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Abstract. This paper is concerned with the Boussinesq-Burgers system which models
the propagation of bores by combing the dissipation, dispersion and nonlinearity. We
establishes the global existence and asymptotical behavior of classical solutions of the
initial value boundary problem of the Boussinesq-Burgers system with the help of a
Laypunov functional and the technique of Moser iteration. Particularly we show that
the solution converges to the unique constant stationary solution exponentially as time
tends to infinity.

1. Introduction

The water flows from the higher to lower elevation are termed bores which occur
readily in nature. There are two classes of bores: strong and weak bores. The former
refers to the rapid turbulent change of water level, while the latter have a gently sloping or
oscillatory transition between the different water levels. Although there is a large number
of literature that discusses the propagation of bores (cf. [20] and references therein), little
is known mathematically about this phenomenon. While strong bores are hard to deal
with mathematically due to the difficult of modeling the wave breaks/tubulence, weak
bores are relatively easier to handle. There are two well-known models describing the
propagation of weak bores. One is the Korteweg-de Vries equation (KdV equation for
short) which can be expressed in non-dimensional variables as

vt + vvx + vxxx = 0.

The other one is the Boussinesq system as follows (c.f. [21]){
ρt + wx + (wρ)x = 0,
wt + ρx + wwx − δwxxt = 0,

where ρ(x, t) and w(x, t) represent the height and the velocity of the free surface of the
fluid above the bottom, respectively, and δ > 0 is a parameter measuring the strength
of fluid dispersion. These two models contain the nonlinearity and dispersive effect. The
Boussinesq system and its variants have been extensively studied in the literature (see
[5, 6] and reference therein). However it was pointed out in [3, 12, 13] that the dissipative
effects must be included, at least in the laboratory scale, in order to accurately predict
the wave propagation. The simplest way of incorporating the dissipation is to append
a Burgers-type term to the KdV or Boussinesq system, which then yields the so-called
KdV-Burgers equation or the Boussinesq-Burgers system, respectively. The KdV-Burgers
equation has been well studied in the literature (see [23] and reference therein). In this
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paper, we consider the Boussinesq-Burgers system which reads as{
ρt + wx + (wρ)x = ερxx,
wt + ρx + wwx − wxxt = µwxx

(1.1)

with ε, µ > 0. Compared to the KdV-Burgers equation, the study of Boussinesq-Burgers
system (1.1) is not very much. There are a few results on its variants (e.g., see [8, 18]
and references therein) for the whole interval R. As we know, the only result of the
Boussinesq-Burgers system (1.1) is the existence of traveling wave solutions obtained in
[21] in the whole interval R with bore-like data, where ε = µ. The goal of this paper
will be to study the initial boundary value problem of the Boussinesq-Burgers system
in a bounded interval. To this end, we make a change of variable as in [21] by letting
u(x, t) = 1 + ρ(x, t). Then the initial-boundary value problem of the Boussinesq-Burgers
system considered in the present paper reads:

ut + (uw)x = εuxx, x ∈ (0, 1), t > 0,

wt + (u+ w2

2
)x = µwxx + δwxxt, x ∈ (0, 1), t > 0,

(u,w)(x, 0) = (u0, w0)(x), x ∈ [0, 1],

ux|x=0,1 = w|x=0,1 = 0, t > 0

(1.2)

where ε, µ, δ > 0. It is noted that when the dissipation and dispersion are ignored (i.e.
ε = µ = δ = 0), the system becomes the well-known water wave equation [9]. As δ = 0

and the nonlinear advection term is w2

2
is replaced by −µw2, the model becomes a system

derived from the chemotactic movement considered in [16, 17, 22]. In this paper, we shall
establish the global existence and asymptotic behavior of classical solutions to the initial-
boundary value problem (1.2). We point out that it is physically meaningful to consider
u(x, t) ≥ 0. The main results of this paper are given in the following theorem.

Theorem 1.1. Assume that (u0, w0) ∈ W 2,p(0, 1) with p > 3 and u0 ≥ 0, u0 ̸≡ 0. Then,
for any ε, µ, δ > 0, the problem (1.2) has a unique classical solution (u,w) in (0, 1)×(0,∞)
with u > 0 such that (u,w) ∈ C0([0, 1]× [0,∞)) ∩C2,1([0, 1]× (0,∞)). Moreover there is
a constant β > 0 such that for all t > 0:

∥u− ū0∥L∞(0,1) + ∥w∥L∞(0,1) ≤ Ce−βt

where ū0 =
∫ 1

0
u0dx denotes the average of u0(x) over (0, 1).

2. Local existence

To deal with the nonlinear term (w2/2)x and prove the existence of local solutions
of (1.2), we need some regularity assumptions on the initial data. Since the dispersion
term wxxt contains the temporal derivative, the proof of local existence will be somewhat
different from the standard argument for the parabolic system. Here we shall employ the
fact that the dispersion term wxxt has a stronger dissipative effect than the diffusion wxx

to construct a contracting mapping to prove the local existence. Inspired by a result from
[15], we depart with a linear problem

wt − δwxxt = f(x, t), x ∈ (0, 1), t > 0,

w(0, t) = w(1, t) = 0, t > 0

w(x, 0) = w0(x), x ∈ [0, 1].

(2.1)

For this linear problem, we have the following result.



ASYMPTOTIC BEHAVIOR OF THE BOUSSINESQ-BURGERS SYSTEM 3

Lemma 2.1. Assume that w0 ∈ W 2,p(0, 1) and f ∈ Lp(0, 1) for p ≥ 1. Then the problem
(2.1) has a unique solution in the cylinder QT = (0, 1) × (0, T ) for some T > 0, which
satisfies

∥w∥C([0,T ];W 2,p(0,1)) ≤ ∥w0∥W 2,p(0,1) + c1T∥f∥C([0,T ];Lp(0,1)).

Proof. By a change of variable v(x, t) = wt(x, t), the linear problem (2.1) becomes an
elliptic problem with the parameter t ∈ (0, T ){

vx − δvxx = f(x, t), x ∈ (0, 1), t ∈ (0, T )

v(0, t) = v(1, t) = 0, t ∈ (0, T ).
(2.2)

If f ∈ Lp(0, 1), then by the Agmon-Douglas-Nirenberg theorem [1, 2], the problem (2.2)
has a unique solution v ∈ W 2,p(0, 1) such that ∥v∥W 2,p(0,1) ≤ c1∥f∥Lp(0,1) for some c1 > 0,
which implies that the solution of (2.1) satisfies

∥wt(·, t)∥W 2,p(0,1) ≤ c1∥f∥Lp(0,1). (2.3)

Noticing that

w(x, t) = w0(x) +

∫ t

0

ws(x, s)ds

we have
∥w∥C([0,T ];W 2,p(0,1)) ≤ ∥w0∥W 2,p(0,1) + T∥wt∥C([0,T ];Lp(0,1)).

Then the Lemma is proved by applying (2.3) into the above inequality. �
Using above results, we can prove the following local existence theorem.

Lemma 2.2 (Local existence). Assume that (u0, w0) ∈ W 2,p(0, 1) with p > 3 and u0 ≥
0, u0 ̸≡ 0. Then there exist Tmax ∈ (0,∞] such that (1.2) has a unique classical solution
(u,w) ∈ C0([0, 1]×[0, Tmax))∩C2,1([0, 1]×(0, Tmax)). Moreover, u > 0 in (0, 1)×(0, Tmax)
and

if Tmax < ∞, then ∥u(·, t)∥L∞(0,1) + ∥w(·, t)∥L∞(0,1) → ∞ as t ↗ Tmax.

Proof. Let T ∈ (0, 1) to be specified below and denote QT := (0, 1)×(0, T ). In the Banach
space

X := C([0, T ];W 2,p(0, 1))× C([0, T ];W 2,p(0, 1)),

we define

XT :=
{
(u,w) ∈ X

∣∣∣ ∥u(·, t)∥C1,0(Q̄T ) ≤ R and ∥w(·, t)∥C1,0(Q̄T ) ≤ R
}

where
R := ∥u0∥W 2,p0 (0,1) + ∥w0∥W 2,p0 (0,1) + ∥u0∥C1[0,1] + ∥w0∥C1[0,1] + 1.

With thisR, we introduce a mapping Φ : XT 7−→ XT such that given (ũ, w̃) ∈ XT ,Φ(ũ, w̃) =
(u,w) where u is the solution of

ut − εuxx + wux + wxu = 0, x ∈ (0, 1), t ∈ (0, T ),

ux|x=0,1 = 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [0, 1],

(2.4)

and w is the solution of
wt − δwxxt = µw̃xx + (w̃2/2 + ũ)x, x ∈ (0, 1), t ∈ (0, T ),

w|x=0,1 = 0, t ∈ (0, T ),

w(x, 0) = w0(x), x ∈ [0, 1].

(2.5)

We shall show that for T small enough Φ has a unique fixed point.
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For consistency, throughout the remainder of this section we denote

W 2,1,p(QT ) = {u | u, ux, uxx, ut ∈ Lp(QT )}
for p ≥ 1, equipped with the norm

∥u∥W 2,1,p(QT ) = ∥u∥Lp(QT ) + ∥ux∥Lp(QT ) + ∥uxx∥Lp(QT ) + ∥ut∥Lp(QT ).

Since (2.5) is an elliptic problem for vt, the solvability of this problem follows from Lemma
2.1. Indeed, since (ũ, w̃) ∈ XT , then w̃xx ∈ Lp(0, 1) for all t ∈ [0, T ]. That is there is
a c2 > 0 such that sup

t∈[0,T ]

∥wxx∥Lp(0,1) ≤ c2. Furthermore (ũ, w̃) ∈ XT , along with the

Sobolev embedding theorem: W 2,p(0, 1) ↪→ C1,0(0, 1), implies that ũx ∈ L∞(0, 1) and
(w̃2/2)x = w̃w̃x ∈ L∞(0, 1) such that ∥(w̃2/2 + ũ)x∥L∞(0,1) ≤ R(1 + R). Then by Lemma
2.1, we obtain a unique solution w ∈ W 2,1,p(QT ) to (2.5) such that

∥w∥W 2,1,p(QT ) ≤ ∥w∥C([0,T ];W 2,p(0,1)) + ∥wt∥C([0,T ];W 2,p(0,1))

≤ ∥w0∥W 2,p(0,1) + c1(1 + T )[c2 +R(1 +R)]

≤ R + 2c1[c2 +R(1 +R)] =: c3(R)

where we have used the fact T ∈ (0, 1) and ∥w0∥W 2,p(0,1) ≤ R. This, combined with the
Sobolev embedding theorem [14, Lemma II. 3.3], upgrades the regularity of the solution
such that

∥w∥C1+θ,(1+θ)/2(Q̄T ) ≤ c4∥w∥W 2,1,p(QT ) ≤ c5(R) := c4 · c3(R) (2.6)

where θ := 1− 3
p
(p > 3). Thus, we have

∥w∥C1,0(Q̄T ) ≤ ∥w(x, t)− w(x, 0)∥C1,0(Q̄T ) + ∥w(x, 0)∥C1,0(Q̄T )

≤ T
1+θ
2 ∥w∥C0,(1+θ)/2(Q̄T ) + ∥w0∥C1,0(Q̄T )

≤ c5(R)T
1+θ
2 + ∥w0∥C1,0(Q̄T ).

If we let T small such that T ≤
(

1
c5(R)

) 2
1+θ

, then it follows that

∥w∥C1,0(Q̄T ) ≤ ∥w0∥C1,0(Q̄T ) + 1 = R. (2.7)

Now we turn to the problem (2.4). Note that (2.6) yields a constant c6(R) > 0 such that
∥w∥L∞(0,1) + ∥wx∥L∞(0,1) ≤ c6(R). Due to ∥u0∥W 2,p(0,1) ≤ R, from the linear parabolic
Lp-theory [10, Theorem 2.3] and [14, Theorem IV.9.1]), we conclude that the problem
(2.4) has a unique solution u(x, t) ∈ W 2,1,p(QT ) such that

∥u∥W 2,1,p(QT ) ≤ c6(R)∥u0∥W 2,p(0,1) ≤ c6(R) ·R =: c7(R).

Using the same argument as deriving (2.6), we can find some constant c8(R) > 0 such
that

∥u∥C1+θ,(1+θ)/2(Q̄T ) ≤ c8(R).

Then by the same idea used for w, if we let T small such that T ≤
(

1
c8(R)

) 2
1+θ

, we obtain

∥u∥C1,0(Q̄T ) ≤ ∥u0∥C1,0(Q̄T ) + 1 = R (2.8)

which, along with (2.7), asserts that (u,w) ∈ XT for some T > 0. Hence the function Φ
maps XT into itself. By a direct adaptation of the above derivation, one can easily deduce
that if T is further diminished then Φ in fact becomes a contraction on XT . For such T
we therefore conclude from the contraction mapping principle ([11, Theorem 5.1]) that
there exists a unique fixed point (u,w) ∈ XT such that Φ(u,w) = (u,w). This unique
fixed point in XT corresponds to a unique solution of (1.2) in XT . This solution may be
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further prolonged in the interval [0, Tmax) with either Tmax = ∞ or Tmax < ∞, where in
the latter case

∥u(·, t)∥L∞(0,1) + ∥w(·, t)∥L∞(0,1) → ∞ as t ↗ Tmax,

because T0 depends only on R. Now it remains to derive the regularity of solutions
to finish the proof. Indeed by (2.4), w,wx ∈ Cθ,θ/2(Q̄T ) and the classical regularity of
parabolic equations ([14, Theorem V. 6.1]), we obtain

u(x, t) ∈ C2+θ,(1+θ)/2([0, 1]× [η, T ]) for all η ∈ (0, T0].

Similar argument leads to

w(x, t) ∈ C2+θ,(1+θ)/2([0, 1]× [η, T ]) for all η ∈ (0, T0].

This proves the regularity of the solution (u,w) to (1.2). Finally, the positivity of u results
from the strong parabolic maximum principle, because u0 ̸≡ 0 ensures that u ̸≡ 0. This
completes the proof of Lemma 2.2.

�

3. Global dynamics

3.1. Global boundedness. Hereafter for simplicity, the norm of the space Lp(0, 1), 1 ≤
p ≤ ∞ will be denoted simply by ∥ · ∥Lp by omitting the interval (0, 1). The key in our
analysis is the following Lyapunov functional

F(u,w) :=

∫ 1

0

(
u lnu+

w2

2
+

δ

2
w2

x

)
dx, (3.1)

for which we have the following result.

Lemma 3.1. The classical solution (u,w) to (1.2) satisfies the equality

d

dt
F(u(t), w(t)) = −

∫ 1

0

(
εu2

x

u
+ µw2

x

)
dx for all t ∈ (0, Tmax). (3.2)

Proof. From the first two equations in (1.2), we have with the integration by parts

d

dt
F(u(t), w(t)) =

∫ 1

0

((lnu+ 1)ut + wwt

)
dx+ δ

∫ 1

0

wxwxtdx

= −ε

∫ 1

0

u2
x

u
dx+

∫ 1

0

uxwdx+ µ

∫ 1

0

w2
xdx− δ

∫ 1

0

wxwxtdx

+
1

6

∫ 1

0

(w3)xdx−
∫ 1

0

uxwdx+ δ

∫ 1

0

wxwxtdx

= −
∫ 1

0

(
εu2

x

u
+ µw2

x

)
dx,

where we have used the boundary conditions ux|x=0,1 = w|x=0,1 = 0. This completes the
proof of Lemma 3.1. �

Then the following result is an immediate consequence of Lemma 3.1.
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Lemma 3.2. The classical solution (u,w) to (1.2) has the property for all t ∈ (0, Tmax):∫ 1

0

(w2 + δw2
x)dx ≤ 2F(u0, w0) + 2/e,∫ t

0

∫ 1

0

(
εu2

x

u
+ µw2

x

)
dxds ≤ F(u0, w0) + 1/e.

Proof. Integrating (3.2) over t ∈ (0, Tmax) we obtain∫ 1

0

(
w2

2
+

δ

2
w2

x

)
dx+

∫ t

0

∫ 1

0

(
εu2

x

u
+ µw2

x

)
dxds = F(u0, w0)−

∫ 1

0

u(x, t) lnu(x, t)dx

for all t ∈ (0, Tmax). The the fact that −ξ ln ξ ≤ 1
e
for all ξ > 0 completes the proof. �

To elongate the local solutions to the global ones, it suffices to show that ∥u∥L∞

and ∥w∥L∞ are bounded in time by the extension criterion in Lemma 2.2. Next we shall
employ the method of Moser iteration to derive the a priori L∞-norm of solutions of the
problem (1.2). Before embarking on this, we remark that the L1-norm of u is conserved
by integrating the first equation of (1.2) with the boundary condition:

ū =

∫ 1

0

udx =

∫ 1

0

u0dx =: ū0, (3.3)

which will be essentially applied in our analysis. Moreover the following interpolation
inequality will be used later.
Gagliardo-Nirenberg inequality [19]: Let Ω ⊂ Rn be a bounded domain with smooth
boundary. Let p, q ≥ 1 satisfy (n − q)p ≤ nq and let r ∈ (0, p). Then, for any u(x) ∈
W 1,q(Ω) ∩ Lr(Ω), there exist a constant c1 > 0 such that

∥u∥Lp(Ω) ≤ c1∥∇u∥aLq(Ω)∥u∥1−a
Lr(Ω) + c2∥u∥Lr(Ω) (3.4)

with a ∈ (0, 1) satisfying
n

p
= a

(n
q
− 1

)
+

n

r
(1− a).

Then we are ready to prove the following global estimates on the solution component u.

Lemma 3.3. Assume that u0 ∈ L1∩L∞. Then there is some constant c(ε, µ, δ) > 0 such
that the classical solution (u,w) of (1.2) satisfies

∥u∥L∞ ≤ c for all t ∈ (0, Tmax).

Proof. Multiplying the first equation in (1.2) by pup−1 and integrating the result over
[0, 1], we obtain with the Hölder inequality that

d

dt

∫ 1

0

updx =− p(p− 1)

∫ 1

0

up−2|∇u|2dx− p(p− 1)

∫ 1

0

up−1uxwdx

=− 4(p− 1)

p

∫ 1

0

|(u
p
2 )x|2dx+ (p− 1)

∫ 1

0

upwxdx

≤− 4(p− 1)

p

∫ 1

0

|(u
p
2 )x|2dx+ (p− 1)

(∫ 1

0

u2pdx

) 1
2

·
(∫ 1

0

w2
xdx

) 1
2

≤− 4(p− 1)

p

∫ 1

0

|(u
p
2 )x|2dx+

√
C0

δ
(p− 1)

(∫ 1

0

u2pdx

) 1
2

(3.5)
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for all t ∈ (0, Tmax), where we have used the fact that w|x=0,1 = 0 and the first inequality in
Lemma 3.2. The Gagliardo-Nirenberg inequality (3.4) with inequality (a+b)2 ≤ 2(a2+b2)
yields that ∥f∥2L4 ≤ 2c21(∥fx∥ · ∥f∥L1 + ∥f∥2L1), which entails that(∫ 1

0

u2pdx

) 1
2

=

[(∫ 1

0

(u
p
2 )4

) 1
4
]2

= ∥u
p
2∥2L4 ≤ 2c21(∥(u

p
2 )x∥ · ∥u

p
2 ∥L1 + ∥u

p
2∥2L1).

Then the above inequality with the Cauchy-Schwarz inequality gives rise to(∫ 1

0

u2pdx

) 1
2

≤ 2

c2p
∥(u

p
2 )x∥2 + 2c21

(
1 + c21c2p

)
∥u

p
2∥2L1 (3.6)

where we choose c2 =
√

C0

δ
. Then substituting (3.6) into (3.5) yields that

d

dt

∫ 1

0

updx ≤ −2(p− 1)

p

∫ 1

0

|(u
p
2 )x|2dx+ c3

(∫ 1

0

u
p
2dx

)2

(3.7)

with c3 =
√

C0

δ
(p− 1)2c21

(
1+ c21c2p

)
. Now adding the term

∫ 1

0
updx on both sides of (3.7),

we get

d

dt

∫ 1

0

updx+

∫ 1

0

updx ≤ −2(p− 1)

p

∫ 1

0

|(u
p
2 )x|2dx+ c4

(∫ 1

0

u
p
2dx

)2

+

∫ 1

0

updx. (3.8)

Based on (3.8), we shall next use the Moser iteration procedure to derive that ∥u(·, t)∥L∞

is bounded uniformly in time. To this end, we need the following interpolation inequality
[14, p. 63]: for any f ∈ W 1,2(Ω), it holds that

∥f − f̄∥2L2(Ω) ≤ c4∥∇f∥2αL2(Ω)∥f∥
2(1−α)

L1(Ω) ,

where f̄ = 1
|Ω|

∫
Ω
fdx, α = n/(n + 2), and c4 is a constant depending only on n and Ω.

Then applying the Young inequality: ab ≤ ϵap+(ϵp)−q/pq−1bq, a, b, ϵ, p, q > 0, 1
p
+ 1

q
= 1

into above inequality and using the fact ∥f̄∥L2 =
∫
Ω
fdx = ∥f∥L1 gives

∥f∥2L2(Ω) ≤ ϵ∥∇f∥2L2(Ω) + c5(1 + ϵ−
n
2 )∥f∥2L1(Ω) for any ϵ > 0, (3.9)

where c5 > 0 depends on n and Ω, but is independent of ϵ. Then employing (3.9) with

f = u
p
2 , ϵ = 2(p−1)

p
, n = 1,Ω = (0, 1), we have for p ≥ 2∫ 1

0

updx = ∥u
p
2∥2L2 ≤

2(p− 1)

p
∥(u

p
2 )x∥2L2 + c6(1 + p)∥u

p
2∥2L1 , (3.10)

with some constant c6 > 0. This, along with (3.8), yields that

d

dt

∫ 1

0

updx+

∫ 1

0

updx ≤ c6(1 + p)

(∫ 1

0

u
p
2dx

)2

which leads to

d

dt

(
et
∫ 1

0

updx

)
≤ c6e

t(1 + p)

(∫ 1

0

u
p
2dx

)2

.

Then the integration of above inequality over the time interval [0, t] for 0 < t < Tmax

gives that ∫ 1

0

updx ≤
∫ 1

0

up
0dx+ c6(1 + p) sup

0≤t≤Tmax

(∫ 1

0

u
p
2dx

)2

. (3.11)
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Now we define

Ap = max

{
∥u0∥L∞ , sup

0≤t≤Tmax

(∫ 1

0

updx

) 1
p
}

for all p ≥ 2.

Then it follows from (3.11) that

Ap ≤ [c7(1 + p)]
1
pA p

2

for some constant c7 > 0. Now taking p = 2k, k = 1, 2, · · · , one obtains that

A2k ≤ c2
−k

7 (1 + 2k)2
−k

A2k−1

≤ c2
−k+2−(k−1)

7 (1 + 2k)2
−k

(1 + 2k−1)2
−(k−1)

A2k−2

...

≤ c2
−k+2−(k−1)+···+2−1

7 (1 + 2k)2
−k

(1 + 2k−1)2
−(k−1) · · · (1 + 2)2

−1

A1.

(3.12)

Noticing that 2−k+2−(k−1)+ · · ·+2−1 ≤ 1 and the series k
2k
+ k−1

2k−1 + · · ·+ 1
2
is convergent,

we can find a constant c8 > 0 such that

(1 + 2k)2
−k

(1 + 2k−1)2
−(k−1) · · · (1 + 2)2

−1

= 2k2
−k

(2−k + 1)
1

2k · 2(k−1)2−(k−1)

(2−(k−1) + 1)
1

2k−1 · · · 22−1

(2−1 + 1)2
−1

≤ 2
k

2k
+ k−1

2k−1+···+ 1
2 · 2

1

2k
+ 1

2k−1+···+ 1
2

≤ c8.

Thus letting k → ∞ in (3.12), we have

∥u(·, t)∥L∞ ≤ c9A1 = c9 max

{
∥u0∥L∞ , sup

0≤t≤Tmax

(∫ 1

0

udx

)}
= c9 max{∥u0∥L∞ , ∥u0∥L1}

where c9 = c7c8. The proof is completed. �

3.2. Constant stationary solution. In this section, we shall employ the Lyapunov
functional (3.1) to prove that the system (1.2) has only a unique constant stationary
solution. The result is the following:

Lemma 3.4. The only classical stationary solution of (1.2) is the constant pairs (ū, 0)
for ū ∈ (0,∞), where ū denotes the average of u given in (3.3).

Proof. By noting that the stationary solution (us, ws) of (1.2) is also a solution to the
time-dependent problem, we have

0 =
d

dt
F(us, ws) = −

∫ 1

0

(
ε[(us)x]

2

us

+ µ[(ws)x]
2

)
dx

which indicates that us = C1, and ws = C2 since us > 0, where C1 and C2 are both
constants. The boundary condition of ws immediately implies that C2 = 0 and the average
ū =

∫ 1

0
usdx determines that C1 = ū. This completes the proof. �
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3.3. Decay property. From the results derived above, we know that the problem (1.2)
has only a constant stationary solution (ū, 0). The existence of the Lyapunov functional
(3.1) indicates that the time-dependent solution of (1.2) may converge to the constant
stationary solution (ū, 0). To this end, we first derive some decay properties of the solution
(u,w) of (1.2). By modifying the Lyapunov functional (3.1), we define

G(u,w) :=

∫ 1

0

(
u ln

u

ū
+

w2

2
+

δ

2
w2

x

)
dx

where ū is given in (3.3). Since the function ln s is convex for s > 0, ū = ū0 and hence∫ 1

0
u
ū
dx = 1, it follows from the Jensen’s inequality ([9, p. 621]) that∫ 1

0

u ln
u

ū
dx = ū0 ·

∫ 1

0

u

ū
ln

u

ū
dx ≥ ū0 ·

(∫ 1

0

u

ū
dx

)
ln

(∫ 1

0

u

ū
dx

)
= 0.

Thus, G(u,w) ≥ 0. Except the non-negativity, the following property of G(u,w) can be
proved inspired by the ideas of [7, 22].

Lemma 3.5. Suppose that (u,w) is the classical solution to (1.2). Then the functional
G(u,w) satisfies the following decay property

0 ≤ G(u(t), w(t)) ≤ G(u0, w0)e
−αt for all t ∈ (0, Tmax),

where the positive constant α depends only on u0, ε, µ and δ.

Proof. Using the first equation of (1.2) and the boundary condition, we obtain with a
simple calculation that

d

dt
G(u(t), w(t)) =

d

dt
F(u(t), w(t))− ln ū

∫ 1

0

utdx

=
d

dt
F(u(t), w(t)) = −

∫ 1

0

(
εu2

x

u
+ µw2

x

)
dx.

(3.13)

It can be readily verified that s ln s ≤ s− 1 + 1
2
(s− 1)2 for all s ≥ 0. Then with s = u/ū,

noting
∫ 1

0
(u/ū − 1)dx ≡ 0 and using the Poincaré inequality ([9, p. 275]), we find a

constant c10 > 0 such that∫ 1

0

u(t) ln
u(t)

ū
dx = ū

∫ 1

0

[
u(t)

ū
ln

u(t)

ū
−
(
u(t)

ū
− 1

)]
dx

≤ ū

∫ 1

0

1

2

(
u(t)

ū
− 1

)2

dx =
1

2ū

∫ 1

0

(u− ū)2dx

≤ c10

∫ 1

0

[(u− ū)x]
2dx = c10

∫ 1

0

u2
xdx.

By Lemma 3.3, it has that for all t ∈ (0, Tmax)∫ 1

0

u ln
u

ū
dx ≤ c10

∫ 1

0

u2
xdx ≤ c10∥u∥L∞

∫ 1

0

u2
x

u
dx ≤ c11(ε, µ, δ)

∫ 1

0

u2
x

u
dx. (3.14)
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With the boundary condition w|x=0,1 = 0, the Poincaré inequality provides some c12 > 0

such that
∫ 1

0
w2dx ≤ c12

∫ 1

0
w2

xdx for all t ∈ (0, Tmax), which, combined with (3.14), gives

G(u,w) ≤
∫ 1

0

[
u ln

u

ū
+

(
c12
2

+
δ

2

)
w2

x

]
dx

≤ c11
ε

∫ 1

0

εu2
x

u
+

c12 + δ

2µ

∫ 1

0

µw2
xdx ≤ γ

∫ 1

0

(
εu2

x

u
+ µw2

x

)
dx

where γ = c11
ε

+ c12+δ
2µ

. Then with the above inequality, the integration of (3.13) yields

that
d

dt
G(u,w) ≤ −

∫ 1

0

(
εu2

x

u
+ µw2

x

)
dx ≤ −1

γ
G(u,w)

which, upon the integration, gives

G(u,w) ≤ G(u0, w0)e
− 1

γ
t =: G(u0, w0)e

−αt.

This completes the proof of Lemma 3.5.

3.4. Proof of Theorem 1.1. The first inequality in Lemma 3.2 along with the Sobolev
embedding: W 1,2(0, 1) ↪→ C0(0, 1) asserts that ∥w∥L∞(0,1) ≤ c13 for some constant c13 > 0.
This, together with Lemma 3.3 and extensibility criterion in Lemma 2.2, indicates that
Tmax = +∞. Hence the existence of global classical solutions is proved. Next we are
devoted to proving the exponential convergence of the global solution by borrowing an
idea from [22]. To this end, we first derive from the first equation of (1.2) that the quantity
u− ū satisfies 

(u− ū)t = (u− ū)xx − (uw)x, x ∈ (0, 1), t > 0,

(u− ū)(x, 0) = u0(x)− ū, x ∈ [0, 1],

(u− ū)x|x=0,1 = 0, t > 0.

(3.15)

Then multiplying the first equation of (3.15) by −(u − ū)xx and using Cauchy-Schwarz
inequality, we get

1

2

d

dt

∫ 1

0

(u− ū)2xdx+

∫ 1

0

(u− ū)2xxdx =

∫ 1

0

(u− ū)xx(uw)xdx

≤ 1

2

∫ 1

0

(u− ū)2xxdx+
1

2

∫ 1

0

(uw)2xdx.

This, along with the inequality (uw)2x ≤ 2(w2u2
x + u2w2

x) and the boundedness of u and
w, gives a constant c14 > 0 such that

d

dt

∫ 1

0

(u− ū)2xdx+

∫ 1

0

(u− ū)2xxdx ≤
∫ 1

0

(uw)2xdx ≤ c14

∫ 1

0

(u2
x + w2

x)dx. (3.16)

Furthermore the second inequality of Lemma 3.2 with Lemma 3.3 yields a constant c15
such that ∫ t

0

∫ 1

0

u2
xdxds ≤ ∥u∥L∞

∫ t

0

∫ 1

0

u2
x

u
dxds ≤ c15 for all t > 0.

Then using above inequality and integrating (3.16) with respect to t, one has∫ 1

0

(u− ū)2xdx ≤
∫ 1

0

(u0 − ū)2xdx+ c14(c15 + 1)

∫ t

0

∫ 1

0

w2
xdx ≤ c16 (3.17)

for some constant c16 > 0, where the second inequality of Lemma 3.2 has been used.
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Next we employ the Csiszár-Kullback-Pinsker inequality (cf. [4]) with Lemma 3.5 to
obtain that

∥u− ū∥2L1 ≤ 2ū

∫ 1

0

u ln
u

ū
dx ≤ 2ūG(u0, w0)e

−αt. (3.18)

Noticing that the Gagliardo-Nirenberg inequality yields a constant c17 > 0 such that

∥u− ū∥L∞ ≤ c17(∥(u− ū)x∥
2
3

L2 · ∥u− ū∥
1
3

L1 + ∥u− ū∥L1).

Then the application of (3.17) and (3.18) to above inequality asserts that

∥u− ū∥L∞ ≤ c18e
−α

6
t for all t > 0

for some c18 > 0. Finally we prove that w converges to zero exponentially. This is obvious.
Indeed from Lemma 3.5, we obtain a constant c19 such that

∥w∥2L2 + ∥wx∥2L2 ≤ c19G(u0, w0)e
−αt.

Note that if f |x=0,1 = 0, then it has by the Hölder inequality that

f2(x) =

∫ x

0

[f 2(ξ)]′dξ = 2

∫ x

0

f(ξ)f ′(ξ)dξ ≤ 2∥f∥L2∥fx∥L2 ≤ ∥f∥2L2 + ∥fx∥2L2 .

Therefore the application of above inequality gives that

∥w∥L∞ ≤ (∥w∥2L2 + ∥wx∥2L2)
1
2 ≤

√
c19G(u0, w0)e

−α
2
t,

which completes the proof of Theorem 1.1 by choosing β = −α
6
. �
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