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Abstract. In this paper we present an improved error analysis for a finite difference scheme for
solving the 1-D epitaxial thin film model with slope selection. The unique solvability and uncondi-
tional energy stability are assured by the convex nature of the splitting scheme. A uniform-in-time
Hm bound of the numerical solution is acquired through Sobolev estimates at a discrete level. It is
observed that a standard error estimate, based on the discrete Gronwall inequality, leads to a conver-
gence constant of the form exp(CTε−m), where m is a positive integer, and ε is the corner rounding
width, which is much smaller than the domain size. To improve this error estimate, we employ a
spectrum estimate for the linearized operator associated with the 1-D slope selection (SS) gradient
flow. With the help of the aforementioned linearized spectrum estimate, we are able to derive a
convergence analysis for the finite difference scheme, in which the convergence constant depends on
ε−1 only in a polynomial order, rather than exponential.
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1. Introduction. The epitaxial thin film growth model with slope selection,
also known as the regularized Cross-Newell equation [15, 23], has been used as a
model for thin film roughening and coarsening [30, 31, 32, 33, 34, 35, 36, 37, 38, 48].
This equation contains a continuum-level description of the Ehrlich-Schwoebel barrier,
which leads to an uphill adatom “current” and ultimately the formation of hill and
valley structures [31, 37]. The model may be viewed as a gradient flow with respect
to the Aviles-Giga-type energy functional [3, 29, 34, 37], which is given by

E(φ) :=

∫
Ω

(
1

4
ε−1

(
(∂φx)2 − 1

)2
+
ε

2
(∂2
xφ)2

)
dx, (1.1)

where Ω = (0, L), φ : Ω→ R is the height of the film, and ε > 0 is a positive constant
that is much smaller that the domain size L. As is standard, we assume that φ is
periodic. The chemical potential is defined to be the variational derivative of the
energy (1.1), i.e.,

µ := δφE = ε−1
[
−∂x(|∂xφ|2∂xφ) + ∂2

xφ
]

+ ε∂4
xφ. (1.2)

The linear term ε∂4
xφ models surface diffusion. The remainder of the terms in the

chemical potential model the Ehrlich-Schwoebel barrier, which gives rise to “facets” on
the film surface. The parameter ε > 0 describes the strength of the surface diffusion.
More surface diffusion leads to more corner rounding at the junction of two facets.
The epitaxial thin film model with slope selection is the L2 gradient flow associated
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with the energy (1.1):

∂tφ = −µ = ε−1
[
∂x

(
(∂xφ)

3
)
− ∂2

xφ
]
− ε∂4

xφ. (1.3)

We will refer to this equation as the slope selection (SS) equation. It is easy to see that
the SS equation (1.3) is mass conservative, and the energy (1.1) is non-increasing in
time along the solution trajectories of (1.3). Interestingly, one will also observe that,
at least in one spatial dimension, the slope function, ∂xφ satisfies a Cahn-Hilliard
equation:

∂t (∂xφ) = ε−1∂2
x

[
(∂xφ)

3 − ∂xφ
]
− ε∂4

x (∂xφ) . (1.4)

Energy stability is an important issue for long-time numerical simulation. Convex-
splitting time discretization schemes, popularized by Eyre’s work [18], have some
desirable properties, including unique solvability and unconditional energy stability.
See the related works for the Cahn-Hilliard equation [17, 26], the phase field crystal
(PFC) and modified phase field crystal (MPFC) equations [4, 5, 28, 44, 45, 47], the
Cahn-Hilliard-Hele-Shaw (CHHS) and related models [9, 14, 16, 22, 39, 46], et cetera.
In particular, for the epitaxial thin film growth models, the authors recall the first
order convex splitting scheme reported in [43], the second order splitting scheme
in [41], and their extensions to the no-slope-selection model [8, 10].

We are focused on error estimates and convergence analyses for the convex split-
ting scheme applied to the 1-D SS model in this work. Given any fixed final time
T , such an error estimate could be derived through a standard process of consistency
and stability analyses; the convergence constant is independent of the time step s and
spatial grid size h. However, a careful calculation shows that, this constant depends
singularly on T and the reciprocal of the surface diffusion parameter ε: the specific
form is exp (Cε−mT ), where m is a positive integer. As usual, this form comes from
the application of a discrete Gronwall inequality in the analysis.

On the other hand, the authors observe that, there have been a few works on the
improved convergence constant for the Cahn-Hilliard flow. In particular, Feng and
Prohl [21] proved – for a first-order-in-time backward Euler scheme coupled with a
mixed finite element spatial discretization scheme – that the convergence constant is
of order exp (C0T ) ε−m0 , for some positive integer m0 and a constant C0 independent
of ε. In other words, the exponential dependence on ε−1 may be replaced by a
polynomial dependence. Two more recent works of Feng, Li and Xing [19, 20] applied
a similar technique to analyze the first-order-in-time, discontinuous Galerkin schemes
for the Allen-Cahn and Cahn-Hilliard equations. Both the backward Euler and convex
splitting temporal discretizations were included in their recent works. Such an elegant
improvement was based on a subtle spectrum analysis for the linearized Cahn-Hilliard
operator (with certain given structure assumptions of the solution), provided in earlier
PDE analyses [1, 2, 11, 12, 13].

In this article, we extend this idea and utilize the related methodology to derive
a similar estimate for the first order convex splitting, finite difference scheme applied
to the 1-D SS equation. The multi-dimensional SS equation is much more challenging
than the Cahn-Hilliard equation, due to the higher degree of nonlinearity of the 4-
Laplacian term. Meanwhile, we observe that, the one-dimensional SS equation takes
a very similar structure as the corresponding Cahn-Hilliard one, and the linearized
spectrum estimate can be derived in the same manner. This estimate plays an essential
role in the error estimate with an improved constant.
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Our analysis will proceed in the following way: to start with, the leading order
energy stability yields an H2 estimate of the numerical solution, independent on the
final time. Subsequently, a uniform-in-time Hm (with m ≥ 3) bound of the numerical
solution may be derived with the help of higher order energy estimates and repeated
application of Sobolev inequalities at the discrete level. These bounds are dependent
on the initial Hm data and ε−1 (in a polynomial form), but are independent of the
final time T . Since this bound is available for the numerical solution for any m ≥ 3, a
subtle observation implies that ‖φn+1−φn‖Hk (where φn is the fully discrete numerical
approximation at the time instant tn and k is an integer) is O(s), with s the time step
size. In addition, the constant appearing in O(s) turns out to be independent of T . In
other words, we are able to derive a uniform-in-time O(s) estimate for ‖φn+1−φn‖Hk ,
independent of the convergence analysis.

Meanwhile, we observe that the existing works [20, 21] (for the CH equation with
improved convergence constant) dealt with finite element approximations in space.
For a finite difference scheme, in which the numerical solution is evaluated at collo-
cation grid points, we estimate the difference between the discrete Hk norm of the
numerical error function and the continuous Hk norm of its continuous interpolation,
with the help of the discrete and continuous Fourier analysis. This Fourier analy-
sis also enables us to perform an estimate for the difference between the discrete `2

inner product associated with the nonlinear term and its continuous interpolation,
appropriately defined. Consequently, some aliasing error control techniques have to
be applied such as those derived in [25].

Both the numerical scheme and the exact solution are evaluated at the time in-
stant tn+1. With all the preliminary estimates available, we could apply the spectrum
analysis for the linearized SS operator, and arrive at a discrete `2 error estimate of
size O(s+h2), where the convergence constant is of the form of exp (C∗0T ) ε−m0 , with
C∗0 independent of ε.

In Section 2 we review the first order convex splitting numerical scheme, combined
with the finite difference approximation in space. The unique solvability, uncondi-
tional energy stability and a uniform-in-time (discrete) H2 stability are established.
In Section 3, we present the higher order Hm (for m ≥ 3) numerical stability analysis
of the approximate solution. As a result, a uniform-in-time estimate for ‖φn+1−φn‖Hk
is provided. In Section 4 we present the discrete `2 error estimate of size O(s + h2),
with the convergence constant dependent on ε−1 in a polynomial form. Some con-
cluding remarks are given in Section 5.

2. The numerical scheme and the leading H2 estimate.

2.1. The finite difference approximation. The domain is given by Ω =
(0, L), and we take a uniform mesh with h = L

N . The height function φ is evaluated
at cell center points xi = (i− 1/2) · h, i = 1, · · · , N . For the numerical approximation
we write φi = φ(xi). Edge centered functions are represented by fi+1/2 = f(xi+1/2),
i = 0, · · · , N . We assume that grid functions are periodic. In the case of cell-centered
functions, this means that

φi+q·N = φi, ∀ i, q ∈ Z, (2.1)

and a similar expression holds for periodic edge-centered functions.
The center-to-edge and edge-to-center differences are defined, respectively, via

Dφi+1/2 =
φi+1 − φi−1

h
and dfi =

fi+1/2 − fi−1/2

h
, (2.2)
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where φi is a cell-centered function and fi+1/2 is an edge-centered function. The second
difference is defined as

D2φi = d(Dφ)i =
φi+1 − 2φi + φi−1

h2
. (2.3)

Subsequent differences of cell-centered functions φ can be defined recursively via

D2k+1φi+1/2 = D(D2kφ)i+1/2 and D2k+2φi = D2(D2kφ)i. (2.4)

To define the energy at the discrete level, we introduce some more notation. Given
any periodic, cell-centered grid functions φ and ψ, the discrete `2 inner product and
norm is given by

‖φ‖2 =
√
〈φ, φ〉, with 〈φ, ψ〉 = h

N∑
i=1

φiψi. (2.5)

Similarly, for periodic grid edge-centered grid functions f and g , the discrete `2 inner
product and norm becomes

‖f‖2 =
√
〈f, f〉e, with 〈f, g〉e = h

N∑
i=1

fi−1/2gi−1/2. (2.6)

The following summation-by-parts formulas are available for periodic grid functions;
see [5, 9, 26, 45] for the derivations:

〈φ, df〉 = −〈Dφ, f〉e , (2.7)〈
φ,D2ψ

〉
= −〈Dφ,Dψ〉e ,

〈
φ,D4ψ

〉
=
〈
D2φ,D2ψ

〉
,〈

φ,D6ψ
〉

= −
〈
D3φ,D3ψ

〉
e
,
〈
D2φ,D6ψ

〉
=
〈
D4φ,D4ψ

〉
,〈

D4φ,D6ψ
〉

= −
〈
D5φ,D5ψ

〉
e
. (2.8)

In addition, we introduce the discrete `p (1 ≤ p < +∞) and `∞ norms for cell-
centered grid functions ψ:

‖ψ‖p = (h

N∑
i=1

|ψi|p)1/p, ‖ψ‖∞ = max
1≤i≤N

|ψi|. (2.9)

Similar definitions hold for edge-centered functions. The correct usage should be clear
from the context.

2.2. The fully discrete numerical scheme. Let φ be a cell-centered grid
function approximating the height of the thin film. The discrete energy is defined via

F (φ) := ε−1

(
1

4
‖Dφ‖44 −

1

2
‖Dφ‖22 +

1

4

)
+
ε

2
‖D2φ‖22. (2.10)

This is consistent with the continuous energy (1.1) as h → 0. The convex-concave
decomposition of the energy (2.10) is obvious: F (φ) = Fc(φ)− Fe(φ), with

Fc(φ) = ε−1

(
1

4
‖Dφ‖44 +

1

4

)
+
ε

2
‖D2φ‖22, Fe(φ) =

1

2ε
‖Dφ‖22. (2.11)
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Let M ∈ Z+, and set s := T/M , where T is the final time. The first order convex
splitting scheme is formulated in [43]:

φn+1
i − φni

s
= ε−1

(
d
[
(Dφn+1)3

]
i
−D2φni

)
− εD4φn+1

i . (2.12)

The local truncation error of this scheme is O(s + h2): first order in time, second
order in space.

Because of the convex splitting, scheme (2.12) is unconditionally uniquely solvable
and unconditionally energy stable:

F (φn) ≤ F (φn−1) ≤ · · · ≤ F (φ0) := C̃0, (2.13)

for all n ≥ 0.

2.3. A few related estimates for the finite difference approximation. For
simplicity of presentation, we assume N is odd. The general case can be analyzed in
a similar manner to what follows but with a few more technical details. In particular,
set N = 2K + 1. For any periodic cell-centered grid function f , its discrete Fourier
representation is given by

fj =

K∑
`=−K

f̂N` e2`πixj/L, (2.14)

where f̂N` is the discrete Fourier transform coefficient. The extension of the grid func-
tion to a smooth periodic function is conveniently obtained via Fourier interpolation:

fF(x) =

K∑
`=−K

f̂N` e2`πix/L. (2.15)

In other words, replace xj with x. For edge-centered functions, we have analogous
formulas.

The following preliminary estimates are crucial to the analyses in later sections;
their proofs will be given in Appendices A and B:

Lemma 2.1. For any periodic cell-centered grid function f , we have

κj
∥∥∂jxfF∥∥ ≤ ∥∥Djf

∥∥
2
≤
∥∥∂jxfF∥∥ , ∀0 ≤ j ≤ k, (2.16)

‖fF‖Hk ≤ C
(
|f |+

∥∥Dkf
∥∥

2

)
, with f = h

N∑
i=1

fi, (2.17)∥∥D3f
∥∥

2
≤ C1

∥∥D5f
∥∥

2
, (2.18)

‖Df‖∞ ≤ C‖D2f‖2, (2.19)

‖Djf‖∞ ≤ C‖Dj+1f‖2, 1 ≤ j ≤ k, (2.20)

‖D3f‖2 ≤ C‖D2f‖2/32 · ‖D5f‖1/32 , (2.21)

‖D2f‖∞ ≤ C‖D2f‖5/62 · ‖D5f‖1/62 , (2.22)

where 0 < κj ≤ 1, 0 ≤ j ≤ k, and C > 0 is a constant that is independent of h.
Lemma 2.2. For a cell-centered grid function f , we have

0 ≤ ‖∂xfF‖2 − ‖Df‖22 ≤ Ch
2 ‖fF‖2H2 , (2.23)

0 ≤
∥∥∂2

xfF
∥∥2 −

∥∥D2f
∥∥2

2
≤ Ch2 ‖fF‖2H3 , (2.24)

‖∂kx(∂xfF − (Df)F)‖ ≤ Ch2‖∂k+3
x fF‖, ∀k ≥ 0, (2.25)
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where C > 0 is a constant that is independent of h.
To analyze the finite difference scheme over a uniform grid, we have to estimate

the discrete inner product involving the nonlinear terms. To achieve this, some tools in
Fourier pseudo-spectral analysis are needed. Denote BK as the space of trigonometric
polynomials of degree up to K (note that N = 2K + 1). For a continuous L-periodic
function f – or more generally, for f ∈ L2(0, L) – with the Fourier series f(x) =∑∞
`=−∞ f̂`e

2`πix/L, its projection onto the space BK is the following truncated series

PN f(x) =

K∑
`=−K

f̂`e
2`πix/L. (2.26)

On the other hand, suppose that f is a continuous L-periodic function, which may or
may not be in BK , we introduce the periodic cell-centered grid function fi = f(xi),
which we refer to as the grid projection of f . Moreover, the interpolation operator
IN f ∈ BK is defined as

IN f(x) = fF(x). (2.27)

Clearly IN f 6= f , unless f ∈ BK . If f 6∈ BK there is aliasing error; and the Fourier
coefficients of f and IN f are different. See the related references [6, 24, 27, 42], et
cetera. On the other hand, a standard approximation analysis shows that, as long as
f ∈ Hm

per(0, L), the convergence of the derivatives of the projection and interpolation
is given by

‖f(x)− PN f(x)‖Hk ≤ Chm−k‖f‖Hm , 0 ≤ k ≤ m, (2.28)

‖f(x)− IN f(x)‖Hk ≤ Chm−k‖f‖Hm , 0 ≤ k ≤ m, m >
d

2
, (2.29)

where C > 0 is an h-independent constant. See the related discussion on trigonometric
approximation theory in [7]; a similar aliasing error control result is also available in
a more recent work [25].

The following results play a very important role in the nonlinear inner product
analysis; their proofs will be given in Appendix C and D.

Lemma 2.3. Suppose f ,g ∈ Cper(0, L) with edge-centered grid projections denoted
by f , g, respectively.

(1) If f ,g ∈ BK , we have

〈f, g〉e = (f ,g) . (2.30)

(2) More generally, the following estimates are valid:

|〈f, g〉e − (f ,g)| ≤ Ch4 (‖f‖H4 · ‖g‖H2 + ‖f‖H2 · ‖g‖H4) , f ,g ∈ H4
per(0, L), (2.31)

|〈f, g〉e − (f ,g)| ≤ Ch2 ‖f‖H2 · ‖g‖H2 , f ,g ∈ H2
per(0, L), (2.32)

where C > 0 is a constant that is independent of h.
Lemma 2.4. Suppose fj, 1 ≤ j ≤ 4, are periodic cell-centered grid functions,

with representations as in (2.14). Denote their continuous Fourier interpolants by
fF,j =: fj, 1 ≤ j ≤ 4, obtained via (2.15). Then we have the following estimate:∣∣∣ 〈Df1 ·Df2, Df3 ·Df4〉e− (∂xf1 · ∂xf2, ∂xf3 · ∂xf4)

∣∣∣
≤ Ch2(‖f1‖2H3 + ‖f2‖2H3)(‖f3‖2H3 + ‖f4‖2H3), (2.33)

where C > 0 is a constant that is independent of h.
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2.4. A uniform-in-time H2 bound of the numerical solution. We note
that the discrete energy (2.10) could be rewritten as

F (φ) :=
1

4
ε−1h

N∑
i=1

(
(Dφ)i−1/2 − 1

)2
+
ε

2
‖D2φ‖22. (2.34)

Therefore, the energy estimate (2.13) yields the following result

‖D2φn‖22 ≤
2C̃0

ε
, ∀ n ≥ 0. (2.35)

Meanwhile, we see that the numerical scheme (2.12) is mass conserving:

φk = φ0 = β0, ∀ k ≥ 0, with f = h

N−1∑
i=0

fi. (2.36)

Without loss of generality, we may assume that β0 = 0. In turn, an application of
elliptic regularity indicates that

∥∥φkF∥∥2

H2 ≤ C0

∥∥∂2
xφ

k
F

∥∥2 ≤ C‖D2φk‖22 ≤
2CC̃0

ε
, (2.37)

for any k ≥ 0, with the estimate (2.16) applied in the second step.
As a consequence, the following `∞(0, T ;H2) bound of the numerical solution is

valid: if the initial data are sufficiently regular, say φ0 ∈ H2
per(0, L), then

‖φF‖`∞(0,T ;H2) := max
0≤m≤M

‖φmF ‖H2 ≤ Ĉ2,ε := Cε−k2 , with k2 = 1. (2.38)

3. Higher order estimates of the numerical scheme.

3.1. `∞ (0, T ;Hm) (m ≥ 3) bound of the scheme. The leading order H2

bound (2.38) is not sufficient to assure an error estimate with the desired improved
convergence constant. In this section, we establish a uniform-in-time Hm bound, for
any m ≥ 3, of the numerical solution. Such a bound depends on ε−1 in a polynomial
form.

Theorem 3.1. For the numerical solution given by (2.12), with φ0 ∈ H3
per(0, L),

we have

‖φF‖`∞(0,T ;H3) := max
0≤m≤M

‖φmF ‖H3 ≤ Ĉ3,ε := Cε−k3 , (3.1)

where k3 is a positive integer and C > 0 is a constant independent of s, h, T , and ε.
Proof. Taking a discrete inner product of (2.12) with −2D6φn+1 gives∥∥D3φn+1

∥∥2

2
−
∥∥D3φn

∥∥2

2
+
∥∥D3(φn+1 − φn)

∥∥2

2
+ 2εs

∥∥D5φn+1
∥∥2

2

= 2ε−1s
〈
D6φn+1, D2φn

〉
− 2ε−1s

〈
D6φn+1, d

[
(Dφn+1)3

]〉
. (3.2)

using the summation-by-parts formulas in (2.8).
For the term associated with the concave diffusion, the preliminary estimate (2.21)

indicates that∥∥D3φn
∥∥

2
≤ C

∥∥D2φn
∥∥2/3 ·

∥∥D5φn
∥∥1/3 ≤ CĈ2/3

2,ε ·
∥∥D5φn

∥∥1/3
, (3.3)
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with the uniform-in-time H2 analysis (2.35) applied in the last step. Therefore, the
following bound is available:〈

D6φn+1, D2φn
〉

= −
〈
D5φn+1, D3φn

〉
e
≤
∥∥D5φn+1

∥∥
2
·
∥∥D3φn

∥∥
2

≤ CĈ
2/3
2,ε ·

∥∥D5φn
∥∥1/3

2
·
∥∥D5φn+1

∥∥
2

≤ Cε−4Ĉ2
2,ε +

1

8
ε2(
∥∥D5φn+1

∥∥2

2
+
∥∥D5φn

∥∥2

2
), (3.4)

with Young’s inequality applied in the last step.
For the nonlinear term, summation-by-parts gives

−
〈
D6φn+1, d

[
(Dn+1)3

]〉
=
〈
D5φn+1, D

{
d
[
(Dφn+1)3

]}〉
e

≤
∥∥D5φn+1

∥∥
2
·
∥∥D {d [(Dn+1)3

]}∥∥
2
. (3.5)

Meanwhile, a careful expansion yields

D
{
d
[
(Dφ)3

]}
i+1/2

= 3
(
Dφi+1/2

)2
D3φi+1/2 +

(
Dφi+3/2 + 2Dφi+1/2

) (
D2φi+1

)2
+
(
Dφi−1/2 + 2Dφi+1/2

) (
D2φi

)2
. (3.6)

In turn, an application of the discrete Hölder inequality shows that∥∥D {d [(Dφn+1)3
]}∥∥

2
≤ C

(∥∥Dφn+1
∥∥2

∞ ·
∥∥D3φn+1

∥∥
2

+
∥∥Dφn+1

∥∥
∞ ·
∥∥D2φn+1

∥∥
∞ ·
∥∥D2φn+1

∥∥
2

)
. (3.7)

Furthermore, the following estimates could be carried out, with the help of preliminary
estimates (2.19), (2.21) and (2.22) in Lemma 2.1:

‖D2φn+1‖2 ≤ Ĉ2,ε, (3.8)

‖D3φn+1‖2 ≤ C‖D2φn+1‖2/32 · ‖D5φn+1‖1/32 ≤ CĈ2/3
2,ε · ‖D5φn+1‖1/32 , (3.9)

‖Dφn+1‖∞ ≤ C‖D2φn+1‖2 ≤ CĈ2,ε, (3.10)

‖D2φn+1‖∞ ≤ C‖D2φn+1‖5/62 · ‖D5φn+1‖1/62 ≤ CĈ5/6
2,ε · ‖D5φn+1‖1/62 . (3.11)

As a result, a substitution of the above inequalities into (3.7) leads to∥∥D {d [(Dφn+1)3
]}∥∥

2
≤ C(Ĉ

8/3
2,ε · ‖D5φn+1‖1/32 + Ĉ

17/6
2,ε · ‖D5φn+1‖1/62 ). (3.12)

Going back to (3.5), we arrive at

−
〈
D6φn+1, d

[
(Dφn+1)3

]〉
≤ C(Ĉ

8/3
2,ε · ‖D5φn+1‖4/32 + Ĉ

17/6
2,ε · ‖D5φn+1‖7/62 )

≤ Cε−4Ĉ8
2,ε +

1

8
ε2‖D5φn+1‖22, (3.13)

with the Young inequality applied in the last step.
Subsequently, a substitution of (3.4) and (3.13) into (3.2) results in

∥∥D3φn+1
∥∥2

2
−
∥∥D3φn

∥∥2

2
+

3

2
εs
∥∥D5φn+1

∥∥2

2
≤ C3s+

1

4
εs
∥∥D5φn

∥∥2

2
, (3.14)



Improved Error Analysis for the Slope Selection Equation 9

with C3 = Cε−5Ĉ8
2,ε. By denoting

Gn :=
∥∥D3φn

∥∥2

2
+

1

4
εs
∥∥D5φn

∥∥2

2
, (3.15)

we obtain

Gn+1 −Gn +
5

4
εs
∥∥D5φn+1

∥∥2

2
≤ C3s. (3.16)

Meanwhile, the discrete elliptic regularity (2.18) indicates that

C4G
n+1 ≤ 5

4

∥∥D5φn+1
∥∥2

2
, provided that εs ≤ 1, (3.17)

with C4 = C−2
1 . Then we get

Gn+1 −Gn + C4εsG
n+1 ≤ C3s. (3.18)

An application of induction (in time index) results in

Gn+1 = (1 + C4sε)
−(n+1)G0 +

C3

C4ε
≤ G0 +

C3

C4ε
:= C̃3, (3.19)

where C̃3 is a global-in-time constant. Finally, (3.1) is a direct consequence of (3.19)
and the elliptic regularity (2.17):∥∥φkF∥∥H3 ≤ C

∥∥D3φk
∥∥

2
≤ C + (Gk)1/2 ≤ CC̃1/2

3 := Ĉ3,ε. (3.20)

Note that Ĉ3,ε depends on ε−1 in a polynomial form, since Ĉ2,ε does. This completes
the proof.

Using similar tools, a uniform-in-time Hm0 bound for the numerical solution
could be established, for any m0 ≥ 3, by taking an inner product with (2.12) by
(−D2)m0φn+1. The details are left for interested readers.

Theorem 3.2. For the numerical solution given by (2.12), with φ0 ∈ Hm0
per(0, L),

we have

‖φF‖`∞(0,T ;Hm0 ) := max
0≤m≤M

‖φmF ‖Hm0 ≤ Ĉm0,ε := Cε−km0 , (3.21)

where km0 is a positive integer and C > 0 is a positive constant that is independent
of s, h, T , and ε.

Remark 3.3. The global-in-time H3 bound for the numerical solution, CC̃
1/2
3

in (3.20), depends singularly on ε. In more details, we have C3 = O(ε−13), C̃3 =
O(ε−14), so that k3 = 7. In addition, a careful calculations shows that k4 = 9,
k5 = 11, ..., km0

= 2m0 + 1.

3.2. Estimates for
∥∥(φn+1 − φn)F

∥∥
Hk

. The following estimate is needed in
later analysis.

Theorem 3.4. Suppose that φ0 ∈ Hk+4
per (0, T ). The numerical solution for (2.12)

satisfies

max
0≤n≤M−1

‖(φn+1 − φn)F‖Hk ≤ D̂k,εs, (3.22)
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where D̂k,ε := Cεnk , nk is a positive integer, and C > 0 is a constant independent of
s, h, T , and ε.

Proof. Let us define the cell centered chemical potential

µn+1 := −ε−1
(
d
[
(Dφn+1)3

]
−D2φn

)
+ εD4φn+1.

Subsequently, the following estimates can be derived, with a repeated application of
the uniform bound (3.21): with repeated applications of discrete Hölder and Sobolev
inequalities: ∥∥Dk

{
d
[
(Dφn+1)3

]}∥∥
2

≤ C
∑

i1+i2+i3=k+4

∥∥Di1φn+1
∥∥
∞ ·
∥∥Di2φn+1

∥∥
∞ ·
∥∥Di3φn+1

∥∥
2

≤ C
∑

i1+i2+i3=k+4

∥∥Di1+1φn+1
∥∥

2
·
∥∥Di2+1φn+1

∥∥
2
·
∥∥Di3φn+1

∥∥
2

≤ C ˜̂
Ck,ε := C

∑
i1+i2+i3=k+4

Ĉi1+1,ε · Ĉi2+1,ε · Ĉi3,ε, (3.23)

∥∥Dk(D2φn)
∥∥

2
= ‖Dk+2φn‖2 ≤ Ĉk+2,ε, (3.24)∥∥Dk(D4φn+1)

∥∥
2

= ‖Dk+4φn+1‖2 ≤ Ĉk+4,ε. (3.25)

In particular, we note that, in the analysis of the nonlinear term (3.23), a similar
discrete expansion as (3.6) has been performed, with a discrete Hölder inequality
applied, and the preliminary estimate (2.20) was also utilized. In turn, the numerical
scheme (2.12) shows that

‖(φn+1 − φn)F‖Hk ≤ Cs‖Dkµn+1‖2

≤ Cs
(∥∥Dk

{
d
[
(Dφn+1)3

]}∥∥
2

+
∥∥Dk+2φn

∥∥
2

+
∥∥Dk+4φn+1

∥∥
2

)
≤ D̂k,εs, (3.26)

where D̂k,ε := Cε−1(
˜̂
Ck,ε + 1) + εĈk+4,ε. We observe that the first step was based on

the inequality (2.17) in Lemma 2.1, combined with the fact that φn+1 − φn = 0. Also
note that D̂k,ε depends on ε−1 in a polynomial form, since both Ĉk+2,ε and Ĉk+4,ε

do. This completes the proof.

3.3. Some related estimates for the exact solution. We denote Φ as the
exact solution of the SS equation (1.3), with a smooth initial data. The following
estimates can be derived by performing standard energy estimates. The details are
skipped for brevity.

Theorem 3.5. Suppose that the initial data satisfy Φ(0) = φ0 ∈ C∞per(0, L). Then
there is a unique global smooth solution Φ, and the following estimates are valid:

‖Φ‖L∞(0,T ;Hm0 ) ≤ Ĉ
∗
m0,ε := Cε−km0 , ∀m0 ≥ 2, (3.27)

‖∂tΦ‖L∞(0,T ;Hk) ≤ D̂
∗
k,ε, with D̂∗k,ε := Cε−nk , ∀ k ≥ 0, (3.28)∥∥∂2

t Φ
∥∥
L∞(0,T ;Hk)

≤ Q̂∗k,ε, with Q̂∗k,ε := Cε−mk , ∀k ≥ 0, (3.29)

max
0≤n≤M−1

∥∥Φn+1 − Φn
∥∥
Hk
≤ sD̂∗k,ε, ∀k ≥ 0, (3.30)
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where km0
and nk are positive integers and C is a positive constant independent of s,

h, T , and ε.
Remark 3.6. With the imposed periodic boundary condition, the SS equation

(1.3) is infinitely smooth, both in space and time. This fact enables one to derive an
Hm estimate of the solution, at both the analytic and numerical levels.

Remark 3.7. The estimates (3.28) and (3.29) are derived by taking temporal
derivatives of (1.3) and using the L∞(0, T ;Hm0) estimate (3.27), so that the Hk

norm of the first and second order temporal derivatives are converted into certain
spatial Hm norms of the exact solution.

The derivation of (3.30) is based on the following Taylor expansion (in time):

Φn+1 − Φn = s∂tΦ(ξ), with ξ ∈ (tn, tn+1), (3.31)

combined with the established estimate (3.28).
Furthermore, consider the Fourier projection of the exact solution into the space

BK , ΦN (x, t) = PNΦ(x, t). The following projection approximations, which we state
without proof for the sake of brevity, are available:

‖ΦN‖L∞(0,T ;Hk) ≤ ‖Φ‖L∞(0,T ;Hk) , (3.32)

‖ΦN − Φ‖L∞(0,T ;Hk) ≤ Ch
m−k ‖Φ‖L∞(0,T ;Hm) , (3.33)∥∥∂`tΦN∥∥L∞(0,T ;Hk)

≤
∥∥∂`tΦ∥∥L∞(0,T ;Hk)

, ∀ ` ≥ 1, (3.34)

for any 0 ≤ k ≤ m. In particular, (3.34) comes from the fact that ∂`tΦN (x, t) turns
out to be the Fourier projection of ∂`tΦ(x, t) onto BK .

We denote ΦkN (x) = ΦN (x, tk). The following result is a consequence of Theo-
rem 3.5 and the projection approximation estimates (3.32) and (3.34).

Theorem 3.8. Suppose that Φ(0) = φ0 ∈ C∞per(0, L). The following estimates
are valid for the projection of the solution ΦN :

max
0≤n≤M

‖ΦnN‖Hm0 ≤ Ĉ∗m0,ε := Cε−km0 , (3.35)

max
0≤n≤M−1

∥∥Φn+1
N − ΦnN

∥∥
Hk
≤ D̂∗k,εs, D̂∗k,ε := Cε−nk , (3.36)

for any m0 ≥ 1 and k ≥ 0, where km0
, nk and mk are positive integers and C is a

constant independent of s, h, T , and ε.

4. Error analysis with an improved convergence constant. The numerical
error function and its continuous extension are defined as

φ̃ki = ΦkN (xi)− φki , φ̃kF(x) = ΦkN (x)− φkF(x), (4.1)

with the formulas (2.14) and (2.15) applied in the extension. In more detail, we
don’t compare the numerical solution with the exact solution Φ directly; instead, we
compare it with ΦN , the Fourier projection of Φ. The advantage of this approach will
be demonstrated later.

4.1. Statement of the main theorem. The following theorem is the main
result of this paper.

Theorem 4.1. Suppose that the initial data φ0 ∈ H8
per(Ω) and that s and h

satisfy the scaling laws

s ≤ CεJ1 , h ≤ CεJ2 , (4.2)
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where J1 and J2 are positive integers that are sufficiently large. Also assume that
ε ∈ (0, ε0), with ε specified in Proposition 4.5. Then the following error estimate is
valid:

max
1≤m≤M

‖φ̃m‖2 ≤ R̂∗(s+ h2), with R̂∗ = CeC
∗
0T ε−J0 , (4.3)

where J0 is a positive integer, C∗0 and C are positive constants that are independent
of s, h and ε.

4.2. Consistency analysis and the equation for the error function. Based
on the projection approximation estimates (3.33) and (3.34), combined with the ex-
act SS equation (1.3), we are able to derive the following estimate, whose proof is
suppressed for simplicity:

∂tΦN = ε−1
(
((∂xΦN )3)x − ∂2

xΦN
)
− ε∂4

xΦN + τ0, (4.4)

with ‖τ0(t)‖ ≤ Ch2ε−j1 where C > 0 is a constant the is independent of t, ε, and N ,
and j1 is a positive integer.

With the centered difference approximation taken in space, the following estimate
is available:

∂tΦN (xi, tn) = ε−1
(
d
[
(DΦN )3

]
(xi, tn)−D2ΦN (xi, tn)

)
− εD4ΦN (xi, tn) + τn1 (xi), (4.5)

with ‖τn1 ‖ ≤ Ch2ε−j2 . Subsequently, with a first order backward Euler temporal
approximation taken, the following consistency estimate could be derived:

Φn+1
N − ΦnN

s
(xi) = ε−1

(
d
[
(DΦn+1

N )3
]

(xi)−D2Φn+1
N (xi)

)
− εD4Φn+1

N (xi) + τn+1
2 (xi), (4.6)

where ‖τn+1
2 ‖2 ≤ C(s+ h2)ε−j3 .

For the numerical scheme (2.12), we rewrite it in an alternate form, to facilitate
the error analysis presented later. The following consistency holds:

φn+1 − φn

s
= ε−1

(
d
[
(Dφn+1)3

]
−D2φn+1

)
− εD4φn+1 + τn+1

3 , (4.7)

where ‖τn+1
3 ‖2 ≤ C(s+ h2)ε−j4 .

Remark 4.2. We note that the temporal discretization for both the approximate
projection solution (4.6) and the numerical solution (4.7) is very different from the
original numerical scheme (2.12). The purpose for these forms are to simplify the
error analysis with an improved convergence constant, as will be observed later.

The only truncation error estimate appearing in (4.4) come from the projection
error, and the projection estimate (3.32) is applied to bound ‖τn+1

0 ‖. In (4.5), the
finite difference truncation error is taken into consideration; we refer the readers the
related references [5, 45] for more detailed derivations. In the derivation of (4.6), the
second order temporal derivative of the projection solution in involved in τ2, in which
the projection estimate (3.32) is applied.

Similarly, for the numerical solution, the truncation error term τ3 comes from the
difference between D2φn+1 and D2φn, by a comparison with the numerical scheme
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(2.12). In turn, the quantity ‖D2(φn+1 − φn)‖2 could be controlled in the following
way, with the help of Theorem 3.4:

‖D2(φn+1 − φn)‖2 ≤ sD̂2,ε, by taking k = 2 in (3.22). (4.8)

Subtracting (4.6) from the reformulated numerical scheme (4.7) yields

φ̃n+1 − φ̃n

s
= ε−1

(
d
[
(DΦn+1

N )3 − (Dφn+1)3
]
−D2φ̃n+1

)
− εD4φ̃n+1 + τn+1 (4.9)

where ‖τn+1‖2 ≤ C(s+ h2)ε−j5 .

4.3. A preliminary estimate for the numerical error term. By a compar-
ison between (3.21) (in Theorem 3.2), (3.22) (in Theorem 3.4) and (3.35) – (3.36)
(for the approximate projection solution) in Theorem 3.8, the following estimates are
straightforward.

Lemma 4.3. For the numerical error function, we have

max
0≤n≤M

‖φ̃nF‖Hm0 ≤ Ĉ∗∗m0,ε := Cε−km0 , (4.10)

max
0≤n≤M−1

‖φ̃n+1
F − φ̃nF‖Hk ≤ D̂∗∗k,εs, D̂∗∗k,ε := Cε−nk , (4.11)

for any m0 ≥ 1 and k ≥ 0, where km0
, nk and mk are given integers and C is a

constant independent of s, h, T , and ε.
Remark 4.4. Note that these bounds for the numerical error function do not

rely on the error and convergence analysis; all of them are final time independent.

4.4. Review of the spectrum estimate for the linearized operator. The
linearized spectrum estimate for the Cahn-Hilliard equation has been established in [1,
2, 11, 21]. We recall it here.

Proposition 4.5. ([21]) There exist 0 < ε0 << 1 and another positive constant
C0 such that the principle eigenvalue of the linearized Cahn-Hilliard operator satisfies

λCH := inf
ψ∈H1,ψ 6=0

ε−1
((

3Φ2(t)− 1
)
ψ,ψ

)
+ ε ‖∇ψ‖2

‖ψ‖2H−1

≥ −C0, (4.12)

for any t ≥ 0, ε ∈ (0, ε0), where Φ is the exact solution to the Cahn-Hilliard problem.
For the 1-D SS model (1.3), we have a similar result, under the periodic boundary

condition.
Proposition 4.6. There exist 0 < ε0 << 1 and another positive constant C0

such that the principle eigenvalue of the linearized SS operator satisfies

λSS := inf
ψ∈H2

per(0,L), ψ 6=0

ε−1
((

3(∂xΦ)2(t)− 1
)
∂xψ, ∂xψ

)
+ ε

∥∥∂2
xψ
∥∥2

‖ψ‖2
≥ −C0, (4.13)

for any t ≥ 0, ε ∈ (0, ε0), where Φ is the exact solution to the 1-D SS problem.
Remark 4.7. The spectrum analysis (4.12) was derived for the linearized Cahn-

Hilliard operator [1, 2, 11], under a homogeneous Neumann boundary condition. An
extension of this analysis to the one with the periodic boundary condition is straight-
forward, and the details are skipped for the sake of brevity. Estimate (4.13) is a direct
application of this extension in the one-dimensional case, upon observing that the slope
function ∂xΦ satisfies the Cahn-Hilliard equation.
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4.5. Error analysis: Proof of Theorem 4.1. Taking a discrete inner product
of (4.9) with 2φ̃n+1 gives

‖φ̃n+1‖22 − ‖φ̃n‖22 + ‖φ̃n+1 − φ̃n‖22 + 2εs‖D2φ̃n+1‖22 − 2sε−1‖Dφ̃n+1‖22
+2ε−1s

〈
(DΦn+1

N )3 − (Dφn+1)3, Dφ̃n+1
〉
e

= 2s〈τn+1, φ̃n+1〉, (4.14)

with repeated application of the summation-by-parts formulas.
The term associated with the truncation error has the following bound:

2〈τn+1, φ̃n+1〉 ≤ ‖τn+1‖22 + ‖φ̃n+1‖22. (4.15)

For the concave diffusion term, we apply (2.23) (in Lemma 2.2) and get

‖∂xφ̃n+1
F ‖2 − ‖Dφ̃n+1‖22 ≤ Ch2‖φ̃n+1

F ‖2H2 ≤ Ch2‖∂2
xφ̃

n+1
F ‖2. (4.16)

To obtain a sharper bound on the right hand side, we have

‖∂2
xφ̃

n+1
F ‖2 ≤ C‖φ̃n+1

F ‖H4 · ‖φ̃n+1
F ‖ ≤ CĈ∗∗4,ε‖φ̃n+1

F ‖, (4.17)

with the preliminary estimate (4.10) (in Lemma 4.3) applied in the last step. This in
turn yields

‖∂xφ̃n+1
F ‖2 − ‖Dφ̃n+1‖22 ≤ CĈ∗∗4,εh2‖φ̃n+1

F ‖ ≤ ε

8
‖φ̃n+1

F ‖2 + Cε−1h4(Ĉ∗∗4,ε)
2.(4.18)

The surface diffusion term could be analyzed in the same manner, with the help
of (2.24) (in Lemma 2.2). We state the result here; the details are skipped for the
sake of brevity.

‖∂2
xφ̃

n+1
F ‖2 − ‖D2φ̃n+1‖22 ≤ CĈ∗∗6,εh2‖φ̃n+1

F ‖ ≤ ‖φ̃n+1
F ‖2 + Ch4(Ĉ∗∗6,ε)

2. (4.19)

The rest work is focused on the following nonlinear inner product:

I
(d)
1 := 〈(DΦn+1

N )3 − (Dφn+1)3, Dφ̃n+1〉e
= 〈(DΦn+1

N )2 +DΦn+1
N Dφn+1 + (Dφn+1)2, (Dφ̃n+1)2〉e. (4.20)

Meanwhile, we denote its continuous version as

I1 :=
(

(∂xΦn+1
N )2 + ∂xΦn+1

N · ∂xφn+1
F + (∂xφ

n+1
F )2, (∂xφ̃

n+1
F )2

)
. (4.21)

The difference I
(d)
1 − I1 can be analyzed with the help of Lemma 2.4. We see that

ΦN ∈ BK , φF and φ̃F are the continuous extensions of φ and φ̃, respectively, so that
an application of (2.33) leads to an estimate of the middle term:∣∣∣〈DΦn+1

N Dφn+1, (Dφ̃n+1)2
〉
e
−
(
∂xΦn+1

N · ∂xφn+1
F , (∂xφ̃

n+1
F )2

)∣∣∣
≤ Ch2‖φ̃n+1

F ‖2H3(‖Φn+1
N ‖2H3 + ‖φn+1

F ‖2H3) ≤ Ch2‖φ̃n+1
F ‖2H3(Ĉ2

3,ε + (Ĉ∗3,ε)
2)

≤ Ch2ε−2k3‖φ̃n+1
F ‖2H3 ≤ Ch2ε−2k3Ĉ∗∗6,ε‖φ̃n+1

F ‖

≤ R̂∗0,εh
4 +

ε

12
‖φ̃n+1

F ‖2, R̂∗0,ε = Cε−4k3−1(Ĉ∗∗6,ε)
2, (4.22)

in which the established estimates (3.21), (3.35) and (4.10), along with the Sobolev
inequality ‖φ̃n+1

F ‖2H3 ≤ CĈ∗∗6,ε‖φ̃n+1
F ‖ (as derived in (4.19)), have been applied. The

two other terms could be analyzed in the same way. Then we get

|I(d)
1 − I1| ≤ 3R̂∗0,εh

4 +
ε

4
‖φ̃n+1

F ‖2. (4.23)

Before further analysis of the nonlinear term, we make an a-priori assumption
about the numerical error.
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4.5.1. An a-priori assumption up to time step tn. We assume a-priori that
the numerical error function has the desired convergence as given by (4.3), at time
steps up to tn.

‖φ̃`F‖ ≤ R̂∗
(
s+ h2

)
, with R̂∗ = CeC

∗
0T ε−J0 , ` ≤ n. (4.24)

For the continuous inner product I1 in (4.21), we begin with the following identity:

(∂xΦn+1
N )2 + ∂xΦn+1

N · ∂xφn+1
F + (∂xφ

n+1
F )2 = 3(∂xΦn+1

N )2 − 3∂xΦn+1
N · ∂xφ̃n+1

F

+ (∂xφ̃
n+1
F )2. (4.25)

This in turn shows that

I1 ≥ 3
(

(∂xΦn+1
N )2, (∂xφ̃

n+1
F )2

)
+ IE , IE = −3

(
(∂xΦn+1

N ), (∂xφ̃
n+1
F )3

)
. (4.26)

Furthermore, we obtain

|IE| ≤ 3‖∂xΦn+1
N ‖L∞ · ‖∂xφ̃n+1

F ‖3L3 ≤ C
∥∥Φn+1

N

∥∥
H2 · ‖∂xφ̃n+1

F ‖3L3

≤ CĈ∗2,ε‖∂xφ̃n+1
F ‖3L3 , (4.27)

with the estimate (3.27) applied in the last step. Meanwhile, based on the identity

∂xφ̃
n+1
F = ∂xφ̃

n
F + ∂x

(
φ̃n+1
F − φ̃nF

)
, the following analysis is performed:

‖∂xφ̃n+1
F ‖3L3 ≤ C

(
‖∂xφ̃nF‖3L3 + ‖∂x(φ̃n+1

F − φ̃nF)‖3L3

)
≤ C

(
‖∂xφ̃nF‖3L3 + ‖φ̃n+1

F − φ̃nF‖3H2

)
≤ C

(
‖∂xφ̃nF‖3L3 + s3(D̂∗∗2,ε)

3
)
, (4.28)

with the preliminary estimate (4.11) applied in the last step. Moreover, the Sobolev
inequalities indicate that

‖∂xφ̃nF‖L3 ≤ C‖φ̃nF‖H7/6 ≤ C‖φ̃nF‖
23
30 · ‖φ̃nF‖

7
30

H5

≤ C(Ĉ∗∗5,ε)
7
30 (R̂∗)

23
30 (s+ h2)

23
30 , (4.29)

in which the estimate (4.10) and the a-priori assumption (4.24) was recalled in the
last step. Subsequently, a substitution of (4.28) and (4.29) into (4.27) yields

|IE| ≤ R̂∗2,ε(s
23
10 + h

23
5 ) + R̂∗3,εs

3, (4.30)

with R̂∗2,ε = CĈ∗2,ε(Ĉ
∗∗
5,ε)

7
10 (R̂∗)

23
10 , R̂∗3,ε = CĈ∗2,ε(D̂

∗∗
2,ε)

3.
Finally, a combination of (4.14), (4.15), (4.18), (4.19), (4.23) and (4.30) leads to

‖φ̃n+1‖22 − ‖φ̃n‖22 − s‖τn+1‖22
+ 2s

(
ε−1

(
3
(

(∂xΦn+1
N )2, (∂xφ̃

n+1
F )2

)
− ‖∂xφ̃n+1

F ‖2
)

+ ε‖∂2
xφ̃

n+1
F ‖2

)
≤ 2s‖φ̃n+1‖22 + R̂∗1,εs(s

2 + h4) + 2ε−1s(R̂∗2,ε(s
23
10 + h

23
5 ) + R̂∗3,εs

3), (4.31)

with R̂∗1,ε = C(ε−1R̂∗0,ε + ε−2(Ĉ∗∗4,ε)
2 + ε(Ĉ∗∗6,ε)

2). The linearized spectrum estimate
(4.13) (reviewed in Proposition 4.6) implies that

ε−1
(

3
(

(∂xΦn+1
N )2, (∂xφ̃

n+1
F )2

)
− ‖∂xφ̃n+1

F ‖2
)

+ ε‖∂2
xφ̃

n+1
F ‖2 ≥ −C0‖φ̃n+1‖2. (4.32)
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Its substitution into (4.31) yields

‖φ̃n+1‖22 − ‖φ̃n‖22 ≤ (2C0 + 2)s‖φ̃n+1‖22 + R̂∗4,εs(s
2 + h4)

+2ε−1sR̂∗2,ε(s
23
10 + h

23
5 ), (4.33)

with R̂∗4,ε = ε−2j5 + R̂∗1,ε + 2R̂∗3,εε
−1s. Under the condition that

ε−1R̂∗2,εs
3
10 ≤ 1

2
, ε−1R̂∗2,εh

3
5 ≤ 1

2
, i.e. min(s, h) ≤ (

ε

2
)

10
3 (R̂∗2,ε)

− 10
3 , (4.34)

we get

‖φ̃n+1‖22 − ‖φ̃n‖22 ≤ (2C0 + 2)s‖φ̃n+1‖22 + R̂∗5,εs(s
2 + h4), (4.35)

with R̂∗5,ε = 2R̂∗4,ε + 1. Most importantly, observe that 2C0 + 2 is a constant indepen-

dent of ε, and R̂∗5,ε is independent of R̂∗ appearing in (4.24). Clearly, R̂∗5,ε depends
on ε−1 in a polynomial form. An application of discrete Gronwall inequality to (4.35)
results the desired error analysis:

‖φ̃n+1‖22 ≤ Ce(2C0+2)T R̂∗5,ε(s
2 + h4). (4.36)

4.5.2. Recovery of the a-priori assumption (4.24). In turn, we can take
C∗0 = C0 + 1, and the integer index J0 could be chosen according to the form of R̂∗5,ε,
to recover the a-priori assumption (4.24) at time step tn+1.

Moreover, R̂∗ is determined by this convergence result, so is R̂∗2,ε, given by R̂∗2,ε =

CĈ∗2,ε(Ĉ
∗∗
5,ε)

7
10 (R̂∗)

23
10 . As a result, condition (4.34) for s and h could be converted

into the form of (4.2). The proof of Theorem 4.1 is complete.
Remark 4.8. The time step and mesh size have to satisfy the scaling law as

indicated in (4.2): s ≤ CεJ1 , h ≤ CεJ2 . A preliminary calculation shows that J1 ≥ 20,
J2 ≥ 20.

Note that these two integer numbers have larger values than the ones reported in
[19, 21], for a few reasons. The Allen-Cahn model covered in [19] has a well-known
maximum principle, which in turn would greatly simplify the corresponding analysis.
The Cahn-Hilliard model analyzed in [21] does not have the maximum principle, while
its degree of nonlinearity is lower than the SS model, due to the fact that φx satisfies
the SS equation, as given by (1.4). In addition, only an H−1 truncation error needs to
be estimated in the Cahn-Hilliard model, in comparison with the L2 truncation error
presented in this article. This fact also makes the truncation error dependent on ε−1

in a higher degree polynomial form.
In addition, the aliasing error estimates are needed in the finite difference analysis

for the nonlinear error terms, which in turn requires higher regularity of the exact
solution and numerical solution. This subtle fact also makes the numerical error
dependent on ε−1 in a higher degree polynomial form; in comparison, the finite element
approximations were applied in [19, 21], and no aliasing error needs to be estimated.

Remark 4.9. The authors are aware of the limitation of the 1-D SS equation
(1.4). In fact, the multi-dimensional versions have been extensively studied in many
recent articles [36, 40, 41, 43], with local in time convergence analyses provided. How-
ever, all the estimates are involved with a convergence constant dependent on ε−1 in
an exponential growth form, which comes from an application of discrete Gronwall
inequality. The technique presented in this article could not be directly applied to the
multi-dimensional SS model, because of a key fact that, the linearized spectrum esti-
mate, as given by (4.6) for the 1-D equation, is not available for the multi-dimensional
SS model.
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5. Conclusions. An improved error analysis is provided for an energy stable
finite difference scheme to the 1-D slope selection equation. A uniform-in-time Hm

bound of the numerical solution, for any m ≥ 3, is obtained through Sobolev estimates
at a discrete level. To avoid a convergence constant of the form exp(CTε−m), we apply
a spectrum estimate for the linearized operator associated with the 1-D SS gradient
flow, so that an application of the discrete Gronwall inequality leads to a convergence
constant dependent on ε−1 only in a polynomial order.
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91130021 and the Fundamental Research Funds for the Central Universities (Z. Zhang).

Appendix A. Proof of Lemma 2.1 .
Proof. For the cell-centered grid function f and its smooth extension fF, given

by (2.14) and (2.15), Parseval identity (at both the discrete and continuous levels)
implies that

‖f‖22 = ‖fF‖2L2 = L

K∑
`=−K

|f̂N` |2, since hN = L. (A.1)

For the comparison between the discrete and continuous gradient, we start with
the following Fourier expansions:

Dfj+1/2 =

K∑
`=−K

µ`f̂
N
` e2`πixj+1/2/L, µ` = −

2i sin `πh
L

h
, (A.2)

∂xfF(x) =

K∑
`=−K

ν`f̂
N
` e2`πix/L, ν` = −2i`π

L
. (A.3)

In turn, an application of Parseval identity yields

‖Df‖22 = L

K∑
`=−K

|µ`|2|f̂N` |2, ‖∂xfF‖2L2 = L

K∑
`=−K

|ν`|2|f̂N` |2. (A.4)

Comparison between |µ`| and |ν`| shows that

2

π
|ν`| ≤ |µ`| ≤ |ν`|, for −K ≤ ` ≤ K. (A.5)

This indicates that

2

π
‖∂xφF‖L2 ≤ ‖Dφ‖2 ≤ ‖∂xφF‖L2 , (A.6)

which gives (2.16) in Lemma 2.1, with j = 1. It can be proved analogously that

(2π−1)j‖∂jxφF‖L2 ≤ ‖Djφ‖2 ≤ ‖∂jxφF‖L2 , ∀j ≥ 1, (A.7)

so that (2.16) has been established.
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Estimate (2.18) is a direct consequence of (A.7), combined with the elliptic reg-
ularity at the continuous level:∥∥D3f

∥∥
2
≤
∥∥∂3

xfF
∥∥ ≤ C∗1 ∥∥∂5

xfF
∥∥ ≤ C∗1 (D5)−1

∥∥D5f
∥∥

2
, (A.8)

where C∗1 is the elliptic regularity constant at the continuous level. In turn, (2.18) is
valid by taking C1 = C∗1 (D5)−1.

Similarly, (2.17) could be derived as follows:

‖fF‖Hk ≤ C
(∫

Ω

fF dx+ ‖∂kxfF‖
)
≤ C

(
|f |+ ‖DkfF‖2

)
, (A.9)

in which the elliptic regularity is applied in the first step, and the fact that
∫

Ω
fF dx =

f is observed in the second step, and the estimate (2.16) has also been recalled.
For (2.19), we define the edge-centered grid function gi+1/2 = Dfi+1/2 and denote

its smooth extension as gF, with the extension formula given by (2.15). Based on the
discrete Fourier expansion (A.2) for g = Df , we see that the continuous expansion
for gF becomes

gF =

K∑
`=−K

µ`f̂
N
` e2`πix/L, µ` = −

2i sin `πh
L

h
. (A.10)

In turn, we have the following estimates for ∂xgF:

∂xgF =

K∑
`=−K

µ` ·
2`πi

L
· f̂N` e2`πix/L, so that (A.11)

‖∂xgF‖2 = L

K∑
`=−K

|µ`|2 ·
∣∣∣∣2`πiL

∣∣∣∣2 · |f̂N` |2 ≤ L K∑
`=−K

|ν`|4|f̂N` |2 = ‖∂2
xfF‖2,(A.12)

where the last step is based on the fact that |µ`| ·
∣∣ 2`πi
L

∣∣ ≤ |ν`|, with ν` given by (A.3).
Moreover, the discrete maximum norm of g = Df could be analyzed as follows:

‖Df‖∞ = ‖g‖∞ ≤ ‖gF‖L∞ ≤ C ‖∂xgF‖ ≤ C
∥∥∂2

xfF
∥∥ ≤ C ∥∥D2f

∥∥
2
. (A.13)

We note that the second step comes from the fact that the edge-centered grid function
g is the projection/evaluation of gF to/at the grid points. The third step is based on
the 1-D Sobolev embedding; (A.12) is applied in the fourth step; and the estimate
(2.16) is recalled in the last step. This finishes the proof of (2.19).

Inequality (2.20) could be established in the same manner, we skip the details for
the sake of brevity.

Estimates (2.21) and (2.22) could be derived with the help of the Sobolev inequal-
ities, combined with (2.16):

‖Df‖2 ≤ ‖∂3
xfF‖ ≤ C‖∂2

xfF‖2/3 · ‖∂5
xfF‖1/3 ≤ C‖D2f‖2/32 · ‖D5f‖1/32 , (A.14)

‖D2f‖∞ ≤ C‖∂2
xfF‖5/6 · ‖∂5

xfF‖1/6 ≤ C‖D2f‖5/62 · ‖D5f‖1/62 , (A.15)

with the first step in (A.15) derived in the same manner as (A.10)-(A.13).
The proof of Lemma 2.1 is complete.

Appendix B. Proof of Lemma 2.2 .
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Proof. The discrete Fourier expansion (2.14) for f and its continuous extension
(2.15) yields

D2fj =

K∑
`=−K

λ`f̂
N
` e2`πixj/L, λ` = −

(
2 sin

`πh
L

h

)2

, (B.1)

∂2
xfF(x) =

K∑
`=−K

Λ`f̂
N
` e2`πix/L, Λ` = −

(
2`π

L

)2

. (B.2)

Subsequently, we apply the Parseval equality and get

‖∂xfF‖2 − ‖Df‖22 = L

K∑
`=−K

(
|ν`|2 − |µ`|2

) ∣∣∣f̂N` ∣∣∣2 , (by (A.4) ), (B.3)

∥∥D2f
∥∥2

2
= L

K∑
`=−K

|λ`|2 ·
∣∣∣f̂N` ∣∣∣2 , ∥∥∂2

xfF
∥∥2

= L
K∑

`=−K

|Λ`|2 ·
∣∣∣f̂N` ∣∣∣2 , (B.4)

so that

∥∥∂2
xfF

∥∥2 −
∥∥D2f

∥∥2

2
= L

K∑
`=−K

(
|Λ`|2 − |λ`|2

) ∣∣∣f̂N` ∣∣∣2 , (B.5)

with µ` and ν` given by (A.2), (A.3). Furthermore, the following estimates are avail-
able:

|ν`|+ |µ`| ≤ 2|ν`| =
4`π

L
, |λ`|+ |Λ`| ≤ 2|Λ`| = 2

(
2`π

L

)2

(B.6)

sin
`πh

L
=
`πh

L
− cos η

6

(
`πh

L

)3

, with η ∈ (0, π2 ), (B.7)

so that

0 ≤ |ν`| − |µ`| =
2`π

L
−

2 sin `πh
L

h
≤ h2

3

(
`π

L

)3

, (B.8)

0 ≤ ‖ν`|2 − |µ`|2 = (|ν`| − |µ`|) · (|ν`|+ |µ`|) ≤
h2

24

(
2`π

L

)4

, (B.9)

0 ≤ |Λ`|2 − |λ`|2 = (|Λ`| − |λ`|) · (|Λ`|+ |λ`|) ≤
h2

12

(
2`π

L

)6

, (B.10)

where a Taylor expansion was performed in (B.7), and the fact that |λ| = |µ|2, |Λ| =
|ν|2 was applied in (B.10). Going back to (B.3), (B.5), we arrive at

0 ≤ ‖∂xfF‖2 − ‖Df‖22 ≤
L

24

K∑
`=−K

h2

(
2`π

L

)4 ∣∣∣f̂N` ∣∣∣2 =
h2

24

∥∥∂2
xfF

∥∥2
, (B.11)

0 ≤
∥∥∂2

xfF
∥∥2 −

∥∥D2f
∥∥2

2
≤ L

12

K∑
`=−K

h2

(
2`π

L

)6 ∣∣∣f̂N` ∣∣∣2 =
h2

12

∥∥∂3
xfF

∥∥2
. (B.12)
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Inequality (2.25) could be similarly proven, by making a comparison between the
Fourier expansions of Df and ∂xfF, given by (A.2), (A.3), combined with the estimate
(B.8). The details are skipped for the sake of brevity.

The proof of Lemma 2.2 is complete.

Appendix C. Proof of Lemma 2.3 .
Proof. (1) In addition to (2.14) and (2.15), we set the discrete Fourier expansion

for g and its continuous extension given by

gi =

K∑
`=−K

ĝN` e2`πixi/L, g(x) = gF(x) =

K∑
`=−K

ĝN` e2`πix/L. (C.1)

In turn, we assume the Fourier expansion for the product function f · g as

(f · g)(x) =

2K∑
`=−2K

ĥN` e2`πix/L. (C.2)

In particular, it is observed that f · g ∈ B2K . Consequently, the discrete product
function f · g turns out to be the projection of f · g at the numerical grid points:

(f · g)i = (f · g)(xi) = IN (f · g) (xi). (C.3)

A more careful expansion shows that

f · g =

∫
Ω

IN (f · g)dx =

∫
Ω

f · gdx, (C.4)

which is equivalent to (2.30). In more detail, the first step comes from the fact that
IN f · g ∈ BK , and the second step is based on the fact that, there is no aliasing error
on the mode of ` = 0, between f · g ∈ B2K and its projection onto BK .

(2) In the general case, we note that f and g are discrete interpolations of IN f ∈
BK and INg ∈ BK . By (2.30), we arrive at

|〈f, g〉e − (f ,g)| = |(IN f , INg)− (f ,g)| ≤ |(IN f − f , INg)|+ |(f , INg − g)|
≤ ‖IN f − f‖ · ‖INg‖+ ‖f‖ · ‖INg − g‖
≤ Ch4 (‖f‖H4 · ‖g‖H2 + ‖f‖H2 · ‖g‖H4) , (C.5)

which gives (2.31), with the Fourier spectral interpolation approximation (2.29) ap-
plied at the last step.

Estimate (2.31) could be established in the same fashion. The proof of Lemma 2.3
is complete.

Appendix D. Proof of Lemma 2.4 .
Proof. We assume that fj and its continuous extension fj have the following

Fourier expansions, 1 ≤ j ≤ 4:

(fj)k =

K∑
`=−K

f̂N(j),`e
2`πixk/L, fj(x) =

K∑
`

f̂N(j),`e
2`πix/L. (D.1)

We also denote periodic grid functions (gj)k+1/2 = (Dfj)k+1/2, and denote their con-
tinuous extensions as gj , 1 ≤ j ≤ 4, using a similar formula as (2.14) – (2.15). A
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more detailed calculation shows that

(gj)k+1/2 =

K∑
`=−K

µ`f̂
N
(j),`e

2`πixk+1/2/L, gj(x) =

K∑
`

µ`f̂
N
(j),`e

2`πix/L, (D.2)

with µ` given by (A.2). Moreover, by a careful comparison between the Fourier
coefficients of gj and ∂xfj , we could perform a similar analysis as in (A.2) – (A.7) and
derive the following estimate:

2π−1‖∂k+1
x fj‖ ≤ ‖∂kxgj‖ ≤ ‖∂k+1

x fj‖, ∀k ≥ 0. (D.3)

The details are skipped for the sake of brevity.
In addition, the following O(h2) consistency estimate could be derived, following

(2.25) (in Lemma 2.2):

‖∂kx(∂xfj − gj)‖ ≤ Ch2‖∂k+3
x fj‖, ∀k ≥ 0. (D.4)

Due to the fact that

gj = Dfj is the interpolation of the continuos function gj , 1 ≤ j ≤ 4, (D.5)

we apply (2.32) (in Lemma 2.3) and conclude that

|〈Df1 ·Df2, Df3 ·Df4〉e − (g1g2,g3g4)|
≤ Ch2 ‖g1g2‖H2 · ‖g3g4‖H2 ≤ Ch2‖g1‖H2 · ‖g2‖H2 · ‖g3‖H2 · ‖g4‖H2

≤ Ch2(‖g1‖2H2 + ‖g2‖2H2)(‖g3‖2H2 + ‖g4‖2H2)

≤ Ch2(‖f1‖2H3 + ‖f2‖2H3)(‖f3‖2H3 + ‖f4‖2H3), (D.6)

in which the estimate (D.3) (with k = 4) is applied in the last step.
On the other hand, we have to estimate the difference between (g1 · g2,g3 · g4)

and (∂xf1 · ∂xf2, ∂xf3 · ∂xf4):

(g1 · g2,g3 · g4)− (∂xf1 · ∂xf2, ∂xf3 · ∂xf4)

= (g1 · g2 − ∂xf1 · ∂xf2,g3 · g4) + (∂xf1 · ∂xf2, ∂xf1 · ∂xf2 − ∂xf3 · ∂xf4)

= (g1 − ∂xf1, ∂xf2 · g3 · g4) + (g2 − ∂xf2,g1 · g3 · g4)

+ (g3 − ∂xf3, ∂xf4 · ∂xf1 · ∂xf2) + (g4 − ∂xf4,g3∂xf1 · ∂xf2) .
(D.7)

The following preliminary estimates are available, for 1 ≤ j ≤ 4:

‖gj − ∂xfj‖ ≤ Ch2‖fj‖H3 , (by taking k = 0 in (D.4) ), (D.8)

‖∂xfj‖L∞ ≤ C‖fj‖H2 , ‖gj‖L∞ ≤ C‖gj‖H1 ≤ C‖fj‖H2 , (D.9)

with Sobolev inequalities applied in (D.9). In turn, the first term in (D.7) could be
bounded as follows:

|(g1 − ∂xf1, ∂xf2g3 · g4)| ≤ ‖g1 − ∂xf1‖ · ‖∂xf2‖L∞ · ‖g3‖L∞ · ‖g4‖L∞
≤ Ch2‖f1‖H3 · ‖f2‖H2 · ‖f3‖H2 · ‖f4‖H2

≤ Ch2(‖f1‖2H3 + ‖f2‖2H3)(‖f3‖2H3 + ‖f4‖2H3). (D.10)
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The three other terms in (D.7) could be analyzed in the same way. Then we arrive at∣∣∣ (g1 · g2,g3 · g4)− (∂xf1 · ∂xf2, ∂xf3 · ∂xf4)
∣∣∣

≤Ch2(‖f1‖2H3 + ‖f2‖2H3)(‖f3‖2H3 + ‖f4‖2H3). (D.11)

Finally, a combination of (D.6) and (D.11) yields (2.33). This finishes the proof
of Lemma 2.4.
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