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Abstract: We propose a novel technique for automatic classification of modulation formats/bit-rates of the 

digitally modulated signals as well as non-data-aided (NDA) estimation of signal-to-noise ratio (SNR) in 

wireless networks. The proposed technique exploits the modulation format, bit-rate, and SNR-sensitive 

features of asynchronous delay-tap plots (ADTPs) for the joint estimation of these parameters. Simulation 

results validate successful classification of three commonly-used modulation formats at two different bit-

rates with an overall accuracy of 99.95% and for SNR as low as 0 dB. Similarly, in-service estimation of 

SNR in the range of 0−30 dB is demonstrated with mean estimation error of 0.88 dB. The proposed 

technique requires low-speed asynchronous sampling of signal envelope and hence, can enable simple and 

cost-effective joint modulation format/bit-rate classification and NDA SNR estimation in future wireless 

networks.  

Keywords: Automatic modulation classification; automatic modulation format and bit-rate classification; 

SNR estimation; asynchronous delay-tap sampling. 

1. Introduction

The incredible advances in digital signal processing (DSP) technologies over the last decade 

along with the advent of fast and economical analog-to-digital converters (ADC) have developed 

a strong interest in cognitive radio for both commercial and military applications. The cognitive 

radio terminals in future wireless networks are envisioned to be adaptive in nature whereby 

various transmission parameters such as modulation format, bit-rate, signal power etc., can be 

varied dynamically depending upon the channel conditions and quality-of-service (QoS) 

requirements [1-5]. Therefore, the digital receivers in future cognitive wireless networks are 

expected to be fully capable of blind estimation of these critical parameters. 

     Automatic modulation classification (AMC) has been an active research area for the past 

several decades and a number of techniques have been proposed in the literature [6,7]. These 
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include AMC techniques based on iterative expectation-maximization algorithm [8], machine 

learning method using genetic programming in combination with K-nearest neighbor (KNN) [9], 

two-stage optimization using greedy convexhull learning algorithm and alternative convexhull 

shrinkage algorithm [10], maximum likelihood approach using probability density function of 

signal phase [11], higher-order statistical moments and cumulants [12,13], combination of higher-

order statistics and instantaneous characteristics of digitally modulated signals [14] etc. The 

existing AMC techniques exploit various characteristics of the modulation schemes for the 

purpose of their recognition for e.g., (i) instantaneous variations in the amplitude, frequency and 

phase of the carrier (ii) statistical features such as higher-order moments and cumulants, 

cyclostationarity etc. (iii) spectral features obtained through Fourier and wavelet transforms (iv) 

geometrical features of the constellation diagrams (v) variance of the zero-crossing interval of the 

carrier. The existing AMC techniques suffer from two main drawbacks. (1) These techniques 

entail high implementation and computational complexity since they often require coherent 

detection, high-speed synchronous sampling, and intricate preprocessing steps for the extraction 

of abovementioned parameters. (2) To the best of authors’ knowledge, all these techniques focus 

merely on modulation format classification and can not jointly identify the bit-rates of the signals, 

which are also expected to vary dynamically in future wireless networks. 

     Apart from the need of joint modulation format and bit-rate classification, a priori knowledge 

of various channel parameters is also crucial in wireless networks since this vital information can 

be exploited for achieving the optimal performance through various adaptive schemes [2]. In 

particular, accurate estimation of signal-to-noise ratio (SNR) is indispensable in wireless 

networks since the performance of several algorithms strongly depends on the precise knowledge 

of SNR. The real-time information about SNR can enable several useful functionalities such as 

adaptive modulation and coding, dynamic power allocation, soft decoding etc. Over the last few 

years, a plethora of SNR estimation techniques has been proposed [15]. These include techniques 

based on higher-order moments [16], fourth-order cross-moments (FOCM) [17], correlation and 

cyclostationarity properties [18,19], training symbols [20], rank discrimination test [21] etc. The 

abovementioned techniques can be categorized as data-aided (DA) and non-data-aided (NDA) 

techniques. The former approach relies on the periodic transmission of pilot symbols known to 

the receiver while the latter one estimates SNR directly from the information-bearing received 

signal. Since the use of pilot symbols results in wastage of channel bandwidth and transmission 

power, NDA SNR estimation techniques are considered more suitable for wireless networks [15].     

     In this paper, we propose a simple technique which effectively exploits the modulation format, 

bit-rate, and SNR-dependent patterns present in the asynchronous delay-tap plots (ADTPs) 

obtained from the received signals. In contrast to the existing AMC techniques which target only 

modulation format classification, the proposed technique can jointly classify the modulation 

format and bit-rate of the received signal from a known set of modulation formats and bit-rates. 

In addition, it can blindly estimate the SNR of a received data-bearing signal. The proposed 

technique requires simple envelope detection and low-speed asynchronous sampling (without 

necessitating timing/clock information) and thus offers reduced implementation complexity as 

compared to the existing AMC and SNR estimation techniques. Furthermore, due to the fact that 

the proposed technique can simultaneously estimate the modulation format, bit-rate and SNR of 

the received signal, it is also computationally more efficient than the existing techniques which 

require separate algorithms for the estimation of these three parameters. Numerical simulations 

performed for three modulation formats at two different bit-rates i.e., 250/500 Mbps non-return-

to-zero (NRZ) 2 amplitude-shift keying (2ASK), 250/500 Mbps return-to-zero (RZ) quadrature 

phase-shift keying (QPSK) and 1/2 Gbps NRZ 16 quadrature amplitude modulation (16QAM) 

signals validate successful classification of all modulation formats/bit-rates for SNR as low as 0 

dB. Similarly, accurate estimation of SNR in the range of 0−30 dB is shown for various signal 

types. 
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Fig. 1. Concept of ADTS with an ADTP on the right. t is the time delay within each sample pair while 

Tsampling is the sampling period. 

 

2. Asynchronous Delay-Tap Sampling 

 

The concept of asynchronous delay-tap sampling (ADTS) is illustrated in Fig. 1. In ADTS, the 

signal envelope is sampled in pairs (pi, qi) with a known constant delay t (called tap-delay) 

between the two samples [22,23]. It is important to note that the sampling process is completely 

asynchronous in nature whereby, the sampling period Tsampling is not related to the symbol period 

Tsymbol and can be many orders of magnitude longer. This implies that there is absolutely no need 

for timing/clock information in ADTS. Moreover, the sampling can be performed at very low 

sampling rates. Both of these properties are extremely desirable since they can significantly 

reduce the implementation complexity and cost. Binning the sample pairs (pi, qi) into a two-

dimensional (2D) histogram produces a scatter plot called an ADTP, which provides information 

richness similar to the conventional eye diagrams with the benefit that unlike eye diagrams, the 

generation of ADTPs does not necessitate timing information. The patterns reflected by ADTPs 

depend on various factors such as (i) shape of the signal waveform (and hence, modulation 

format) (ii) slopes of the signal pulse (and thus, data rate) (iii) noise as well as other impairments 

introduced into the signal. Figure 2 shows the distinct ADTP patterns corresponding to different 

modulation formats, bit-rates and SNRs. It is essentially this relation between ADTP patterns and 

various modulation formats, bit-rates and SNRs which the proposed technique exploits using 

ANN-based pattern recognition for the joint estimation of these parameters. In order to reduce the 

complexity of the subsequent pattern recognition system, we preprocess ADTPs using principal 

component analysis (PCA) for the extraction of most significant and distinctive features [24,25]. 

These unique features are then utilized for the training of two ANN-based classifiers used for the 

recognition of modulation format/bit-rate and estimation of SNR of the received signal. 

 

3. System Model 

 

To investigate the applicability of the proposed technique, we have conducted numerical 

simulations and the system model used is shown in Fig. 3. Three modulation formats i.e., one 

from each of the three families of amplitude, phase, and multilevel-QAM modulation schemes, 

are selected for evaluation purposes. For each chosen modulation format type, we have 

considered two different data rates so as to analyze the bit-rate classification ability of the 

technique. Furthermore, we have considered a combination of NRZ and RZ modulation formats 

in this work since both types are used in practical communication systems. Hence, the set of 

signals selected constitutes 250/500 Mbps NRZ-2ASK, 250/500 Mbps RZ-QPSK and 1/2 Gbps 

NRZ-16QAM signals. The Gaussian pulse-shaping filters are used for the transmitted signal 

pulses while the channel effects are limited to the additive white Gaussian noise (AWGN) only.  
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Fig. 2. ADTP patterns for three modulation schemes at two different bit-rates for t = 0.75 ns. The left column shows 

ADTPs for SNR = 22 dB while the right column depicts ADTPs for SNR = 14 dB. 
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Fig. 3. System model used in numerical simulations. {bk} is the transmitted binary data sequence, s(t) is the 

noise-free transmitted passband signal, n(t) is the real-valued AWGN process and r(t) is the noisy received 

passband signal. 

 

The noise power is altered so as to vary the SNR of the received signal from 0 to 30 dB in steps 

of 0.5 dB (i.e., 61 SNR values considered for each signal type). The total received power (i.e., 

sum of signal and noise powers) is −10 dBm. The envelope of received passband signal is 

sampled by employing ADTS to obtain 100,000 sample pairs (pi, qi), which are then used to 

synthesize an ADTP with 30  30 bins. We generated a large data set of 366 ADTPs 

corresponding to three modulation formats, two bit-rates, and 61 SNR values. Two separate 

subsets namely training and testing data sets are then obtained by randomly selecting 70% (i.e., 

256) and 30% (i.e., 110) ADTPs, respectively, from the overall data set. The ADTPs in the two 

data sets are processed using PCA and the extracted feature vectors are then exploited by ANN-

based classifiers for joint modulation format/bit-rate classification and NDA SNR estimation. 

 

4. Principal Component Analysis 

 

Principal component analysis, also called Karhunen-Loève transform (KLT), is a classical 

technique for features extraction and data compression. It has myriad applications in the areas of 

image processing, pattern recognition, and computer vision. The central idea of PCA is to reduce 

the large dimensionality of a given data space to a relatively smaller dimensionality of feature 

space. This reduction is attained by transforming to a new (and more concise) set of uncorrelated 

variables called principal components (PCs). Thus, PCA results in an economical and more 

compact representation of data [24,25]. In this work, we apply PCA on the ADTPs in the training 

and testing data sets in order to determine the most useful features. For this purpose, first each 

ADTP in the training data set is represented as a one-dimensional vector i of length 900 by 

concatenating all the columns and then a matrix  = [1 2…..256] of size 900  256 is generated, 

where each ADTP in the training data set forms one column of the matrix . The mean image 

vector  of matrix  is given as 

 

                                                  
256
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256
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=
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Next, we obtained zero-mean image matrix  = [1 2…..256], where i = i − . The 

covariance matrix C of  is given as 
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Matrix C can have up to 900 eigenvectors (also called PCs) and corresponding eigenvalues which 

can be determined using                       
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Fig. 4. (a) Eigenvalues i of a few PCs arranged in descending order. (b) Parameter  versus number of 

PCs selected K.  

 

 

                                       (3)     for   1,2,...900                   i i iC i  = =  

 

where i and i are the ith eigenvector and eigenvalue of C, respectively. The eigenvalues of a 

few PCs are plotted in descending order in Fig. 4(a) which clearly shows that the eigenvalues 

swiftly converge to zero. We ranked the computed eigenvectors according to their eigenvalues 

and selected only K eigenvectors amongst them using the following criterion 

 

        
900

1 1

(4)                               
K

i i

i i

P 
= =

 =    

 

where P is often chosen to be above 0.9 [25]. The value of parameter  is shown in Fig. 4(b) as a 

function of number of PCs selected K. It is evident from the figure that  > 0.9 for K = 6. This 

implies that we can retain only six PCs (pertaining to the six largest eigenvalues) and discard the 

rest without losing significant information. Note that in contrast to the original 900-dimensional 

image space, the chosen eigenvectors span only a K-dimensional subspace. Any vector   
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Fig. 5. ANN-based classifiers with ADTP feature vector x as input, and classified signal type and estimated 

SNR as outputs. 

 

corresponding to an ADTP in the training or testing data set can thus be approximated as a 

weighed-sum of the chosen eigenvectors in this K-dimensional subspace i.e.  
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A vector x = [w1, w2,…wK]T containing the weights wk is known as the feature vector of the given 

ADTP. Using the K selected eigenvectors, we determined feature vectors x (each of length 6) for 

all the ADTPs in the training and testing data sets. In addition, for each ADTP, we obtained a 6  

1 binary vector y1 (where, the location of only one non-zero element in y1 signifies the actual 

modulation format and bit-rate of the signal) and the actual SNR value y2. 
 

5. Results and Discussion 

 

The vectors x and y1 as well as the SNR y2 corresponding to the ADTPs in the training data set are 

utilized for the training of two ANNs i.e., first for the classification of modulation format/bit-rate 

and the second for the estimation of SNR, as shown in Fig. 5. The two ANNs used in this work 

are multi-layer perceptron (MLP) ANNs with only one hidden layer [26,27]. The role of first 

ANN in Fig. 5 is that of a classifier while the second ANN is working as a regressor. A 

supervised learning method called Levenberg-Marquardt (LM) back-propagation (BP) is used for 

the training of both ANNs. During the ANNs’ training process, vectors x and y1 (corresponding to 

the training data set) are applied at the input and output of first ANN, respectively, while vector x 

and SNR y2 are applied at the input and output of second ANN, respectively. Various network 

parameters like the number of neurons in the hidden layer, weights of the interconnections etc., 

are then optimized such that the mean-square-error (MSE) between the analog ANN output v1,2, 

and y1,2 i.e., ||v1,2 – y1,2||2, is minimized over the whole training data set. To avoid the over-training 

of ANNs, a small subset of the training data set, called validation data set, is used to constantly 

examine their performances during the course of training. Figure 6 shows that, for the first ANN, 

the minimum MSE for the validation data set (i.e., 6  10-3) occurs for 26 epochs and the training 

is stopped there. For the second ANN, the target MSE (i.e., 2  10-4) is attained for 6 epochs and 

the training is terminated at that point. To evaluate the performances of trained ANNs, 110 

feature vectors x corresponding to the testing data set are applied at the inputs of two ANNs. For  
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Fig. 6. MSE as a function of number of learning epochs for training and validation data sets. 

 

 

 

Table 1. Classification accuracies for different modulation formats/bit-rates using the proposed technique. 

the first ANN, the location of largest element in each corresponding output vector v1 i.e., 

argmax{v1}, gives the identified modulation format/bit-rate while the output v2 of the second 

ANN directly provides the SNR estimate. The estimated modulation formats/bit-rates and SNRs 

are compared with the actual ones i.e., the ones given by y1,2 of the testing data set, and the 

estimation accuracies are computed. 

     The simulation results for joint modulation format and bit-rate classification are presented in 

Table 1. The classification accuracies shown in Table 1 are computed by dividing the number of 

accurate classifications for a given modulation format and bit-rate with the total number of test 

cases pertaining to that signal type in the testing data set. Hence, a classification accuracy of  
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Fig. 7. True versus estimated SNR for the testing data set using the proposed technique. 

100%, for example, would mean that no error has occurred in classifying that signal type. It is 

obvious from the table that good classification accuracies are achieved for all the signal types 

considered in this work and in case of five of the six signal types, not a single identification error 

is encountered. The overall classification accuracy (i.e., mean of the accuracies for the individual 

signal types) is 99.95%. These results validate that the proposed technique is capable of 

simultaneous modulation format and bit-rate classification for SNR as low as 0 dB.       

     Figure 7 shows the results for SNR estimation. It is clear from the figure that SNR estimates 

are quite accurate and the mean estimation error (i.e., average of the SNR estimation errors for 

the 110 test cases in the testing data set) is 0.88 dB for SNR in the range between 0 and 30 dB. 

These results prove that the proposed technique is also capable of estimating the SNRs of the 

received information-bearing signals. 

     From the above results, the proposed technique offers following advantages in terms of 

performance and complexity as compared to the existing AMC techniques. (1) The proposed 

technique successfully enables joint modulation format and bit-rate classification. This is in 

contrast to the existing AMC techniques which focus only on the classification of unknown 

modulation format of the signal [6-14]. The ability to simultaneously classify the bit-rates of the 

received signals is quite advantageous since the bit-rates are also expected to change dynamically 

in future wireless networks. The classification accuracy of the proposed technique (i.e., 99.95%) 

is comparable with those of existing AMC techniques [6-14]. (2) One key limitation of the 

existing AMC techniques is that they can only identify the type of the signal but provide no 

information about the quality (in terms of SNR) of the signal. On the other hand, the proposed 

technique enables simultaneous blind SNR estimation with good accuracy and without adding 

much complexity. (3) The proposed technique offers reduced implementation complexity. This is 

due to the fact that as compared to the existing AMC and SNR estimation techniques which 

typically require coherent detection along with symbol-rate synchronous sampling [6-21], the 

proposed technique uses simple envelope detection followed by the low-speed ADTS, which 

inherently does not need timing/clock information. (4) In contrast to the existing techniques 

which use separate algorithms for the estimation of modulation format, bit-rate and SNR of the 

received signal, the proposed technique performs joint estimation of these three parameters. 

Therefore, it is computationally more efficient than the previous techniques. 

  

6. Conclusion 
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In this paper, we proposed a simple technique for simultaneous modulation format/bit-rate 

classification and NDA SNR estimation in wireless networks. Unlike the existing AMC 

techniques, the proposed technique enables accurate classification of not only modulation formats 

but also the bit-rates of the signals. In addition, it can also accurately estimate the SNRs of the 

received data-bearing signals. Due to its implementation simplicity, this technique can facilitate 

cost-effective modulation format/bit-rate classification and signal quality estimation in future 

cognitive radio terminals. 
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