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Abstract. This paper is concerned with a parabolic-hyperbolic system on the half
space R+ with boundary effect. The system is derived from a singular chemotaxis
model describing the initiation of tumor angiogenesis. We show that the solution
of the system subject to appropriate boundary conditions converges to a traveling
wave profile as time tends to infinity if the initial data is a small perturbation
around the wave which is shifted far away from the boundary but its amplitude
can be arbitrarily large.

1. Introduction

To model the dynamics and interaction between signaling molecules vascular endothelial
growth factor (VEGF) and vascular endothelial cells during the initiation of tumor angiogenesis,
the following PDE-ODE hybrid model was proposed in [12]{

ut = (Dux − ξu(ln c)x)x,
ct = −µuc, (1.1)

where u(x, t) and c(x, t) denote the density of vascular endothelial cells and concentration of
VEGF, respectively. The parameter D > 0 is the diffusivity of endothelial cells, ξ > 0 is
referred to as the chemotactic coefficient measuring the intensity of chemotaxis and µ denotes
the degradation rate of the chemical c. Here the chemical diffusion is neglected since it is far
less important than its interaction with endothelial cells as treated in [12].

The striking feature of model (1.1) is that the first equation contains a logarithmic sensitivity
function ln c which is singular at c = 0. This singular logarithmic sensitivity was first used by
Keller and Segel in their original seminal paper [10] to describe the propagation of traveling wave
band formed by bacterial chemotaxis observed in the experiment of Adler [1]. Its mathematical
derivation was later given in [28] and biological relevance was provided in [9] by both experimen-
tal measurements and model simulations. Therefore the logarithm is a meaningful chemotactic
sensitivity representation though it causes great challenges in its mathematical analysis and nu-
merical computations. Hence among other things, the foremost mathematical question is how to
resolve the logarithmic singularity in order to being able to carry the analysis forward. Toward
this end, a Cole-Hopf type transformation as follows was used in [11, 32]

v = − 1

µ
(ln c)x = − 1

µ

cx
c

(1.2)

which transforms the system (1.1) into a parabolic-hyperbolic system:{
ut − χ(uv)x = Duxx,

vt − ux = 0,
(1.3)

where χ = µξ > 0. Apparently the transformed system (1.3) is much more manipulable math-
ematically than the original singular system (1.1) since the singularity vanishes. Therefore the
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Cole-Hopf transformation (1.2) is the key to open a door to study the singular system (1.1). On
the other hand, as a newly derived system of conservation laws from biology, the system (1.3)
itself is of great interest to study. There has been an amount of interesting works carried out for
the transformed system (1.3). In the one dimensional whole space R, the existence of traveling
wavefront solutions of (1.3) was obtained first in [32] and nonlinear stability of traveling wave
solutions with large wave amplitude was subsequently established by the third author with his
collaborators in a series of works [8, 18, 19]. The stability of composite waves of (1.3) in R
was proved in [16]. For the bounded domain, there are a few results obtained in [17, 31, 34]
which showed that the asymptotic profile of solutions of (1.3) is a constant in one and multi
dimensions if zero-flux boundary conditions are imposed. However it is still unknown how to
prescribe the suitable boundary conditions to obtain a non-constant asymptotic profile (such
as wave-like solution) for the model (1.3). In this paper, we shall make a step forward to this
question by considering the asymptotic behavior of solutions of initial-boundary problem (1.3)
in the half-space R+ = [0,∞) with the following initial data

(u, v)(x, 0) = (u0, v0)(x), x ∈ R+ (1.4)

and boundary conditions:

u(0, t) = u−, (u, v)(∞, t) = (u+, v+), t ∈ R+, (1.5)

where u± > 0 due to the biological relevance. The main goal of this paper is to show that the
solution of (1.3)-(1.5) with (x, t) ∈ R+ × R+ converges to a (shifted) traveling wave profile as
time tends to infinity. Our results may shed light on how to prescribe appropriate boundary
conditions to obtain a non-constant wave profile in the bounded domain, which remains as an
interesting open question up to date.

The problem of the stability of traveling waves in the half-space R+ with the boundary effect
has been an important topic of PDEs arising from fluid mechanics and gas dynamics. Liu and
Yu in [23] first studied the scalar Burgers equation, followed with a generalization by Liu and
Nishihara in [22]. For the case of system, Matsumura and Mei [24] solved the viscous p-system at
the first time. The other relevant studies on the asymptotic stability of solutions with boundary
effects, we refer to [5–7, 25–27] and references therein. In this paper, we shall first employ the
idea of [24] to identify the appropriate asymptotic wave profile of solutions of (1.3)-(1.5) and
then use the method of energy estimates to show that the solution of (1.3)-(1.5) converges to
the identified wave profile with a shift under suitable initial perturbations. Compared to the
results and analysis of [24], there are two essential differences. First the wave strength in [24] was
subject to certain conditions, but our results do not impose any condition on the wave strength
and particularly hold for arbitrarily large wave strength. Second the nonlinear advection term
of p-system considered in [24] has no interactive nonlinearity as in the model (1.3). Due to
these distinctions, the analysis and estimates in our paper is much more complicated than those
in [24]. Furthermore the idea of “constructing total differential” in the higher-order energy
estimates used in [8] for the whole space R no longer applies due to the presence of boundaries.
In this paper, we develop new ideas of “cancelation” (see the proof of Lemma 3.7) to establish
the higher-order estimates and achieve our goal.

Before concluding the introduction, we briefly mention some other results related to the
system (1.3) below. First in the one dimensional bounded interval Ω ⊂ R, the global existence
of solutions of (1.3) was first established in [34] for small data, and later in [31] the asymptotic
behavior of solutions was established for large data. In the multidimensional bounded domain
Ω ⊂ Rd(d = 2, 3), the global existence and exponential decay rates of solutions under Neumann
boundary conditions were obtained in [17] for small data. In the one dimensional whole space
R, except afore-mentioned traveling wave solutions studied in [8, 18, 19, 32], the global well-
posedness of (1.3) was established in [3] for large data under the condition that v0 has a positive
lower bound. For the multidimensional whole space Rd (d ≥ 2), when the initial data is close
to the constant ground state (ū, 0), there are a few studies on the system (1.3). First in [13],
the global well-posedness and regularity criterion of classical solutions of (1.3) was obtained if



ASYMPTOTIC PROFILE OF A PARABOLIC-HYPERBOLIC SYSTEM 3

(u0, v0) ∈ Hs(Rd) for s > d
2 + 1 and ∥(u0 − ū, v0)∥Hs is small. Later the global existence of

mild solutions in critical Besov space Ḃ
− 1

2
2,1 × (Ḃ

− 1
2

2,1 )
d with minimal regularity was established

in [4] in the Chemin-Lerner space framework. The global well-posedness of strong solutions
of (1.3) in R3 was recently established in [2] by the Fourier analysis if ∥(u0 − ū, v0)∥L2×H1 is
small, where algebraic decay rate of solutions was given under the additional condition that
∥(u0 − ū, v0)∥H2×H1 is small. Finally, we refer readers to the works [14, 15, 20, 29, 31] where
the chemical diffusion is incorporated.

The rest of paper is organized as follows. In section 2, the existence and properties of traveling
wave solutions of (1.3) in the whole space R will be studied first. Then we identify the asymptotic
wave profile of solutions to the initial-boundary value problem (1.3)-(1.5) in the half space R+

and state our main results. In section 3, we show the nonlinear stability of wave profiles of
(1.3)-(1.5) and prove our main results.

2. Preliminaries and main results

We first explain some conventions used throughout the paper. C denotes a generic positive
constant which can change from one line to another in the context. Hk(R+) denotes the usual k-

th order Sobolev space on R+ with norm ∥f∥Hk(R+) :=
(∑k

j=0

∫
R+

|∂jxf |2dx
)1/2

. For simplicity,

we denote ∥ · ∥ := ∥ · ∥L2(R+) and ∥ · ∥k := ∥ · ∥Hk(R+).
In this section, we shall present our main results concerning the asymptotic behavior of

solutions of the initial boundary value problem (1.3)-(1.5). To this end, we first identity the
appropriate asymptotic profile of solutions. We depart with the existence of traveling wave
solutions of (1.3) in the whole space R.

2.1. Traveling wave profiles. The traveling wave solution of (1.3) on R is a non-constant
special solution (U, V ) ∈ C∞(R) in the form of

(u, v)(x, t) = (U, V )(z), z = x− st,

which satisfies {
−sU ′ − χ(UV )′ = DU ′′,

−sV ′ − U ′ = 0,
(2.1)

with boundary condition

U(±∞) = u±, V (±∞) = v±, (2.2)

where ′ = d
dz and s is the wave speed. Here we require u± ≥ 0 due to the biological interest.

Integrating (2.1) in z over R yields the Rankine-Hugoniot condition as follows{
−s(u+ − u−)− χ(u+v+ − u−v−) = 0,

−s(v+ − v−)− (u+ − u−) = 0,
(2.3)

which gives

s2 + χv+s− χu− = 0. (2.4)

In this paper, we only consider the case s > 0 and results for s < 0 follows similarly. Solving
(2.4) for s yields that

s =
−χv+ +

√
(χv+)2 + 4χu−
2

. (2.5)

Then the existence of traveling wave solutions of (1.3) in R is given as follows.

Proposition 2.1. Assume that u± and v± satisfy (2.3). Then the system (2.1) admits a unique
(up to a translation) monotone traveling wave solutio (U, V )(x− st) with the wave speed s given
by (2.5), which satisfies:

U ′ < 0, V ′ > 0, (2.6)
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and the following asymptotic decay rates at far field:

|U(z)− u±| ∼|u− − u+|e−λ|z|, z → ±∞,

|V (z)− v±| ∼|u− − u+|e−λ|z|, z → ±∞,
(2.7)

where

λ =
χ(u− − u+)

Ds
> 0. (2.8)

Proof. Integrating the second equation of (2.1), one has that

sV + U = ϱ1 = sv+ + u+ = sv− + u−. (2.9)

Substituting (2.9) into the first equation of (2.1), we obtain a unique solution (U(z), V (z)) up
to a translation which is explicitly given as (see details in [8])

U(z) = u+ − u+ − u−
eλz + 1

, V (z) =
ϱ1 − U

s
= v− +

(u− − u+)e
λz

s(eλz + 1)
, (2.10)

where λ is defined in (2.8). Further calculations give rise to

U ′ =
λ(u+ − u−)e

λz

(eλz + 1)2
, V ′ = −U

′

s
.

Noticing that s > 0, we can easily find that U ′ < 0, V ′ > 0, which leads to

u+ < U(z) < u−, v− < V (z) < v+. (2.11)

Moreover, the simple calculations yields

|U(z)− u+| =
∣∣∣∣u+ − u−
eλz + 1

∣∣∣∣ ∼ |u− − u+|e−λz, as z → ∞,

|U(z)− u−| =
∣∣∣∣(u− − u+)e

λz

eλz + 1

∣∣∣∣ ∼ |u− − u+|eλz, as z → −∞.

The above two results can be combined as

|U(z)− u±| ∼ |u− − u+|e−λ|z|, as z → ±∞.

In a similar way, we get that

|V (z)− v±| ∼ |u− − u+|e−λ|z|, as z → ±∞.

The proof of Lemma is completed. �

Remark 2.1. The traveling wave solutions of the parabolic-hyperbolic system (1.3) in R ob-
tained in Proposition 2.1 are mathematically valid for any u− > 0 and u+, v± ∈ R. In this
paper, we shall consider the case u− > 0, u+ > 0, v− = 0 and explore the asymptotic behavior
of solutions to the transformed system (1.3) in the half space with boundary conditions given
by (1.5). The initial-boundary value problem of (1.3)-(1.5) in the half space R+ for other values
of u+ and v± remains unsolved in the present paper due to the technical difficulty. However
if the results were transferred to original system (1.1) via the Cole-Hopf transformation (1.2),
one finds that the biologically meaningful traveling wave solutions of (1.1) exist if and only if
u− > 0, v− < 0 and u+ = v+ = 0 (see details in [21]).
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2.2. Asymptotic profile. In [8], it was shown that if the initial date is a small perturbation of
the traveling wave profile (V,U)(x− st), then the solution of (1.3) in R approaches the shifted
wave profile (V,U)(x−x0+ st) as time tends to infinity where the shift x0 is determined by the
initial date. For the problem in the half space R+ considered in the present paper, the value of
traveling profile (V,U)(x − st) at the boundary x = 0 is always less than u−. This generates
an initial boundary layer (u− U)|(x,t)=(0,0) = u− − U(0), which could make the solutions fail to
converge to a shifted wave profile (V,U)(x − st − x0) in general. In order to get convergence,
it is natural to take a shift β ≫ 1 such that the initial boundary layer around the shifted wave
|(u(x, t)− U(x− st− β)|(x,t)=(0,0)| = |u− − U(−β)| ≪ 1. With this treatment, one may expect
that the solution of (1.3) will asymptotically approach the wave profile U(x− st−β−α) with a
shift α (comparable with x0 above) if the initial data is a small perturbation of the shifted wave
profile U(x− st− β). One key question in this argument is how to determine the shift α for a
given sufficient large shift β. In the following, inspired by the idea in [24], we shall clarify the
relation between α and β.

First from the second equation of (1.3), we have

(v − V )t = (u− U)x, (U, V ) = (U, V )(x− st+ α− β). (2.12)

Integrating (2.12) over R+ with respect to x and using the boundary condition (1.5), we have

d

dt

∫ ∞

0
[v(x, t)− V (x− st+ α− β)]dx = (u− U)|∞x=0 = U(−st+ α− β)− u−. (2.13)

Integrating (2.13) with respect to t, we get∫ ∞

0
[v(x, t)− V (x− st+ α− β)]dx

=

∫ ∞

0
[v0(x)− V (x+ α− β)]dx+

∫ t

0
[U(−sτ + α− β)− u−]dτ.

(2.14)

By the idea of conservation of mass principle (e.g. see [30]), we are looking for α such that∫ ∞

0
[v(x, t)− V (x− st+ α− β)]dx→ 0 as t→ ∞. (2.15)

Then, we set

I(α) :=

∫ ∞

0
[v0(x)− V (x+ α− β)]dx+

∫ ∞

0
[U(−st+ α− β)− u−]dt. (2.16)

From (2.14) and (2.15), we see that the shift α satisfies I(α) = 0. Differentiating (2.16) with
respect to α, we have

I ′(α) =−
∫ ∞

0
V ′(x+ α− β)dx+

∫ ∞

0
U ′(−st+ α− β)dt

=− [v+ − V (α− β)]− 1

s
[u− − U(α− β)]

=− v+ − u−
s

+ v− +
u−
s

= −v+,

(2.17)

where we have used (2.9) and v− = 0. Then, integrating (2.17) in α over (0, α) gives

I(α) = I(0)− v+α =

∫ ∞

0
[v0(x)− V (x− β)]dx+

∫ ∞

0
[U(−st− β)− u−]dt− v+α. (2.18)

Note that I(α) = 0. Then the shift α = α(β) is determined explicitly by

α :=
1

v+

{∫ ∞

0
[v0(x)− V (x− β)]dx+

∫ ∞

0
[U(−st− β)− u−]dt

}
. (2.19)
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This, combined with (2.14) and (2.15), gives∫ ∞

0
[v(x, t)− V (x− st+ α− β)]dx

= I(α)−
∫ ∞

t
[U(−sτ + α− β)− u−]dτ

= −
∫ ∞

t
[U(−sτ + α− β)− u−]dτ → 0 as t→ ∞.

(2.20)

This implies from (2.14) that∫ ∞

0
[v0(x)− V (x+ α− β)]dx = −

∫ ∞

0
[U(−sτ + α− β)− u−]dτ.

Thus, by such a heuristical analysis, the expected asymptotic profile for the IBVP (1.3)-(1.5)
is the selected pair of traveling waves (V,U)(x− st+ α− β) with β ≫ 1 and α = α(β) ≪ 1. In
fact, this is true as given in the following theorem which is the main result of this paper.

Theorem 2.2. Let u+ > 0, v− = 0 and β be a positive constant. Then there exists a constant
δ0 > 0 such that if

∥Φ0∥2 + ∥Ψ0∥2 + β−1 ≤ δ0, (2.21)

where

(Φ0,Ψ0)(x) = −
∫ ∞

x
(u0(y)− U(y − β), v0(y)− V (y − β))dy, (2.22)

the initial-boundary value problem (1.3)-(1.5) has a unique global solution (u, v)(x, t) satisfying

u(x, t)− U(x− st+ α− β) ∈ C([0,∞);H1) ∩ L2((0,∞);H2),

v(x, t)− V (x− st+ α− β) ∈ C([0,∞);H1) ∩ L2((0,∞);H1)

where α is a shift constant determined by (2.19). Furthermore, the solution has the following
asymptotic stability:

sup
x∈R+

|(u, v)(x, t)− (U, V )(x− st+ α− β)| → 0, as t→ ∞.

3. Proof of Thereom 2.2

3.1. Reformulation of the problem. In this section, we are devoted to proving Theorem
2.2. Since (1.3) is a system of conservation, we employ the technique of taking antiderivative to
define the perturbation functions as follows:

(ϕ(x, t), ψ(x, t)) = −
∫ ∞

x
(u(y, t)− U(y − st+ α− β), v(y, t)− V (y − st+ α− β))dy

for (x, t) ∈ R+ × R+. That is

(u, v)(x, t) = (U, V )(x− st+ α− β) + (ϕx, ψx)(x, t). (3.1)

Substituting (3.1) into (1.3), using (2.1) and integrating the system with respect to x, we obtain
that (ϕ, ψ)(x, t) satisfies{

ϕt = Dϕxx + χV ϕx + χUψx + χϕxψx, t > 0, x ∈ R+,

ψt = ϕx,
(3.2)

with initial perturbation

(ϕ0, ψ0)(x) = −
∫ ∞

x
(u0(y)− U(y + α− β), v0(y)− V (y + α− β))dy, (3.3)
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and boundary condition

ψ|x=0 =

∫ ∞

t
[U(−st+ α− β)− u−]dτ = A(t), (3.4)

where (2.20) has been used.
We look for solutions of the system (3.2) in the following solution space:

X(0, T ) := {(ϕ(x, t), ψ(x, t))
∣∣ϕ ∈ C([0, T ];H2), ϕx ∈ L2((0, T );H2)

ψ ∈ C([0, T ];H2), ψx ∈ C([0, T ];H1) ∩ L2((0, T );H1)}.
Set

N(t) := sup
τ∈[0,t]

(∥ψ(·, τ)∥2 + ∥ϕ(·, τ)∥2).

By the Sobolev embedding theorem, we have

sup
τ∈[0,t]

{∥ϕ(·, τ)∥L∞ , ∥ϕx(·, τ)∥L∞ , ∥ψ(·, τ)∥L∞ , ∥ψx(·, τ)∥L∞} ≤ N(t). (3.5)

For the problem (3.2)-(3.4), we have the following results.

Theorem 3.1. Let u+ > 0, v− = 0. Then there exists a positive constant ε0, such that if
N(0)+β−1 ≤ ε0, then the problem (3.2)-(3.4) with has a unique global solution (ϕ, ψ) ∈ X([0,∞))
such that

∥ϕ∥22 + ∥ψ∥22 +
∫ t

0
(∥ϕx(τ)∥22 + ∥ψx(τ)∥21)dτ ≤ C

(
∥ϕ0∥22 + ∥ψ0∥22 + e−λβ

)
≤ C(N2(0) + e−λβ),

(3.6)

for any t ∈ [0,∞). Moreover, it follows that

sup
x∈R+

|(ϕx, ψx)(x, t)| → 0 as t→ ∞. (3.7)

Note that the initial conditions in Theorem 2.2 and Theorem 3.1 are slightly different. The
following lemmas reveal the relation between them.

Lemma 3.2. Let (2.21) holds. Then α→ 0 provided that ∥Ψ0∥2 → 0 and β → ∞.

Proof. From (2.10) and (2.1), it follows that

0 < u− − U(−st− β) ≤ Ce−λ(st+β).

This gives |
∫∞
0 [u− − U(−st− β)]dt| ≤ Ce−λβ. It follows from (2.19) that

|α| ≤ 1

v+

{∣∣∣∣∫ ∞

0
[v0(x)− V (x− β)]

∣∣∣∣ dx+

∣∣∣∣∫ t

0
[U(−st− β)− u−]dt

∣∣∣∣}
≤ C(|Ψ0(0)|+ e−λβ) ≤ C(∥Ψ0∥2 + e−λβ) → 0,

as ∥Ψ0∥2 → 0 and β → ∞. �
Lemma 3.3. Let (2.21) holds. Then ∥ϕ0∥2 + ∥ψ0∥2 → 0 if ∥Φ0∥2 + ∥Ψ0∥2 → 0 and β → ∞.

Proof. By (2.22) and (3.3), we have

ϕ0(x) = −
∫ ∞

x
[u0(y)− U(y + α− β)]dy

= Φ0(x) +

∫ ∞

x
[U(y + α− β)− U(y − β)]dy

= Φ0(x) +

∫ ∞

x

∫ α

0
U ′(y + θ − β)dθdy

= Φ0(x) +

∫ α

0
[u+ − U(x+ θ − β)]dθ.

(3.8)
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Notice that (2.7) yields

|u+ − U(x+ θ − β)| ≤ Ce−λ|x+θ−β| ≤ Ce−λ|x−β|.

Set B(x) =
∫ α
0 [u+ − U(x+ θ − β)]dθ. Then we have

∥B∥2 ≤ Cα2

∫ ∞

0
e−2λ|x−β|dx

≤ Cα2

∫ β

0
e−2λ(β−x)dx+ Cα2

∫ ∞

β
e−2λ(x−β)dx

≤ Cα2

2λ
(2− e−2λβ)

≤ Cα2,

(3.9)

where Lemma 3.2 has been used and C is independent of α and β. Similarly, we can obtain that
∥B∥2 ≤ C|α|. This, together with (3.8) and Lemma 3.2 gives

∥ϕ0∥2 ≤ C(∥Φ0∥2 + ∥B∥2) ≤ C(∥Φ0∥2 + |α|),
which goes to zero as β → ∞ and ∥Φ0(x)∥2 → 0. In the same way, we can get that

∥ψ0∥2 → 0

provided ∥Ψ0∥2 → 0 and β → ∞. Thus, the proof of Lemma 3.3 is completed. �
Theorem 2.2 is a consequence of Theorem 3.1 and Lemma 3.3. Hence it remains to prove

Theorem 3.1 which follows from the local existence theorem and the a priori estimates given
below.

Proposition 3.4 (Local existence). Suppose that the assumptions in Lemma 3.1 hold. For any
ε1 > 0, there exists a positive constant T0 depending on ε1 such that if (ϕ0, ψ0) ∈ H2 with
N(0)+β−1 ≤ ε1, then the problem (3.2)-(3.4) has a unique solution (ϕ, ψ) ∈ X(0, T0) satisfying
N(t) ≤ 2ε1 for any 0 ≤ t ≤ T0.

Proposition 3.5 (A priori estimate). Assume that (ϕ, ψ) ∈ X(0, T ) is a solution obtained in
Proposition 3.4 for a positive constant T . Then there is a positive constant ε2 > 0, independent
of T , such that if

N(t) ≤ ε2
for any 0 ≤ t ≤ T , then the solution (ϕ, ψ) of (3.2)-(3.4) satisfies (3.6) for any 0 ≤ t ≤ T .

The local existence in Proposition 3.4 can be proved using the standard fixed point theorem
and we omit the details for brevity. Proposition 3.5 is the key to establish Theorem 3.1. Next
we are devoted to proving Proposition 3.5 by the energy estimates.

Due to Lemma 3.2 and the conditions in Theorem 2.2, in the sequel we may assume, without
loss of generality, that β > 1 and |α| < 1. Since N(t) is small (see Proposition 3.5), we assume
that N(t) < 1 in the following.

3.2. Boundary estimates. To derive the a priori estimate, we first give boundary estimates.

Lemma 3.6. Assume that u+ > 0, v− = 0. Let (ϕ, ψ) be a solution of (3.2)-(3.4). Then the
following boundary estimates hold∣∣∣∣∫ t

0

(
χϕψ +

Dϕϕx
U

+
DUxϕ

2

2U2
+
χV ϕ2

2U

) ∣∣∣
x=0

dτ

∣∣∣∣ ≤ Ce−λβ, (3.10)∣∣∣∣∫ t

0

(
ϕtϕx
U

+ χψtψx +
DUxϕ

2
x

2U2
− χϕxψx −

χV ϕ2x
2U

) ∣∣∣
x=0

dτ

∣∣∣∣ ≤ Ce−λβ, (3.11)∣∣∣∣∫ t

0

(
ϕxϕxx +

ϕxtϕxx
U

)
|x=0dτ

∣∣∣∣ ≤ Ce−λβ, (3.12)

where λ is defined in (2.8).
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Proof. From the second equation of (3.2) and the boundary condition (3.4), we have

ψt|x=0 = ϕx|x=0 = u− − U(−st+ α− β). (3.13)

Thus, by the facts | − st+ α− β| = st+ β − α because s > 0 and β > α, and Proposition 2.1 ,
we have

|U(−sτ + α− β)− u−| ≤ Ce−λ|−st+α−β| ≤ Ce−λ(β−α)e−λst ≤ Ce−λβe−λst,

and

|ψ(0, t)| = |ψ|x=0| = |A(t)| ≤ Ce−λβe−λst. (3.14)

Since ϕx|x=0 = ψt|x=0 = A′(t), we have ϕxt|x=0 = A′′(t) and conclude that A(t) ∈ W 3,1(0,∞)
and ∣∣∣ dk

dtk
A(t)

∣∣∣ ≤Ce−λβe−λst, k = 0, 1, 2, 3,

∥A(t)∥W 3,1(0,∞) ≤Ce−λβ.

(3.15)

It follows from (3.5) that

|ϕ(0, t)| ≤ sup
x∈R+

|ϕ(x, t)| ≤ CN(t),

|ϕx(0, t)|+ |ψx(0, t)| ≤ sup
x∈R+

|ϕx(x, t)|+ sup
x∈R+

|ψx(x, t)| ≤ CN(t).
(3.16)

On the other hand, since −st+ α− β < 0 by β > |α| and u± > 0 then

U(−st+ α− β) > U(0) =
u− + u+

2
> 0,

where we have used the monotonicity of U(z) and (2.10). This means

1

U(−st+ α− β)
≤ 1

U(0)
≤ C. (3.17)

Furthermore, using (2.10) with v− = 0, we have

U ′(−st+ α− β) =
λ(u+ − u−)e

λ(−st+α−β)

(eλ(−st+α−β) + 1)2
≤ Ce−λβe−λst

and

V (−st+ α− β) =
(u− − u+)e

λ(−st+α−β)

s(eλ(−st+α−β) + 1)
≤ Ce−λβe−λst.

The above two inequalities lead to∫ t

0
|U ′(−sτ + α− β)|dτ ≤ Ce−λβ (3.18)

and ∫ t

0
|V (−sτ + α− β)|dτ ≤ Ce−λβ. (3.19)

Next, let us give the proofs of (3.10)-(3.12). Using (3.14)-(3.16), we have∣∣∣∣∫ t

0
ϕψ|x=0dτ

∣∣∣∣ ≤ C

∫ t

0
|A(τ)| |ϕ(0, τ)| dτ ≤ Ce−λβ. (3.20)

In a similar way, we get∣∣∣∣∫ t

0
(ϕϕx)|x=0dτ

∣∣∣∣ ≤ C

∫ t

0

∣∣A′(τ)
∣∣ |ϕ(0, τ)| dτ ≤ Ce−λβ (3.21)

and ∣∣∣∣∫ t

0
(ψtψx)|x=0dτ

∣∣∣∣ = ∣∣∣∣∫ t

0
(ϕxψx)|x=0dτ

∣∣∣∣ ≤ C

∫ t

0

∣∣A′(τ)
∣∣ |ψx(0, τ)| dτ ≤ Ce−λβ. (3.22)
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Using (3.15)-(3.19), we get∣∣∣∣∫ t

0

ϕϕx
U

|x=0dτ

∣∣∣∣ ≤ C

∫ t

0

∣∣A′(τ)
∣∣ |ϕ(0, τ)| dτ ≤ Ce−λβ, (3.23)∣∣∣∣∫ t

0

V ϕ2

U
|x=0dτ

∣∣∣∣ ≤ C

∫ t

0
|V (−sτ + α− β)|

∣∣ϕ2(0, τ)∣∣ dτ ≤ Ce−λβ, (3.24)∣∣∣∣∫ t

0

Uxϕ
2

U2
|x=0dτ

∣∣∣∣ ≤ C

∫ t

0

∣∣U ′(−sτ + α− β)
∣∣ ∣∣ϕ2(0, τ)∣∣ dτ ≤ Ce−λβ, (3.25)∣∣∣∣∫ t

0

V ϕ2x
U

|x=0dτ

∣∣∣∣ ≤ C

∫ t

0
|V (−sτ + α− β)|

∣∣ϕ2x(0, τ)∣∣ dτ ≤ Ce−λβ, (3.26)∣∣∣∣∫ t

0

Uxϕ
2
x

U2
|x=0dτ

∣∣∣∣ ≤ C

∫ t

0

∣∣U ′(−sτ + α− β)
∣∣ ∣∣ϕ2x(0, τ)∣∣ dτ ≤ Ce−λβ. (3.27)

Then (3.10) follows from (3.20) and (3.22)-(3.25). To prove other boundary estimates, we make
use of ψxt = ϕxx (see the second equation of (3.2)), integration by parts, and (3.15)-(3.17) to
get ∣∣∣∣∫ t

0

ϕtϕx
U

|x=0dτ

∣∣∣∣ ≤C ∣∣∣∣∫ t

0

A′(τ)ϕt(0, τ)

U(−sτ + α− β)
dτ

∣∣∣∣
≤C

∣∣∣∣∫ t

0

{
A′(τ)ϕ(0, τ)

U(−sτ + α− β)

}
t

dτ

∣∣∣∣+ C

∣∣∣∣∫ t

0

A′′(τ)ϕ(0, τ)

U(−sτ + α− β)
dτ

∣∣∣∣
+ C

∣∣∣∣∫ t

0

sϕ(0, τ)A′(τ)U ′(−sτ + α− β)

U2(−sτ + α− β)
dτ

∣∣∣∣
≤C

∣∣∣∣ A′(t)ϕ(0, t)

U(−st+ α− β)

∣∣∣∣+ C

∣∣∣∣A′(0)ϕ0(0)

U(α− β)

∣∣∣∣
+ C

∫ t

0

(∣∣A′′(τ)
∣∣+ ∣∣A′(τ)

∣∣) |ϕ(0, τ)| dτ
≤CN(t)

[
|A′(t)|+ |A′(0)|+

∫ t

0

(∣∣A′′(τ)
∣∣+ ∣∣A′(τ)

∣∣) dτ]
≤Ce−λβ.

(3.28)

Thus (3.11) results from (3.22) and (3.26)-(3.28). Following a process similar to (3.28), we can
derive ∣∣∣∣∫ t

0
(ϕxϕxx)|x=0dτ

∣∣∣∣ ≤ Ce−λβ and

∣∣∣∣∫ t

0

ϕxtϕxx
U

|x=0dτ

∣∣∣∣ ≤ Ce−λβ,

which lead to (3.12). This completes the proof of Lemma 3.6. �

Then the L2-estimate is given as follows.

Lemma 3.7. Let the assumptions in Proposition 3.5 hold. Then there exists a constant C > 0
such that

∥ϕ∥2 + ∥ψ∥2 +
∫ t

0
∥ϕx∥2 dτ ≤ C

(
∥ϕ0∥2 + ∥ψ0∥2 + e−λβ +N(t)

∫ t

0

∫ ∞

0
ψ2
xdxdτ

)
. (3.29)

Proof. Multiplying the first equation of (3.2) by ϕ/U and the second by χψ and adding these
equalities, we obtain

1

2

(
ϕ2

U

)
t

− ϕ2

2

(
1

U

)
t

+

(
χψ2

2

)
t

=
Dϕϕxx
U

+ χ (ϕψ)x +
χV ϕϕx
U

+
χϕϕxψx

U
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Noting that

ϕ2

2

(
1

U

)
t

= −sϕ
2

2

(
1

U

)
x

,

ϕϕxx
U

=

(
ϕϕx
U

)
x

− ϕ2x
U

− ϕϕx

(
1

U

)
x

=

(
ϕϕx
U

)
x

− ϕ2x
U

−
(
ϕ2

2

(
1

U

)
x

)
x

+
ϕ2

2

(
1

U

)
xx

,

V ϕϕx
U

=
1

2

(
V ϕ2

U

)
x

− ϕ2

2

(
V

U

)
x

,

we get

1

2

(
ϕ2

U
+ χψ2

)
t

+
Dϕ2x
U

=

(
χϕψ +

Dϕϕx
U

+
DUxϕ

2

2U2
+
χV ϕ2

2U

)
x

+
ϕ2

2

[(
D

U

)
xx

−
(
s+ χV

U

)
x

]
+
χϕϕxψx

U
.

(3.30)

By using (2.1) and the fact that Ux < 0 and 0 < u+ ≤ U ≤ u−, it can be checked that(
D

U

)
xx

−
(
s+ χV

U

)
x

=
2u+
U3

(s+ χv+) · Ux < 0. (3.31)

Substituting (3.31) into (3.30) and integrating the equation over [0,∞)× [0, t], we derive

1

2

∫ ∞

0

(
ϕ2

U
+ χψ2

)
dx+D

∫ t

0

∫ ∞

0

ϕ2x
U
dxdτ

=
1

2

∫ ∞

0

(
ϕ20
U

+ χψ2
0

)
dx−

∫ t

0

(
χϕψ +

Dϕϕx
U

+
DUxϕ

2

2U2
+
χV ϕ2

2U

)
|x=0dτ

+ χ

∫ t

0

∫ ∞

0

ϕxψxϕ

U
dxdτ

≤χ
2
∥ψ0∥2 + C∥ϕ0∥2 +

∣∣∣∣∫ t

0

(
χϕψ +

Dϕϕx
U

+
DUxϕ

2

2U2
+
χV ϕ2

2U

)
|x=0dτ

∣∣∣∣
+
DN(t)

2

∫ t

0

∫ ∞

0

ϕ2x
U
dxdτ +

N(t)χ2

2D

∫ t

0

∫ ∞

0

ψ2
x

U
dxdτ,

where we have used the fact that ∥ϕ(·, t)∥L∞ ≤ N(t) by (3.5). Then, using (3.10) and 0 < u+ ≤
U ≤ u−, we obtain (3.29) and the proof of Lemma 3.7 is completed. �

The next lemma gives the estimate of the first order derivatives of (ϕ, ψ).

Lemma 3.8. Let the assumptions in Proposition 3.5 hold. Then there exists a constant C > 0
such that

∥ϕ∥21 + ∥ψ∥21 +
∫ t

0

(
∥ϕx∥21 + ∥ψx∥2

)
dτ ≤ C

(
∥ϕ0∥21 + ∥ψ0∥21 + e−λβ

)
. (3.32)

Proof. Multiplying the first equation of (3.2) by −ϕxx/U and the second by −χψxx and adding
these equalities, we obtain

−ϕtϕxx
U

− χψtψxx = −Dϕ
2
xx

U
− χ (ϕxψx)x −

χV ϕxϕxx
U

− χϕxψxϕxx
U

.
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Simple calculations give us that

−ϕtϕxx
U

=−
(
ϕtϕx
U

)
x

+

(
ϕt
U

)
x

ϕx

=−
(
ϕtϕx
U

)
x

+
ϕxtϕx
U

+

(
1

U

)
x

ϕtϕx

=−
(
ϕtϕx
U

)
x

+

(
ϕ2x
2U

)
t

+

(
1

U

)
x

sϕ2x
2

+

(
1

U

)
x

ϕtϕx︸ ︷︷ ︸
I

,

I =

(
1

U

)
x

ϕx (Dϕxx + χV ϕx + χUψx + χϕxψx)

=

(
Dϕ2x
2

(
1

U

)
x

)
x

− Dϕ2x
2

(
1

U

)
xx

+ χV

(
1

U

)
x

ϕ2x

+ χU

(
1

U

)
x

ψxϕx + χ

(
1

U

)
x

ϕ2xψx,

−ψtψxx =− (ψtψx)x +

(
ψ2
x

2

)
t

,

−V ϕxϕxx
U

=− 1

2

(
V ϕ2x
U

)
x

+
ϕ2x
2

(
V

U

)
x

.

Thus we get from above inequalities that

1

2

(
ϕ2x
U

+ χψ2
x

)
t

+
Dϕ2xx
U

=

(
ϕtϕx
U

+ χψtψx +
DUxϕ

2
x

2U2
− χϕxψx −

χV ϕ2x
2U

)
x

+
ϕ2x
2

[(
D

U

)
xx

−
(
s+ χV

U

)
x

]
+
χVxϕ

2
x

U

− χU

(
1

U

)
x

ψxϕx − χ

(
1

U

)
x

ϕ2xψx −
χϕxψxϕxx

U
.

(3.33)

Integrating (3.33) over [0,∞)× [0, t] and using (3.31), we obtain

1

2

∫ ∞

0

(
ϕ2x
U

+ χψ2
x

)
dx+D

∫ t

0

∫ ∞

0

ϕ2xx
U
dxdτ

=
1

2

∫ (
ϕ2x0
U

+ χψ2
x0

)
dx−

∫ t

0

(
ϕtϕx
U

+ χψtψx +
DUxϕ

2
x

2U2
− χϕxψx −

χV ϕ2x
2U

)
|x=0dτ

+ χ

∫ t

0

∫ ∞

0

Vxϕ
2
x

U
dxdτ + χ

∫ t

0

∫ ∞

0

Uxψxϕx
U

dxdτ

+ χ

∫ t

0

∫ ∞

0

Uxϕ
2
xψx

U2
dxdτ − χ

∫ t

0

∫ ∞

0

ϕxxϕxψx

U
dxdτ.

Duo to (2.10), it is easy to get that Ux = U ′ = λ(u+−u−)eλz

(eλz+1)2
and Vx = −Ux

s which imply

|Ux| ≤ λ(u− − u+), |Vx| ≤ λv+. (3.34)
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Using the Cauchy-Schwarz inequality, the boundary estimate (3.11), (3.34) and ∥ψx(·, t)∥L∞ ≤
N(t) < 1 for any t ∈ [0, T ] by (3.5), we have∫ ∞

0

(
ϕ2x
U

+ χψ2
x

)
dx+D

∫ t

0

∫ ∞

0

ϕ2xx
U
dxdτ

≤
∫ ∞

0

(
ϕ2x0
U

+ χψ2
x0

)
dx+ Ce−λβ + C

∫ t

0

∫ ∞

0

ϕ2x
U
dxdτ + C

∫ t

0

∫ ∞

0
Uψ2

xdxdτ

+
DN(t)

2

∫ t

0

∫ ∞

0

ϕ2xx
U
dxdτ + CN(t)

∫ t

0

∫ ∞

0

ϕ2x
U
dxdτ,

which together with (3.29) yields∫ ∞

0

(
ϕ2x
U

+ χψ2
x

)
dx+D

(
1− N(t)

2

)∫ t

0

∫ ∞

0

ϕ2xx
U
dxdτ

≤ C

(
∥ϕ0∥21 + ∥ψ0∥21 + e−λβ +N(t)

∫ t

0

∫ ∞

0
ψ2
xdxdτ +

∫ t

0

∫ ∞

0
Uψ2

xdxdτ

)
.

(3.35)

Now we claim ∫ t

0

∫ ∞

0
ψ2
xdxdτ ≤ C

(
∥ψ0∥21 + ∥ϕ0∥2 + e−λβ

)
. (3.36)

Indeed multiplying the first equation of (3.2) by ψx, we get

χUψ2
x = ϕtψx −Dϕxxψx − χV ϕxψx − χϕxψ

2
x. (3.37)

Integrating (3.37) over [0,∞)× [0, t], using the fact ψxt = ϕxx and following results

ϕtψx = (ϕψx)t − ϕψxt = (ϕψx)t − ϕϕxx = (ϕψx)t − (ϕϕx)x + ϕ2x,

ϕxxψx = ψxtψx =
1

2
(ψ2

x)t,

we obtain

D

2

∫ ∞

0
ψ2
xdx+ χ

∫ t

0

∫ ∞

0
Uψ2

xdxdτ

=
D

2

∫ ∞

0
ψ2
0xdx+

∫ ∞

0
ϕψxdx−

∫ ∞

0
ϕ0ψ0xdx+

∫ t

0
(ϕϕx)|x=0dτ

+

∫ t

0

∫ ∞

0
ϕ2xdxdτ − χ

∫ t

0

∫ ∞

0
V ϕxψxdxdτ − χ

∫ t

0

∫ ∞

0
ϕxψ

2
xdxdτ

≤ D + 1

2

∫ ∞

0
ψ2
0xdx+

1

2

∫
ϕ20dx+ Ce−λβ +

1

D

∫ ∞

0
ϕ2dx+

D

4

∫ ∞

0
ψ2
xdx+

∫ t

0

∫ ∞

0
ϕ2xdxdτ

+ C(1 +N(t))

∫ t

0

∫ ∞

0

ϕ2x
U
dxdτ +

(1 +N(t))χ

4

∫ t

0

∫ ∞

0
Uψ2

xdxdτ,

where we have used the Young’s inequality and the fact ∥ψx(·, t)∥L∞ ≤ N(t), |V | ≤ C. From
this inequality and using 0 < u+ ≤ U ≤ u− and (3.29), it follows that∫ ∞

0
ψ2
xdx+

∫ t

0

∫ ∞

0
Uψ2

xdxdτ

≤ C

(∫ ∞

0
ψ2
0xdx+

∫ ∞

0
ϕ20dx+ Ce−λβ +

∫ ∞

0

ϕ2

U
dx+

∫ t

0

∫ ∞

0

ϕ2x
U
dxdτ

)
≤ C

(
∥ψ0∥21 + ∥ϕ0∥2 + e−λβ +N(t)

∫ t

0

∫ ∞

0
ψ2
xdxdτ

)
.

(3.38)



14 MING MEI, HONGYUN PENG, AND ZHI-AN WANG

Choosing N(t) sufficiently small and using 0 < u+ ≤ U ≤ u−, we get (3.36) from (3.38). Then
substituting (3.36) into (3.35) yields∫ ∞

0
ψ2
xdx+

∫ ∞

0

ϕ2x
U
dx+D

∫ t

0

∫ ∞

0

ϕ2xx
U
dxdτ ≤ C

(
∥ψ0∥21 + ∥ϕ0∥21 + Ce−λβ

)
. (3.39)

Thus, by 0 < u+ ≤ U ≤ u−, (3.29) and (3.39), we derive (3.32). �

Next, we give the estimates of the second order derivative of (ϕ, ψ).

Lemma 3.9. Let the assumptions in Proposition 3.5 hold. Then there exists a constant C > 0
such that

∥ϕxx∥2 + ∥ψxx∥2 +
∫ t

0

(
∥ϕxxx∥2 + ∥ψxx∥2

)
dτ ≤ C

(
∥ϕ0∥22 + ∥ψ0∥22 + e−λβ

)
. (3.40)

Proof. We differentiate (3.2) with respect to x to get{
ϕxt = Dϕxxx + χUxψx + χUψxx + χVxϕx + χV ϕxx + χϕxxψx + χϕxψxx,
ψxt = ϕxx.

(3.41)

Multiplying the first equation of (3.41) by −ϕxxx/U , one gets

−ϕxtϕxxx
U

= −Dϕ
2
xxx

U
− χψxxϕxxx −

χϕxxx
U

(Uxψx + Vxϕx + V ϕxx + ϕxxψx + ϕxψxx). (3.42)

If we follow the standard procedure to integrate (3.42) with respect to x over R+ to derive

the estimate of ∥ϕxx∥2, the boundary term
∫ t
0 ϕxxψxx|x=0dτ will be present, which is out of

control in our problem. Hence to avoid this boundary estimate, below we shall develop a new
idea by constructing the term χψxxϕxxx from the second equation of (3.41) and canceling the
term −χψxxϕxxx in (3.42) which causes the boundary estimates. By doing this, new boundary

estimate arising is
∫ t
0 ϕxtϕxx|x=0dτ which is however under control (see (3.12)). To this end, we

differentiate the second equation of (3.41) and multiply the resultant equation by χψxx to get(
χψ2

xx

2

)
t

= χψxxϕxxx. (3.43)

Adding (3.42) and (3.43) up and noticing that

−ϕxtϕxxx
U

=−
(
ϕxtϕxx
U

)
x

+
ϕxxtϕxx
U

− Uxϕxtϕxx
U2

=−
(
ϕxtϕxx
U

)
x

+

(
ϕ2xx
2U

)
t

− sUxϕ
2
xx

2U2

− Uxϕxx
U2

(Dϕxxx + χUxψx + χUψxx + χVxϕx + χV ϕxx + χϕxxψx + χϕxψxx),

we obtain

1

2

(
ϕ2xx
U

+ χψ2
xx

)
t

+
Dϕ2xxx
U

=

(
ϕxtϕxx
U

)
x

+
sUxϕ

2
xx

2U2
− χϕxxx

U
(Uxψx + Vxϕx + V ϕxx + ϕxxψx + ϕxψxx)

+
Uxϕxx
U2

(Dϕxxx + χUxψx + χUψxx + χVxϕx + χV ϕxx + χϕxxψx + χϕxψxx).

(3.44)
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Integrating (3.44) with respect to x over [0,∞) and rearranging the resulting equation, we get

1

2

d

dt

∫ ∞

0

(
ϕ2xx
U

+ χψ2
xx

)
dx+D

∫ ∞

0

ϕ2xxx
U

dx

= −ϕxtϕxx
U

|x=0 − χ

∫ ∞

0

ϕxxx
U

(
Uxψx + Vxϕx + V ϕxx + ϕxxψx + ϕxψxx −

DUxϕxx
χU

)
dx︸ ︷︷ ︸

I1

+

∫ ∞

0

Uxϕxx
U2

(
sϕxx
2

+ χUxψx + χUψxx + χVxϕx + χV ϕxx + χϕxxψx + χϕxψxx

)
dx︸ ︷︷ ︸

I2

.

(3.45)

Because
∣∣Ux
U

∣∣, |Ux| and |Vx| are all bounded, ∥ψx(·, t)∥L∞ ≤ N(t) < 1 and ∥ϕx(·, t)∥L∞ ≤ N(t) <
1 for any t ∈ [0, T ], we get by the Cauchy-Schwartz inequality that

I1 ≤
D +N(t)

2

∫ ∞

0

ϕ2xxx
U

dx+ C

∫ ∞

0
Uψ2

xdx+ C

∫ ∞

0

ϕ2x
U
dx

+C(1 +N(t))

∫ ∞

0

ϕ2xx
U
dx+ CN(t)

∫ ∞

0

ψ2
xx

U
dx,

I2 ≤ C(1 +N(t))

∫ ∞

0

ϕ2xx
U
dx+ C

∫ ∞

0
Uψ2

xdx+ C

∫ ∞

0

ϕ2x
U
dx

+C

∫ ∞

0
Uψ2

xxdx+ CN(t)

∫ ∞

0

ψ2
xx

U
dx.

Substituting above two inequalities into (3.45), integrating the resultant inequality over [0, t]
and using (3.32), one has∫ ∞

0

ϕ2xx
U
dx+

∫ ∞

0
ψ2
xxdx+

∫ t

0

∫ ∞

0

ϕ2xxx
U

dxdτ

≤ C

(
∥ϕ0∥22 + ∥ψ0∥22 + e−λβ +

∫ t

0

∫ ∞

0
Uψ2

xxdxdτ +N(t)

∫ t

0

∫ ∞

0
ψ2
xxdxdτ

)
.

(3.46)

Next we estimate the term
∫ t
0

∫∞
0 Uψ2

xxdxdτ . Multiplying the first equation of (3.41) by ψxx,
we obtain

χUψ2
xx = ϕxtψxx − (Dϕxxx + χUxψx + χVxϕx + χV ϕxx + χϕxxψx + χϕxψxx)ψxx.

With the following identities

ϕxxt = ψxxx,

ϕxtψxx = (ϕxψxx)t − ϕxψxxt = (ϕxψxx)t − ϕxϕxxx = (ϕxψxx)t − (ϕxϕxx)x + ϕ2xx,

ϕxxxψxx = ψxxtψxx =
1

2
(ψ2

xx)t,

we have

D

2
(ψ2

xx)t + χUψ2
xx =(ϕxψxx)t − (ϕxϕxx)x + ϕ2xx

− (χUxψx + χVxϕx + χV ϕxx + χϕxxψx + χϕxψxx)ψxx.



16 MING MEI, HONGYUN PENG, AND ZHI-AN WANG

Thus, integrating the above equation over [0,∞)× [0, t] and using the Cauchy-Schwartz inequal-
ity, we have

D

2

∫ ∞

0
ψ2
xxdx+ χ

∫ t

0

∫ ∞

0
Uψ2

xxdxdτ

≤ 1

D

∫ ∞

0
ϕ2xdx+

D

4

∫ ∞

0
ψ2
xxdx+

(
D + 1

2

)∫ ∞

0
ψ2
0xxdx+

1

2

∫ ∞

0
ϕ20xdx

+

∫ t

0
(ϕxϕxx)|x=0dx+

∫ t

0

∫ ∞

0
ϕ2xxdxdτ +

(1 +N(t))χ

4

∫ t

0

∫ ∞

0
Uψ2

xxdxdτ

+ C

(∫ t

0

∫ ∞

0

ψ2
x

U
dxdτ +

∫ t

0

∫ ∞

0

ϕ2x
U
dxdτ +

∫ t

0

∫ ∞

0

ϕ2xx
U
dxdτ

)
+N(t)

∫ t

0

∫ ∞

0
ψ2
xxdxdτ.

Then it follows from (3.12) and (3.32) that∫ ∞

0
ψ2
xxdx+

∫ t

0

∫ ∞

0
Uψ2

xxdxdτ

≤ C

(
∥ϕ0∥21 + ∥ψ0∥22 + e−λβ +N(t)

∫ t

0

∫ ∞

0
ψ2
xxdxdτ

)
.

(3.47)

When N(t) is small enough, the above inequality gives∫ ∞

0
ψ2
xxdx+

∫ t

0

∫ ∞

0
ψ2
xxdxdτ ≤ C

(
∥ϕ0∥21 + ∥ψ0∥22 + e−λβ

)
, (3.48)

where 0 < u+ ≤ U ≤ u− has been used. This together with (3.46) leads to∫ ∞

0
ψ2
xxdx+

∫ ∞

0

ϕ2xx
U
dx+

∫ t

0

∫ ∞

0

ϕ2xxx
U

dxdτ ≤ C
(
∥ϕ0∥22 + ∥ψ0∥22 + e−λβ

)
, (3.49)

which in combination with (3.48) gives (3.40). The proof of Lemma 3.9 is finished. �

Finally, the desired estimate (3.6) follows from (3.32) and (3.40), and the proof of Proposition
3.5 is completed.

3.3. Proof of Theorem 3.1. To complete the proof of Theorem 3.1, we only need to prove
(3.7) since the rest has been implied by Proposition 3.5. From (3.6), we have

∥ϕx(·, t), ψx(·, t)∥1 → 0 as t→ ∞.

Hence, for all x ∈ R+,

ϕ2x(x, t) = 2

∣∣∣∣∫ ∞

x
ϕxϕxx(y, t)dy

∣∣∣∣
≤ 2

(∫ ∞

0
ϕ2xdy

)1/2(∫ ∞

0
ϕ2xxdy

)1/2

≤ ∥ϕx(·, t)∥1 → 0 as t→ ∞.

Similarly, we have

ψx(x, t) → 0 as t→ ∞ for all x ∈ R+.

Hence (3.7) is proved and the proof of Theorem 3.1 is completed.
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