary, the proposed algorithm is divided into online-

learning phase and fast decision phase, as shown in Fig. 2. In 
the online-learning phase, the learning frames are encoded by 
the original SCC encoder to obtain the learning statistics. Then 
the learning statistics are utilized to build the Bayesian 
classifiers, and the fast encoding process is performed based on 
the classifiers in the fast decision phase. Besides, before 
encoding a frame in the fast decision phase, scene change 
detection is carried out to guarantee the strong correlation 
between the frames being encoded and the learning frames. To 
make fast encoding decisions, CP detection is firstly performed 
as a pre-processing step, as shown in the module 3 of Fig. 2. 
Then FMD, MDR, and FCUSD techniques are executed one by 
one to speed up the SCC encoding process, as shown in the 
modules 4, 5 and 6 of Fig. 2, respectively. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
The proposed FMD, MDR, and FCUSD techniques have 

been implemented in the HEVC reference software SCM-7.0 
[31]. To evaluate their performances, the computational 
complexity reduction and Bjøntegaard delta bitrate (BDBR) [32] 
with QPs at 22, 27, 32, and 37 were compared with that of the 
original SCM-7.0, and some recent algorithms in [22-26]. The 
testing condition was based on AI configuration and strictly 
follows the Common Test Conditions (CTC) defined in [28]. 
The encoding time reduction, ∆Time, is used to measure the 
computational complexity reduction, which is defined as 

 
∆ܶ݅݉݁ =

்௜௠௘೟೐ೞ೟ ି்௜௠௘ೝ೐೑೐ೝ೐೙೎೐

்௜௠௘ೝ೐೑೐ೝ೐೙೎೐
100%                (17) 

 
where ܶ݅݉݁ݐݏ݁ݐ  represents the encoding time of the tested 
algorithms, and ܶ݅݉݁݁ܿ݊݁ݎ݂݁݁ݎ represents that of SCM-7.0. It is 
noted that negative value of ∆ܶ݅݉݁(%) denotes encoding time 
decrement in percentage compared with SCM-7.0. 

A. Results of Proposed Individual Techniques  
From Section III, it is seen the proposed algorithm is 

computationally scalable, and users can select the values of ߙ, 
ߚ  and γ based on their purposes. Fig. 18 shows the BDBR 
against ∆Time for different values of thresholds. It is observed 
that for each individual technique, larger encoding time 
reduction is provided as the value of the corresponding threshold 

   

                                        (a)                                                                                      (b)                                                                                (c) 
Fig. 18. Average BDBR and ∆Time (%) of all sequences coded by individual techniques: (a) FMD, (b) MDR, and (c) FCUSD with various values of thresholds. 
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increases. However, it also brings a higher increase in BDBR. 
Specifically, FMD provides the largest encoding time reduction 
among the three techniques with negligible coding efficiency 
loss. When ߙ varies from 0.01 to 0.09, FMD provides 15.27% 
to 27.06% encoding time reduction with 0.10% to 0.66% 
increase in BDBR. When γ varies from 0.1 to 0.9, MDR 
provides 7.05% to 13.31% encoding time reduction with 0.10% 
to 1.16% increase in BDBR. When ߚ  varies from 0.1 to 0.9, 
FCUSD provides 8.48% to 15.35% encoding time reduction 
with 0.22% to 2.16% increase in BDBR.  

B. Results of Overall Algorithm  
In this section, the performance of the proposed overall 

algorithm is given in Table V. To have a good tradeoff between 
computational complexity and RD performance, it is suggested 
that the values of ߚ ,ߙ and γ are selected to let each technique 
has similar increase in BDBR. In our paper, two settings are 
tested, 0.01=ߙ, γ=0.1, 0.1=ߚ and 0.07=ߙ, γ=0.3, 0.3=ߚ. They 
are denoted as OURS1 and OURS2, respectively, for simplicity. 
The increases in BDBR of the three individual techniques are 
all smaller than 0.3% in OURS1, while the increases in BDBR 
are all smaller than 0.5% in OURS2. As test sequences in TGM 
and M contain both NIBs and SCBs while sequences in A and 
CC contain only NIBs, the average results for TGM+M and 
A+CC sequences are also provided in Table V. It is observed 
from Table V that OURS1 provides 25.47% encoding time 
reduction with 0.35% increase in BDBR while OURS2 provides 
36.69% encoding time reduction with 1.08% increase in BDBR.  

To further investigate the encoding time reduction 
performance of the proposed algorithm, the encoding time of 
OURS2 for “WebBrowsing” was compared with the original 
SCM-7.0 frame by frame, and the results are shown in Fig. 19. 

In the online-learning phase, the learning frames are encoded by 
the original intra prediction process to obtain the learning 
statistics. Therefore, it can be observed that the encoding time is 
almost the same as SCM-7.0 for the learning frames. Then, the 
proposed algorithm is applied to the following frames, and 
encoding time is reduced dramatically. 

C. Performance Comparison with State-of-the-art Algorithms 
This section will compare our proposed algorithm with other 

recent SCC algorithms. They include the algorithms in Zhang 
[22], Zhang [23], Duanmu [24] (“RD-preserving” setting), Lei 
[25], and Yang [26]. It is noted that they were implemented in 
different reference software from ours in their original 
publications. Zhang [23] was simulated using HM-12.1+RExt-
5.1 rather than SCM, while Zhang [22], Duanmu [24], Lei [25] 
and Yang [26] were simulated using SCM-3.0, SCM-4.0 and 
SCM-2.0, SCM-5.0 respectively. There are numerous 
enhancements, speed-up techniques and codes clean-up in 
SCM-7.0 compared with the older versions. In the older 
versions, the BV signal in IBC mode was not unified with the 
inter mode which only has left and above BVs as predictors 
with no skip and merge modes. Consequently, incoming CUs 
always need to check the time-consuming IBC search and PLT 
modes without early termination. Moreover, N×N IBC search 
was done after 2N×N search while it is eliminated in SCM-7.0. 
In addition, the older versions enable PLT mode in the depth 
level of 0 while it is disabled in SCM-7.0 because of the 
occasional use. Due to those differences, we re-implemented 
them into SCM-7.0 for fair comparisons. 

By employing online-learning-based Bayesian decision rule 
that updates the decision models adaptively according to the 
content being encoded, the proposed algorithm always shows 
higher encoding time reduction and smaller increase in BDBR 
on average than the pre-trained models and pre-tuned heuristics 
in [22-26]. Specially, OURS2 provides over 50% encoding time 
reduction with only 0.70% increase in BDBR for sequences in 
A+CC, and it significantly outperforms the pre-trained models 
and pre-tuned heuristics in [22-26]. Since learning frames only 
contain NIBs, the derived Bayesian classifiers can easily skip 
both IBC and PLT modes based on the statistics of learning 
frames. On the contrary, the pre-trained models and pre-tuned 

Table V 
∆Time and BDBR OF DIFFERENT ALGORITHMS COMPARED WITH SCM-7.0 FOR YUV 4:4:4 SEQUENCES 

Sequence 
Zhang [22] Zhang [23] Duanmu [24] Lei [25] Yang [26] OURS1 OURS2 

BDBR 
(%) 

∆Time 
(%) 

BDBR 
(%) 

∆Time 
(%) 

BDBR 
(%) 

∆Time 
(%) 

BDBR 
(%) 

∆Time 
(%) 

BDBR 
(%) 

∆Time 
(%) 

BDBR 
(%) 

∆Time 
(%) 

BDBR 
(%) 

∆Time 
(%) 

FlyingGraphics 0.84 -5.03 0.54 -4.02 0.98 -19.93 1.72 -17.79 5.32 -31.32 0.19 -16.35 1.03 -25.18 
Desktop 1.93 -46.82 0.67 -5.90 2.20 -26.33 1.97 -23.64 6.08 -36.05 0.55 -23.78 1.25 -35.94 
Console 3.37 -38.09 2.64 -8.01 1.87 -27.82 2.87 -23.07 7.38 -42.92 0.20 -26.98 0.75 -39.49 

ChineseEditing 0.64 -49.01 0.14 -5.02 1.11 -17.49 0.99 -19.08 4.30 -34.27 0.17 -23.23 0.73 -37.94 
WebBrowsing 1.52 -50.67 0.27 -7.48 1.41 -28.04 5.48 -26.80 5.00 -53.55 -0.08 -28.55 0.67 -41.11 

Map 0.85 -36.22 0.96 -11.46 1.56 -18.98 1.23 -19.80 2.84 -41.89 0.22 -20.18 1.29 -33.51 
Programming 1.15 -39.12 0.44 -19.21 1.89 -22.08 2.50 -22.37 4.71 -27.56 0.13 -12.45 0.49 -17.79 

SlideShow 1.39 -43.61 0.36 -47.24 2.88 -52.76 2.32 -55.32 3.69 -34.05 1.43 -27.57 2.33 -31.77 
BasketballScreen 1.08 -41.32 0.45 -13.15 1.25 -22.57 1.46 -24.30 3.00 -31.28 0.21 -20.78 1.47 -34.12 

MissionControlClip2 1.27 -38.70 0.40 -21.43 2.86 -34.33 1.71 -33.5 2.51 -38.85 0.51 -21.7 1.69 -32.54 
MissionControlClip3 1.03 -38.97 0.37 -12.13 2.05 -24.71 1.69 -24.86 2.90 -34.37 0.42 -22.02 1.26 -32.74 

Robot 0.93 -12.09 0.43 -18.77 1.18 -30.13 5.21 -46.90 0.59 -28.29 0.65 -29.35 1.61 -46.42 
EBURainFruits 0.71 -16.76 0.21 -18.89 0.88 -27.42 1.76 -48.36 0.17 -25.95 0.17 -42.87 0.35 -58.74 

Kimono1 0.14 -1.01 0.14 -26.35 1.23 -26.93 1.52 -75.49 0.13 -36.27 0.10 -40.73 0.15 -46.31 
Average (TGM+M) 1.37 -38.87 0.66 -14.10 1.82 -26.82 2.18 -26.41 4.34 -36.92 0.36 -22.14 1.18 -32.92 
Average (A+CC) 0.59 -9.95 0.26 -21.34 1.10 -28.16 2.83 -56.92 0.30 -30.17 0.37 -37.65 0.70 -50.49 
Average (ALL) 1.20 -32.67 0.57 -15.65 1.67 -27.11 2.32 -32.95 3.47 -35.47 0.35 -25.47 1.08 -36.69 

 

Fig. 19. Encoding time of each frame for “WebBrowsing” with QP of 22. 
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heuristics are generated using a mixed training data of NIBs and 
SCBs. Therefore, they fail to have such accurate prediction for 
sequences in A+CC as OURS2, and it leads to less coding gain 
than the proposed algorithm, as observed in Table V. 

From Table V, OURS1 shows better performance on average 
than Zhang [23], which only has 15.65% encoding time 
reduction with 0.57% increase in BDBR, while OURS1 shows 
25.47% encoding time reduction with 0.34% increase in BDBR. 
Furthermore, OURS2 shows better performance on average than 
Zhang [22].  In Table V, Zhang [22] provides 32.67% encoding 
time reduction with 1.20% increase in BDBR. The complexity 
savings in Zhang [22] heavily relies on the stationary CUs 
between adjacent frames by re-using the CU depth information 
from the collocated CU in the previous frame, and it induces 
more memory cost as mentioned in Section III.C.  As a result, it 
works very well for sequences in TGM and M which contain 
many stationary regions, where 38.87% encoding time are 
reduced, but larger BDBR increase as compared with OURS2 
is induced. It is also observed that it provides only 5.03% 
encoding time reduction for “FlyingGraphics”. It is because 
“FlyingGraphics” contains rapid windows rotation and color 
changing. In this situation, the number of stationary CUs 
decreases. Due to the same reason, it provides only 9.95% 
encoding time reduction for sequences in A and CC. On the 
contrary, our proposed algorithm works well for CUs with 
object movements or non-stationary CUs since OURS2 does not 
use the collocated information from the previous frame. Its 
performance is then insensitive to the motion activity in the 
sequence. Therefore, the average time reduction of OURS2 
provides more consistent savings for sequences in TGM and M, 
and has better performance for sequences in A and CC.  When 
the access to the information from the collocated CU is feasible, 
our proposed algorithm can be integrated with the CU depth 
prediction in Zhang [22] such that the temporal CU depth 
correlation can be utilized for stationary CUs. As observed from 
Table VI, with the integration of Zhang [22] into OURS2, i.e. 
OURS2 + Zhang [22], it performs well for all types of 
sequences. On average, 48.83% encoding time is reduced with 
1.78% increase in BBDR. This shows that Zhang [22] can speed 
up stationary CUs while OURS2 can work well for CUs with 
object movements. Further encoding time reduction achieved 
by the integration proves that the areas addressed by OURS2 

are different from Zhang [22]. This is an excellent complement 
between OURS2 and Zhang [22].  From Table VI, it can be seen 
that the BDBR is increased when OURS2 is incorporated with 
Zhang [22]. It is expected as no fine-tuning for the algorithms 
is performed in the code merging process, which causes the fast 
techniques to become greedy. This integration could be a point 
for our immediate future work. 

Similar to our proposed algorithm, Duanmu [24], Lei [25] 
and Yang [26] also consider the whole encoding process of SCC 
to speed up both of the mode decision and CU size decision by 
classifying CUs into NIBs and SCBs.  From Table V, Duanmu 
[24], Lei [25] and Yang [26] show 27.11%, 32.95%, 35.47% 
encoding time reduction with 1.67%, 2.32% and 3.57% increase 
in BDBR. Their approaches are more focused on the fast 
encoding of NIBs by checking Cintra mode only for NIBs while 
checking IBC+PLT or Cintra+IBC+PLT for SCBs. 
Comparatively, SCBs may check one mode by using the 
proposed algorithm.  As a result, OURS2 provides 1.22%-9.57% 
larger encoding time reduction with 0.59%-2.39% less BDBR 
increment on average than their approaches. It is noted that Lei 
[25] also uses depth prediction based on the neighboring and 
collocated CUs.  When OURS2 also adopts the depth prediction 
in [22], as mentioned above, the results in Table VI show further 
overwhelming performance in comparison with Lei [25] in 
Table V.    
  To further illustrate the advantage of our proposed mode 
decision, the mode distribution by OURS2, Duanmu [24], Lei 
[25] and Yang [26] are shown in Table VII. It is noted that the 
CU size decisions for all algorithms are disabled to clearly 
illustrate the mode distribution. Table VII shows the mode 
decision distribution of “ChineseEditing” which only contains 
SCBs. Results in Table VII show that OURS2 provides flexible 
mode decision, where a mode can be checked alone or with 
another mode. For example, PLT mode can be checked alone or 
with Cintra/IBC mode for a CU. For “ChineseEditing”, 53.66% 
and 20.55% CUs only check PLT mode in depth levels of 1 and 
2, respectively. Since the mode decision becomes more 
complicated for small CUs, various combinations of modes are 
usually checked in depth level of 3. Besides, in the depth level 
of 0 in which only IBC and Cintra modes are enabled, 65.19% 
CUs are decided to check Cintra mode only since it is difficult 

Table VII 
COMPARITION OF THE MODE DECISION DISTRIBUTION DECIDED BY 

DIFFERENT ALGORITHMS WITHOUT CU SIZE DECSION 

AlgorithmDepth 
level 

ChineseEditing 
Cintra 
only 

IBC 
only 

PLT 
only 

Cintra+ 
IBC 

Cintra + 
PLT 

IBC+ 
PLT 

Cintra+ 
IBC+PLT 

OURS2 

0 65.19 1.39  33.42    
1 2.88 0.52 53.66 1.74 5.46 32.00 3.74 
2 0.93 0.33 20.55 10.34 3.35 58.98 5.52 
3 1.01 0.79 2.81 16.96 0.51 61.86 16.06 

Duanmu 
[24] 

0 100 0  0    
1 3.28 0 0 0 0 50.36 46.36 
2 6.80 0.01 0 0.11 0 45.13 47.95 
3 0 0.14 0 6.24 0 32.44 61.18 

Lei [25] 

0 0 0  100    
1 0 0 0 0 0 0 100 
2 0 0 0 0 0 0 100 
3 0.02 0 0 0 0 0 99.98 

Yang [26] 

0 100 0  0    
1 69.09 0 0 0 0 0 30.90 
2 22.57 0 0 0 0 0 77.43 
3 17.99 0 0 0 0 48.97 33.04 

 

Table VI 
PERFORMANCE OF THE PROPOSED ALGORITHM COMBINE WITH ZHANG [22] 

Sequences OUR2 OURS2+Zhang [22] 
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

FlyingGraphics 1.03 -25.18 1.56 -28.36 
Desktop 1.25 -35.94 2.23 -62.92 
Console 0.75 -39.49 2.05 -58.97 

ChineseEditing 0.73 -37.94 1.67 -63.66 
WebBrowsing 0.67 -41.11 2.64 -64.00 

Map 1.29 -33.51 1.89 -46.62 
Programming 0.49 -17.79 1.08 -29.53 

SlideShow 2.33 -31.77 1.49 -34.37 
BasketballScreen 1.47 -34.12 2.70 -53.14 

MissionControlClip2 1.69 -32.54 2.15 -46.38 
MissionControlClip3 1.26 -32.74 2.12 -52.50 

Robot 1.61 -46.42 2.46 -46.71 
EBURainFruits 0.35 -58.74 0.68 -51.71 

Kimono1 0.15 -46.31  0.23 -44.71 
Average (TGM+M) 1.18 -32.92 1.96 -49.13 

Average (A+CC) 0.70 -50.49 1.12 -47.71 
Average (ALL) 1.08 -36.69 1.78 -48.83 
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to find repeated patterns for large CUs by IBC mode. On the 
other hand, the fast mode decision in Duanmu [24], Lei [25] and 
Yang [26] treat the decisions for IBC and PLT modes the same, 
and then at least two modes (IBC+PLT or Cintra+IBC+PLT) are 
checked for a SCB. In spite of eliminating unnecessary modes 
based on coding bits in [24], it only works for limited number of 
CUs by checking only one single mode. Due to the above 
arrangement, Duanmu [24] checks either both IBC and PLT 
modes or all modes for over 93% CUs in the depth levels of 1-3 
in “ChineseEditing”, as shown in Table VII.  In contrast, the 
proposed fast mode decision technique makes decision for each 
mode separately, so that many SCBs can only check one mode.  
In this table, Duanmu [24] always checks Cintra mode in the 
depth level of 0 as it disables IBC mode in the depth level of 0. 
Lei [25] needs to check all modes for over 99% CUs in 
“ChineseEditing”. Yang [26] needs to check Cintra mode for all 
CUs with 2N×2N PUs to extract features although Cintra mode 
can be skipped for most CUs in “ChineseEditing”. Therefore, 
our proposed mode decision shows much better performance 
than their mode decision methods.  

D. Results of RGB 4:4:4 and YUV4:2:0  
Since we adopt an online-learning-based approach whose 

learning statistics are updated according to the current video 
content adaptively, it can be easily applied to sequences in other 
formats. Table VIII shows the performance comparison of 
sequences in RGB 4:4:4 and YUV 4:2:0 formats. Similar trend 
is observed in YUV 4:4:4 sequences that OURS1 provides better 
performance than Zhang [23], while OURS2 outperforms Zhang 
[22], Duanmu [24], Lei [25] and Yang [26]. Specifically, 

OURS1 provides 24.66% and 19.75% encoding time reduction 
with 0.22% and 0.31% negligible increase in BDBR for 
sequences in RGB 4:4:4 and YUV 4:2:0, respectively. OURS2 
provides 34.01% and 30.44% encoding time reduction with 
0.80% and 1.19% increase in BDBR for sequences in RGB 4:4:4 
and YUV 4:2:0, respectively.  

E. Impact of Scene Change Detection on Proposed Algorithm 
To show the effectiveness of the proposed RDN on scene 

change detection, the performances of OURS2 with and without 
scene change detection have been carried out for comparison, 
Besides, we compared RDN with the 2 typical scene change 
detection methods introduced in the Section III.C – HOD and 
DOH, and the threshold ߮ was set to 0.25 [30] for DOH and 0.2 
[9] for HOD. The results are shown in Table IX, and if scene 
changes are detected in a sequence by using HOD, DOH or RDN, 
the sequence is marked as SC. Otherwise, it is marked as NSC. 
We can see that RDN, HOD, DOH and the case without scene 
change detection provide very similar performance for NSC 
sequences, where about 43% encoding time is saved with 0.93% 
increase in BDBR. However, the proposed RDN can efficiently 
reduce the increase in BDBR for SC sequences, where 31.57% 
encoding time is saved with 1.19% increase in BDBR. 
Compared with HOD and the case without scene change 
detection, the proposed RDN provides 0.78% and 0.54% smaller 
increase in BDBR with only 3.83% and 2.58% time saving drop 
on average, respectively. Besides, the proposed RDN shows 
0.23% smaller increase in BDBR with 0.48% larger encoding 
time reduction than DOH. The reason is that screen content 
videos contain many background blocks, and the conventional 
scene change detection methods HOD and DOH might treat two 
different scenes as one if they contain similar background. 
Besides, due to the frequent occurrences of local motion and 
content color change situations, false scene changes are 
detected in “Programming” by using HOD and in “SlideShow” 
by both HOD and DOH, which makes the BDBR increases even 
higher than that of the case without scene change detection. 
Furthermore, it is also observed that many false scene changes 
are detected in “FlyingGraphics” by DOH, which contains many 
color change situations, and only 3.62% time saving is provided. 
For the proposed RDN, the reason for the slight drop on time 
saving is that more frames are selected as learning frames, and 
FMD, MDR, and FCUSD cannot be applied to the learning 
frames. As a result, less computational complexity reduction can 
be achieved but better BDBR can be provided due to the precise 
statistical parameters are obtained.  

To understand the impact of the number of learning frames L, 
Fig. 20 shows the performance of OURS2 with the values of L 

Table VIII 
∆Time and BDBR OF DIFFERENT ALGORITHMS COMPARED WITH SCM-7.0 

FOR RGB 4:4:4 AND YUV 4:2:0 SEQUENCES 

Format 
TGM+M A+CC Average 

BDBR 
(%) 

∆ܶ݅݉݁ 
(%) 

BDBR 
(%) 

∆ܶ݅݉݁ 
(%) 

BDBR 
(%) 

∆ܶ݅݉݁ 
(%) 

RGB 
4:4:4 

[22] 1.02 -38.29 0.31 -9.39 0.87 -32.10 
[23] 0.51 -11.22 0.09 -12.65 0.42 -11.53 
[24] 2.19 -24.23 0.51 -26.41 1.83 -24.70 
[25] 2.18 -24.68 2.62 -55.72 2.27 -31.33 
[26] 3.17 -32.03 0.25 -22.36 2.54 -29.96 

OURS1 0.23 -20.61 0.19 -39.49 0.22 -24.66 
OURS2 0.89 -29.54 0.47 -50.36 0.80 -34.01 

YUV 
4:2:0 

[22] 1.47 -29.36 0.97 -12.58 1.39 -26.78 
[23] 0.79 -12.77 0.27 -17.58 0.71 -13.51 
[24] 2.39 -19.80 1.92 -25.53 2.32 -20.68 
[25] 1.88 -24.31 3.22 -39.70 2.08 -26.68 
[26] 4.11 -30.65 1.36 -28.11 3.69 -30.26 

OURS1 0.29 -17.51 0.43 -32.08 0.31 -19.75 
OURS2 1.12 -25.56 1.61 -51.78 1.19 -30.44 

 

 
                                                         (a)                                                                                                                             (b) 

Fig. 20. Performance of the proposed algorithm with the values of L of 1-4. 
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from 1 to 4 for 5 typical sequences, and similar results are 
observed for other sequences. It is observed that the value of L 
has minor impact on the performance of proposed algorithm. 
Basically, the increase in BDBR is reduced as L gets larger. 
However, the encoding time saving is also reduced because the 
proposed fast algorithm is not applied to the learning frames. 
To balance the RD performance and time saving, L is set to 2 in 
this paper. 
F. Impact of CP Detection on Proposed Algorithm 

To characterize screen contents, CP is utilized as a good 
feature for the proposed algorithm. To reveal its impact, the 
results of OURS2 without the use of CPs are shown in Table X. 
It is observed that OURS2 without CP detection provides 5.34% 
less encoding time reduction than OURS2 with similar increase 
in BDBR on average. Specifically, since sequences in A+CC 
only contain NIBs, and Cintra mode dominates the mode 
decision process, CPs have very minor impact for them. 
However,  CPs are important for sequences in TGM+M which 
show mixed content of NIBs and SCBs. It is observed that CPs 
can help to further reduce encoding time by 6.77% for sequences 
in TGM+M. Therefore, the result in Table X demonstrates that 
better performance can be achieved for screen content sequences 
by adopting CPs in the Bayesian decision rule for SCC.  

V. Conclusions 
 In this paper, a fast mode and CU size decision algorithm 

based on online-learning using the Bayesian decision rule has 
been proposed to reduce the computational complexity of SCC. 
A new scene change detection method specially designed for 
screen content videos is applied to estimate the statistical 
parameters correctly for different scenes. Then, the proposed 
algorithm is applied after the learning phase, which includes 
three steps: FMD, MDR and FCUSD. For FMD, a CP detection 
method is employed to classify a frame into NIBs and SCBs 
roughly. Then, distinct color number in a CU is extracted as the 
unique feature for mode classification. In MDR, the spatial 
optimal mode correlation is utilized to further eliminate 
unnecessary mode candidates. In FCUSD, the RD cost of the 
current CU is used as the feature to early terminate the CU 
partition process. Compared with SCM-7.0, the proposed 
algorithm achieves 36.69% encoding time reduction with a 
negligible BDBR increment of 1.08% on average for typical 
screen content videos under AI configurations. In this work, 
cascaded empirical thresholds are used for multiple decisions. 
To simplify the framework of the proposed algorithm, future 
works may include deep learning-based fast SCC encoding 
algorithms that integrate fast mode decision and partition 
decision into a single model. To reduce the testing time of deep 
learning-based approaches, a multitask-based network, which 
gives both mode and CU partitioning decisions for an entire 
CTU in a single test, can be considered. Since this paper directly 
makes mode decision rather than the conventional CU type 
classification, it can be considered as the baseline for more 
advanced mode decision algorithms in the future.  

REFERENCES 
[1] J. Xu, R. Joshi, and R. A. Cohen, “Overview of the emerging HEVC 

screen content coding extension,” IEEE Trans. Circuits Syst. Video 
Technol., vol. 26, no. 1, pp. 50–62, Jan. 2016. 

[2] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the 
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits 
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012. 

[3] X. Xu et al., “Intra block copy in HEVC screen content coding 
extensions”, IEEE J. Emerg. Sel. Topic Circuits Syst.,  vol. 6, no. 4, pp. 
409–419, Dec. 2016. 

[4] X. Xiu, Y. He, R. Joshi, M. Karczewicz, P. Onno, C. Gisquet, and G. 
Laroche, “Palette-based coding in the screen content coding extension 

Table X 
PERFORMANCE OF OURS2 WITHOUT CP DETECTION 

Sequences 
OUR2 without CP 

detection OUR2 

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 
FlyingGraphics 0.45 -21.34 1.03 -25.18 

Desktop 0.72 -25.20 1.25 -35.94 
Console 0.39 -29.22 0.75 -39.49 

ChineseEditing 0.53 -24.13 0.73 -37.94 
WebBrowsing 0.25 -34.49 0.67 -41.11 

Map 1.45 -29.85 1.29 -33.51 
Programming 0.65 -17.27 0.49 -17.79 

SlideShow 2.64 -31.01 2.33 -31.77 
BasketballScreen 1.32 -24.33 1.47 -34.12 

MissionControlClip2 2.46 -29.79 1.69 -32.54 
MissionControlClip3 1.17 -21.07 1.26 -32.74 

Robot 1.74 -45.95 1.61 -46.42 
EBURainFruits 0.36 -58.97 0.35 -58.74 

Kimono1 0.12 -46.29 0.15 -46.31 
Average (TGM+M) 1.09 -26.15 1.18 -32.92 

Average (A+CC) 0.74 -50.40 0.70 -50.49 
Average (ALL) 1.02 -31.35 1.08 -36.69 

 

Table IX 
PERFORMANCE COMPARISON USING DIFFERENT SCENE CHANGE DETECTION METHODS 

Sequences Without scene change detection HOD DOH Proposed RDN 
BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

FlyingGraphics(SC) 1.03 -25.20 0.95 -23.13 0.12 -3.62 1.03 -25.18 
Desktop(NSC) 1.25 -35.77 1.25 -35.72 1.25 -35.08 1.25 -35.94 
Console(NSC) 0.75 -39.56 0.75 -39.32 0.75 -39.22 0.75 -39.49 

ChineseEditing(SC) 0.73 -37.58 0.73 -37.56 0.68 -33.78 0.73 -37.94 
WebBrowsing(SC) 1.25 -40.26 0.62 -40.73 0.67 -40.56 0.67 -41.11 

Map(SC) 3.18 -35.87 3.18 -34.84 1.53 -34.05 1.29 -33.51 
Programming(SC) 1.67 -27.04 1.92 -26.50 1.17 -22.14 0.49 -17.79 

SlideShow(SC) 2.90 -50.60 3.63 -48.64 3.12 -48.78 2.33 -31.77 
BasketballScreen(NSC) 1.47 -34.22 1.47 -34.58 1.47 -34.27 1.47 -34.12 

MissionControlClip2(SC) 2.46 -34.10 1.59 -29.29 2.46 -33.10 1.69 -32.54 
MissionControlClip3(SC) 1.59 -32.57 1.25 -32.47 1.59 -32.67 1.26 -32.74 

Robot(NSC) 1.61 -46.22 1.61 -46.32 1.61 -46.27 1.61 -46.42 
EBURainFruits(NSC) 0.35 -58.72 0.35 -58.60 0.35 -58.67 0.35 -58.74 

Kimono1(NSC) 0.15 -46.38 0.15 -46.32 0.15 -46.27 0.15 -46.31 
Average(NSC) 0.93 -43.48 0.93 -43.48 0.93 -43.30 0.93 -43.50 
Average(SC) 1.97 -35.40 1.73 -34.15 1.42 -31.09 1.19 -31.57 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

16

of the HEVC standard,” in Proc. Data Compression Conf, Snowbird, 
UT, USA, Apr. 2015, pp 253 – 262.  

[5] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview 
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. 
Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003. 

[6] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro, 
“Comparative rate-distortion-complexity analysis of HEVC and AVC 
video codecs,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 
12, pp. 1885–1898, Dec. 2012. 

[7] Y. Wang, X. Fan, L. Zhao, S. Ma, D. Zhao, W. Gao. “A Fast Intra 
Coding Algorithm for HEVC,” in Proc. IEEE Int. Conf. Image Process. 
(ICIP), Paris, France, Oct. 2014, pp.4117-4121.   

[8] L. Shen, Z. Zhang, and Z. Liu, “Effective CU size decision for HEVC 
intra coding,” IEEE Trans. Image Process., vol.23, no.10, pp.4232–
4241, Jul. 2014. 

[9] H.-S. Kim, and R.-H. Park, “Fast CU partitioning algorithm for HEVC 
using an online-learning-based bayesian decision rule,” IEEE Trans. 
Circuits Syst. Video Technol., vol. 26, no. 1, pp. 130–138 Jan. 2016. 

[10] X. Shen, L. Yu, and J. Chen, “Fast coding unit size selection for HEVC 
based on Bayesian decision rule,” in Proc. Picture Coding Symp. (PCS), 
Krakow, Poland, May. 2012, pp. 453–456. 

[11] K. Lim, J. Lee, S.Kim and S.Lee, “Fast PU skip and split termination 
algorithm for HEVC intra prediction.” IEEE Trans. Circuits Syst. Video 
Technol., vol. 25, no. 8, pp. 1335 - 1346 Aug. 2015. 

[12] Y. Zhang, S. Kwong, X. Wang, H. Yuan, Z. Pan and L. Xu, “Machine 
learning-based coding unit depth decisions for flexible complexity 
allocation in High Efficiency Video Coding,” IEEE Trans. Image 
Process., vol.24, no.7, pp.2225-2238, Jul. 2015. 

[13] B. Du, W.-C. Siu and X. Yang, “Fast CU partition strategy for HEVC 
intra-frame coding using learning approach via random forests,” in Proc. 
APSIPA ASC, Hong Kong, Dec. 2015, pp. 1085 – 1090. 

[14] H-B Zhang, Y-L Chan, C-H Fu, S-H Tsang, and W-C Siu, “Quadtree 
decision for depth intra coding in 3D-HEVC by good feature,” in Proc. 
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Shanghai, 
China, Mar. 2016. pp. 1409–1413. 

[15] M. Zhang, C. Zhao, and J. Xu, “An adaptive fast intra mode decision in 
HEVC,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Orlando, FL, 
USA, Sep. 2012, pp. 221–224. 

[16] A. S. Motra, A. Gupta, M. Shukla, and P. Bansal: “Fast intra mode 
decision for HEVC video encoder,” in Int. Conf. on Software, Telecomm. 
Comput. Netw. (SoftCOM), Split, Croatia, Sep. 2012, pp. 1–5. 

[17] D.-K. Kwon, and M. Budagavi, “Fast intra block copy (IntraBC) search 
for HEVC screen content coding,” in Proc. IEEE Int. Symp. Circuits Syst. 
(ISCAS), Melbourne VIC, Australia, Jun. 2014, pp. 9–12.  

[18] S.-H. Tsang, Y.-L. Chan, and W.-C. Siu, “Hash based fast local search 
for intra block copy (IntraBC) mode in HEVC screen content coding,” 
in Proc. APSIPA ASC, Hong Kong, Dec. 2015, pp. 396–400. 

[19] S.-H. Tsang, W. Kuang, Y.-L. Chan, and W.-C. Siu, “Fast HEVC screen 
content coding by skipping unnecessary checking of intra block copy 
mode based on CU activity and gradient,” in Proc. APSIPA ASC, Jeju, 
Korea, Dec. 2016, pp.1–5. 

[20] S.-H. Tsang, Y.-L. Chan, and W.-C. Siu, “Fast and efficient intra coding 
techniques for smooth Regions in screen content coding based on 
boundary prediction samples,”  in Proc. IEEE Int. Conf. Acoust., Speech 
Signal Process. (ICASSP), Brisbane, Australia, Apr. 2015, pp.1409–
1413. 

[21] F. Duanmu, Z. Ma, and Y. Wang, “Fast CU partition decision using 
machine learning for screen content compression,” in Proc. IEEE Int. 
Conf. Image Process., Quebec, QC, Canada, Sep. 2015, pp. 4972–4976. 

[22] H. Zhang, Q. Zhou, N.-N Shi, F. Yang, X. Feng, and Z. Ma, “Fast intra 
mode decision and block matching for HEVC screen content 
compression,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. 
(ICASSP), Shanghai, China, Mar. 2016, pp.1377–1381. 

[23] M. Zhang, Y. Guo, and H. Bai, “Fast intra partition algorithm for HEVC 
screen content coding,” in Proc. IEEE Vis. Commun. Image Process. 
(VCIP), Valletta, Malta, Dec. 2014, pp. 390–393. 

[24] F. Duanmu, Z. Ma, and Y. Wang, “Fast mode and partition decision 
using machine learning for intra-frame coding in HEVC screen content 
coding extension,” IEEE J. Emerg. Sel. Topic Circuits Syst., vol. 6, no. 
4, pp.517–531, Dec. 2016. 

[25] J. Lei, D. Li, Z, Pan, Z. Sun, S. Kwong, and C. Hou, “Fast intra 
prediction based on content property analysis for low complexity 
HEVC-based screen content coding,” IEEE Trans. Broadcast., vol. 63, 
no.1, pp.48–58, Mar. 2017. 

[26] H. Yang, L. Shen, and P. An, “An efficient intra coding algorithm based 
on statistical learning for screen content coding”, in Proc. IEEE Int. Conf. 
Image Process., Beijing, China, Sep. 2017, pp. 2468–2472. 

[27] C. Huang, Z. Peng, F. Chen, Q. Jiang, G. Jiang and Q. Hu, “Efficient CU 
and PU Decision Based on Neural Network and Gray Level Co-
Occurrence Matrix for Intra Prediction of Screen Content Coding,” 
IEEE Access, vol. 6, pp. 46643 - 46655, Aug. 2018. 

[28] J.-B, Shi, and C. Tomasi, “Good features to track,” in Proc. IEEE Int. 
Conf. Comp. Vis. Pattern Recognit. (CVPR), Seattle, WA, USA, Jun. 
1994,  pp. 593–600.  

[29] H.-P. Yu, R. Cohen, K. Rapaka, and J. -Z Xu, “Common test conditions 
for screen content coding”, 21th JCT-VC meeting, document JCTVC-
U1015-r2, Warsaw, Poland, Jun. 2015. 

[30] J. W. Lee, and B. W. Dickinson, “Temporally adaptive motion 
interpolation exploiting temporal masking in visual perception,” IEEE 
Trans. Image Process., vol. 3, no. 5, pp. 513–526, Sep. 1994. 

[31] HM-16.8+SCM-7.0, HEVC test model version 16.8 screen content 
model version 7.0, [Online], available at: 
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-
16.8+SCM-7.0/. 

[32] G. Bjontegaard, “Calculation of average PSNR differences between rd- 
curves,” document VCEG-M33, VCEG, Austin, Texas, USA, Mar. 2001. 




